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” 8.4.2 ATEST FOR OVERIDENTIFICATION

The motivation for choosing the IV estimator is not efficiency. The estimator is constructed to be
consistent; efficiency is not a consideration. In Chapter 13, we will revisit the issue of efficient
method of moments estimation. The observation that 2SLS represents the most efficient use of all
_ L instruments establishes only the efficiency of the estimator in the class of estimators that use X -~ .
= linear combinations of the columns of Z. The IV estimator is developed around the orthogonality - /@_ i

AN condltlons = d L .
T e f—]t}* erm
Elzg] = 0. . (8-12)
N B : ‘ mﬂrr"h‘“’ﬁff
The sample counterpart to this is the moment equation, i ; oGua ht:ﬁ't
I_c'l‘ll'l‘@{ﬁ.ﬂ"x i
1 1) -
_—ZH ze; =0 (8-13) W ] 1ﬂ, ehney

T ra | |‘:[_,f'|;7 {-U!'h ',)
I‘-\ e

The solution, when L = X, is by = (Z'X) Z'y, as we have seen. If L > K, then there is no single
solution, and we arrived at 2SI.S as a strategy Estimation is still based on (8-13). However, the
sample counterpart is now L equations in K unknowns and (8-13) has no solution. Nonetheless,
under the hypothesis of the model, (8-12) remains true. We can consider the additional -
restictions as a hypothesis that might or might not be supported by the sample evidence. The/ | | |-
excess of moment equations provides a way to test the overidentification of the model. “The test
wil be based on (8-13), which, when evaluated at v, will not equal zero when L > K, though the
hypothesis in (8-12) might stiii be true.

The test statistic will be a Wald statistic. (See Section 5.4.) The sample statistic, based
on (8-13) and the IV estlmator 15

] 1 n = 1 n ,-.
m :—HZH Z; ve - HZH z(v _.’.f_i.brV).- .

n

The Wald statistic is
2L - K] =@ [Var(in)| " in

To complete the construction, we require an estimator of the variance. There are two ways to

proceed. Under the assumption of the model,
JALT 2

Var[m] = —-Z’Z
n
which can be estimated easily using the sample estimator of ¢*. Alternatively, we might base the
estimator on (8-12), which would impIy that an appropriate estimator would be

EstVar m]— Z_l (zeﬂm (zenm) = Z e]i’/x

These two estimators will be numerically different in a finite sample, but under the assumptions
that we have made so far, both (multiplied by #) will converge to the same matrix, so the choice
is immaterial. Current practice favors the second. The Wald statistic is, then
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A remaining detail is the number of degrees of freedom. The test can only detect the failure of _ g

.= -k — K moment equations, so that is the rank of the quadratic form; the limiting distribution of the.

statistic is chi squared with L ~ K degrees of freedom.

EXAMPLE 8.8 Overidentification of the Labor Supply Equation
In Example 8.5, we computed 2SLS estimates of the parameters of an equation for weeks
worked. The estimator is based on ‘ = -

X =[1,n Wage,Education,Unfon,FemaIe]
and
z= [1,ind, Education,Union,Female, SMSA].

There is one overidentifying restriction. The sample moment based on the 2SLS results in
Table 8.1is " ‘

(1/4165) Z’e25,5 = [0, .03476, 0, 0, 0,"-.01543].

The chi_.;.squared statistic is 1.09399 with one degree of freedom. If the first suggested
variance estimator is used, the statistic is 1.05241. Both are well under the 95% critical value
of 3.84, so the hypothesis of overidentification is not rejected. '

We note a final implication of the test. One might conclude, based on the underlying
theory of the model, that the overidentification test relates to one particular instrumental variable
and not another. For example, in our market equilibrium example with two instruments for the
demand equation, Rainfal] and InputPrice, rainfall is obviously exogenous, so a rejection of the
overidentification restriction would eliminate InputPrice as a valid instrument. However, this
conclusion would be imappropriate; the test suggests only that one or more of the elements in (8-
12) are nonzero. Tt does not suggest which elements in particular these are. =
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possibility of bias due to corre between Y; and #. Consider instrumental variables
estimation using ¥;_; and

its own instrument. O

bservation is lost because of the ed values, so the results are

. The 95 percent critical
the null hypothesis of no .

value from the chi-squared ta
correlation between Y; an
2. Using the Wu statistic
predicted value in
prediction is 2.
critical valu

Thus far, it has been assumed (at least implicitly) that the data used to estimate the
parameters of our models are true measurements on their theoretical counterparts. In
practice, this situation happens only in the best of circumstances. All sorts of measure-
ment problems creep into the data that must be used in our analyses, Even carefully
constructed survey data do not always conform exactly to the variables the analysts
have in mind for their regressions. Apggregate statistics such as GDP are only estimates
of their theoretical counterparts, and some variables, such as depreciation, the services
of capital, and “the interest rate,” do not even exist in an agreed-upon theory. At worst,
there may be no physical measure corresponding to the variable in our model; intelli-
gence, education, and permanent income are but a few examples. Nonetheless, they all
have appeared in very precisely defined regression models,

-

/15.5.1 LEAST SQUARES ATTENUATION

In this section, we examine some of the received results on regression analysis with badly
measured data. The general assessment of the problem is not particularly optimistic.
The biases introduced by measurement error can be rather severe, There are almost no
known finite-sample results for the models of measurement error; nearly all the results

3 at have been devVeioped are as OTiC* The following presentation will use a few

simple asymptotic results for the classical regression model.
The simplest case to analyze is that of a regression model with a single regressor and
no constant term. Although this case is admittedly unrealistic, it illustrates the essential

concepts, and we shall generalize it presently. Assume that the model, 3.
Y= Bxt +e, (12-13)

conforms to all the assumptions of the classical normal regression model. If data on y*
and x* were available, then # would be estimable by least squares. Suppose, however,
that the observed data are only imperfectly measured versions of y* and x*. In the
context of an example, suppose that y* is In(output/labor) and x* is In(capital/labor).
Neither factor input can be measured with precision, so the observed y and x contain

é' e, for example, Imbens and Hyslop (2001).

=7 as the instruments for ¥;, and, of gaurse, the constant term is oo i
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errors of measurement. We assume that

o _ &-/5ra,
o o I ol ~ y=y"+v withv~ N[0,67], (32-13a) El e
' C x=xtu withu ~ N[0,02]. @12y 8-/5h

Assume, as well, that u and v are independent of each other and of y* and x*. (As we
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

As afirst step, insert (¥2=43a) into ($2=$t), assuming for the moment that only y*is’
measured with error: & -/¥a. -1y ' _

y=px"+e+v=p8x"+¢. s

This result conforms to the assumptions of the classical regression model. As long as the
regressor is measured properly, measurement error on the dependent variable can be
absorbed in the disturbance of the regression and ignored. To save some cumbersome
notation, therefore, we shall henceforth assume that the measurement error problems
concern only the independent variables in the model. Q-5
Consider, then, the regression of y on the observed x. By substituting (B-1%b) into
(12-11), we obtain ' '

-1y /b
y=px+[e—~pul=px+w ¢
. &-/& : .
Because x equals x* + u, the regressor in (£2=£3) is correlated with the disturbance: 15
Covlx, w] = Cov[x* + u, e — fu] = —-ﬁaf_. 7=

This resuit violates one of the central assumptions of the classical model, so we can
expect the least squares estimator,

: po UM%y
A/my 3t 2

to be inconsistent. To find the probability limits, insert '(51-2-1.&) and @2-¥2b) and use the
Slutsky theorem: -y 8-15°h

lim b — PUOCT/m) 350 Cef + 1) (Bxf + &)
' plim(1/n} 337 (xf + 1:)?

Because x*, ¢, and u are mutually independent, this equation reduces to

P

g =1 8 o .

. BQ* g

phmb__Q*+aj_1+Uuz/Q*’ @2<15) f@_ S-S

where Q" = plim(1/n) 3=, x}*. As long as o7 is positive, b is inconsistent, with a persis- \ 1a KT

tent bias toward zero. Clearly, the greater the variability in the measurement error, the —— Kiq of ‘C,f.f“'

worse the bias. The effect of biasing the coefficient toward zero is called attenuation. .\ | dtﬂﬁl*' Qua NEE
Ina multiple regression model, matters only get worse. Suppose, to begin, we assume AT \ J

thaty = X*8 + & and X = X* + U, allowing every observation on every variable to be ¢ ho fZl. (s

measured with error. The extension of the earlier result is

4 ?
pim (5F) — @+ 3, and piim(%2) g,

n
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Hence, 9-19
P plimb = [Q" +Zul " Q'8 = § ~ (@' + Bul 'Eusb. (26)

This probability limit is a'mixture of all the parameters in the model. In the same fashion” |,
as before, bringing in cutside information could lead to identification. The amount of
information necessary is extremely large, however, and this approach is not particularly
promising, - _ . 7 .

It is common for only a single variable to be measured with error. One might
speculate that the problems would be isolated to the single coefficient. Unfortunately,
this situation is not the case. For a single bad variable—-assume that it is the first-the
matrix X, is of the form o

o2 0 ... 0
0 0 .- 0
¥ z.uu = .
0 0 ... 0
It can be shown that for this special case,
b1 § ~2va
| o1 1T
[note the similarity of this result to (#215)], and, fork # 1, :
‘ o2gH 8-20h

where g*} is the (k, 1)th element in (_Q*)“l.q”[his result depends on several unknowns
and cannot be estimated. The coefficient on the badly measured variable is still biased
toward zero. The other coefficients are all biased as well, although in unknown ggc_ Y
tions. A badly measured variable contaminates all the least squares estimates* If more'-.‘?
— than one variable is measured with error, there is very little that can be said* Althoughé-
FAE expressions can be derived for the biases in a few of these cases, they generally depend

P, on numerous parameters whose signs and magnitudes are unknown and, presumably,

unknowable.

N2.5.2 INSTRUMENTAL VARIABLES ESTIMATION

An alternative set of results for estimation in this model (and numerous others) is built

&~ je7- around the method of instrumental variables, Consider once again the errorsin variables
4 " model T (32+4}) and (42-12a:b). The parameters, 6, o?, g*, and o2 are not identified in
S-1§ b <~ terms of the momeHiTs of x and y. Suppose, however, that there éxists a variable z such
a, that z is correlated with x* but not with u. For example, in surveys of families, income

is notoriously badly reported, partly deliberately and partly because respondents often

"f /EUse (A-66) to invert [Q* + ¥,;,) = [Q* + {oue1 Maue1)'], where ey is the first column of a K x K identity
.. matrix. The remaining results are then straightforward,

. 4 )"ﬁ]is point is important to remember when the presence of measurement error is suspected.

e ASome firm analytic resuits have been obtained by Levi (1973), Theil (1961), Klepper and Leamer (1983),
_ Garber and Klepper (1980), Griliches (1986), and Cragg (1997).
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neglect some minor sources. Suppose, however, that one could determine the total
amount of checks written by the head(s) of the houschold. It is quite likely that this z
_ would be highly corretated with income, but perhaps not significantly correlated with
the errors of measurement. If Cov[x*, z] is not zero, then the parameters of the model
become estimable, as - T
A/m Yz BCovix*, 2] 8 (22-128:)‘-
(A/my3 i xz  Covix*, z] T

plim

For the general case,y = X*8 +¢,X = X* 4+ U, suppose that there exists a matrix
of variables Z that is not correlated with the disturbances or the measurement error but
is correlated with regressors, X. Then the instrumental variables estimator based on Z,

by = (Z’X)‘l_Z' ,is consistent and asymptotically normally distributed with asymptotic
covariance matrix that is estimated with
- ST AP N
Est. Asy. Var[brv] = az[z{x]-ilz'Z][x'_z]-l. (1219

For more general cases, Theorem #2:% and the results in Section 123 apply.

8 &3

. ¥EE5.3 PROXY VARIABLES

In some situations, a variable in a model simply has no observable counterpart. Edu-
cation, intelligence, ability, and like factors are perhaps the most common examples.
In this instance, unless there is some observable indicator for the variable, the model
will have to be treated in the framework of missing variables. Usuaily, however, such an
indicator can be obtained; for the factors just given, years of schooling and test scores
of various sorts are familiar examples. The usual treatment of such variables is in the
measurement error framework. If, for example,

income = B -+ B, education + ¢
and
years of schooling = education + x,

then the model of Section?l.s .1applies. The only difference here is that the true variable
in the model is “latent.” No amount of improvement in reporting or measurement would
bring the proxy closer to the variable for which it is proxying,

The precedingis a pessimistic assessment, perhaps more so than necessary. Consider
a stractural model,

Earnings = 8, + , Experience + B Industry + B4 Ability + s.

Ability is unobserved, but suppose that an indicator, say, 10, is. If we suppose that IQ
is related to Ability through a relationship such as

1Q = oy +ay Ability + v,

Z-3

Aot KT

‘shra {:[ ' ""{,’iﬁ !
e !

notT Ay
E"'!'-H?'-F" [Igi

e —————
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then we may solve the second equation for Ability and insert it in the first to obtain the
reduced form equation

" Earnings = (p1 ~ ﬁ4a1 foa) + B Experzence + 8 Industry + (Ba/o)IQ + (& — vBs/a).

1
This equation is 1ntr1n81cally lmear and can be estimated byleastsquares. We donothave |

consistent estimators of B and S84, but we do have them for the coefficients of interest,
B and Bs. This would appear to “solve” the problem. We should note the essential
|_Yingredients; we require that the indicator, /Q, not be related to the other variables in
the model, and we also require that v not be correlated with any of the variables. In
this instance, some of the parameters of the structural model are identified in terms of
observable data. Note, though, that /Q is not a proxy variable] it is an indicator of the
latent variable, Ability. This form of modeling has figured prominently in the education
and educational psychology literature. Consider, in the preceding small model how one
might proceed with not just a single indicator, but say with a battery of test scores, all
of which are indicators of the same latent ability variable.
It is to be emphasized that a proxy variable is not an instrument (or the reverse).
Thus, in the instrumental variables framework, it is implied that we do not regress y on
Z to obtain the estimates. To take an extreme example, suppose that the full model was

y=X'8+¢,
X=X+,
Z=X"+W.

That is, we happen to have two badly measured estimates of X*. The parameters of this
model can be estimated without difficulty if W is uncorrelated with U and X*, but not
by regressing y on Z. The instrumental variables technique is called for.
When the model contains a variable such as education or ab111ty, the question that
naturally arises is{ If interest centers on the other coefficients in the model, why not
’,} 2 just discard the problem variable?& This method produces the familiar problem of an
omitted variable, compounded by the least squares estimator in the full model being
inconsistent anyway. Which estimator is worse? McCallum (1972) and Wickens (1972)
show that the asymptotic bias (actually, degree of inconsistency) is worse if the proxy
is omitted, even if it is a bad one (has a high proportion of measurement error). This
proposition neglects, however, the precision of the estimates. Aigner (1974) analyzed
this aspect of the problem and found, as might be expected, that it could go either way.
He concluded, h%wez}rer that “there is evidence to broadly support use of the proxy.”
Example :'ncome and Education in a Study of Twins
The traditional model used In labor economics to study the effect of education on income is
an equation of the form

¥ = B1+ B2 age; + Bs agef + B, education; +x/85 + &,

where y; is typically a wage or yearly income (perhaps in log form) and x; contains other
variables, such as an indicator for sex, region of the country, and industry. The literature

q’ 5 ﬁis discussion applies to the measurement error and latent variable problems equally.

4 "rr-."{': j
1\ |I 14" {;IM!‘J.

Mere alse” ;

e



Bill
Sticky Note
no


+ Greene-50558

book

June 21, 2007 13:35

330 PART Il + Instrumental Variables and Simultaneous Equations Models

contains discussion of many possible problems in estimation of such an equation by least
squares using measured data. Two of them are of interest hers:

- 1. Although “education” is the variable that appears in the equation, the data available

to researchers usually include only “years of schooling.” This variable is a proxy for
education, so an equation fitin this.form will be tainted by this problem of measurement
error. Perhaps surprisingly so, researchers also find that reported data on years of
schooling are themselves subject to error, so there is a second source of measurement
error. For the present, we will not consider the first (much more difficult) problem.

2. Other variables, such as “ability” - we denote these y, — will also affett income and
are surely correlated with education. If the earnings equation is estimated in the form
shown above, then the estimates will be further biased by the absence of this “omitted
variable.” For reasons we will explore in Chapter 24, this bias has been called the

- selectivity effect in recent studies.

Simple cross-section studies will be considerably hampered by these problems, But, in a
Feconi-stady, Ashenfelter and Kreuger (1994) analyzed §data set that allowed them, with a
few simple assumptions, to ameliorate these problems-

Annual “twins festivals” are held at many places in the United States. The largest is held
in Twinsburg, Ohlo. The authors interviewed about 500 individuals over the age of 18 at the
August 1991 festival. Using pairs of twins as their observations enabled them to modify their
model as follows: Let (y;;, Ay} denote the earnings and age for twin j, j =1, 2, for pairi. For
the education variable, only seff-reported “schooling” data, S, are avallable. The authors
approached the measurement problem in the schooling variable, S;;, by asking each twin
how much schooling they had and how much schooling their sibling had. Denote reported
schooling by sibling m of sibling j by S;;{m). So, the seli-reported years of schooling of twin 1
is.S;1(1). When asked how much schodling twin 1 has, twin 2 reports 5,1(2). The measurement
error model for the schooling variable is

Sy{m) = Sy +uylm), j.m = 1,2, where S; = “true” schooling for twinj of pair i.

We assume that the two sources of measurement error, uy;(m), are uncorrelated and they

and §; have zero means. Now, consider a simple bivariate model such as the one in (12-11);
Yy = BSy +&y.

As we saw earlier, a least squares estimate of § using the reported data will be attenuated:

ﬁ X Var[Sf,]
Var{S;;1 + Var[uy;(j)]

{Because there is no natural distinction between twin 1 and twin 2, the assumption that the
variances of the two measurement errors are equal is innocuous.} The factor g is sometimes
called the reliability ratio. In this simple model, if the reliability ratio were known, then g could
be consistently estimated. in fact, the construction of this model allows just that. Since the
two measurement errors are uncorrelated,

CorrSi1(1), Si1(2)] = Corr[Sia(1), Siz(2)]

plimb =

= ﬂlq-.

_ Var(Si1]
~ ((Var[Sin] + Varlup (D]} x{ Var{Si] + Varlu(2) 11172

In words, the correlation between the two reported education attainments measures the
reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of identical
twins and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick assessment
of the extent of measurement error in their schooling data.

The earnings equation is a multiple regression, so this result is useful for an overall assess-
ment of the problem, but the numerical values are not sufficient to undo the overall biases
in the least squares regression coefficients. An instrumental variables estimator was used

2q.__

gO-H\er sivdes ap fwins ond siblings include Bound, Chorkas, Haskel,
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for that purpose. The estimating equation for y; = In Wage,; with the least squares (LS} and
instrumental variable {IV) estimates is as follows:

Yy =58 +p agéf + Bz agef + B4 Sij(]) + Bs Sim{m) + s sex; + B races + ¢
LS (0.088). (—0.087) (0.084) (0.204) (—0.410)
Y (0.088) (-0.087) (0.116) (-0.037) (0.206) (-0.428).

Inthe equation, S;;(/) is the person's report of his or ter own years of schooling and S;m(m) is
the sibling’s report of the sibling’s own years of schooling. The problem variable is schooling.
To obtain a consistent estimator, the method of instrumental variables was used, using each
sibling’s report of the other sibling’s years of schooling as a pair of instrumental variables,
The estimates reported by the authors are shown below the equation. (The constant term
was not reported, and for reasons not given, the second schaoling variable was not included
in the equation when estimated by LS.) This preliminary set of results is presented to give a
comparison to other results in the literature. The age, schooling, and gender effects are com-
parable with other received resuits, whereas the effect of race is vastly different, —40 percent
here compared with a typical value of 4-9 percent in other studies. The effect of using the
instrumental variable estimator on the estimates of g, is of particular interest. Recall that
the reliability ratio was estimated at about 0.9, which suggests that the IV estimate would be
roughly 11 percent higher (1/0.9). Because this result is a muiltiple regression, that estimate
is only a crude guide. The estimated effect shown above is closer to 38 percent.

The authors also used a different estimation approach. Recall the issue of selection bias
caused by unmeasured effects. The authors reformulated their model as

iy = 1+ Boage; + s agel + B Siy(]) + Pesex + Byrace; + w + ey

Unmeasured [atent effects, such as "ablllty,“ are contained in ;. Because u; is not observ-
able but is, it is assumed, correlated with other variables in thé equation, the least squares
ragressmn of y;; on the other variables produces a biased set of coefficient estimates. [This
is a “fixed effects model--See Section 9.4. The assumption that the latent effect, “ability”’
is common between the' twins and fully accounted for is a controversial assumption that
ability is accounted for by “nature” rather than “nurture.” Ses, e.g., Behrman and Taubman
{1989). A search of the internet on the subject of the “nature versus nurture debate” will turn
up millions of citations. We will not visit the subject here.] The difference between the two
earnings equations is

¥i1 = Yo = Ba[Si(1) — S22} + &1 — &2

This equation removes the latent effect but, it turns out, worsens the measurement error
problem. As before, 8, can be estimated by instrumental variables. There are two instrumental
variables available, S;2(1) and 5;1(2). (it is not clear in the paper whether the authors used
the two separately or the difference of the two.) The least squares sstimate is 0.092, which
is comparable to the earlier estimate. The instrumental variable estimate is 0.167, which is
nearly 82 percent higher. The two reported standard errors are 0,024 and 0.043, respectively.
With these figures, it is possible to carry out Hausman's test;

{(0.167 - 0.092)2

H = 00432 —0.0042

= 4.418.

The 95 percent critical value from the chi-squared distribution with one degree of freedom is
3.84, so the hypothesis that the LS estimator is consistent would be rejected. (The square
root of H, 2.102, would be treated as a value from the standard normal distribution, from
which the critical value would be 1.96. The authors reported a ¢ statistic for this regression
of 1.97. The source of the difference is unclear.)
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8. GW NONLINEAR INSTRUMENTAL VARIABLES
ESTIMATION
5.2
In Section L2, we extended the linear regression model to allow for the possibility that |
the regressors might be correlated with the disturbances. The same problem can arise in L/g
nonlinear models. The consumption function estimated in Section@'s_m—" g 2
a_case in point, and we reestimated it using the instrumental variables technique for
R ,7 linear models in Example%2.4.)In this section, we will extend the method of instrumental

variables to nonlinear regression models,
In the nonlinear moded,

_yi =h(x1|ﬂ) "I"eh

the covariates X; may be correlated with the disturbances. We would expect this effect
to be transmitted to the pseudoregressors,.x? = dh(x;, §)/0B. If so, then the resuits that
we derived for the linearized regression would no longer hold. Suppose that there is a
set of variables [z, ..., zz] such that

plim(l/mZ'e = 0 =22y
and g -23
plim(1/m)Z'X° = Q3 # 0,

where XU is the matrix of pseudoregressors in the linearized regression, evaluated at the
true parameter values. If the analysis that we used for the linear model in Section 123 &.3
can be applied to this set of variables, then we will be able to construct a consistent
estimator for 8 using the instrumental variables. As a first step, we will attempt to
replicate the approach that we used for the linear model. The linearized regression
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- 0
P model is given in ..
X 5 ,

LR = 1 ¥=hX g +e~ +X(B -5 +e

or i .
=X e
where ' ' -
O=y-n*+X%" -
X =4 X 9.232
For the moment, we neglect the approximation error in linearizing the model. In (12-22), ¥
we have assumed that '
. 0 . 0 g - Z ?
plim(1/mZ'y’ = plim (1/n)Z'X" 8. H2c23)

Suppose, as we assumed before, that there are the same number of instrumental vari-
ables as there are parameters, that is, columns in X“ {(Note: This number need not be
the number of variables.) Then the “estimator” used before is suggested: g.z¢

by = @X)7'Zy (12-24)

9.2 ‘! _ The logic is sound, but there is a problem with this estimator. The unknown parameier
vector § appears on both sides of (42=23). We might consider the approach we used for
our first solution to the nonlinear regression model. That is, with some initial estima-
tor in hand, iterate back and forth between the instrumental variables regression and
recomputing the pseudoregressors until the process converges to the fixed point that
we seek, Once again, the logic is sound, and in principle, this method does produce the
estimator we_seek.

If we add to our preceding assumptions
\/LHIZ:s - N[0, 0°Qul.

then we will be able to use the same form of the asymptotic distribution for this estimator

that we did for the linear case. Before doingso, we must fill in some gaps in the preceding,

First, despite ifs intuitive appeal, the suggested procedure for finding the estimator is

very unlikely to be 2 good algorithm for locating the estimates, Second, we do not wish to

limit ourselves to the case in which we have the same number of instrumental variables as
parameters. So, we will consider the problem in general terms. The estimation criterion
for nonlinear instrumental variables is a quadratic form,

Ming S8) = 3{ly — h(X, V' Z} @2~ {Z'ly - hX, §)]} v
~ L@ Z@D 2B (12.26)

. ? fsscrhaps the more nataral point to begin the minimization would be S%(8) = [e(BYZ][Z/e(f)]. We have
bypassed this step because the criterion in (#2-%) and the estimator in (32-26) will turn out (following and
in Chaptcr)éj to be a simple yet more efficient|GMM estimator. g -2 ‘_}

13
5.26
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The first-order conditions for minimization of this weighted sum of squares are

| 2-27
a;‘;ﬁ ) ~XYZ(Z' D)L e(p) = @2:26)

This result is the same one we 'had for the. linear model with X? in the role of X. This
problem, however, is highly nonlinear in most cases, and the repeated least squares
approach is unlikely to be effective. But it is a straightforward minimization problem _
in the frameworks of Appendix E, and instead, we can just treat estimation herc asa
problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator more
or less strategically. However, there is a more structured approach. The orthogonality
condition

plim(1/n)Z'e =0

—, defines a GMM estimator, With the homoscedasticity and nonautocorrelation assump-

K l tion, the resultant minimum distance estimator produces prec1sely the criterion function

suggested above. We will revisit this estimator in this context, in Chapter 15 |

With well-behaved pseudoregressors and instrumental variables, we have the gen- -
eral result for the nonlinear instrumental variables estimator; this result is discussed at
length in Pavidson and MacKinnon (2004).

THEOREM 12;{ Asymptotic Distribution of the Nonlinear
. Instrumental Variables Estimator
With well-behaved instrumental variables and pseudoregressors,

b A N[B. (02/m(Q% Q) 'Q%) ).
We estimate the asymptotic covariance marrix with
Est. Asy. Var[by] = 6*[XZ(Z'2) "' 2K,

where X° is X computed using byy.

As a final observation, note that the “two-stage least squares” interpretation of the
instramental variables estimator for the linear model still applies here, with respect
to the IV estimator. That is, at the final estimates, the first-order conditions (normal
equations) imply that

X"2@ D2y = X"2ED UK,

which says that the estimates satisfy the normal cquatlons for a linear regression of

y. (not ¥°) on the predictions obtained by regressing the columns of X° on Z. The
mterpretation is not quite the same here, because to compute the predictions of XO we
must have the estimate of 8 in hand. Thus, this two-stage least squares approach does
not show how to compute bry; it shows a characteristic of brv.

I|I { 11 EF'I § i)

}ﬁc%cf‘ﬂ]"‘f
0d ﬁ.rhf‘u::r‘?
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TABLE 12.2" Nonlinear Least Squares and Instrurental Variable Estimates

L P Instrumental Variables : Least Squares 3 -
" Parameter Estimate  Standard Error Estimate Standard Error o
o 62703t - 266063 468.215 22,788
B 0.040291 (:006050 0.0971598 0.01064
¥ 1.34738 0016816 1.24892 0.1220
o 57.1681 — : 4987998 = —
ee 650,369.805 — 495.114.490 —

&./0

Example TZ& Instrumental Variables Estimates of the

e e B RIS IR ON ction
:} 1 _5 The consumption function in Sectionl1.3. Thvas estimated by nonlinear least squares without
* accounting for the nature of the data thaTWould certainly induce correlation between X° ande.

As we did earller, we will reestimate this mode! using the technique of instrumental variables.
For this application, we will use the one-period lagged value of consumption ang one- and '8 2
two-period lagged values of income as instrumental variables estimates. Table 42.2reports
L the nonlinear Isast squares and instrumental variables estimates. Because we are using two
| 5 __.J periods of lagged values, two observations are lost. Thus, the least squares estimates are
' ' not the same as those reported earlier.

The instrumental variable estimates differ considerabiy from the least squares estimates.
The differences can be decelving, however. Recall that the MPC in the modelis gy Yr~1, The
2000.4 value for DP/ that we examined earlier was 6634.9. At this value, the instrumental
variables and least squares sstimates of the MPC are 1.1543 with an estimated standard
error of 0.01234 and 1.08406 with an estimated standard error of 0.008694, respectively.
These values do differ a bit but less than the quite large differences in the parameters might
have led one to expect. We do note that the IV estimate is considerably greater than the
estimate in the linear modei, 0.9217 (and greater than one, which seems a bit implausible}.

12.8 PANEL DATA APPLICATIONS

Recent panel ghita applications have relied heayity on the methods of instrumental
variables thet we are developing here. We will’develop this methodology in detail in
Chaptep45 where we consider generalizegfethod of moments (GMM) estimation, At
int, we can examine two majorbuilding blocks in this set of methods, Haus

(1983) proposals for estimatipg a dynamic panel data model. These two t
significant role in the GM

12.8.1 INSTRUMENTAL VARIABLES ESTIMATION OF,

specific effects, z;, are uncorrelated wit
is a major shortcoming of the mode
allow the model to contain observegfime invariant characteristics, s

P——

as demographic
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K1 420~ WEAK INSTRUMENTS
. Our analysis thus far has focused on the “identification” condition for IV estimation, ] !
that is, the “exogeneity asmmp_tﬁ_on,” AII9 which produces

L §-28
plim '(1‘/_7;1)Z_’g_ = 0. 246y
Taking the “relevance” assumption, : : L 2_29

plim (1/mZ’X = Qzx, a finite, nonzero, L x K matrix with rank K, &4

-
as given produces a consistent I'V estimator. In absolute terms, with ( ) in place,
247} is sufficient to assert consistency. Assuch, researchers have focused on exogeneity
as the defining problem to be solved in constructing the I'V estimator. A growing liter-
ature has argued that greater attention needs to be given to the relevance condition.
8-2 9 While strictly speaking, (42-4%) is indeed sufficient for the asymptotic results we have
/Clﬁ?nﬁ,—t_}fé_cb—n'ﬁn_‘(m?;{se' of “weak instruments,” in which (#2-47) is only barelytrue . 82 9
has attracted considerable scrutiny. In practical terms, instruments are “weak” when
£-2 T they are only slightly correlated with the right-hand-side variables, X; that is, {1/m)Z/'X
is close to zero. (We will quantify this theoretically when we revisit the issue in Chap-
ter,}37) Researchers have begun to examine these cases, finding in some an explanation
for perverse and contradictory empirical results. ¥ 1©
jo Superficially, the problem of weak instruments shows up in the asymptotic covari-
ance matrix of the IV estimator,
=Ty

Asy. Var[byy] = %sz_ {(%) (Z_”;Z_)"l (%%)}_1, S‘f‘qr-

which will be “large” when the instruments are weak, and, other Ahings equal, larger ‘; (/7705; 4
the weaker they are. However, the problems run deeper than that"Hahn and Hausman a b d ’ )
(2003) list two implications: (i) the two stage least squares estimator is badly biased
toward the ordinary least squares estimator, which is known to be inconsistent, and
(ii) the standard first order asymptotics (such as those we have used in the preceding)
will not give an accurate framework for statistical inference. Thus, the problem is worse
than simply lack of precision. There is also at least some evidence that the issue goes
well beyond “small sample problems.” [See Bound, Jaeger, and Baker (1995).]
Current research offers several prescriptions for detecting weakness in instrumental
variables. For a single endogenous variable (x that is correlated with g}, the standard
approach is based on the first;step least squares regression of two-stage least squares.
The conventional F statistic for testing the hypothesis that all the coefficients in the
regression

Nf/ﬁah

Xi — z;J'lf +_U,'

Nelson angl §+nr+@ (M‘io b.),

are zero is used to test the “hypothesis” ¢ instruments are weak. An F statistic
less than 10 signals the problem. [SeeStaiger and Stock (1997) and Stock and Watson
(2007, Chapter 12) for motivation of this specific test.] When there are more than one

. ! O Tmportant references&Staiger and Stock (1997), Stock, Wright, and Yogo (2002), Hahn and Hausman
(2002, 2003), Kleibergen (2002}, Stock and Yogo (2005), and Hausman, Stock, and Yogo (2005).

Nelson and S-Lar-'*} (\QQOQJ -L—"),{_
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endogenous variable in the model, testing each one separately using this test is not
sufficient, since collinearity among the variables could impact the result, but would not

_show up in either test. Shea (1997) proposes a four, step multivariate procedure that

can be used. Godfrey (1999) derived a surprisingly simple alternative method of doing
the computatlon For efidogenous variable k, the Godfrey statistic is the ratio of the
estimated variances of the two estimators, OLS and 2SLS,
2 w(OLS)/e'e(OLS)
“* 7 v (2SLS)/e’e(2SLS)
where v,(OLS) is the kth diagonal element of {¢’e(OLS)/(n— K)[(X'X)~! and vk(ZSLS)
is defined likewise. With the scalings, the statistic reduces to
) (er)kk
R =
(er)kk

~ where the superscript indicates the element of the inverse matrix. The F statistic can

then be based on this measure; F = [R2/(L — 1))/{(1 — B} /(n — )] assuming that Z
contains a constant term.

It is worth noting that the test for weak instruments is not a specification test, nor
is it a constructive test for building the model. Rather, it is a strategy for helping the
researcher avoid basing inference on unreliable statistics whose properties are not well
represented by the familiar asymptotic resulis, &g, distributions under assumed null
model specifications. Several extensions are of interest. Other statistical procedures are
proposed in Hahn and Hausman (2002) and Kieibergen (2002). We are also interested in
cases of more than a single endogenocus variable. We will take another look at this issue
in Chapter 13;Where we can cast the modeling framework as a simultaneous equations
model. /O

The stark results of this section call the IV estimator into question. In a fairly narrow
circumstance; an alternative estimator is the “moment”-free LIML estimator discussed
in the next chapter. Another, perhaps somewhat unappealing, approach is to revert to
least squares. The OLS estimator is not without virtue, The asymptotic variance of the
OLS estimator

Asy. Var[bLs] (o?/ n)Q
is unambiguously smaller than the asymptotic variance of the I'V estimator
Asy. Var[bw] = (¢%/n) (szngsz)_

{The proof is considered in the exercises.) Given the preceding resulits, it could be far
smaller. The OLS estimator is inconsistent, however,

o plimbis — g = Q“l

[see ()é 4}]. By a mean squared error comparison, it is unclear whether the OLS esti-
mator with

Mbis | §) = (7 /m)Qxx +Qxxr¥ ' Qzx
or the IV estimator, with

M | 8) = (2/m)(QxzQ74Qzx) ™.
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is more precise. The natural recourse in the face of weak instruments is to drop the
endogenous variable from the model or improve the instrument set. Each of these is a

June 21, 20067 13:35
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specification issue. Strictly in terms of estimation strategy within the framework of the
data and specification in hand, thére isscope for OLS to be the preferred strategy.

e —— :
12.10 SUMMARY AND CONCLUSIONS

The instrumental variable (IV

Arms, is among the most fun-

stimator, in various

10 and Bond’s (1991) strategies for
cautionary notes about using IV esti-
y relevant in the model are examined in

* Anderson and Hsiao

* Arellano and Bond

eneralized regression

model

® Hausman and Taylor's
estimator

¢ Hausman's specification
test

* Identification

e [ndicator

» Instrumental vari

estimator

estimator

» Reliability ratio

» Reduced form equation

+ Selectivity effect

= Specification test

» Structural model

+ Two-stage least squa
estimator + Variable addition

« Limiting ¢fStribution ¢ Weak instrumeys

» Minimufn distance estimator  « Wa test

In the discussion of the instrumental variable estimatoy’ we showed that the least
squares estimator, B s, is biased and inconsistent. Nghetheless, by s does estimate
something—see #12-4). Derive the asymptotic coydriance matrix of by s and show
that by g is asypéptotically normally distributed.
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8.9 NATURAL EXPERIMENTS AND THE SEARCH FOR CAUSAL EFFECTS

Econometrics and statistics have historically been taught, understood.and operated under
the credo that “correlation is not causation.” But, much of the still, growing field of
microeconometrics, and some of what we have done in this chapter, have been advanced as

. “causal modeling. i) In the contemporary literature on treatment effects and program evaluatlon ;- g

'\| | ° the point.of the econometric exercise really is to establish more than mere statistical association —
" in short, the answer to the question “does the program work?” requires an econometric response
more committed than “the data seem to be consistent with that hypothesm A cautious approach
to econometric modelmg has nonetheless continued to base its view of “causality” essentially on
statistical grounds:??
An example of the sort of causal model considered here is a structuraI equatlon such as
Krueger and Dale’s (1999) model for earnings attainment and elite college attendance, -

InEarnings = x'B + 8T + &,

in which 3 is the “causal effect” of attendance at an elite college. In this model, 7 cannot vary

autonomously, outside the model. Variation in 7T is determined partly by the same hidden

influences that determine lifetime earnings. Though a causal effect can be attributed to T,

measurement of that effect, 8, cannot be done with multiple lincar regression. The technique of

linear instrumental variables estimation has evolved as a mechanism for disentangling causal

influences. As does least squares regression, the method of instrumental variables must be

defended against the possibility that the underlying statistical relationships uncovered could be

due to “something else.” But, when the instrement is the outcome of a “natural experiment,” true

exogeneity is claimed. It is this purity of the result that has fueled the enthusiasm of the most

strident advocates of this style of investigation. The power of the method lends an inevitability

and stability to the findings. This has produced a willingness of contemporary researchers to step

T M\ beyond their cautious roots.*®  Example 8.11 describes a recent, controversial contribution to this

/% ) literature. On the basis of a natural experiment, the authors identify a cause;and ;effect

relationship that would have been viewed as beyond the reach of regression modelmg ‘under
earlier paradigms.'}

4 See, for example, Chapter 2 of Cameron and Trivedi (2005), which is entitled “Causal and Noncausal
Models” and, especially, Angrist and Pischke (2009, 2010). '

12See, among many recent commentaries on this line of inquiry, Heckman and Vytlacil (2007).

1 See, e.g., Angrist and Pischke (2009, 2010). In reply, Keane (2010, p. 48) opines “What has always -
bothered me about the “experimentalist™ school is the false sense of certainty it conveys., The basic idea is

1 See the symposium in the Spring] 2010 Journal of Economic Perspectives, Angrist and Pischke (2010), |
Leamer (2010), Sims (2010), Keane (2010}, Stock (2010) and Nevo and Whinston (2010). |

A“%f‘"+ Tmbensiand Robin (1996),
Angmrf and |<r0c3er' (200!) and

that if we have a “really good instrument,” we can come up with “convincing” estimates of “causal effects” | ,:- T
that are not “too sensitive to assumptions:” b
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Example 8.11. Does Television Cause Autism?
The followmg is the abstract of economists Waldman, Nicholson and Adilov's (2008) study of

autism.'®

Autism is currently estimated to affect approximately one in every 166 children, yet the
cause or causes of the condition are not well understood. One of the current theories

-. concerning the condition is that among a set of children vulnerable to developing the
condition because of their underlying genetics, the condition manifests itself when such a
child is exposed to a (currently unknown) environmental trigger. In this paper we
empirically investigate the hypothesis that-early childhood television viewing serves as
such a trigger. Using the Bureau of Labor Statistics’ American Time Use Survey, we first
establish that the amount of television a young child watches is positively related to the
amount of precipitation in the child's community. This suggests that, if television is a
trigger for autism, then autism should be more prevalent in communities that receive
substantial precipitation. We then look at county-level autism data for three states -
California, Oregon, and Washington - characterized by high precipitation variability.
Employing a variety of tests, we show that in each of the three states {and across all three
states when pooled) there is substantial evidence that county autism rates are indeed
positively related to county-wide levels of precipitation. In our final set of tests we use
California and Pennsylivania data on children born between 1972 and 1989 to show, again
consistent with the television as frigger hypothesis, that county autism rates are also
positively related to the percentage of households that subscribe to cable television. Our
precipitation tests indicate that just under forty percent of autism diagnoses in the three
states studied is the resulf of television watching due to precipitation, while our cable tests
indicate that approximately seventeen percent of the growth in autism in California and
Pennsyivania during the 1970s and 71980s is due to the growth of cable television. These
findings are consistent with early childhood television viewing being an important trigger
for autism. (Emphasis added.) We also discuss further tests that can be conducted to
expiore the hypothesis more directly.

The authors add (at page 3), “Although consistent with the hypothesis that early childhood
television watching, is an important trigger for autism, our first main finding is also consistent
with another possibility. Specifically, since precipitation is likely correlated with young children
spending more time indoors generally, not just young children watching more television, our
first main finding could be due to any indoor toxin. Therefore, we aiso employ a second
instrumental variable or natural experiment, that is correlated with early childhood television
walching but unlikely to be substantially correlated with time spent indoors.” (Emphasis
added.) They conclude (on pages 3940): “Using the results found in Table 3's pooled
cross-sectional analysis of California, Oregon and Washmgtons county-level autism rates,
we find that if early childhood television watching is the sole trigger driving the positive
correlation between autism and precipitation then thirty-eight percent of autism diagnoses are
due to the incremental television watching due to precipitation.” '

foL

¥ 'Extracts from from http:/iwww _]ohnson comell edu/faculty.profiles/waldman/autism-waldman-
nicholson-adilov.pdf.
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Waldman, Nicholson and Adilov’s (2008)*° study provoked an intense and widespread response
among academics, autism researchers.and the public. Whitehouse (2007) surveyed some of the
discussion, which touches upon the methodological implications of the search for “causal effects”
in econometric research:

= “Prof. Waldman's willingness to hazard an opinion on a delicate matter of science reflects n g
" the growing ambition of economists - and also their growing hubris, in the view of '
critics. Academic economists are mcreasmgly venturing beyond their traditional
stomping ground, a wanderfust that has” produced some powerful results but also has
raised concerns about whether they're sometimes going too far.™

“Such debates are likely to grow as economists delve into issues in education, politics,
history and even epidemiology. Prof. Waldman's use of precipitation illustrates one of the
tools that has emboldened them: the instrumental variable, a statistical method that, by
introducing some random or natural influence, helps economists sort out questions of
cause and effect. Using the technique, they can create "natural experiments" that seek to
approximate the rigor of randomized trlals -- the traditional gold standard of medical
research.

“Instrumental variables have helped prominent researchers shed light on sensitive topics.
Joshua Angrist of the Massachusetts Institute of Technology has studied the cost of war,
the University of Chicago's Steven Levitt has examined the effect of adding police on
crime, and Harvard's Caroline Hoxby has studied school performance. Their work has
played an important role in public-policy debates. But as enthusiasm for the approach has
grown, so too have questions. One concern: When economists use one variable as a proxy
for another ;- rainfall patterns instead of TV viewing, for example -- it's not always clear
what the results actually measure. Also, the experunents on their own offer little insight
into why one thing affects another. "There's a saying that ignorance is bliss," says James
Heckman, an economics professor at the University of Chicago who won a Nobel Prize
in 2000 for his work on statistical methods. "I think that characterizes a lot of the
enthusiasm for these instruments." Says MIT economist Jerry Hausman, "If your
instruments aren't perfect, you could go seriously wrong."

!¢ Published as NBER. working paper 12632 in 2006.
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Example 8.12 Is Season of Birth a Valid Instrument? -
Buckles and Hungerman (BH, 2008) list more than 20 studies of long, term economic
outcomes that use season of birth as an instrumental variable, beginning with one of the
earliest and best known papers in the “natural experiments” literature, Angrist and Krueger
(1991). The assertion of the validity of season of birth as a proper instrument is that family
background is unrelated to season of birth, but it is demonstrably related to long,term P
outcomes such as income and education. The assertion justifies using dummy variables for =~ =
season of birth as instrumental variables in outcome equations. If, on the other hand, season
of birth is correlated with family background, then it will “fail the exclusion restriction in most
IV settings where it has been used.” ‘{BH, page 2). According to the authors, the
randomness of quarter of birth over the population [see, e.g., Kleibergen (2002)) has been
taken as a given, without scientific investigation of the claim. - Using data from live birth
certificates and census data, BH found a numerically modest, but statistically significant
relationship between birth dates and family background. They found “women giving birth in
the winter look different from other women; they are younger, less educated, and less likely to
be married,. | The fraction of children born to women without a high school degree is about
10 percent higher (2 percentages points) in January than in May... We also document a 10
percent decline in the fraction of children born to teenagers from January to May.” Precisely
why there should be such a relationship remains uncertain. Researchers differ (of course) on
the numerical implications of BH's finding. [See Lahart (2009).] But, the methodological
implication of their finding is consistent with Hausman’s observatioq,abover‘-
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8.9 SUMMARY AND CONCUSIONS

The instrumental variable (IV} estimator, in various forms, is among the most fundamental tools
in econometrics. Broadly interpreted, it encompasses most of the estimation methods that we will
examine in this book. This chapter has developed the basic results for IV estimation of linear

. models. The essential departure point is the exogeneity and relevance assumptions that define an - ...~

" instramental variable. We then analyzed linear IV estimation in the form of the two-stage least -

squares estimator.With only a few special exceptions related to simultaneous equations models
with two variables, almost no ﬁmte sample propertles have been established for the IV estimator.
{(We temper that, however, with the results in Section 8.7 on weak instruments, where we saw
evidence that whatever the finite sample properties of the IV estimator might be, under some
well-discernible circumstances, these properties are not attractive. )We then examined the
asymptotic properties of the IV estimator for linear and nonlinear regresswn models. Finally,
some cautionary notes about using IV estimators when the instruments are only weakly relevant \
in the model are examined in Section 8.7.
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Exercises

L.

In the discussion of the instrumental variable estimator, we showed that the least squares
estimator, bLS, is biased and inconsistent. Nonetheless, bLS does estimate something—see
(8-4). Derive the asymptotic covariance matrix of bLS and show that bLS is asymptotically
normally distributed.

For the measurement error model in (8-14) and (8-15), prove that when only x is measured
with error, the squared correlation between y and x is less than that between y* and x*. (Note
the assumption that y* = y.) Does the same hold true if y* is also measured with error?

Derive the results in (8-20a) and (8-20b) for the measurement error model. Note the hint in
footnote 4 in Section 8.5.1 that suggests you use result (A-66) when you need to invert

[Q s +zuu] z' [Q.*.I-H(Gu,el )(Gu.el )']'

At the end of Section 8.7, it is suggested that the OLS estimator could have a smaller mean
squared error than the 2SLS estimator. Using (8-4), the results of Exercise 1, and Theorem
8.1, show that the result will be true if

1 Ii'l'.'

] I':.;I ) ’
(02 [ 1)+ Y QY b

QXZQZZ Z.X

How can you verify that this is at least possible? The right-hand-side is a rank one,
nonnegative definite matrix. What can be said about the left-hand*side?

Consider the linear model y; = a + Bx; + g in which Covlx,&; ] =y # 0. Let z be an exogenous,
relevant instrumental variable for this model. Assume, as well, that z is binary—it takes only
values 1 and 0. Show the algebraic forms of the LS estimator and the IV estimator for both &

and S.

6. In the discussion of the instrumental variables estimator, we showed that the least squares
estimator b is blased and inconsistent. Nonetheless, b does estimate somethmg
plim b = 9 B+ Q 'y . Derive the asymptotic covariance matrix of b, and show that b is
asymptotically normally distributed.

Application

I.

In Example 8.5, we have suggested a model of a labor market. From the “reduced form”
equatlon given first, you can see the full set of variables that appears in the model-—that is the

“endogenous variables,” In Wage;.and Wks;,and all other exogenous variables. The labor .

supply equation suggested next contains these two variables and three of the €XO0genous

variables. From these facts, you can deduce what variables would appear in a labor “demand”

equation for In Wage,, Assume (for purpose of our example) that In Wage, is determined by

Wksy and the remaining appropriate exogenous variables. (We should emphasize that this

exercise is purely to illustrate the computations-—the structure here would not provide a

theoretically sound model for labor market equilibrium.)

a. What is the labor demand equation implied by the preceding?”

b. Estimate the parameters of this equation by OLS and by 2SLS and compare the results.
(Ignore the panel nature of the data set. Just pool the data.)

¢. Are the instruments used in this equation relevant? How do you know?
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