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In the singular case, the matrix of partial derivatives will be sinsular and the determinant of
the Jacobian will be zero. In this instance, the singular Jacobian implies that A is singular or,

_equivalently, that the transformations from x to y are functionally dependent. The singular case

is analogous to the single-variable case.

Clearly. if the vector.x is given, Lhen = Ax can be computcd from x. Whether x can be
deduced from y.is another question. Ewdent!y it depends on the Jacobian. If the Jacobian is
not zero, then the inverse transformations exist, and we can obtain x. If not. then we cannot
obtain x,

APPENDIX B
e £

PROBABILITY AND
DISTRIBUTION THEORY

INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course instatistics
is assumed, so most of the results will be stated without proof. The more advanced results in the
later sections will be developed in greater detail.

B.2 RAN DOM VARIABLES

We view our ohservallon on some aspect of the economy as the outcome of a random process
that is almost never under our (the analyst’s) control. In the current literature, the descriptive
{and perspective laden) term _(lqla-g(\zlg\erqt_i_ng_prp(ess, or DGP is often used for this underlying
mechanism. The observed (measured) outcomes of the process are assighed unique numeric
values. The assignment is one to one: each outcome gets ane value, and no iwo distinct outcomes
receive the same value. This outcome variable, X is a yandom variable because, until the data
are actually observed. il is uncertain what value X will take. Probabilities are associated with
outcomes to quantify this uncertainty. We usually use capital letters for the “name™ of a random
variable and lowercase letters for the vatues it takes. Thus. the probability that X takes a parlicular
value x might be denoted Prob(X = x). '

A random variable is diserete if the set of outcomes is either finite in number or countably
infinite. The random variable is continuons if the set of outcomes is infinitely divisible and. hence,
not countable. These definitions will correspond Lo the types of dala we observe in practice. Counts
of occurrences will provide observations on discrete random variables, whereas measurements
such as time or income will give observations on continuous random variables.

B.2.1 PROBABILITY DISTRIBUTIONS

A listing of the vaiues x taken by a random variable X" and their associated probabilities is a
prq%lqil_i_tx distribution, f(x). For a discrete random variable,

f{x) = Prob(X = x). (B-1)
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The axioms of probability require that )
1. 0<Prob(X=x)<1. , (B-2)
2. Yy, fxy=1 — R (B-3)

For the continuous case; the prblwability associated with any particular point is zero, and
we can only asslgn posilive probabilities to intervals in the range of x. The pwhah:h(y density

_flulumn (pdf) is defined so that f(x) > > 0 and

1. Probla <x <b)= f flx)ydx = 0. (B-4)
[
This result is the area under_f(x) in the range from g to b. For a continuous variable.
=0
/ flrrdx = 1. {B-5)
—a0
If the range of x is not infinite, then it is understood that f(x) = Oany whercloutside the appropriate
range. Because the pmbablluy associated with any individual pomt 1s 0,
Prob(a < x < b) = Probla <x < b)

= Prob{g < x < b)

= Prob{a <X < b}

B.2.2 CUMULATIVE DISTRIBUTION FUNCTION

For any random variable X, the probability that X is less than or equal to @ is denoted F(a). F(x)
is the comulative llismbuﬁon t'um:ﬁ(m (cdl). For a discrete random variable,

Fx) =) f(X)=Prob(X < x). (B-6)

A=z

In view of the definition of f(x).

flx) = Fx;) — F(xi1)- (B-7)
For a continuous random variable,
X
Fix) = / fydre, (B-8)
—o
and
dFix
fo =22, (B-9)

In both the continuous and discrete cases, F(x) musi salisfy the foltowing properties:

1. 0<F(x)=<l.

2. Ifx > y then F{x) = F(y.
3 F(tooy=1

4. F(—oo)y=10.

From the definition of the cdf,
Probia < x < b) = F(b) — Fla). (13-16)

Any valid pdf will imply a valid cdf, so there is no need to verify these conditions separately.
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B.3 EXPECTATIONS OF A RANDOM VARIABLE

DEFINITION B.1 Mean of a Random Variable
The mean, or expected value, of a random variable is
Zx fixy  ifxis discrete,
Elx]={ " (B-11)
f xfixydx if x is conlinvous.

The notation Y, or L, used henceforth, means the sum or integral over the entire range
of values of x. The mean is usually denoted p. It is a weighted average of the values taken by x,
where the weights are the respective probabilities. It is not necessarily a value actualty taken by
the random variable. For example, the expected number of heads in one toss of a fair coin is %

Other measures of central tendency are the median, which is the value m such that Prob{ X<
m)> } and Prob(X > m)=> }. and the mode, which is the value of x at which_f{(x) takes its
maximunt. The first of these measures is more frequently used than the second. Loosely speaking.
the median corresponds more closely than the mean to the middle of a distribution, 1Uis unaffected
by extreme values. In the discrete case, the modal value of x has the highest probability of
occurring.

Let g(x) be a function of x. The function that gives the expected value of g(x) is denoted

Z g(x)Prob(X=x) if Xis discrete,
Elgw]={ 7 (B-12)
- fg(x) flx)ydx if Xis continuous.
x
If g(x) = @ + bx for constants a and b, then
' Efa +bx] = a +bE[x].

An important case Is the expected value of a constant a, which is just a.

DEFINITION B.2 Variance of a Random Variable

The variance of a random variable is
Vailx] = Ex — u)’]
Z(; - fx  ifxis discrete.

= {B-13)
/ x—u) fixydx if x is continuous.
X

Var[x], which must be positive, is usually denoted o2, This function is a measure of the
dispersion of a distribution. Computation of the variance is simplified by using the following
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important result: _
Var[x] = E[<*] — p2. (B-14)
A convenient corollary to (B-14) is )
B =0+ a2 (B-15)
By inserting y = a + by in {B-13) and expanding, we find that
Varla + bx] = & Var[z], o (B-16)
which imiplies, for any constant 4. that
Varfa] = 0. {B-17)

To describe a distribution, we usually use o, the positive square root, which is the standard
deviation of x. The standard deviation can be interpreted as having the same units of measurenient
as x and x4, For any random variable x and any positive constant £. the Chebychev incquality states
that

Prob{p — ko ,<_XSu+ka)3!—£z-. (B-18)

‘Two other measures often used to describe a probability distribution are
skewness = E{{x — u)*]

and

7 kortosis = E[(x — u)'].
Skewness is a measure of the asymmetry of a distribution. For symmetric distributions,

flg —x)= fu+x),

and
skewness = 0.

For asymmetric distributions, the skewness will be positive if the “lomg tail” is in the positive
direction. Kurtosis is a measure of the thickness of the tails of the distribution. A shorthand
expression for other central moments is

tr = E[(x — 1)),

Because p, tends Lo explode as r grows, the normalized measure, p, fo*, is often used for descrip-
tion, fwo common measures are

e

skewness coefficient = —3-
o

and

degree of excess = ff_} -3,
a

The second is based on the normal distribution, which has excess of zero.
For any two functions g (x)and gs(x),

E[gi1(x) + g20x)] = E{gu(x)] + Ega(x)]. {B-19)

For the peneral case of a possibly nonlinear g(x).

Elg(x)] = /g(x)f(_x)dx, (B-20)
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and

2
Var[g(x)] = / (2x) - E[g0]) fundx. (B-21)
X
(For convenience, we shall .mﬁig ‘the equivalent definitions for discrele variables in the fol-
lowing discussion and use the integral to mean either integration or summation. whichever is
appropriate.}
A device used to approximate E{g(x)] and Varfgix)] is the linear Taylor series approxi-
mation: ' '

g0x) & {g(x") ~ g (xHx®] + ' (3" = By + Box = g*(x). (B-22)

If the approximation is reasonably accurate, then the mean and variance of g*(x) will be ap-
proximately equal to the mean and variance of g(x). A natural choice for the expansion point is
x" = u = E(x). Inserting this value in (B-22) gives

gx) ~[g(w) — g (pip] + &' (wx, (B-23)
so that
Elg(x)] = g(p). (B-24)
and
Vailgix)] = [g'{w)] Varlx]. {B-25)

A point to note in view of (B-22) to {3-24) is thal Elg{x)] will gmemlly not equal g(E[x]).
For the special case in which g(x) is comave—thal is. where g”(x) < 0--we know from JLI]SL‘I] s
inequahly that E|gix)] <g(E[x]). For example‘ Eflog{x)] <log(E[x]).

B.4 SOME SPECIFIC PROBABILITY

DISTRIBUTIONS

Certain experimental siluations naturally give rise to specific probability distributions. In the
majority of cases in econontics, however, the distributions used are merely models of the observed
phenomena. Although the normal distribution, which we shall discuss at length. is the mainstay
of econometric research, economists have used a wide variety of other distributions. A few are
discussed herel®”

B.4.1 THE NORMAL DISTRIBUTION

The general form of the normal distribution with mean p and standard deviation o is

o~ 1t fe), (B-26)

Xip.a®)=
f_lp,a o2

This resuit is usually denoted x ~ N[u. o2]. The standard notation x ~ f(x) is used to slate that
“x has probability distribution_f(x).” Among the most useful propertics of the normal distribution

“*A much more complete listing appears in Maddala (1977, Chapters 3 and 18) and in most mathematical
statistics textbooks. See also Poirier {1995) and Stuart and Ord (1989). Another useful reference is Evans,
Hastings, and Peacock (1993). Johnson et al. (1974, 1993, 1994, 1995, 1997) is an encyclopedic reference on
the subject of statistical distributions.



: Greene-50538 book

June 25, 2007 12:52

992 PART VH 4 Appendices

is its preservation under linear transformation.

If x ~ N{u. o, then_(_a + bx) ~ Nla +bu. b6’} (B-27)

One particularly convenient transformation is @ =—u/o and b=1/¢. The resulting variable

= (x — p) /o has the standard normal distribution, denoted N[0, 1], with density

1 4
z, = H“—_edzhfz. B-ZS
PO= 77 - =
The specific notation ¢(2) is often used for this distribution and &(2) for its cdf, It follows from
the definitions above that if x ~ N{u. &%), then
LR E Sl o
Jfx) = 04’ [ ] .

Figure B.1 shows the densities of the standard normal distribution and the nortnal distribution
with mean (.5, which shifts the distribution to the right, and standard deviation 1.3. which, it can
be seen. scales the density so that it is shorler but wider. (The graph is a bit deceiving unless you
look closely; both densities are symmetric.)

Tables of the standard normal cdf appear in most statistics and econometrics textbooks.
Because the form of the distribution does not change under a linear transformation, it is not
necessary to tabulate the distribution for other values of z and o. For any normally distributed

variable,

Prob{a < x < b) = Prob (g —# < 2ok < b “). {B-29)
= = - a [+ g

which can always be read from a table of.Lhe standard normal distribution. In addition, because
the distribution is symmetric, ${—z) = 1 — ${z). Hence. it is not necessary to tabulate both the
negative and positive halves of the distribution.

FIGURE B.1°  The Normial Distribution.
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B.4.2 THE CHI-SQUARED, {, AND F DISTRIBUTIONS

The chi-squared; ¢, and F distributions are derived from the normal distribution. They arise in

“econometrics as sums of # or 1y and #3 other variables. These three distributions have associated

with them one or two “d_égljee's ‘of freedom™ parameters, which for our purposes will be the
number of variables in Lhe relevant sum. .
The first of the essential results is
& i~ N[O, 1]. then x = ¢ ~ chi-squared[! J—that is, chi-squared with one degree of
freedom-—denoted

Z ~ [ (B-30)
This distribution is a skewed distribution with mean 1 and variance 2. The second result is

e Ifxy, ..., x,are n independent chi-squared[1] variables, then
' n
Zx; ~ chi-squared|r]. (B-31)
__1'=]
The mean and variance of a chi-squared variable with » degrees of freedom are # and 2n, respec-
lively. A number of useful corollaries can be derived using (B-30) and {B-31).

o Ifz.i=1,...,nareindependent N{0, 1] variables, then

> o2~ ptlnl (B-32)

- i=1

® Ifz.i=1,...,n areindependent N[0, 62] variables, then

) @je ~ x¥lal. | (B-33)

==l

¢  Ifx; and x; are independent chi-squared variables with »; and #; degrees of freedom.
respectively, then

5+ 3~ xm +m). (B-34)

This result can be generalized to the sum of an arbitrary number of independent
chi-squared variables.

Figure B.2 shows the chi-squared density for three degrees of freedom. The amount of
skewness declines as the number of degrees of freedom rises. Unlike the normal distribution, a
separate table is required for the chi-squarcd distribution for each value of r. Typically, only a
few percentage poiats of the distribution are tabulated for each #. Table G.3 in Appendix G of
this book gives lower (left) tail areas for a number of values.

®  [fx and x are two independent chi-squared variables with degrees of freedom parameters
rm and m, respectively, then the ratio

Flir. ] = 220 (B-35)

has the # distribution with 2, and n; degrees of freedom.
The two degrees of freedom parameters 71 and #2 are the numerator and denpominator degrees
of freedom, respectively. Tables of the F distribution must be computed for each pair of values

of (#y, #z). As such, only one or two specific values, such as the 93 percent and 99 percent upper
tail values, are tabulated in most cases. :
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*
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FIGURE B.2 ' The Chi-Squarad [3] Distribution.

o
3

If zis an N[0, 1] vatiable and x is x?[#] and is independent of z, then the ratio

1ln] = in[_

(B-36)

has the £ distribution with 7 degrees of freedom.

The. ¢ distribution has the same shape as the normal distribution but has thicker tails. Figure B.3
illustrates the ¢ distributions with thru. and 10 degrees of freedom with the standard normal
distribution. Two effects that can be seen in the figure are how the distribution changes as the
degrees of freedom increases, and. overall, the similarity of the ¢ distribution to the standard
normal. This distribution is tabulated in the same manner as the chi-squared distribution, with
several specific culoff points corresponding ko specified tail areas for various values of the degrees

of freedom parameter.
Comparing (B-35) with z; = 1 and (B-36), we see the useful relationship between the t and

F distributions:
& Ifs ~t{n]. thens? ~ Fit,u].
If the numerator in (B-36) has a nonzero mean. then the random variable in {B-36) has a non-

central t distribution and its square has a noncentral F distribution. These distributions arise in
the F tests of linear restrictions [see (5-6)] when the restrictions do not hold as follows:

Nouncentral chi-squared distribution. 1f 7 has a normal distribution with mean x and
standard deviation 1. then the distribution of 2 is noncentral chi-squared with parameters 1

and u?/2.
a  Ifz~ N{g, Z]withJ elements, then 2, %77 has a noncentral chi-squared distribution

with J degrees of freedom and noncentrality panmeler #'X7g /2, which we denote
R WE w2,

L

b.

If z ~ N{p. 1] and M is an idempotent matrix with rank J. then Mz ~ y7 HT, WM /2].



" Greene-50558

book

June 25,2007 12:52
APPENDIX B 4 Probability and Distribution Theory 995
) T NormalfO.1]. t[3], and [10] Densities
045 —
..-"r - . - Nomal[0,1] | [
{ i > N [EELIE 3]
/ 036 Y N, ~=== {19]
]
|
' 027k
=y i
s b
2
| [ L
| 018F
| i
|
|
009
. A
%5 —24 -08 08 24 ) e

th
|

FIGURE B.3 . The Standard Normal, 3], and [10] Distributions. -

2. Noncentral F distribution. If X has a noncentral chi-squared distribution with
noncentrality parameter A and degrees of freedom ay and X2 has a central chi-squared
distribution with degrees of freedom #; and is independent of X;. then

X/m

Xofm

has a nonSentral £ distribution with parameters sy, #2, and 72 ‘Note that in each of these

cases, the statistic and the distribution are the familiar ones, except that the effect of the

nonzero mean, which induces the noncentrality, is to push the distribution to the right.

F, =

B.4.3 DISTRIBUTIONS WITH LARGE DEGREES OF FREEDOM

The chi-squared, ¢, and F distributions usvally arise in connection with sums of sample observa-
tions. The degrees of freedom parameter in each case grows with the number of observations.
We often deal with larger degrees of freedom than are shown in the tables. Thus, the standard
tables are often inadequate, In all cases, however, there are limiting distribufions that we can use
when the degrees of freedom parameter grows large. The simplest case is the ¢ distribution. The
¢ distribution with infinite degrees of freedom is equivalent (o the standard normal distribution.
Beyond about 100 degrees of freedom, they are almost indistinguishable.

For degrees of freedom greater than 30, a reasonably good approximation for the distribution
of the chi-squared variable x is

z=(2n" - 2n -2, ®-37)

which is approximately standard noemally distributed. Thus, ‘

Prob(x*[n] < a) ~ ®[@2a)? ~ (2n ~ 1)},

\*The denominator chi-squared could also be noncentral, but we shall not use any statistics with doubly
noncentral distributions.
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As used in econometrics, the F distribution with a large-denominator degrees of freedom is
common. As 72 becomes infinite. the denominator of F converges identically to one, so we can
treat the variable

x=mF - (B-38)
as a chi-squared variable wrlh m deorees of freedom. The numerator degree of freedom will
typically be small. so this approximation will suffice for the types of applications we are likely o
encounter® Tt not, then e approximation given earlier for the chi-squared distribution can be
applied tom F

B.4.4 SIZE DISTRIBUTIONS: THE LOGNORMAL DISTRIBUTION

In modeling size distributions, such as the distribution of firm sizes inan indusll'yorthe distribution
of income in a country. the lognormal distribution, denoted LN[xu. o?]. has been particularly
useful

| 2
Flx) = —gm——e VAIRZ=RYEF -y o g,
J2rox— =

A lognormal variable x has
. Elx] =_e“+°'2f2.
and
Var{x] =_¢2"+"2(_f_:"2 ~-1).
The relation between the normal and logaormal distributions is
Ify ~LN[u.o%], Iny~ N[u,o%].

A useful result for transformations is given as follows:

If x has a lognormal distribution with mean 8 and variance 32, then

Inx ~ N(u 6?), where g =1In6* — Ung® +1%) and a® = In(l +33/6%).
Because the nl)rmal distribution is preserved under linear transformation,
if y~ LN{p,0?], then Iny"~ Nlru,r2%?].

If 31 and y; are independent lognormal variables with y; ~ LN, 02 and y» ~ LN[u,, o],
then

e ~ LN + pa o + 03],

B.4.5 THE GAMMA AND EXPONENTIAL DISTRIBUTIONS

The galnma distribution has been ased in a variety of settings. including the study of income
distribution*and production function&:® The g general form of the distribution is

E Ax, P-1
= e g™ , : 0, . -
fix) = l"(P)e x* x>0a>0,P>0 (B-3%)
Many familiar dlsmhuuons are special cases, including the exponcmml distribution (P =1} and

chi-squared (i = 3, P =%). The Erlang distribution results if Pis a positive intcger. The mean is
_P/A, and the variance is P/A%. The imusc * gamma, distnbm‘mn is the distribution of 1/x, where x

"#8ee Johuson., Kotz, and Balakrishnan (1994) for other approximations.

“* A study of applications of the lognormat distribution appears in Aitchison and Brown (1969),
+*Salem and Mount (1974).

“$Greene (1980a).
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has the gamma distribution. Using the change of variable, y = 1/x, the Jacobianis|dx/dy| = 1/y*.
Making the substitution and the change of variable, we find

f ) = F &°
The density is defined for positive P. However, the mean is /(P — 1) which is defined only if
P > 1 and the variance is \2/[(P — 1)2(P 2y} which is defined only for P2

eIy TIPD 5 00> 0, P> 0,

B.4.6 THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the random
variable is constrained to vary. The lognormal «istribution, for example, is sometimes vsed 1o
model a variable that is always nonnegative. For a variable constrained between 0 and¢ = 0. the
beta distxibution has proved useful. Its density is

(e + ) )"‘(]_5)""1 "
fo = Mo )l"(ﬂ)( c ¢ (540

This functional form is extremely fiexible in the shapes it will accommodate. It is symmetric if
a = 8, asymmetric otherwise, and can be hump-e.haped or U-shaped. The mean is ¢o f{a + 5),
and the variance is cCafi/[(¢ + B +1 Mo +p) 2]. The beta distribution has been applied in the study
of labor force participation rated?”

B.4.7 THE LOGISTIC DISTRIBUTION

The normal distribution is ubiquitous in econometrics. But researchers have found that for some
microeconomic applications, there does not appear to be enough mass in the iails of the normal
distribution: observations that a model based on normality would classify as “unusual” seem not
to be very unusual at all. One approach has been to use thicker-tailed symmetric distributions.
"The logistic distribution is one candidate; the cdf for a logistic random variable is denoted
’ SO =AW= ex’

The density is f(x) = A1 — A(x)]. The mean and variance of this random variable are zero
and 72 /3.

B.4.8 THE WISHART DISTRIBUTION
The Wishart distribution describes the distribution of a random matrix obtained as
2
”
W= "% —w)ix - o).
=1
where x; is the ith of g K element random vectors from the multivariate normal distribution with

mean vector, jt, and covariance matrix, I. This is a multivariate counterpart to the chi-squared
distribution. The density of the Wishart random matrix is

1 —lwar wd e K
exp [—~_-2~t_mce (z 1_\?_!;)] k4 A

S =
2

The mean matrix is #X. For the individval pairs of elements in W,

kP23 |K2 NK(K'—hMH-f:l r (M)

Covlwiy, wys| = mloyays + 0150))-

“Heckman and Wiltis (1976).
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FIGURE B.4 . The Poisson |3} Distribution. il
B.4.8 DISCRETE RANMDOM VARIABLES
Modeling in economics frequently involves random variables that take integer values. In these
cases, the distributions listed thus far only provide approximations that are sometimes quite
inappropriate. We can build up a class of inodels for discrete random variables from the Bernoulli
distribution for a single binomial outcome (trial) '
=3 Prob(x = 1) = o,
’ Prob(x =0) = 1 —a,
where 0 < « < 1. The medeling aspect of this specification would be the assumptions that the suc-
cess probability « is constant from one trial to the next and that successive trials are independent.
If 50, then the distribution for x successes in # trials is the binpmial distribution,
Prob(X =1 = (7)1 ~a)™, x=0,1....n
The mean and variance of x are ae and (1 — ), respectively. If the sumber of trials becomes
large at the same time that the success probability becomes small so that the mean na is stable,
then. the limiting form of the binomial distribution is the Poisson distribution, @
eThRE
: Prob(X = x) =" A
L ; H - - ll\._
The Poisson distribution has seen wide use in econometrics in, for example, modeling patents, U1 Lo
A crime, recreation demand, and demand for health services. (See Chapter 25.) An example is Vi h
[ ON shown in Figure B4. | : 3
| "a A

"~ B.5 THE DISTRIBUTION OF A FUNCTION
OF A RANDOM VARIABLE

We considered finding the expected value of a function of a random variable. 1t is fairly common
to analyze the random variable itself, which results when we compute a function of some random
variable. There are three types of transformation to consider. One discrete random variable may


Bill
Sticky Note
change 25 to 18


o ! Greene-50558

book

Fune 25, 2007 12:52

APPENDIX B + Probablility and Distribution Theory 999

be transformed into another, a continuous variable may be transformed into a discrete one, and

one continuous variable may be transformed into another.
The simplest case i the first one. The probabilities associated with the new variable are

'cnmputecl according to the laws of probability. If y is derived from x and the function is one to

one, then the probability that ¥ = y(x) equals the probabitity that X = x. Il several values of x

yield the same value of y, then Prob(¥ = 3} is the sum of the corresponding probabilities for x.
The second type of transformation is illustrated by the way individual data ot income are typ-

icafly obtained in a survey. Income in the population can be expected to be distributed according

to some skewed, continuous distribution such as the one shown in Figure 8.5,

Data are often reported categorically. as shown in the lower part of the figure. Thus, the

random variable cotresponding Lo observed income is a discrete transformation of the actual
vnderlying continuous random variable. Suppose, for example, that the (ransformed variable y is

the mean income in the respective interval. Then
Prob{¥Y = p1) = Pl—oo < X < a),
Prob(Y = py) = Pla < X = by,
Prob(Y = 1) = P < X < o),

and so on. which illustrates the general procedure,
If x is a continuous random variable with pdf f.(x) and if ¥ = g(x) is a continuous monotonic

function of x, then the density of y is obtained by using the change of variable technique to find

FIGURE B.5 = Gensored Distribution.
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the cdf ol y:

i ' Probiy < b) = f L7 ol (nldy.
This equation can now be written as '

b
Prob(y = b) = f Fipdy.
-
Hence,
Hn = fzg7 onlg~ - (B-41)

To avoid the possibility of a negative pdf if g(x) is decreasing, we use the ahsoluie value of the
derivative in the previous expression. The term |¢~%(y)| must be nonzero for the density of y.40 be
nonzero. In words. the probabilities associated wilh inlervals in the range of y must be associated
with intervals in the range of x. If the derivative is zero, the correspondence y = g(x) is vertical,
and heuce alt values of y in the given range are associated with the same value of x. This single
point must have probability zero. :

One of the most useful applications of the preceding result is the linear transformation of a
normally distributed variable. If x ~ N{u, o*]. then the distribution of

is found using the preceding result. First, the derivative is obtained from the inverse transformation

_X K iy = 3
_y_a U:}x..a)l-l-ﬂ:)f_(,}’) d}’
Thevefore, -
1 2
(v) = elerrm—ul /et ) = - oyt
Ay lo| o

This is the density of a normally distributed variable with mean zero and unit standard deviation
one. This is the result which makes it unnecessary to have separate tables for the different normal
distributions which result from different means and variances.

B.6 REPRESENTATIONS OF A PROBABILITY
DISTRIBUTION

The probability density function (pdf) is a natural and familiar way to formulate the distribution
of a random variable. But. there are many other functions that are used to identily or characterize
a random variabte, depending on the setting. In each of these cases, we can identify some other
function of the random variable that has a one, to,one relationship with the density. We have
already used one of these quite heavily in the preceding discussion. For a random variable which
has density Function f{x), the distribution function, F(x). is an equally informative Tunction that
identifies the distribution; the refationship between_f(x) and F(x) is defined in {(B-6) for a discrete
random variable and (B-8) for a conlinuous aone. We now consider several other related functions.
For a continuous random variable. the sprvival function is S(x}=1 — F(x)= Probl.X > x].
This function is widely used in epidemiology, wherex is time until some transition, such as recover ¥y
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from a disease. The hazard function (or a random variable is

_fw_ fw
HO = e =T Fw
The hazard function is a conditia-n;ai probaﬁility:

h{x) = lim, g Prob(X < x < X+1}| X = x).

Hazard functions have been used in econometrics in studying the duration of spells, or conditions,
such as unemployment, strikes, lime until business failures, and so on. The connection between
the hazard and the other functions is A(x) = —dIn S(x)/dx. As an exercise. you might want to
verify the mtelestmg special case of A{x) = 1/A, a comtant—-the only distribution which has this
characteristic is the exponential distribution noted in Section B.4.5.

For the random variable X, with probability density function_f(x). if the function

Mt} = E[e]

exists, then it is the moment generaimg fimction, Assuming the function exists, it can be shown
that

M) At |0 = Efx].

The moment generating function, like the survival and the hazard functions, is a unique charac-
terization of a probability distribution. When it exists, the moment generating function (MGF)
has a one-to-one correspondence with the distribution. Thus, for example. if we begin with some
rancdom variable and find that a transformation of it has a particutar MGF, then we may infer that
the function of the random variabe has the distribution associated with that MGF. A convenient
application of this result is the MGF for the normal distribution. The MGF for the standard
normal distribution is M,(1} = /2.
A useful feature of MGFs is the following:

_if x and y are independent, then the MGF of x + y is M, (1) M, (?).

This result has been used to establish the contagion property of some distributions, that is, the
property that sums of random variables with a given distribution have that same distribution.
The normal distribution is a familiar example. This is usually not the case. It is for Poisson and
chi-squared random variables.

One qualification of alt of the preceding is that in order for these results to hold, the
MGF must exist. It witl for the distributions that we will encounter in our work, but in at
least one important case, we cannot be sure of this. When computing sums of random vari-
ables which may have different distributions and whose specific distributions need not be so
well behaved, it is likely that the MGF of the sum does not exist. However, the characteristic
function,

$it) = E|e].i2 = -1,

will always exist, at least for refatively small 1. The characieristic funciion is the device used to
prove that certain sums of random variables converge to a normally distributed var mble——lhat
is, the chalactel istic function is a fundamental tool in proofs of the central limit theorem. L
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B.7 JOINT DISTRIBUTIONS

- The joint densify fuuction for two random variables X and Y denoted f(x, y) is defined so that

- Z Z Sty if x and y are discrete,
azxsbe<ysd

Probla=<x<bexy<dy= ‘;' " (B-42)
/ / fx.yydydx if x and y are continuous.

The counterparis of the requirements for a univariate probability density are
fix.y) =0,

Zz_f(x. V=1 if x and y are discrete,
oy

(B-43)
f/ fix.»dydx =1 ifxand y are continuous,
fxJy
The cumulative probability is likewise the probability of & joint event:
Flx.y)=Prob{X <x,. Y=<
E Z fle. in the discrele case
Xzx Y=y
- (B-44)

X ¥
f ] flt.s)dsdt in the conlinuous case.
—0 —2C

B.7.1 MARGINAL DISTRIBUTIONS

A marginal probability density or marginal probability distribution is defined with respect to an
individual variable. To obtain the marginal distributions from the joint density, it is necessary to
sum or integrate out the other variable:

Z flx.¥)  inthe discrete case

¥

filoy = (B-45)

ff(x,s}ds in the contintous case,
4

and similarly for_f.(y).
Two random variables are statistically independent if and only if their joint density is the
product of the marginal densities;

flx. 9} = fu(x) fy{y) & x and y are independent. (B-46)
If {and only i) ¥ and y are independent, then the cdf factors as well as the pdf:
| Fix, y) = F@xFAp, (B-47)
or

Prob(X <x. ¥ < y) = Prob(X < x)Prob(Y < y).
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B.7.2 EXPECTATIONS IN A JOINT DISTRIBUTION

The means. variances, and higher moments of the variables in a joint distribution are defined with
‘respect to the marginal distributions, For the mean of x in a discrete distribution,

- Elx] = fo,{x)

=Z‘[Zﬂx’”} - (B-48)
X ¥
=) xfer ).

Xy

The means of the variables in a continuous distribulion are defined likewise, using integration
instead of summation:

Elx] = ‘/._._xfe.{x)dx

: .
(B-49)
= [ [ste.pava.
xJy
Variances are computed in the same manner;
Varlx] = Z {x - E{x})z_f;(x)
i (B-56)

=% (x— Elx)) fix .
=Y

B.?,_G COVARIANCE AND CORRELATION
For any fu ncti:)n gix. y),
Z z glx, mfixe, in the discrete case
d (B-51)

Elgx, p]=1
f f gx. ) f(x, vydydx in the continnous case,
xJy

The covariance of x and ¥ is a special case:
Covlx, y] = E[&x — p)(y — #y)]
= Elxy] — pauy ‘ (B-52)
= Oy,

I x and y are independent, then f(x, y) = fqz(x) fy(nyand
Ty =33 FE®ENE ~u)~ 1)
x

=3 F w0 D ) ()
x ¥

= E[x — u,|E[y — l”y]
=,
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The sign of the covariance will indicate the direction of covariation of X and Y. lts magnitude
depends on the scales of measurement, however. In view of this Fact. a preferable measure is the

_correlation coefficient: -

o,
1yl = oy = 2 (B-53)
¥

where 6, and o, are the standard deviations of x and y. respectively. The corrglation coefficient
has the same sign as the covariance but is always between —1 and 1 and is thus unaffected by any
scaling of the variables.

Variables that are uncorrelated are not necessarily mdept.ndent For example, in the dis-
crete distribution f(-i )= f(0,0)= f{1, 1)-...l the correlation is zero, but _f(l. 1) does not
equal fi(1) fy(iJ ( }{ ). An important Lxce,ptmn is the joint narmal distribution discussed sub-
sequently, in which hck of correlation does imply independence.

Some peneral results regarding expectations in a joint distribution, which can be verified by
applying the appropriate definitions, are

Elax+ by +c]=aElx] +bE[y]+ec. (B-54)

Varlax + by + ¢] = a*Var[x] + B Var[y] + 2ab Cov|x, ¥}

, (B-55)
= Vurlax + by],
and
Covlax + by, cx +dy] = acVar|[x] + bd Var[y] + (ad + bc)Covix, y]. {B-56)
If X and Y are uncorrelated. then
. Var{x + y| = Var[x ~_y]
(B-87)
= Varfx} 4 Var]y].
For any two functions g;(x} and g,(y). if x and y are independent, then
E[g1(0)g:(0)] = E[gi (0] Elg2(w)]- (B-58)

B.7.4 DISTRIBUTION OF A FUNCTICON OF BIVARIATE
RANDOM VARIABLES

'The result for a function of a random variable in {B-41) must be modified for a joimt distribution.
Suppose that x; and x> have a joint distribation fe(x1, 32) and that y; and y; are two monatonic
functions of x; and x;:

= nx. 2}
o = (% X0

Because the functions are monotonic, the inverse transformations,
X =x1{¥. Y2},

X = X, )
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exist. The Jacobian of the transformations is the matrix of partial derivatives,

3x;/ay1 axy faym 9x,
ax:fayg 8x2/8y ay |’

A

The joint distribution of y[ and ya is

L3 y2) = felxi(yr y). 2200,y fabs(|I ).

The determinant of the Jacobian must be nonzero for the transformation 1o exist. A zero deter-
minant imphies that the two transformations are functionally dependent.

Certainly the most common application of the preceding in econometrics is the linear trans-
formation of a set of random variables. Suppose that %, and x: are independently distributed
10, 1]. and the transformations are

Y= ey + X + P,
Yo = a2+ B + foxs.
To abtain the foint distribution of y; and y». we first write the transformations as
y=a+Bx
The inverse transformation is
O
T .-[} (¥4,

so the absolute value of the determinant of the Jacobian is
1
abs[B]’

The joint distribution ol' x is the product of the marginal distributions since they are independent.
Thus,

absl7| = abs|B~!| =

ﬁ!(’.‘.) =(2n) e —T 2 2my e —Ax/2.
Inserting the resuits ot x(y) and J into_fy(n, y2) gives

1 ' # e
) = 5=t —(v—a) {BR') E\—u)jl
5y Y m“bsml

This bivariate normal distribution is the subject of Section B.9. Note thal by formulating it as we
did earlier, we can generalize easﬂy to the multivariate case, that is, with an arbitrary number of
variables.

Perhaps the more common situation is that in which it is necessary to find the distribution
of one function of two {or more) random variables. A strategy that often works in this case is
to form the joint distribution of the transformed variable and one of the original variables, then
integrate {or sum} the latter out of the joint distribution to obtain the marginal distribution. Thus,
to find the distribution of (X}, x2). we might formulate

Y1 =X, x2)
Y1 = X3
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The absolute value of the determinant of the Jacobian would then be

oy oam|
J =abs |3 8y2| =abs (ﬂ) .
e Sl e

0 I

The density of y, would then be

Fal) =/ Fdxiiye, y), o] absl | dys.
'y2

B.8 CONDITIONING IN A BIVARIATE DISTRIBUTION

Conditioning and the use of conditional distributions play a pivotal role in econometric modeling.
We consider some general results for a bivariate distribution. { All these results can be extended
directly to the multivariate case.)

In a bivariate distribution, there is a conditional distribution over y for each value of x. The
conditional densities are R - ' -

fx 3
= . B-59
fiyix) ) { }
and
_fy
f(rly)m__fy(y) :

1t follows from (B-46) that:
If x and y are independent, then f(y|x) = f,(y) and f(x 1) =_flx). (13-60}

The interpretdtion is that if the variables are independent, the probabilities of events relating
to one variable are unrelated to the ather. The definition of conditional densities implies the

- impaortant result

fayy = f(y|x)felx)

{B-61)
= fixINfH
B.8.1 REGRESSION: THE CONDITIONAL MEAN
A conditional mean is the mean of the conditional distribution and is defined by
/yf(ylx)dy if y is continuous
Elyls]=4{" (B-62)
Eyf(y!x) if y is discrete,
¥

The conditional mean function E{y | x] is called the regression of y on x.
A random variable may always be written as

y=Elylxl+ (y— Ely}x])

= Elyjx] +e.
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B.8.2 CONDITIONAL VARIANCE

A conditional variance is the variance of the conditional distribution:

Var{ylx [(y E[J’Pd) l*\’]

(B-63)
- [(y - E[yfx}) f(y]x)dy. if yis continuous,
. . ,
Var[y|x]= Z (y— Ely| x])2 fylx), if yis discrete. (B-64)
P .
‘The computation can be simplified by using
Varly| x] = E[? |x] - (E[y1 1) (B-65)

The conditional variance is called the scedpstic fimction and, like the regression, is generally
a function of x. Unlike the conditional mean function, however, it is common for the conditional
vartance not to vary with x. We shall examine a particular case. This case does not imply, however,
that Var{y | x| equals Var{¥}. which will usually not be true. [t implies only that the conditional
vatiance is a constant, The case in which the conditional variance does not vary with x is called
homoscedasticity (same variance),

B.8.3 RELATIONSHIPS AMONG MARGINAL
AND CONDITIONAL MOMENTS

Sorne useful results for the moments of a conditional distribution are given in the following
theorems.

THEOREM B.1 Law of Iterated Expectations
Ely]= E[E[y|x]). (B-66)

The notation E.|.| indicates the expectation over the values of x. Noie that E[v|x] is a
function of x. ~

THEOREM B.2 Covariance

In any bivariate distribution,

Cody] = Conlx. Elylall = [ (s E)Eisifnds. B

X

{Note that this is the covariance of x and a function of x.)
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The preceding results provide an additional, extremely useful result for the special case in
which the conditional mean function is linear in x.

THEOREM B.3 Momenté-ili a Linear Regression
FE[y|[x]=a+ Bx, then

a = E[y] -~ BE[x]
and

_ Covix, y]
=l (B-68)

The proof follows from {B-66).

The preceding theorems relate to the conditional mean in a bivariate distribution. The follow-
ing theorems, which also appear in various forms in repression analysis, describe Lhe conditional
variance.

THEOREM B.4 Decomposition of Variance

In a joint distribution,

Var[y] = Varg| E]y | x]] + E| Var[y | x]]. (B-69)

The notation Var,].] indicates the variance over the distribution of x. This equation states
that in a bivariate distribution, the variance of y decomposes into the variance of the conditional
mean function plus the expected variance around the conditional mean.

THEOREM B.5 Residual Variance in a Regression
in any bivariate distribution,

Ee[Varfy|x]] = Var|y| - Var,| E{y | x]]. (B-70)

On average. conditioning reduces the variance of the variable subject to the conditioning. For
example. if y is homoscedastic, then we have the unambiguous result that the variance of the
conditional distribution{s} is less than or equal to the unconditional variance of y. Going a step
further, we have the result that appears prominently in the bivariate normal distribution (Sec-
tion B.9).
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THEOREM B.6 Lincar Regression and Homoscedasticity
In a bivariate distribution, if E[y|x] = « + px and if Var|y|x] is a constant, then

Varfy | x] = Vai'{,_\_f}(i —Corr’[y,x]) =0, (1 - pi,) . (B-71)
The proof is straightforward using Theorems B.2 to B.4. '

B.B.4 THE ANALYSIS OF VARIANCE

The variance decomposition result implies that in a bivariate distribution, variation in y arises
from two sources:

‘1. Variation because E{y|x] varies withx:
regression variance = Vary| E[y | ] (B-72)
2. Variation because, in each conditional distribution, y varies around the conditional mean:
residual variance = Ex[Varly | x]]. (B-73)
Thus, '
Var|y] = regression variance + residual variance. (B-74)

In analyzing a regression, we shall usually be interested in which of the two parls of the total
variance, Var|y]. is the larger one. A natural measure is the ratio

Tegression variance

- B-78
total variance { )

soplicient of determingtion =

In the setting of a linear regression, (B-73) arises from another relationship that emphasizes the
interpretation of the correlation coefficient.

If E[y|x]=e+ Bx. then the coefficient of determination = COD = p?, (B-76)

where p is the squared correlation between x and y. We conclude that the correlation coefficient
{squared} is a measure of the praportion of the variance of y accounted for by variation in the
mean of y given x. It is in this sense that correlation can be interpreted as a measure of lineer
association between two variables. s EES

B.9 THE BIVARIATE NORMAL DISTRIBUTION

A bivariate distribution that embodies many of the features described earlier is the bivariate
normatk, which is the joint distribution of two normally distributed variables, The density is

—1/2 I{PE_-I-_!‘E—EEI'{E,. W —pl)]

: 1
flx. y) = ————s=—=¢

276,606,471 —
o - : (B-77)

X— iy y— iy
y S py = Bl
' Ox %y
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The paramelers gy gy, iy, 8itd oy are the means and standard deviations of the marginal distri-
butions of x and y. respectively. The additional parameter p is the correlation between x and y.
The covariance is '

Oyy = DTxTy. {B-78)

The density is defined only if p is not | orr—i. which in turn requires that the two variables not
be linearly related. If x and y have a bivariate normal distribution, denoted

: 2
6, ¥) ~ M [x pyo 6k, 00 ).
then
#  The marginal distributions are normat:

fux) = Nz o]

(B-79)
f}'(y) = N[.u*y; O'E] .
¢  The conditional distributions are normal:
fy1x) = Nla+ px.o}(t — p1)].
{B-80)

a'_‘-y
@ = py~ Bus. =5
X

and likewise for fix|».
o xand y are independent if and only if p = 0. The density factors into the product of the two
marginal normal distributions it p = 0.

Two things to note about the conditionat distributions beyond their normality are their linear
regression functions and their constant conditional variances. The conditional variance is less than
the unconditional variance. which is consistent with the results of the previous section.

B.10 MULTIVARIATE DISTRIBUTIONS

The extension of the results for bivariate distributions to more than two variables is direct. 1L is
made much more convenient by using matrices and vectors. The term randem vector applies (o
a vector whose elements are random variables, The joint density is_f(X). whereas the cdf is

X ¥t xy
.F_QK_)=/ [ f JFOdr - dtny dia. (B-81)

Note that the cdf is an r-fold integral. The marginal distribution of any one {or more) of the n
variables is obtained by integrating or summing over the other variables.

B.10.1 MOMENTS

The expected value of a vector or matrix is the vector ar matrix of expected values. A mean vecior
is defined as

# Elx]
2 Elx]

=
i
I

=E [;(ﬁ] (B-82)

und  LEIR]
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Define the matrix

(%1 — pOE — p1) (K — % — g2 e (X — H1)(Xp — fiy)

(X2 — p2){X ~ 1) (o — % —p2) oo (R — palXe — Ha)
(x—p)x— )=
{Xa — HeHX1 — p1) (-?n_"‘ﬂn){fﬁ — ) - (xn"ﬂ_n)(-.xn“#_ﬂ)

The expected value of each element in the maltrix is the covariance of the two variables int the
product. {The covariance of a variable with itself is its variance.) Thus,

on o - O
gyt Tz - 0‘2!,

Elx—pXx—p)l=] | . = E[x<| - ppt’, {B-83)
Ort T2 ** O

whichis the covariance mairix of the random vector x. Henceforth, we shaltdenote the covariance
malrix of a random vector in boldface, as in

Var[x] = Z.

By dividing oy by 0y0;, we obiain the correlation matrix:

Popz pa - P
b o
R=
£y Pz Puz - 1

B.10.2 SETS OF LINEAR FUNCTIONS

Ouwr earlier results for the mean and variance of a linear function can be extended to the multi-
variate case. For the mean,

Elaux +@x +- - -+ aaxa] = E[w'x] '
= @1 E[x1] + a: Elxe] + - - +.an E[xa]
' ' (B-84)
= @iyt fapy+ -t Anile
= a'p,
For the variance.
Varla'x} = E [(arx — Elwx])’]
= E[{e(x—Ex)}]
= Elo(x —#)x — 3]
as E{x] = p and @' (x — 4} = (x — p¥a. Because ais a vector of constants.

Varlax] = A Elx —s)x — s p =2 Ea =) > aiayo. (B-85)
. =1 j=1
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It is the expected value of a square, so we know that a variance cannot be negative. As such,
the preceding quadratic form is nonnegative, and the symmetric matrix £ must be nonnegative

definite.
In the set of linear functions 1 = AX, the ith element of y is y; = ax. where sy is the ith row

of A [see result (A-14)]. Fherefore,
Ely] =mu.
Collecting the results in a vector, we have .
ElAx] = Ap. (B-86)
For two row vectors a and_g__ i
Cov[ax. a,x] X )Jnj.
Because a, 24 is the ijth element of AZA’.
Var{Ax] = AZA". (B-87
This matrix will be either nonnegative definite or positive definite, depending on the column rank
of A,
B.10.3 NONLINEAR FUNCTIONS

Consider a set of possibly nonlinear functions of X, ¥ = g(x). Each element of ¥ can be approxi-
mated with a linear Taylor series. Let j' be the row vector of partial derivatives ‘of the £1h function
with respect to the 7 elements of x;

; dg(xy 3y
! = o mam el
- .-'.I. (X) 35' aﬁn

({B-88)

Then. proceedmg in the now familiar way, we use g, the mean vector of X. as (he expansion point,
s0 that J’{,u,) is the row vector of partial derivatives evaluated at p. Then

&0~ g(p) +§ (£)(x — p). {B-39)
From this we obtain
Elgi(x)] = gi(w). (B-90)
Varlg, (0] ~ [ O Z§ @)’ (B-91)
and
Covlgi(x). g;(x)] ~§ () Zi (). (B-92)

These results can be collected in a convenient form by arranging the Tow vectors ji(u) in a matrix
J{u). Then, corresponding Lo the preceding equations, we have '

Efg(x)] 22 g(u). (B-93)
Var{g(x)] 2 J()ZI ). (B-94)

The matrix J(u) int the last preceding line is 9y/3x’ evaluated at 3 = x.
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B.11 THE MULTIVARIATE NORMAL DISTRIBUTION

The foundation of most multivartate analysis in economeltrics is the multivariate normal distri-
bution. Let the vector (x1, % ... o) =x be the set of 1 rafidom variables, g their mean vector,
and X their covariance matrix. Fhe general form of the joint density is

FX) = @n) PR [F | eI E 0o, (13-95)
If\l__} is the correlation matrix of the variables and Ry; = 0y /(o10}). then
f(’q = (2”)-"/2(0.10_2 . o'n)_] [Rl—l/_ze(-l/l{g]}‘f:. (B-96)
where & = (% — w)fop$”
Two special cases are of interest. If all the variables are uncorrelated, then py = 0 for i # j.
Thus, _B.""’.'.\l-: and the density becomes
FX) = @y o107+ 05y le=0

= flan fu) - S =[] F)-

i=1

(B-97)

As in the bivariate case, if normally distribuled variables are uncorrelated, then they are inde-
pendent. If o; = o and g = @, then x, ~ N[0, ¢*] and g = %; fo, and the density becomes

F3) = (2m) ™ (o) g END), (B-98)
Finally, ifo = 1.,
) = (2m)Pe N, (B-9%)
This distribution is the mulfivariate standard normal, or spherical normal distribution,
B.11.1 MARGINAL AND CONDITIONAL NORMAL DISTRIBUTIONS

Let x1 be any subset of the variables, including a single variable, and let x> be the remaining
variables. Partition g and ¥ likewise so that

L P _ &0 o
= [Ez} and % = l:?;zl ﬂ'[.zz} )

Then the marginal distributions are also normal. In particular, we have the following theorem,

THEOREM B.7 Marginal and Conditional Normal Distribations

If x4, Xo] have a joint multivariate normal distribution, then the marginal distributions are
X~ Nl T, (B-100)

*®This result is obtained by constructing A, the diagonal matrix with o; as its ith diagonal element. Then,
R =A~'ZA"!, which implies that 2=! = A™' R~'A~". Inserting this in (B-95) yields (B-96). Notc that the
ith cloment of A~} (x ~ p}is (x; — ) /0y
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THEOREM B.7 (Continued)

and -
¥~ N(fha, X)) (B-101)
The conditional distribution of x, given, .le is normal as well:
X1 bXe ~ Nty 2o Zinz), Co {B102)
where
s =g+ ZuE (% — ), (B-102a)
In2=2n-ZnIinia. {B-102h)

Proof: We partition g and T as shown earfier and insert the parts in (B-95). To construct
the density, we use {A-72) to partition the determinant,

12 = ~ ZnZHEn].

and (A-74) to pan‘iﬁoﬁ the inverse,

..§11 ;ler"{ z11,2 EuJ,B
.221 I.;ZE Bzuﬁ ): +B'E;IIZB

For simplicity, we let
B=Xpky.
Inserting these in (B-95 ) and collecting terms produces the joint density as a product of
two terms:
T fx %) = fial® | %) folxe)

The first of these is a4 normal distribution with mean pt, 5 and variance Eu 2. whereas the
second is the marginal distribution of %».

The conditional mean vector in the multivariate normal distribution is a linear function of the
unconditional mean and the conditioning variables, and the conditional covariance maltrix is
constant and is smaller (in the sense discussed in Section A_7.3) than the unconditional covariance
matrix. Notice that the conditional covariance matrix is the inverse of the upper left block ofl:&\'i;
that is, this matrix is of the form shown in {A-T74) for the partitioned inverse of a matrix.

B.11.2 THE CLASSICAL NORMAL LINEAR REGRESSION MODEL

An important special case of the preceding is Lhat in which x; is a single variable, y. and x; is
X valmbles. x. Then the conditional distribution is a multivariate version of that in {B-80) with

_'ﬁ ); Oy ‘where Ty is the vector of covariances of y with X;. Recall that any random variable,

¥, can be written as ils mean plus the deviation from the mean. If we apply this tautology to the
multivariate normal, we obtain

y=Ely|xi+ (y—Ely|x]) =a+fx+-e.
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where f.is given earlier. « = g, — 1. and ¢ has a normal distribution. We thus have, in this
multivariate normal dlStl ibution, the clascicn[ normal linear regression mmlcl

B.11.3 LINEAR FUNCTIONS OF A NORMAL VECTOR

Any linear function of a vector of joint normally distributed variables is also normally distributed.
The mean vector and covariance matrix of Ax, where x.is normally distr |hutcd follow the general
pattern given earlier. Thus,

I3~ N[g. 2], then Ax+b~ N[Ap+b AZA') {(B-103)

A does not have full rank. then AZA’ is cungulal and the density does not exist in (he full
chmensnonal space of x although it does exist in the subspace of dimension equal to the rank of
Z. Nonetheless, the individual elements of Ax b will still be normally distributed. and the joint
drstr:lzuﬁpn of the lull vector is still a nmlnv.arlale normal.

B.11.4 QUADRATIC FORMS IN A STANDARD NORMAL VECTOR

The earlier discussion of the chi-squared distribution gives the distribution ofx"x if x has a standard
normal distribution. It follows from {A-36) that

" n
Xx=3 5= n—F+nF. (B-104)

We know from {(B-32) that X'x has a chi-squared distribution. It scems natural, therefore, to invoke
(B-34) for the two parts on the right-hand side of (B-104). It is not yet obvious, however, that
either of the two terms has a chi- squaled distribution or that the two terms are independent,
as required. To show these conditions. it is necessary to derive the disiributions of idempotent
guadratic forths and to show when they are independent.

To begin, the second term is the square of /1 X, which can easily be shown 1o have a standard
normal distribution. Thus, the second term is the square of a standard normal variable and has chi-
squared distribution with one degree of freedom. But the first term is the sum of 1 nonindependent
variables, and it remains to be shown that the two terms are independent. :

DEFINITION B.3 Orthonormal Quadratlc Form
A particular case of (B-103} is the following:

If x.~ N{0.1} and Cis a square matrix such that C'C =1, then C'x ~ N[0.1].

Consider. then. a quadratic form in a standard normal vector X with symmetric matrix A:
g =YAx. (B-105)

Let the characteristic roots and vectors of A be arranged in a diagonal matrix A and an orthogonal

matrix C, as in Section A6.3. Then

g=XCACX. (B-106)
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By definition. C satisfies the requirement that C'C == L. Thus, the vector y = C’x has a standard
normal distribution. Consequently,

"
Cg=YAY=D) myT (B-107)

: p

If ; is always one or zero, then
' N —
q=Y ¥ (B-108)
f:] - ‘

which has a chi-squared distribution, The sum is taken over the § = 1,..., J elements associated

with the roots that are equal to one. A matrix whose characteristic roots are all zero or one is
idempotent. Therefore, we have proved the next theorem.

THEOREM B.8 Distribution of an Idempotent Quadratic Form in
a Standard Normal Vector
Ifx ~ NI[0.1] and A is idempotens, then X AX has a chi-squared distribution with degrees

of freedom equal to the number of unit roots of A, which is equal to the rank of A.

The rank of a matrix is equal to the number of notzero characteristic roots it has. Therefore,
the degrees of freedom in the preceding chi-squared distribution equals J. the rank of A.
We can apply this result to the earlier sum of squares, The first term is

i(’x_a -3y =xM%,

- i=l

where M® was defined in (A-34) as the matrix that transforms data to mean deviation form:
i
MC =1 —if.
L .

Because M? is idempotent. the sum of squared deviations from the mean has a chi-squared
distribution. The degrees of freedom equals the rank MC. which is not obvious except for the
useful result in (A-108), that

¢  The rank of an idempotent matrix is equal to its trace. (B-109)

Each diagonal element of M is 1 — (1 /n); hence, the trace is n[1 — (1/1)] = n — 1. Therefore, we
have an application of Theorem B.3.

* X~ NOD YT (5 — %)~ i n—1]. (B-110)

We have already shown that the second term in {B-104) has a chi-squared distribution with one
degree of freedom. Itis instractive to set this up as a quadratic form as well:

— ) 1 of T — ] .
n =x l:;_i_l_ }{: =X Lu }x, where_jh_ (../ﬁ)i (B-111)

The matrix in brackets is the outer product of a nonzero vector. which always has rank one. You
can verify that it is idempotent by multiplication. Thus, x'x is the sum of two chi-squared variables,
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one with # — 1 degrees of freedom and the other with one. It is now necessary o show that the
two terms are independent. To do so, we will use the next theorem.

THEOREM B.9 illdepenﬂtllcc of Idempotent Quadratic Forms
Ifx~ N[, 1 and x'Ax and X'Bx are two idempotent quadratic forms in X, then X Ax and
x'Bxare mdepemlem ifAB = 0. S T (B112)

As before, we show the result for the general case and then specialize it for the example.
Because both A and B are symmetric and idempotent. A = A'A and B = BB The quadratic
forms are therefore

XAx =XAAx =xix;. wherex = Ax, and xXBx=xx,. wherex;=RBx. (B-}3)
Both vectors have zero mean vectors, so the covariance matrix of ¥ and x is

E(xix) = AIF =AB=0.

Because Ax and Bx are linear functions of a nor mal[y distribuled random vector. they are, in @urn. .

normally distr ibuted. Their zero covariance matrix implies that they are statistically independent:?”
which establishes the independence of the two guadratic forms. For the case of x'x, the two
matrices are M® and [¥ — MP]. You can show that M?[ — MP°] = 0 just by multiplying it out.
B.11.5 THEEFDISTRIBUTION

The normal family of distributions {chi-squared. F, and #) can all be derived as functions of
idempotent quadratic forms in a standard normal vector. The F distribution is the ratio of two
independent chi-squared variables, each divided by its respective degrees of freedom. Let A and
B be two idempotent matrices with ranks Ya and 178 and let AB = 0. Then

XAX[,
YBY/7; F [1_'«.1';,]. (B-114)

It Var[x] = 6Linstead, then this is nodified to

(XAX/o*)rs

WBrio)jn ek (B-115)

B.11.6 A FULL RANK QUADRATIC FORM

Finally, consider the general case,
X~ Nlg. E]-
We are interested in the distribution of

g = (x—uV I (x -0 (B-116)

“?Note that both X1 = A}L and x2 = Bx have singular covariance matrices. Nonctheless, every eiement of x1 is
independent of every clcment X2, so the vectors are independent.
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First, the vector can be written as 2 = X — p.and ¥ is the covariance matrix of z as well as of x.
Therefore, we seek the dl&tl‘lbutl{)n of

=7 z=7(Varfg)) "z, (B-117)

where zis normally distributed with mean @, This equation is a guadratic form. but not necessarily
inan idempotent matrix ¥ Because Z is positive definite. it has a square root, Define the symmetric
matrix '7 so that Z'7 57 = %. Then

z—l — z—'lez—]fZ
and
FE =g ET PR
- Q_;_—I/%;)fg;—uzg‘)

Noww= Az so

and
Varly] = AZA'=ZTVEEV =30 =1

This provides the following important result:

THEOGREM B.10 Distribution of a Standardized Normal Vector
Ifx ~ Nii, Z1. then L7 (x — p) ~ N{9,1).

The simplest special case is that in which,x has only one variable, so that the transformation
is just (x -~ p)/o. Combining this case with (B-32) concerning the sum of squares of standard
normals, we have the following theorem.

THEOREM B.11 Distribution of x; Z“lx When x Is Normal
I3~ Nl Z) then (x — Y E7 (x — ) ~ )(2[!:}

B.11.7 INDEPENDENCE OF A LINEAR AND A QUADRATIC FORM

The t distribution is used in many forms of hypothesis tests. [n some situations, it arises as the
ratio of a linear to a gquadratic form in a pormal vector, To establish the distribution of these
statistics, we use the following result,

18Tt will be idempotent only in the special case of £ =1,



