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D.1

Example C.13 One-Sided Test About a Mean
A sample of 25 from a normal distribution yields X = 1.63 and s = 0. 51 Test

Hy n < 1.5, -
H1: @ > 1.5,

Clearly, no observed X less than or equal to 1.5 willlead to rejection of Ho. Using the borderline
value of 1.5 for 2, we obtain

Prob(ﬁ(r;1.5) . 5(1.63—1.5)) ~ Prob{tas > 1.27).

0.51

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a
significant level of 0.11, we would not reject the hypothesis.

C.7.3 SPECIFICATION TESTS

The hypothesis testing procedures just deseribed are known as “classical” testing procedures. In
each case, the null hypothesis tesied carne in Lhe Torm of a restriction on the alternative. You
can verify that in each application we examined, the parameter space assumed under the null
hypothesis is a subspace of that described by the alternative. For that reason, the models implied
are said to be “nested.” The null hypothesis is contained within the alternative. This approach
suffices for most of the testing situations encountered in practice, but there are common situations
in which two campeting models cannot be viewed in these terms. For example, consider a case
in which there are two complelely different, competing theories to explain the same observed
data. Many models for censoring and truncation discussed in Chapter 24 rest upon a fragile
assumption of normality, for example. Tesling of this nature requires a different approach from the
classical procedures discussed here. These are discussed at various points throughout the book, for
example. in Chapter 24, where we study the difference between fixed and random effects models,
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INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usnally be
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interested in determining how best to use the observed data when choosing among competing

estimators. That, in turn, requires us 10 examine the sampling behavior of estimators. In a few
cases, such as those presented in Appendix C and the least squares estimator considered in
Chapter 4. we can make broad siatements aboul sampling distributions that will apply regardless
of the size of the sample. But, in most situations, it will only be possible to make approximate
statements about estimators. such as whether they improve as the sample size increases and what
can be said about their sampling distributions in large samples as an approximation to the finite
samples we actually observe. This appendix will collect most of the formal. fundamental theorems
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and results needed for this analysis. A lew additional results wilt be developed in the discussion
of time-series analysis later in the book,

'.*--x"'x_, D.2 LARGE-SAMPLE DISTRIBUTION THEORY."

In most cases, whether an estimalor is exactly unbiased or whalt its exacl samgpling vatiance is in
samples of a given size will be unknown. But we may be able to oblain approximate results about
the behavior of the distribution of an estimator as the sample becomes large. For example, it is
well known that the distribution of the mean of a sample tends to approximate normality as the
sample size grows, regardless of the distribution of the individual observations. Knowledge about
the limiting behavior of the distribution of an estimator can be used to infer an approximate
distribution for the estimator in a finite sample. To describe how this is done. it is necessary, first,
to present some resulis on convergence of random variables.

D.2.1 CONVERGENCE IN PROBABILITY

Limiting arguments in this discussion will be with respect to the sample size n. Let x,, be a sequence
random variable indexed by the sample size,

DEFINITION ID.1 Convergence in Probability
The random varigble x, converges in  probability 1o a constam ¢ if
limy, 0 Prob(lx, — c| > £) = 0 for any positive e.

Convergence in probability implies that the values that the variable may take that are not
close to ¢ beceme increasingly unlikely as i increases. To consider one example, suppose that the
random variable x, takes two values, zero and #, with probabilities 1 —(1/r) and (1/#). respec-
tively. As i increases, the second point will become ever more remote from any constant but, at
the same time, will become increasingly less probable. Iin this example, x,, converges in probability
to zero. The crux of this form of convergence is that all the mass of the probability distribution
becomes concentrated al points close lo ¢. If x, converges in probability to ¢, then we write

plimx, =c. (D-1)

We will make frequent use of a special case of convergence in probability, convergence in mean
square or convergence in quadratic mean.

THEOREM D.1 Convergence in Quadratic Mean
If x, has mean p., and variance o} such that the ordinary limits of p, and o, are ¢ and 0,
respectively, ther x, converges in mean square to.c, and

plim x, = .

A comprehensive summary of many resuits in farge-sample theory appears in White (2001). The resnits
discussed here will apply to samples of independent pbservations. Time series cases in which observations
are correlated are analyzed in Chapters J# through ;&93 i

2.

20
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A proof of Theorem .1 can be based on another useful theorem.

THEOREM D.2 Chebychey's Inequality
If x, is @ random variable and ¢ and & are constamis, then Prob([x,, —cl>e)=

{(An S C) ]/8"

To establish the Chebychev inequality, we use ancther result [see Goldberger (1991, p. 31},

THEOREM ID).3 Markov's Inequality

If yo is a nonnegative random variable and § is a positive consiani, then
Probly, > 8] < E[y,]/é.

Prooft E[v,] =Probly, <8]E[¥, | ¥, < 8]+ Prob{y, > 51Ely, | v, = 8} Because y, is non-
negative, both fterms must be nounegative, so Ely,]>Probly,> 8]E[y, | ¥ = 5]
Because E1y,|.ya = 8] must be greater than or equal to 8§, E[y,, 1> Probiy, = 818, which
iz the resuit,

Now, to prove Theorem D.1,, fet ¥, be {x, - c:}2 and 8 be € in Theorem D.3. Then, (X ~ >4
implies that |x, — cf > e. F'ma!ly we will use a special case of the Chebychev inequality. where
¢ = iy, 50 that we have

Prob(lx, — ual > €) < o7 /€%, (D-2)

Taking the limits of u, and o? in (D-2), we see that if

- lim Efx,] =¢, and lim Var{x,] =0, (D-3)
- - RS - _H—o0
then
plimx, =c.

We have shown that convergence in mean square implies convergence in probability. Mean-
square convergence implies that the distribution of x, collapses to a spike al plim_x,. as shown in -
Figure D.1. '

Exarmnmple D.1  Mean Square Convergence of the Sample Minimurn
in Exponantial Sampling
As noted in Example C.4, in sampling of n observations from an exponential distribution, for
the sample minimum x;1;,

. L1
JLl:I;E[Xm] =J__|I;l1 e 2= )

oc NG
and
1
_ lim Var[xm] = I|m o = =0.
Therefore,

plim x4y = 0.

Note, in particular, that the variance is divided by n?. Thus, this estimator converges very
rapidly to 0.



" Greene-50558

book

June 25, 2007 12:52

APPENDIX D 4 Large-Sampie Distribution Theory 1041

: n = 1000

Density

N

Voo ,
! ' 5
Estimator o

FIGURE D.1  Quadratic Gonvergence toa Constant, 6, = .~

Convergence in probability does not imply convergence in mean square. Consider the simple
example given earlier in which x, equals either zero or 1 with probabilities 1 - (1/x) and (1/#).
The exact expected value of x, is 1 for all #, which is not the probability limit. Indeed, if we let
Prob(x, = n%) = (1/#) instead, the mean of the distribution explodes, but the probability limit is
still zero. Again, the point x, = n? becomes ever more extreme but. at the same time, becomes
ever less likely. .

The conditions for convergence in mean square are usually casier to verify than those for
the more general form. Fortunately, we shall rarely encounter circumstances in which it will be
necessary to show convergence in probability in which we cannot rely upon convergence in mean
squave. Our most frequent use of this concept will be in formulating consistent estimators.

DEFINITION D.2 Consistent Estimator
An estimator 53, of a parameter 0 is a consistent estimator of 6 if and only if

plimé, = 8. (D-4)

THEOREM D.4 Consistency of the Sample Mean
The mean of a random sample from any population with finite mean p and finite variance

o is a consistent estimator of ji.
Proof: E{%,] = u and Var[X,] = o®/n. Therefore, X, converges in mean square to y, or

plim T, =y
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Theorem D14 is broader than it mighf appear at first.

COROLLARY TO .THEOREM I>.4 Consistency of 2 Mcan

of Functions
In random sampling, for any function g(x), if E[g(x)} and Var [g(x)] are ﬁmre consiants,
then

L 1S
plim = 3 gy = Elgtx)]. (D-5)

==l

Proaf: Define v; = g(x;) and use Theorem D.4.

- Example D.2 Estimating a Function of the Mean

In samplm% from a normal distribution with mean u and variance 1, £[e*] = e**'2 and
Varle] = e?#+2 _ %+ (See Section B.4.4 on the lognormal distribution. ) Hence,

N
17
lim ~ % et =gt
p _012_;- .

D.2.2 OTHER FORMS OF CONVERGENCE AND LAWS
OF LARGE NUMBERS

Theorem D.4 and the corollary just given are particutarly narrow forms of a szt of results known
as laws of large numbers that ave fundamental to the theory of parameter estimation. Laws of
large numbers come in two forms depending on the type of convergence considered. The simpler
of these are “weak laws of large numbers™ which rely on convergence in probability as we defined
it above. “Strong laws™ rely on a broader type of convergence called ahnost sure convergence.
Overall, the law of large numbers is a statement about the behavior ‘of an “average of a large
number of random variables.

THEOREM ID.5 Khinchine’s Weak Law of Large Numbers
Ifx; i =1, ..., nisarandom (i.i.d.) sample from a distribution with finite mean E{x;] = i,
then

plim Xp = p.

Proaofs of this and the theorem below are fairly intricate. Rao (1973} provides one.

Natice that this is already broader than Theorem D4, as it does not require that the variance of
the distribution be finite. On the other hand. it is not broad enough, becaase most of the situations
we encounter where we will need a result such as this will not involve i.i.d. random sampling. A
broader result is
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THEOREM D.6 Chcebychev’s Weak Law of Large Numbers
Ifxi=1... n is a sample of observations such that E|x,} = pu, < o0 and Var[x,] =
of < oo such that T, /n = ('1/313)250!-2 — Oas n — oo, then plim{¥, — #,) = 0.

There is a subtle distinction between these two theorems that you should notice. The Chebychev
theorem does not state that ¥, converges to ji,. or even that it converges to a conslant at afl.
That would require a precise stalement about the behavior of fi,. The theorem states that as
n increases without bound, these two quantities will be arbitrarily close to each GIHEI‘:II,I—(hﬂt
is, the difference between them converpes 1o a constant. zero, This is an important notion
that enters the derivation when we consider statistics that converge to random variables, in-
stead of to constants. What we do have with these two theorems ‘is-extremely broad condi-
tions under which a sample mean will converge in probability to its population counterpart.
The more important difference between the Khinching and Chebychev theorems is that the
second allows for heterogeneity in the distributions of the random variables that enter
the mean.

In analyzing time,series data, the sequence of outcomes is itself viewed as a random event.
Consider, then, the sample mean, ¥,,. The preceding results concern the behavior of this statistic
as n > oa for a particular reatization of the sequence ¥, ..., X, But, if the sequence, itself, is
viewed as a random event. then limit to which X, converges may be also. The stronger notion of
almost sure convergence relates to this possibility.

DEFINITION I).3 Almost Sure Convergence

The random variable x, converges almost surely to the constant ¢ if and only if

Prob( lim x, =__c) =1.
_n‘—i'OO

This is denoted xngtc. It states that the probability of observing a sequence that does not
converge 1o ¢ ultimately vanishes. Intuitively, it states that once the sequence X, becomes close
to c. it stays close lo c.

Almost sure convergence is used in a stronger form of the law of large numbers:

THEOREM 1).7 Kolmogorov's Strong Law of Large Numbers

Fxi,i = 1\, ....nis a sequence of independently distributed random variables such that
E[x] = p; < oo and Varlx} = of < oo such that 3 2, 6} [° < 00 as n — oo then
Xy — By 259,
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L THEOREM ID.8 Markov's Strong Law of Large Numbers
' If{z:} is a sequence of independent random variables with E| 2] = p; < oc and if for some
8> 0,77 Ellg — w| ™)/ < oo, then Zs — i, converges almost surely to 0, which

ot we denote T, — i, == 00

The variance condition is satisfied if every variance in the sequence is finite, but this is not strictly
required; it only requires that the variances in the sequence increase at a slow enough rate that
the sequence of variances as defined is bounded. The theorem allows for heterogeneity in the
means and variances. If we return {o the conditions of the Khinchine theorem, i.1.d. sampling, we
have a corollary:

COROLLARY TO THEOREM I).8 (Kolmogorovy)
Ifx; i =1,..., nisasequence ofindependent and identically distributed random variables
such that Elx;] = p < co and El|xi|] < og then Xn — w50,

Note that the corotlary requires identically distributed observations while the theorem only
requires independence. Finally, another form of convergence encountered in the analysis of time—=
series data is convergence in rth mean: A

DEFINITTION D.4 Convergence in rth Mean
Hfxnisa sequence of random variables such that Efjx, I'] < 00 and limy,qq E[|x,—c{’] = 0
then Xq converges in rih mean to ¢. This is denoted P

Surely the most common application is the one we met earlier, convergence in means square,
which is convergence in the second mean. Some useful results follow from this definition:

THEOREM D.9 Coenvergence in Lower Powers

If x, converges in rih mean to ¢, then x, converges in Sth mean 1o ¢ for any s < r. The
proof uses Jensens Inequality, Theorem D.13. Write E[Ir,, —clfl = E[(xy — cl’)""} <
{ El(jxy —c|* }]} and the inner term converges to zero so the full function must also.

“2The use of the expected absolutc deviation differs a bit from the expected squared deviation that we have
used heretofore to characterize the spread of a distribution. Consider two examples. If z 0, #2], then
Elizl] = Probfz < 0]E[~z|3 < 0] + Problz > 0]E[z}z = 0] = 0.7979. (See Thcoremg:[’ } S0, Tinite
‘expected absohte valuc is the same as finite second moment for the normal distribution. But if z takes values
[0, n) with probabitities {1 — 1/n, 1/n], then the variance of zis (n — 1), but Ef|z — pz} is 2 — 2/#. For
this case, finite expected absolute valie occurs without finite expected second moment. These are different
characterizations of the spread of the distribution.

18.2
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THEOREM .10 Gencralized Chebychey's Inequality
If x, is a random variable and c is a constant such that with El|x, — c|'] < coand e isa

positive constant, then Pmb(_li,, - ¢| > &) < Ef|x, —c|"]/e

We have considered two cases of this result already, when 7 == 1 which is the Markov im,quaiity‘
Theorem D3, and when r = 2. which is the Chebychev inequality we looked at first in Theo-

rem .2,

THEOREM D.11 Convergence in rth mean and Convergence

in Probability
If x, &5 ¢, for some r> 10, then x, 2Ly ¢ The proof relies on Theorem D.10. By
assumption, lim,_, o E [Ix, —c|'} = 0 so for some n sufficiently large, E[|x, —cff] < ox.
By Theorem D.10, then, Prob(|x, —c| > ¢} < Ellx, — ¢|")/¢" for any & > O. The denomina-
tor of the fraction is a fixed constant and the numerator converges to zero by our initial
assumption, so tim,_, . Prob(lx, — ¢| > £) =0, which completes the proof

One implication of Theorem D.11 is that although convergence in mean square is a convenient
way o prove convergence in probability, it is actually stronger than necessary, as we gel the same
result for any positive 7.

Finally, we note that we have now shown that both almost sure convergence and convergence
in rth mean are stronger than convergence in probability; each tmplies the latier. But Lhey,
themselves, are differ’gl}_tr notions of converaence, and neither implies the other.

DEFINITIONT.LS Convergence of a Random Vector or Matrix

Let Xn denote a random vector and X,, ¢ random marrix, and c and c denote a vector

and maltrix of constants with the same dimensions as, Xy and X,. respecﬂve!y All of the

preceding notions of convergence can be extended 1o (x,,. €) and {}K,,. Q) by applying the
results to the respective corresponding elements, '

\,

D.2.3 CONVERGENCE OF FUNCTIONS

A particularly convenient result is the following.

THEOREM ID.12 Slutsky Theorem

For a continuous function g(x,) that is not a function of n,

plim gix,) = g(plim x,). (D-6)

The generalization of Theorem .12 (o a function of several random variables is direct, as
illustrated in the next example.



1’ Greene-50558

book Junc 25, 2007 12:52

1046 PART VIl 4+ Appendices -

Example D.3 Probability Limit of a Function of X and s°
In random sampllng from a population with mean u and variance ¢°, the exact expected
value of X2 /52 will be difficult, if not impossible, to derwe But, by the Slutsky theorem,

72

plim 2 = w

o2’

An application that highlights the difference between expectation and prolmblhty is suggested
by the fol]owum useful relationships.

THEOREM I).13 Incqualifies for Expectations
Jensen’s Ineguality. If gix,) is @ concave function of x,, then g(E {.r,,}) > Elg(x,))
Cauchy-Schwarz Ineqaality. For wo random variables,

Efleyll = {ER} 7 (£}

Although the expecled value of a function of x, may not equal the function of the expected
value—it exceeds it if the function is wncavu—ihe, probability limit of the function is equal to
the function of the probability limit.

The Slutsky theorem highlights 2 comparison between the expectation of a random variable
and its probability limit. Theorem D.12 extends directly in {iwo important directions. First, though
stated in terms of convergence in probability, the same set of results applies to convergence in
rth mean and almost sure convergence. Second, so fong as the functions are continuous, the
Slutsky theorem can be extended to vector or matrix valued functions of random scalars, veclors,
or matrices. The following describe some specific applications. Some implications of the Slutsky
theorem are now summarized.

THEOREM ID.14 Rules for Probability Limity
If x, and y, are random variables with plimx, = c end plim y, = d, then

plim(x; + y.) =c+ 4. (sum l_'_ul_c) -7
plim x,y, = ed, (product rule) (D-8)
plimx,/y, =c/d i(d#0. (ratiorule) (D-9)

If W, is a matrix whose elements are random variables and if plim W,, = @. then
plim W, = 2. (matrix inverse rule) (D-10)
If Xy and X, are random wmatrices with plim X, = A and plim ¥, = B, then

plim Xa¥a = AB.  (mattix product rule) . (D11
¥ i i L P e

D.2.4 CONVERGENCE TO A RANDOM VARIABLE

The preceding has dealt with conditions under which a random variable converaes to a constant,
for example. the way that a sample mean converges to the population mean. To develop a theory
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for the behavior of estimators, as a prefude to (he discussion of limiting distributions, we now
consider cases in which a random variable converges not 1o a constant, but to another random
variable. These results will actually subsume those in the preceding section, as a constant may
always be viewed as a degeneraté random variable, that is one with zero variance.

DEFINITION ID.6 Convergence in Probability to a Random
Variable

The random variable x, converges in probability to the random variable x if

iMoo Prob(|x, — x| = &) = O for any positive ¢,

As before, we write plim x, = x (o denote this case. The interpretation (at least the intuition) of

this type of convergence is different when x is a random variable. The notion of closeness defined
here relates not to the concentration of the mass of the probability mechanism generaling x, at a
point ¢, but to the closeness of that probabilily mechanism to that of x. One can think of this as
a convergence ol the CDF of x, to that of x.

DEFINITION I).7  Almost Sure Convergence to 2 Random Variable
The random variable x, converges almost surely to the random variable x if and onfy if
My, Probilx; — x] > e foralli = m =0 foralie >0,

DEFINITION I).8 Convergence in rth Mean to a Random Variable
The random variable x, converges in rth mean to the random variable x if and only if
limy_, o Eflx, — x{"] = 0. This is labeled x, = Xx. As before, the case r = 2 is labeled
convergence in mean square.

Once again, we have to revise our understanding of convergence when convergence is to a random
variable.

THEOREM D15 Convergence of Moments
Suppose 3, 25 x and E[|x{7] is finite. Then, lim,_, 5, E[ix,I"]1= Elix|"].

Theorem Du15 raises an inleresting question. Suppose we tet £ grow. and suppose that ¥, ——rx :
and. iz addition. all moments are finite. If this holds [or any 7, do we conclude that these random
variables have the same distribution? The answer to this fongstanding problem in probability
theor y——lhe problem of the sequence of maments——ls no. The sequence of moments dogs nat
uniquely determine the distribution. Allhough convergence in rth mean and almost surely still
bothimply convergencein probability, it remains (rue, even with convergence toarandom variable
instead of a constant, that these are different forms of convergence.
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D.2.5 CONVERGENCE IN DISTRIBUTION:
LIMITING DISTRIBUTIONS

A second form ol convergence is conyergence in distributien. Let x, be a sequence of random
variables indexed by the sample size, and assume that x, has cdf F(x,).

DEFINITION D.9 Convergence in Distribution
¥, converges in distribution to @ random varicble x with cdf F(x)} if
Ty, o0 Fulxy) = F (x)| = 0 at ali continuity paints of F(x).

This stalement is about the probability distribution associated with x,: it does ot imply that
X, converges at all. To take a trivial example, suppose that the exacl distribution of the random
variable x,, is

1 i 1 1
Probix, =) = = 4+ ———, Prob{x, = 2) = -~ — .
{Xn ) 2+_ﬂ+1 (Xn 3 2w+l
As » increases without bound, the two probabilities converge Lo %, but x, does not converee toa
constant.

DEFINITION 132.10 Limiting Distribution
If x, converges in distribution to x, where F,(x,) is the cdf of x,. then F(x) is the limiting
distribution of x,. This is written

- Xy —* X,

The limiting distribution is often given in terms of the pdf, or simply the parametric family. For
example, “the limiting distribution of x,, is standard normal.”

Convergence in distribution can be extended to random vectors and matrices, although not
in the element by element manner that we extended the earlier convergence forms. The reason is
that convergence in distribution is a property of the CDF of the random variable. not the variable
itself. Thus, we can obtain a convergence result analogous to that in Definition D.9 for vectors or
mau;]ces by applying definition to the joint CIDF for the elements of the vector or matrices. Thus.
Xn —> X i liMy—s 00 }Fu{Xn) — F(X)| = @ and likewise for a random matrix.

Example D.4 Limiting Distribution of tn—q
Consider a sample of size n from a standard normal distribution. A familiar inference problem
is the test of the hypothesis that the population mean is zero. The test statistic usually used
is the ¢ statistic:
Xn

et = I
where

Zf 1(xf —Xa)?
e R
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The exact distribution of the random variable t,  is ¢ with n — 1 degrees of freedom. The
density is different for every n: -

 T(n/2)
Fltn-1} = Tin - 1 /3

u 2 =nf2
fin— )2 [1 N «-—~1~] . (D-12)

1 -

asis the cdf, Fo(f) = | _‘ Jfr1(x)dx. This distribution has mean zero and variance (n.— 1)/
(n — 3}). As n grows to infinity, t,—y converges to the standard normal, which is written

t1 2> NI, 11.

DEFINITION ID.11 Limiting Mean and Variance
The limiting mean and vyriance of @ random variable are the mean and variance of the
fimiting distribution, assuming that the limiting distribution and ils moments exist.

For the random variable with #[#] distribution. the exacl mean and variance are zero and

#/(n —2), whereas the limiting mean and variance are zero and one. The example might suggest
that the limiting mean and variance are zero and one; that is, that the moments of the timiting
distribution are the ordinary limits of the moments of the finite sample distributions, This situation
is almost always true. but it need not be. It is possible to construct examples in which the exact
moments do not even exist, even though the moments of the limiting distribution are well defined®”
Even in such cases, we can usually derive the mean and variance of the limiting distribution,

Limiting distributions, like probability limits, can greatly simplify the analysis of a problem.

Some results that combine the two concepts are as follows?”

THEOREM I).16 Rules for Limiting Distributions
L ifx, —d-a-_x and plim y, = ¢, then

xn""n —i')' _C_xy (D'ls)

which means that ihe limiting distribution of x,, v, is the distribution of cx. Also,
Ko+ 2 X+, (D-14)
Xn/¥n s xfe, HFe#0 (D-15)

d , , .
2. Ifxy — x and g(x,} is a continuous function, then

80t <5 gx). (D-16)

This result is analogous to the Slutsky theorem for probability limits. For

an example, consider the t, random variable discussed earlicr. The exact distribution
of 12 is F{1, n]. But as n — oo, I, converges to a standard normai variable.
According to this result, the limiting distribution of t* will be that of the square of @
standard normal, which is chi-squared with one

*See, for example, Maddala (19774, p. 150).
“#For proofs and further discussion, see, for example, Greenberg and Webster (1983).
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THEOREM D.16 (Continued)

degree of freedom. We conclude, therefore, that
" Fl1,n} s chi-squared]1]. (D-17)

We encountered this result in our earlier discussion of limiting forms of the standard
normal family of distributions. i
3. Ify» hos a Himiting distribution and plim (¥, — ¥a) = 0. then xy, has the same Hmiting
- distribution as_y,.

The third result in Theorem D, 16 combines convergence in distribution and in probability. The
second result can be extended to vectors and matrices.

Example D.5 The F Distribution

Suppose that ti, and t;,, are a X x 1 and an M x 1 random vector of variables whose
components are independent with each distributed as t with n degrees of freedom. Then, as
we saw in the preceding, for any component in either random vector, the limiting distribution

is standard normel, so for the entire vector, }., EN Zj, a vtgctor of mdependent standard
normally distributed variables. The results so far show that -?ﬂ "” £ 9 FIK, M) rf e

Finally, a specific case of result 2 in Theorem .16 produces a tool !\nmm as the C ramer—WoId
device.

THEOREM D.17 Cramer-Wold Device

d d : ]
If X —> X, then ¢'x0 = ¢x for afl conformable vectors ¢ with real valued elements.

By allowing ¢ to be a vector with just a one in a particular position and zervos elsewhere, we see
that convergence in distribution of a random vector Xn 10X does imply that each component does
likewise.

D.2.6 CENTRAL LIMIT THEOREMS

We are ullimately interested in finding a way to describe the statistical properties of estimators
when their exact distributions are unknown. The concepts of consistency and convergence in
probability are important. But the theory of limiting distributions given earlier is not yetadequate.
We rarely deal with estimalors that are not consistent for something. though perhap.s nol always
the parameter we are trying to estimate. As such,

ifplim8, =6, thend, 8,

That is. the limiting distribution of d,isa spike. This is not very informative, nor is it at all what
we have in mind when we speak of the statistical propertics of an estimator. (To endow our finite
sample estimator 8, with the zero sampling variance of the spike at # would be optimisticin the
extreme.) ‘
As an intermediate step, then, to a more reasonable description of the statistical properties
of an estimator. we use a stabilizing transformation of the random variable to ane that does have
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a well-defined limiting distribution. To jump to the most common application, whereas
plimé, =@,

we di‘teﬁ find that
=il -6 -5 fo,

where _f(2) is a well-defined distribution with a mean and a positive variance. An estimalor
which has this property is said to be roolr consistent. The single most important theorem in
econometrics provides an application of this proposition. A basic {form of the theorem is as
follows.

THEOREM D.18 Lindeberg-Levy Central Limit Theorem
{Univariate)

If x.....x%, are a random sample from a probability distribution with finite

mean p and finite variance o* and X, = (1/8) Y, x,, then

VAEy - ) 5> N[0, 6%,
A proof appears in Rao (1973, p. 127).

The yesult is quite remarkable as it holds regardless of the form of the parent distribution. For
a striking example, retuen to Figure C.Z. The distribution from which the data were drawn in that
* figure does not even remotely resemble a normal distribution. In samples of only four observations
the force of the central limit theorem is clearly visible in the sampling distribution of the means.
The sampling experiment Example D.6 shows the effect in a systematic demonstration of the
result. ‘

The Lmdebug—Levv theorem is one of several forms of this extremely powerful result. For
our pmposea. an important extension allows us to relax the assumption of equal variances. The
Lrndeberg*FeHer form of the central limit theorem is the centerpiece of most of our analysis in
econometrics.

THEOREM D.19 Lindcherg-Feller Central Limit Theorem

(with Uneqoal Variances)
Suppose that {x,),i = 1...., n, is a sequence of independent random variables with finite
means p, and finite positive variances Uf. Let

1 . 5 1
= lmtmt o tu) and F=~{of+0f +.0.57).

If no single term dominates this average variance, which we could state as [iMy.c0 Max{o;) /
(noe)=0, and if Ihe average variance converges to @ finite constant, & 52 = il O ar
then

\[—(-xu Hy) ‘_) NI, -0.—2]
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o Density of Exponential (Mean = 1.5)
¢ 1.0 -

081

Density

6 8 10/
FIGURE D.2 . The Exponential Distribution; =

In practical terms, the theorem states that sums of random variables, regardless of their form,
will tend to be normally distributed. The result is yet more remarkable in that it does not require
the variables in the sum to come from the same underlying distribution. It requires, essentially, only
that the mean be a mixnure of many random variables, none of which is large compared with their
sum. Because nearly all the estimators we construct in econometrics fall under the purview of the
central limit theorem. it is obviously an important result,

Exarnple D.6 The Lindeberg-Levy Central Limit Theorem
We'll use a sampling experiment to demonstrate the operation of the central limit theorem.
Consider rancom sampling from the exponential distribution with mean 1 5—thisis the setting
used in Example C.4. The density is shown in Figure D.2. "

We've drawn 1,000 samples of 3, 6, and 20 observations from this population and com-
puted the sample means for each. For each mean, we then computed Zip = X — 1),
where j=1,...,1,000 and n is 3, 6 or 20. The three rows of figures in Figure D.3 show
histograms of the observed samples of sample means and kernel density estimates of the
undetrlying distributions for the three samples of transformed means.

Proof of the Lindeberg-Feller theorem requires some quite intricate mathematics [see, e.g..
Loeve (1977)] that are well beyond the scope of our work here. We do note an important consid-
eration in this thearem. The result rests on a condition known as the Lindeberg condition. The
sample mean computed in the theorem is a mixture of random variables from possibly different
distributions, The Lindeberg condition, in words. states that the contribution of the tail areas
of these undetlying distributions 1o the variance of the sum must be negligible in the limit. The
condition formalizes the assumption in Theorem D.19 that the average variance be positive and
not be dominated by any single term. [For an intuitively crafted mathematical discussion of this
condition. see White (2001, pp. 117-118).] The condition is essentially impossible to verify in
practice, so it is useful to have a simpler version of the theorem that encompasses it.
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THEOREM D.20 Liapounov Central Limit Tllcorem
Suppose that {x;}. is a sequence of independent random variables with finite means y; and
finite positive variances of such that E[\x; — [**¥]is ﬁmre forsome§ > 0. IfT T is positive

and finite for afl n sufficiently large, thén.

\/E(J_fu . ﬁn)igﬂ _i} N[O, I]

This version of the central limit theorem u.qmres onby that moments slightly larger than two be
finite.

Note the distinction between the Jaws of large numbers in Theorems D.5 and D6 and the
central imit theorems. Neither asser : that sample means lend to normality. Sample means (ie.,
the distributions of them) converge 1o spikes at the true mean. It is the transformation of the
mean, /7i(E, — i) /o, that converges to standard normality. To see this at work, if you have access
to the necessary software, you might try reproducing Example 1.6 using the raw means, Xy, What
do you expect to observe?

For later purposes, we will require multivariate versions of these theorems. Proofs of the
following may be found, for example, in Greenberg and Webster (1983) or Rao (1973) and
relerences cited there.

THEOREM ID.IBA Multivariate Llndeerg_-LeV) Central

Limit Theorem
If X1. ... Xy are a random sample from a multivariate distribution with finite mean vector
fand finite positive definite covariance matrix Q, then

VA(Es — )= N9 Q1.

where

I
To get from D18 to D.I8A {and D.19 to D.19A} we need to add a step. Theorem D.18
applies to the individual elements of the vector. A vector has a multivariate normal distri-
bution if the individual elements are normaily distributed and if every finear combination
is normally distributed. We can use Theorem D.18 (D.19) for the individual terms and
Theorem D.17 to establish that linear combinations behave likewise, This establiskes the
extensions.

The extension of the Luuleberg-—Fellen theorem to unegual covariance matrices requires
some intricate mathematics. The foliowmg is an informal statement of the relevant conditions.
Further discussion and references appear in Fomby, Hill, and Johnson {1984) and Greenberg and
Wehster {1983).
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THEOREM D.19A Multivariate Li ntlcherg;—__.Fel!er Central

_Limit Theorem
Suppose that Xi,....Xs are a sample of random veciors such that Elx;] = ;.
var[x,} = Q. and all mixed third monents of the multivariate distribution are finite,
Lot .
] "
"y = '"n' Z #f"
= F=l )
1 n
=7 )
Ll i A
We assume that
lim ,'Q_,, = {3,
nop e W

where Q is a finite, positive definite matrix, and that for every i,

e (Y0 e

We gllow the means of the random vectors to differ, although in the cases that we will
analyze, they will generally be identical. The second assumption states that individual
components of the sum must be finite and diminish in significance. There is also an im-
plicit assumption that the sum of matrices is nonsingular. Because the limiting matrix is
nonsingular, the assumption must hold for large enough n, which is all that concemns us
here. With these in place, the result Is

VA — ) <5 MO, Q.

D.2.7 THE DELTA METHOD

At several points in Appendix C, we used a linear Taylor series approximation Lo analyze the
distribution and moments of a ranclom variable. We are now able to justify this usage. We complete
the development of Theorem D.12 {probability limit of a function of a random variable), Theorem
D.16 (2) (limiting distribution of a function of a random variable). and the central limil theorems,
with a useful result that is known as the delta method. For a single random variable (sample mean

or otherwise), we have the following thearem. . Y
g )
no + € Z v

_’Loj’e roé.ﬂi)é

THEOREM D.21 Limiting Normal Distribution of a Function
If /0(Z, — p) L, NI0. 62] and if g(zp) is a continuous fumction not involving n, then

Valg(z) — g(m)] 25 N[O g ()0

(D-18)

Gnd continvously &lerentiable
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Notice (hat the mean and variance of the limiting distribution are the mean and variance of
the linear Taylor series approximation:

; _.gf(zu) o 8({{) +3’(.ﬂ)(zn — ). \,\t\o\o\g/

THEOREM D.21A Limiting Normal Distribution of a Set

‘ of Fouctions
If 1, Is a K x 1 sequence of vector-valued random/variables such that S, — {1 A,
N9, 2] and if t(zn) is # se1 of ] continuous jurictions of #y pot involving n; then

Jalelzn) — )] 25 N[O, Cr)ECy],

where C(u) is the J x K matrix 8c(u)/3g’. The jth row of C(u) is the vector of partial
derivatives of the jth function with respect to p'. '

D.3 ASYMPTOTIC DISTRIBUTIONS ’5‘

The theory of limiting distributions is only a means to an end. We are interested in the behavior of
the estimators themselves. The lifmitiig distributions obtained through the central limit theorem
all involve unknown parameters, generally the ones we are trying to estimate. Mareover, our
samples are always finite. Thus, we depart from the limiting distributions to derive the asymptotic
distributions df the estimators.

DEFINITION D.12 Asymptotic Distribution
An asympiotic distribution is a distribution that is used to approximaie the true finite sample
distribution of a random variable®

By far the most common means of formulating an asymptotic distribution (at least by econo-
metricians) is to construct it from the known limiting distribution of a function of the random
variable. If

VAlE, — w/a] < No, 1,

“We depart somewhat from some other treatments [e.g., White (2001). Hayashi (2000, p. 90)] at this point,
because they make no distinction between an asymptotic distribution and the limiting distribution. atthough
the treatments are largely along the lines discussed here. In the interest of maintaining comsistency of the
discussion, we prefer to retain the sharp distinction and derive the asymptotic distribution of an estimator, t..,
by first obtaining the limizing distribution of 7t — 8). By our construction, the fmiting distribution of t is
degencrate, whereas the asymptotic distribution of /(1 — #) is not useful. '
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FIGURE D.4 ~ True Versus Asymptotic Distribution.

then approximately, or asymptotically, ¥, ~ Ny, ¢*/#n]. which we write as
X4 Nip,o?/nl.

The statement “Ty is asymptotically normally distributed with mean p and variance o”/n" says
only that this normal distribution provides an approximation to the true distsibution, not that the
true distribution is exactly normal.
Exampie D.7 Asymptotic Distribution of the Mean of an
Exponential Sampile
In sampling from an exponential distribution with parameter 8, the exact distribution of X,
is that of 9/(2n) times a chi-squared variable with 2n degrees of freedom. The asymplotic
distribution is N[g, 62/n]. The exact and asymptotic distributions are shown in Figure D.4 for
the case of 6 = 1and n=16.

Extending the definition, suppose that 9,, is an estimator of the parameter vector 8. The
asymptotic distribution of the vector 8,, is obtained from the limiting distribution:

rihy ~ #) <> N9, V] (D-26)
implies that

§,~N [9, %y] . (D-21)

This notation is read *8,, is asymptatically normally distributed, with mean vector # and covariance
matrix {1/n)V.” The covariance matrix of the asymptotic distribution is the asympt ofic covariance
matrix and is denoted

Asy. Varlf,] = :;—V



| Greenc-50558

book June 25, 2007 12:52

1068 PART Vi 4+ Appendices

Note. once again. the logic used to reach the result; {1220} holds exactly.as # —» oo, We assume
that it holds approximately for finite #, which leads to {D-21).

DEFINITION ID.13 Asymptotic Normality and Asymptetic
Efficiency

An estimator 9,_, isasymptotically normal if (D-20} holds. The estimator s asymploticallyef-

ficient if the covariarice matrix of any other consistent, asymptotically normally distributed

estimator exceeds (1/m)Y by a nonnegative definite matrix.

For most estimation problems, these are the criteria used to choose an estimator.

Exampie D.8 Asymptotic Inefficiency of the Mediarn in
Normal Sampling
In sampling from a normal distribution with mean 1 and variance o2, both the mean X, and
the median M, ofthe sample are consistent estimators of w. The limiting distributions of both
estimators are spikes at u, s0 they can only be compared on the basis of their asymptotic @

properties. The necessary results are

%o X Nu.o?/n], and Mo N, (=/2)02/n]. {D-22) \ f_gT_,‘_' e '"..E'-” B

Therefore, the mean is more efficient by a factor of 7 /2. (But, see Example 17 4 for a finite VT of "l b
sample result.) ) = S GAT
. by (A8 '.;'\l e L)Y

D.3.1 ASYMPTOTIC DISTRIBUTION OF A NONLINEAR FUNCTION

Theorems D.12 and D.14 for functions of a random variable have counterparts in asymptotic
distributions.~ ornd condi hUOC’S’j

differentiable.

)
L . p 9
THEOREM D.22 Asyinptotic Distribution/6f a Nonlinear Function - wikh 3 ( )
If i, — 8 <Ly N[0, 02) and if g(8) is a continuousWunction kot involving n, then Noi e vel
g(@;-),?,N[g(a),(l/n){g’(e)}?—gZ]. If 8, is a vector of parameter estimators such that -}o 39,..0 and
8, ~ N[8. (1/mY] and if ¢(#) is a set of J continuous functions not involving n, then
&0~ N[e®). (1/mICEB)VCOY ], where C(8) = 8g(8)/58",

Exampie D.9 Asymptotic Distribution of a Function of Two Estimators
Suppose that b, and t, are estimators of parameters g and 8 such that

bl &t (BY (ome ope
tn =) ﬂ ! 0'95 Tpa -
Find the asymptotic distribution of ¢, = b, /{1 =1;}. Let y = 8/(1—6). By the Slutsky theorem,

¢, is consistent for . We shall require

By_ 1 _ By_ B _
BoA-8 " T -6z
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Let % be the 2 x 2 asymptotic covariance matrix given previously. Then the asymptotic
variance of ¢, is

Asy. Varfe,] =(ys 1} Z (J;:) = Y30 + Vioes + 2V Yeags,

which is the variance of the linear Taylor series approximation:

¥a >y + yp(Bn — B) + ve(tn — 6).

D.3.2 ASYMPTOTIC EXPECTATIONS

The asymptotic mean and variance of a random variable are usually the mean and variance of
the asymptotic distribution. Thus. for an estimator with the limiting distribution defined in

Vad, — ) <> N[0, V),

the asymptotic expectation is # and the asymptotic variance is (1/2)¥. This statement implies,
among other things, that the estimator is “asymptotically unbiased.”

At the risk of clouding the issue a bit, it is necessary to reconsider one aspect of the previous
description. We have deliberately avoided the use of consistency even though, in most instances,
that is what we have in mind. The description thus far might suggest that consistency and asymp-
totic unbiasedness are the same. Unfortumaltely (because it is a source of some confusion). they are
not. They are if the estimator is consistent artd asymptotically normally distributed, or CAN, They
may differ in other settings, however. There are at least three possible definitions of asymptotic
untvinsedness:

1. The mean of the limiting distribution of ./H(é,, ~8)is 0.
2. lim,.q Ejf,] =6. (D-23)
3 plimd, =08

In most cases encountered in practice, the estimalor in hand wilt have all three properties, so
there is no ambiguity. It is not difficult to construct cases in which the left-hand sides of all
three definitions are different, however® There is no general agreement among authors as to the
precise meaning of asymplotic unbiasedness, perhaps because the term is miskeading at the outset;
asymptotic refers to an approximation, whereas unbiasedness is an exact resul:*Nonetheless, the
majority view seems to be that (2) is the proper definition of asymptotic unbiasednessd 'Note,
though, that this definition relies on quantities that are generally unknown and that may not exist.

A similar problem arises in the definition of the asymptotic variance of an estimator. One
common definition 8%

Asy. Varlda] = 1 lim E[{V/a(8, ~ im E[8,])}’]. (D-24)

“$See, for example, Maddala (1977a, p. 150).
+T8ee, for exampie, Theil (1971, p. 377).
“*Many studies of estimators anatyze the “asymptotic bias™ of, say, &g as an estimator of a parameter 8. In

most cases, the quantity of interest is actually plim {6, — &]. See. for example, Greene (1980b} and another
example in Johnston (1984, p. 312).

“*Kmenta (1986, p.165).
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This result is a leading term approximation, and it will be sufficient for nearly all applications.
Note, however, that like definition 2 of asymptotic unbiasedness, it relies on unknown and possibly
nonexistent quantities.

Exampie D10 Asymptox;ié Moments of the Sample Variance
The exact expected value and variance of the variance estimator

[}

= > o -x)° - {0-25)

are
E[m] = w {D-26)

and
Varfy = 1472 A 2200 pa— 307 0-27)

n [3 oo

where pgq = E[(x — u4}*]. [See Goldberger (1964, pp. 87-99).] The leading term approximation
would be ’

Asy. Var[ms| = %(M — o).

D.4 SEQUENCES AND THE ORDER

OF A SEQUENCE

This section has been concerned with sequences of constants, denoted, for example, ¢,. and
random variables, such as x,, that are indexed by a sample size, n. An important characteristic of
a sequence is the rate at which it converges {or diverges). For example, as we have seen, the mean
of a random sample of r observations from a distribution with finite mean, ., and finite variance,
o2, is itsell a random variable with variance y2 = o%/n. We see Lhat as long as o2 is a finite
constant, y2 is a sequence of constants that converges to zero. Another example is the random
variable X . the minimum value in a random sample of # observations from the exponential
distribution with mean 1/6 defined in Example C.4, It turns out thal X, » has variance 1/(n6)".
Clearly, this variance also converges to zero, bul, intuition suggests. fasier than o%/#n does. On
the other hand, the sum of the integers from one to k, 5, = n{r + 1)/2. obviously diverges as
1n.— oo, albeit faster {one might expect) than the log of the likelihood function for the exponential
distribution in Example C.6, which is In L(9) = s(in@ — 8X,). As a final example, consider the
downward bias of the maximum likelithood estimator of the variance of the normal distribution,
¢n = (.— 1)/n, which is a constant that converges to one, (See Example C.5.}

We will define the rate at which a sequence converges or diverges in terms of the order of
the sequence.

DEFINITION D.14 Order #®
A sequence ¢, is of order i, denoted O(r®), if and only if plim(1/n)c, is a finite nonzero
constant,



