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DEFINITION D.15 Order less than #°
A sequence c,, is of order less than ', denoted o(1), if and only if plim(1/n°)c, equals
zero. e ° om

Thus, in our examples, y2 is O™}, Var{xa;q] is G(n2) and o(n™), § is 0P )8 equaks +2 in
this case). In L(8) is O@m){8 equals +1). and ¢, is (118 = 0). Important particular cases that we
will encounter repeatediy in our work are sequences for which §=1or ~1.

The notion of order of a sequence is often of interest in econometrics in the context of the
variance of an estimator. Thus, we see in Section D.3 that an important element of our strategy for
Torming an asymptotic distribution is that the variance of the limiting distribution of J/A(%, ~ ) /o
is O(1). In Example 1.10 the variance of m; is the sum of three terms that are O(n™"), om?).,
and Q(r~3). The sum is O(r"), because n Varfm,] converges to g — o, the numerator of the
first, or Jeadling term, whereas the second and third terms converge to zero. This term is also the

'dominant term of the sequence. Finally, consider the two divergent examples in the preceding list.
S, is simply a deterministic function of » that explodes. However. In 1(8) = nln# — 6,x, is the
sum of a constant that is O(#) and a random variable with variance equal to n/f. The random
variable “diverges™ in the sense that its variance grows without bound as » increases.

APPENDIX E
e B/

COMPUTATION AND
- OPTIMIZATION

E.1 INTRODUCTION

_ The computation of empirical estimates by econcmetricians involves using digital computers -
FENT and software written either by the researchers themselves or by other$ It is also a surprisingly
N3 balanced mix of art and science. It is important for software users to be aware of how results
are oblained, not only to understand routine computations, but also to be able to explain the
occasional strange and contradictory results that do arise. This appendix will describe some of the
basic elements of computing and a number of tools that are used by econometricians?Section E.2

“Mt is one of the interesting aspects of the development of econometric methodology that the adoption of
certain classes of techniques has proceeded in discrete jumps with the development of software. Noteworthy
examples include the appearance, both around 1970, of G. K, Joreskog’s LISREL [Joreskog and Sorbom
{1981)] program. which spawned a still-growing industry in finear structural modeting, and TSP [HalE(1982)].
which was among the first computer programs to accept symbolic representations of coonometric models and
which provided a significant advance in econometric practice with its LSQ procedure for systems of equations.
An extensive survey of the evolution of econometric software is given in Renfro (2007).

,2This discussion is not intenided to teach the reader how to write computer programs. For those who expect
to do so, there are whole libraries of useful sources. Three very useful works are Kennedy and Gentle (1980).
Abramovitz and Stegun (1971), and especially Press et af, (1986). The third of these provides a wealth of
expertly written progrars and a large amount of information about how to do computation efficiently and
accurately. A recent survey of many areas of computatior: is Jadd (1998).
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then describes some techniques for computing certain integrals and derivatives that are recurrent
in economeltric applications, Section E.3 presents methods of aptimization of functions. Some
examples are given in Section E4.

E.2 COMPUTATION IN EC(.;)NOMETF{ICS

This section will discuss some methods of computing integrals that appear frequently in econo-
metrics.

E.21  COMPUTING INTEGRALS

Qne advaniage of computers is their ability rapidly to compuie approximations to complex func-

tions such as logs and exponents. The basic functions, such as these, trigonornetric functions, and

so forth. are standard parts of the libraries of programs that accompany all scientific computing

[ installations.* But one of the very common applications thal often requires some high-tevel cre-

- ativity by econometricians is the evaluation of integrals that do not have simple closed forms and
that do not typically exist in “system libraries.” We will consider several of these in Lhis section.
We will not go into detail on the nuls and bolis of how to compute integrals with a computer;
rather, we will turn directly to the most common applications in econometrics,

E.2.2 THE STANDARD NOCRMAL CUMULATIVE
DISTRIBUTION FUNCTION

The standard normal cumulative distribution function (cdt) is ubiguitous in econometric models.
T Yet this most homely of applications must be computed by approximation. There are a number
FA Y of ways to do so# Recall that what we desire is

- d’Q”"/ o(rydt. where @) = ——\/;_—e"z’z.
: . - =

One way to proceed is to use a Taylar series:

M ;
1 @&(x .
d’(x) RS E i—!d—x(').ﬂ)(x-—xo)'-.
=0

The normal cdf has some advantages for this approach. First. the derivatives are simple and not
integrals. Second. the function is analytic; as M — oo, the approximation converges to the true
value. Third, the derivatives have a simple form; they are the Hermite polynomials and they can -
be computed by a simple recursion. The 0th term in the preceding expansion is &(x) evaluated
at the expanston point. The first detivative of the cdf is the pdf, so the terms from 2 onward are
the derivatives of ¢(x), once again evalvated al_xp. The derivatives of the standard normal pdf
obey the recursion '

¢ = —x¢'7 o x) — (i ~ 11 (),
where ¢ is digr(x)/dx’. The zero and one terms in the sequence are one and —x. The next term

is x* — 1, followed by 3x — x* and x* — &x? + 3, and so on. The approximation can be made

“FOf coutse. at some level, these must have been programmed as approximations by someone,
*Many system libraries provide a related function, the error finction, erf(x) = (2/./7) _[: e’ dt, If this is
available, then the normal cdf can be obtained from @ (x) == %-{- écrf(xfa./:?“). x>Oand e (x)=1-®(—x)x <0.
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FIGURE E.1  Approximation to Normal cdf, - .~

more accurate by adding terms. Consider using a fifth-order Taylor series approximation around
the point x =0, where ¢(0) =0.5 and $(0) =0.3989423. Evaluating the derivatives at zero and
assembling the terms produces the approximation

- @(x) > } +0.3989423{x — x°/6 + x° /40].

[Some of the terms (every other one, in fact) will conveniently drop out.] Figure E.1 shows the
actual vatues (F) and approximate values (FA) over the range —2 to 2. The figure shows two
important points. First, the approximation is remarkably good over most of the range. Second. as
is usually true for Taylor series approximations, the quality of the approximation deteriorates as
one gets far from the expansion point.

Unfortunately, it is the tail areas of the standard normal distribution that are usually of
interest, so the preceding is likely to be problematic. An alternative approach that is used much
more often is a polynomial approximation reported by Abramovitz and Stegun (1971, p. 932):

5
(=)= ¢ Y ait +e(x), wheret = 1/[1+aolll

=l

{The complement s taken if x is positive.) The error of approximation is less than 7.5 x 107®
for all x. (Note that the error exceeds the function value at |x[ > 5.7, so this is the operational
limit of this approximation.) .

E.23 THE GAMMA AND RELATED FUNCTIONS

The standard normal cdf s probably the most common application of numerical integration of a
function in econometrics. Another very common application is the class of gamma functions. For
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positive constant P, the gamima [unction is

_ F(P):/Q_]_I‘F—]_e"'_df.,
o

The gamma function obeys the recursion T'(P) = (P — [)I'(P — 1), so [or integer values of
P, ['{Py={P—1)!This result suggests that the gamma function can be viewed as a generalization
of the factorial function for noninteger values, Another convenient value is F(%) = /7. By
making a chanpe of variable, it can be shown that for positive constants a, ¢, and P,

f - o 1 P
rP—lewazf dt = f r_--(PH)e‘-a;’Lt dt = (_ﬁ)a—P{cr (_) . (E-1)
0 o - ¢ ¢

As a generalization of the factorial function, the gamma function will usually overflow for
the sorts of values of P that normally appear in applications. The log of the function should
normally be used instead. The function In I'(P) can be approximated remarkably accurately with
only a handful of terms and is very easy to program. A number of approximations appear in the
literature: they are genenlly modifications of Sterling’s appromnmtmn to the Factorial function
Pl = (27 P2 PPe=P 5o N i

InC{Py 7 (P - 05)n P~ P+05In2x)+ C+ e(P),

where C is the correction term [see, e.g., Abramovitz and Stegun {1971, p. 257), Press et al. (1986,
p- 157). or Rao (1973, p. 59)] and e( P} is the approximation error.?~
The derivatives of the gamma function are +

a'T(P) Pt
_t_iﬁ_ f (ll]x)r df

The first two derivatives of InT'(P) are denoted ¥(P) =T/T and ¥/(P) = ([T — I'%)/ T and
are knuwn'as}he_digammf.l and {rigamma functions® The beta function, denoted f(a, b),

! - T{a)l (b)
a1 b-l
ﬁ(a,b}-A 71— dt = T ),

is related.

E.2.4 APPROX[MATING INTEGRALS BY QUADRATURE

The digamma and trigamma functions. and the gamma function for noninteger values of P and
values that are not integers plus 1, do not exist in closed form and must be approximated. Most
other applications will also involve integrals for which no simple computing function exists. l'hx,
simplest approach to approximating
Uix)
F(x) = finde
L(x)

“SFor example, one widely used formula is C = 71712 ~ 773360 — 77371260 + .\,"’7/1680 qowherez =P

andg=0if P> 18, orz=P+Jandg=W[P(P+1)}{(P+2).- - (P+J— 1)), where J = 18 — INT(P), if
not. Note, in the approximation, we write I'(P) = (P!}/P + a correction.

$Tables of specific values for the gamma, digamma, and irigamma functions appear in Abramovitz and Stegun
(1971). Most contemporary cconometric programs have built-in functions for these common integrals, so the
tables are not generally needed.
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is likely Lo be a variant of Simpson’s rule, or the trapezoid rule. For example, one approximation
[see Press et al. (1986, p. 10B)] is

F(-“)”A[%ﬁf%_‘fz-l—%.ﬁ+'§_f4+---+% -2+ § -1+ § ]

where f; is the function evaluated at N equally spaced points in [ L, U] including the endpoints
and A = (L — U}/{N — 1}. There are a number of probléms with this method., most notably that
it is difficult {0 obtain satisfactory aceuracy with a moderate number of points. .

Gaussian goadrature is a popular method of computing integrals, The general approach is
to use an approximation of the form

f W(x)f(x)dx Ay E w; fiay).

=1

where W{x)is viewed as a “weighting” funciion for integrating f(x}, w; is the qmulratnu weight,
and a; is the quadrature abseissn. Different weights and abscissas have been derived for several
weighting functions. Two weighting functions common in econormelrics are

Wx)=x"e¢%, x &[0,00).

for which the computation is called Gg;lsgr—lLaguerm guadrature, and
Wix)y= e‘-?‘z. X € (—00, o0k

for which the compulatmn is called (,ams—Hermitc quadeature. The theory for deriving weighis
and abscissas is given in Press et al. (1986, pp. 1215125). Tables of weights and abscissas for many
values of M are given by Abramovitz and Str,gun {1971). Applications of the technique appear

in Section-+6:946-b-and-Chapter25:
Chaplers 74 and ‘7;_.5

E.2 OPTIMIZATION

Nonlinear optimization (e.g., maximizing log-likelihood fanctions) is an intriguing pr actical prob~
lem. Theory provides few hard and fast rules, and there are relatively few cases in which it is
obvious how to proceed. This section introduces some of the terminology and underlying theory
of nonlinear optimization:* We begin with a general discussion on how to search for a solution
to a nonlinear optimization problem and describe some specific commonly used methods. We
then consider some practical problems that arise in optimization. An example is given in the final
section.
Consider maximizing the quadratic function

Fif)=a-+b'6~ 30'Co,

where C is a positive definite matrix. The first-order condition for a maximum is

BF(#)
———— b —_— Cﬂ = 0. E-Z
Y b L (E-2)
This set of /inear equations has the unique solution
' §=C'b. {E-3)

! There are numerous cxcelient references that offer a more complete exposition. Among these are Quandt

(1983), Bazaraa and Shetty (1979), Fietcher (1980), and Judd (1998).
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g

This is a linear optimization problem. Note that it has a closed-form solution; for any a, b, and €,
the solution can be compulud cllret:tly8 In the more typlcal situation.

) -

is a set of nonlinear equations lhat cannot be solved explicitly for,§:* The techniques considered -

. in this'section provide systematic means of searching for a solution.

We now consider the gerieral problem of maximizing a function of several variables:
maximizes F(¢), {E-5)

where F(#) may be a log-likelihood or some otter function. Minimization of F(#) is handled by
maximizing — F(fl). Two spectal cases are

E@) =) f®). - E6)

i=1

~which is typical for maximum fikelihood problems, and the least squares problent,'?

Si®) =3 — fx. 0P (E-7)

We treated thie nonlinear least squares pr oblem in detail in Chapter 1. An obvious way to search
for the § (hat maximizes £(#) is by trial and error. If @ has only a single element and it is known
appmxlmatcly where the optimum will be found, then a grid search will be a feasible strategy. An
example is a common time-series problem in which a one-dimensional search for a correlation
coelfictent is made in the interval (——1 . The grld search can proceed in the obvious faqhmn——
thatis, ..., —0.1,0,0.1,0.2, ..., then fye—0.1 1o B +0.1 inincrements of 0.01, and so on_—umtl
the desm.d precision is 1ch|wed 1t @ contains more than one parameter, then a grid search
is likely to be extremely costly, par nculally if little is known about the parameter vector at the
outset. Nonetheless, relatively efficient methods have been devised. Quandt (1983) and Fletcher
(1980) contain further details.

There are also systematic, derivative-free methods of searching for a function optimum that
resemble in some respects the algorithms that we will examine in the next section. The downhill
simplex (and other slmplex) methods™ have been found (o be very fast and effective for some
prablems, A recent entry in the economefrics literature is the method of simulated annealing.?
These derivative-free methods. particularly the latter, are often very effective in problems with

many varizbles in the objective function, but they usually require far more function evaluations
than the methods based on derivatives that are considered below, Because the problems typically
analyzed in econometrics involve relatively few parameters but often quile complex functions
involving Iarge numbers of terms i a summation, on balance, the gradient methods are usually
going to be preferable:?”

“®Notice that the constant 4 s irrelevant fo the solution. Many maximum likelihood problems are presented

with the preface “neglecting an irrelevant constant,” For example, the log-likelihood for the normal lincar
regression model contains a term—{xn/2) In( 2rr)—that can be discarded. }
1

“#See, for example, the normal equations for the nonllueal feast squares estimators of Chapter

“10 east squares is, of course, a minimization problem, The negative of the criterion is used to maintain
consistency with the general formulation,

‘U There are more efficient methods of canrying out a one-dimensional search, for example, the golden section
method. See Press et al. (1986, Chap. 10).

“12See Nelder and Mead (1965) and Press et al. (1986).
1*Sec Goffe, Ferrier, and Rodgers (1994) and Press ot al. (1986, pp. 326-334).

4G offe, Ferrier, and Rodgers (1094) did find that the method of simulated annealing was guite adept at
finding the best among multiple solutions, This problem is common for derivative-based methods, because
they usually have no method of distinguishing between a local optimum and a global one.



wgreene
Sticky Note
11 should be 7


' Greene-50558

Tune 25,2007 1252

APPENDIX E 4+ Computation and Optimization 1067

E.31 'ALGORITHMS

A more effective means oI sotvmg most nonlinear maxlmuralmn problems is by an iterative
algmillmr

Beginning from initial value Hu, at emry to iteration ¢, .8, is not the optimal vatue for
#, compute direction vector A,, slep size ;. then

3¢+1 v 0 + A Ar - {E-S)

Figure E.2 illustrates the structure of an iteration for a hypothehcal function of two variables.
The direction vector A, is shown in the figure with #,. The dashed line is the set of points &, +
M Ay, Different values of Ar lead to different contours; for this #; and A.. the best value of & is
about 0.5.

" NMotice in Figure E.2 that for a given direction vector A, and currenl parameter vector #,.
a secondary optimization is required 1o find the best J,. Translating from Figure E.2, we obtain
the form of this problem as shown in Figure E.3. This subsidiary search is called a line search, as
we search along the line 8; 4+ A A; lor the optimat value of F{.}). The formal solulmn to the line
search problem wouid be the 1, that satisfies

BF (B + A A

=8, +MA YA =0, (E-9)
3}.;._,_ E T

FIGURE E.2 ' iteration.
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where g | is the vector of partial derivatives of F(.) evaluated at §, +2 A In seneral, this problem
will also be a nonlinear one. In most cases, addmg a formal search for A, will be too expenswe,
as well as unnecessary. Some approximate or ad hoc method will usually be chosen. It is worth
emphasizing that finding the 3, that maximizes F(#, + i, A;) at a given iteration does not generally
lead to the overall solution in'that iteration. This sitwation is clear in Figure E.3, where the optimal
value of ), leads to F(.) = 2.0. at which point we reenter the iteration.

E.3.2 COMPUTING DERIVATIVES

For certain functions, the programming of derivatives may be quite difficult. Numeric approx-
imations can be used, although it shonld be borne in mind that anatytic derivatives obtained
by formally differentiating the functions involved are to be preferred. First derivatives can be
approximated by using

IF@)  F(--O+e-)=F(.-6—g-.)
at, 2e )

The choice of & is & remaining problem. Exlensive discussion may be found in Quandt (1983).
There are three drawbacks to this means of computing derivatives compared with using
the analytic derivatives. A possible major consideration is that it may substantially increase the
amount of computation needed to obtain a function and its gradient. In particular, K+ 1 function
evaluations (1he criterion and K derivatives) are replaced with 2K 4 1 functions. The latter may
be more burdensome than the former, dt,pendmg on the complexity of the partial derivatives
compared with the function itself. The comparison will depend on the application. But in most
settings, careful programming that avoids superfluons or redundant calculation can make the
advantage of the analytic derivatives substantial. Second. the choice of £ can be problematic. If
it is chosen too large, then the approximation will be inaccurate. I it is chosen too small, then
there may be insufficient variation in the function to produce a good estimate of the derivative.
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A compromise that is likely to be effective is to compute g; separately for each parameter. as in
& = Max|a|6], ¥]

{see Goldfeld and Quandt (1971)]: The values « and y should be refatively small. such as 10~°
Third, although numeric derivatives compuated in this fashion are likely Lo be reasonably accurate,
in a sum of a large number of terms, say, several thousand, enough approximation error can accu-
mulate to cause the numerical derivatives to dilfer sipnificantly from their analylic counterparts,
Second derivatives can also be compuled numerically. In addition to the preceding problems,
however, it is generally not possible to ensure negative definiteness of a Hessian computed in
this manner. Unless the choice of ¢ is made extremely carefully, an indefinite matrix is a possi-
bility. In general, the use of numeric derivatives should be avoided if the analytic derivatives are
available.

E.3.2 GRADIENT METHODS

The most commonly used algorithms are gradient methods, in which

A =W.g, (E-10)
where W, is a positive definile matrix and g, is the gradient of F(f,):
BF(8,)
= g0, = WL' (11}

These methods are motivated partly by the tollowing, Consider a linear Taylor series approxima-
tion to Fif, + ,.A) around A, = O

F(f+2A) ~ F8,) 4 2200, A, (E~12)
Let F£(f: + i A:) equal Fry1. Then,
- Fipy — F 2 hg A,
If Q, = W,g,_. then
By —F~ngWe.

It'g, is not 0 and A, is small enough, then Fi.q — F must be positive. Thus, if F(ﬂ} is not already
al its maximum, then we can always find a step size such that a gradient-type iteration will lead
to an increase in the function. (Recall that W, is assumed to be positive definite.}

In the following, we wilt omit the iteration index £, except where it is necessary to distinguish
one vector from another. The following are some commonly used algorithms:~

Steepest Ascent 'The simplest algorithm to employ is the stecpest ascent method, which uses
W=1Isothat A=g {E-13)

As its name implies. the direction is the one of preatest increase of F{.). Another virtue is that
the line search has a straightforward solution; at least near the maximum, the optimal A is

—gs
~ 288 E-14)
ZHg ‘

15 A more extensive catalog may be fornd in Judge et al. (1985, Appendix B). Those mentioned here are some
of the more commonly used ones and are chosen primarily because they illustrate many of the important
aspects of nonlinear optimization.



- Greene-50558

book

June 25, 2007 12:52

1070 PART VIl + Appendices:

where
aZF ]
o PE®
oW e 3¢’
Therefore, the stegpest ascent fleration is '
. = . ﬂ:ﬂ: :
Hst = 9_: g;H,g T et 1) o {E-15)

Computation of the second durwalwes matrix may be extremely burdensome. Also, if H, is not
nepative definite, which is likely if #, is far from the maximum, the iteration may dwr..rge A
systematic line search can bypass this problem. This algorithm usually converges very slowly,
however. so other techniques are usually used.

Newton's Method The template for most gradient methods in common use is Newton's
method. The basis for Newton’s method is a linear Taylor series approximation. Expandlng the
first-order conditions,

dF(8)
g
equalion by equation, in a linear Taylor series around an arbitl‘ary_c?o yields

8Fi0)

g E T HE — 8% =0, (E-16)

where the supe,rsm ipt indicates that the term is evaluated at 6’ Solving for 8 and then equating

fto 0,+1 and 8% 10 @,. we obtain the iteration

o1 =4 —H g (E-17)
Thus, for Neﬁtoﬁ‘s method,
W=-H" A=-H'"g 1=l (E-18)

Newton's method will converge very rapidly in many problems. If the function is guadratic, then
this method will reach the optimum in one iteration from any starting point. If the criterion
function is globally concave, as it is in a number of problems that we shall examine in this text,
then it is probably the best alnouthm available. This method is very well suited to maximum
likelihood estimation.

Alternatives to Newton's Method  Newton’s method is very effective in some settings, but it
can perform very poorly in others. If the function is not approximatety quadratic ot if the current
estimate is very far from the maximum, then it can cause wide swings in the estimates and even
fail to converge at all. A number of atgorithms have been devised to improve upon Newton's
method. An obvious one is (o include a line search al each iteration rather than use A = 1. Two
problems remain, however. At points distant from the optimum, the second derivatives matrix

“may not be negative definite, and, in any event, the computational burden of computing Hmay be

excessive.

The guadratic hill-climbing methed proposed by Goldfeld, Quandt. and Trotter (1966) deals
directty with the first of these problems. In any iteration, if H is not negative definite. then it is
replaced wilh

Hi=H-al, (E-19)
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where o is a poaltwe number chosen large enough to ensure the negative definileness of Ha
Another bungestlon is that of Greenstadt (1967), which uses, at cvery iteration,

H. =_—‘Z |1 e (E-20)

where m; is the ith characteristic root of H and ¢ is ts associated characteristic vector. Other
proposals have been made 1o ensure the negative definiteness of the required matrix at each
iteration,® :

Quasi-Newton Methods: Dawdon—FIetcher-—Powell A very effective class of alpovithms

_ has been developed that eliminates second derivatives altopether and has excellent convergence

properties, even for ill-behaved problems. These are the quasi-Newton methods, which form
Wea=W, + Er-

where Et is a positive definite matrix.” As long as W is positive dehmle—l is comtmonly used——;
W, will be positive definite at every iteration. In the Dnvitlon-l"letcher—~Powell (DFP) method.
after a sufficient number of iterations, W, will be an appummauon to -—I_I;I'l Let

S=MA, and y = ﬂ(.’?_rﬂ) B 1;_(9r)- (E-21)
The DFP variable metric algorithm uses

&8, Wy W,
5y, " W
ar}’ ' AR A,
Notice thatin the DFP algorithm. the change in the first derivative vector is used in W; an estimate
of the inverse of the second derivatives matrix is being accumulated.

. The variable metric algorithms are those that update W at each iteration while preserving
its definiteness. For the DFP method, the accumulation of W, is of the form

Win=W 4 {E-22)

Wi =W, + a0 +bb’ =W, +[a bila bI.

The two-column matrix [a, b] will have rank two; hence, DFP is called a rank two update or
rank two correction. The llm)dcn-—[fletuhcr-(;nldfnrb-Slmnno (BFGS) method is a rank three .
correction that subtracts vdd’ from the DFP update. where v = (W, »,)and

1 i
ty = | =— |4, ~ Wy,
2 (6,)_:'_,_) f (HW:?:) ks

There is some evidence that this method is more efficient than DFP, Other methods, such as
Brov(lcu’x method, involve a rank one cor rectmn instead. Any method that is of the form

Wea = Wi + QQ’

will preserve the definiteness of W, regardiess of the number of columns in Q.

The DFPand BFGS algorithms are extremely elfective and are among the most widely used
of the gradient methods. An important practical consideration to keep in mind is that aithough
W, accumulates an cstimate of the negative inverse of the second derivatives matrix for both
algorithms, in maximum likelihood problems it rarely converges Lo a very good estimate of the
covariance matrix of the estimator and should generally not be used as one. :

36%ee, for example, Goldfeld and Quandt (1971).
“¥7See Fletcher (1980),
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E.3.4 ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION

Newton's method is often used for maximum likelihood problems. For solving a maximum like-
lihood problem, the I_l}cf_l]ﬂﬂ of scoring replaces H with

Fi = E{H(#)]. (E-23)

which will be recognized as the asymptotic covariance of the maximum likelihood estimator. There
is some evidence that where it can be used, this method perfarms better than Newton's method.
The exact form of the expectation of the Hessian of the log likelihood is rarely known, howeveri!®
Newton's method, which uses actual inslead of expected second derivatives, is generally used

instead.

One-Step Estimation A convenient variant of Newton’s method is the gne-step maximum
likelihood estimator. It has been shown that if % is any consistent initial estimator of ¢, and I-l* is

H. ] I-l or any other asymptotically equivalent estimator of V'\r[g(HMLE)J then

6! ="~ MY’ ' (E-24)

is an estimator of § that has the same asymplotic properties as the maximum likelihood estima-
tor.?¥(Note that it is zor the maximum likelihood estimator. As such, for example, it should not
be used as the basis for likelihood ratio tesls.)

Covariance Matrix Estimation 1n computing maximum likelihood estimators, a commonly
uséd method of estimating H simultaneously simplifies the calculation of W and solves the
occasionat problem of indefiniteness of the Hessian. The method of Berndl et al. (1974) replaces
W with

" =1
N = {Emg] =(G'G)™, (E-25)

iuzt

where B
3ln F(y ix..8)
B= "
Then, G is the 1 x K matrix with ith row equal to g Although W and other suggested estimators of

(~H)y™! are asymplotically equivalent, W has the additional virtues that it is always nonnegative
definite, and it is only necessary to differentiate the log-likelihood once to compute it.

(E-26)

The Lagrange Multiplier Statistic The use of W as an estimator of (—H)™" brings another
intriguing convenience in maximum likelihood estimation. When testing restrictions on parame-
ters estimated by maximum likelihood. one approach is to use the Lagrange multiplier statistic.
We will examine this test at Ienglh at various points in this book, so we need only sketch it briefly
here. The logic of the LM test is as follows. The gradient g(#) of the log-likelihood function equals

0 at the unrestricted maximum likelihood estimators (that is. at least to within the precision of

the computer program in use), If, #, is an MLE that is computed subject to some restrictions on f,
then we know that g{ﬂ ) # 0. The LM test is used to test whether, at é,. g is significantly different
from 9 or whether the deviation of g, from 0 can be viewed as sampling variation, The covariance
matrix of the gradient of the log-likelihood is —H. so the Wald statistic for testing this hypothesis -
is W = ¢'(—H)™' g Now. suppose that we use W.to estimate —H~'. Let G be the # x K matrix
with ith row equal io . and let i denote an # x 1 column of ones. Then the LM statistic can be

}8 Amemiya (1981) provides a number of examples.
195ee, for example, Rao {1973).
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computed as
LM = I'G(G'G) "Gl

Because i'i = n, . B
LM = i G(G'G) " Gi/n] = R,

where R? is the uncentered R* in a regression of a colutnn of ones on the derivatives of the

log-likelihood function.

The Concentrated Log-Likelihood Many problems in maximum likelihood estimation
can be formulated in terms of a partitioning of the parameter veclor = [#1, #2] such that at the
solution to the oplimization problem. #; a1 . can be written as an explicit function of @4 .. When
the solution to the likelihood equation for#» produces -

O2mr = Mt par )
then, if it is convenient. we may “concentrale™ the log-likelihood function by writing
F*#1, 2) = F6,,1481)] = F(81)-

The unrestricted solution to the problem Maxy, £ (#,) provides the fall solution to the optimiza-
tion problem. Once the optimizing value of 8 is obtained. the optimizing value of #; is simply

t(f1.m1). Note that F*(8y, #2) is a subset of the set of values of the log-likelihood funciion, namely

those values at which the second parameler vector satisfies the first-order conditions:2-

E.2.5 OPTIMIZATION WITH CONSTRAINTS

Occasianally, some of or all the parameters of a model are constrained, for example, to be positive
in the case of a variance or to be in a certain range. such as a correlation coefficient. Optimization
subject to constramts is often yet another art form. The elaborate literature on the general
problem provjdes some gmdance—-—sea.. for example, Appendix B in Judge et al. (1985;——but
applications still, as often as not, require some creativity on the part of the analyst. In this section,
we will examine a few of the most common forms of constrained optimization as they arise in
econometrics.

Parametric constraints typically come in two forms, which may occur simultaneously in a
problem. Equality constraints can be written ¢(f) = 0, where ¢;(8) is a continuous and dif-
ferentiable function. Typical applications include linear constraints on slope veclors, stich as a
requirement Lthat a set of clasticilies in a log-linear model add to one; exclusion restrictions, which
are often cast in the form of interesting hypotheses about whether or not a variable should appear
in a model (i.e., whether a coefficient is zere or not); and equality restrictions, such as the sym-
mietry restrictions in a translog model, which require that parameters in two different equations
be equal to each other. Inequality constraints, in general, will be of the form a; < ¢,(¢) < by,
where 4; and b; are known constants (either of which may be infinite). Once again, the typical
application in‘econometrics involves a restriction on a single parameter. such as o0 > 0 for a
variance parameter, —1 < p < 1 for a correlation coefficient, or ; = 0 for a particular slope
coefficient in a model, We will consider the two cases separately.

In the case of equality constraints, for practical purposes of optimizalion, there are usually
two strategies available. One can use a Lagrangean multiplier approach. The new optimization
problem is

Maxy s (8, 1) = F(§) -+ M'c(6).

12°A formal proof that this is a vafid way to proceed is given by Amemiya (1985, pp. 125L127).
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The necessary conditions for an oplimum are

31,,(8 4) =g +CEYL =0,
LA -
e =L =9

where g(9) is the familiar gradient of F(#) and C(8)isa J x K mair ix of derivatives wilh fth row
equal to 8¢, /38’. The joint solution will provide the constrained oplimizer, as well as the Lagrange
multipliers. which are often interesting in their own right. The disadvantage of this approach is
that it increases the dimensionality of the optimization problem. An alternative strategy is to
eliminate some of the parameters by either imposing the constraints directly on the function or
by solving out the constraints, For exclusion restrictions, which are usually of the form #; == 0. this

“step usually means dropping a variable from a model. Other restrictions can often Be imposed

just by building them into the mode!. For example, in a function of 8y, 8, and 6, if the restriction
is of the form 8, = 8. then £ can be eliminaied from the model by a direct substitution,

Inequality constraints are more difficult. For the general case, one suggeslion is to transform
the constrained problem into an unconstrained one by itmposing some sort of penalty function
into the optimization criterion that will caase a parameter vector that viclates the constraints, or
nearly does so, to be an unattractive choice. For-example, to force a parameter 8, 10 be nonzero,
one might maximize the angmented function F{#)—[1/6;]. This approach is feasible, butit has the
disadvantage that because the penalty is a function of the parameters, different penalty functions
will Yead to different solutions of the optimization problem. For the most common problems in
economelrics, a simpler approach will usually suffice. One can often reparameterize a function
50 that the new parameter is unconstrained. For example, the “method of squaring” is sometii‘nes
used to force a parameter to be positive. If we require §; Lo be positive, then we can define 8; = o
and substitute «* for o wherever it appears in the moclel Then an unconstrained soluuon for «
is abtained. An alternative reparameterization for a parameter that must be positive that is often
used is 6; = exp{a). To force a parameter 1o be between zero and one, we can use the function
6; = 1/{1 + exp(a)]. The range of & is now unrestricted. Experience suggests that a third, less
orthodox approach works very well for many problems. When the constrained optimization is
begun, there is a starting value 8° that begins the iterations. Presumably, 8° obeys the restrictions.
(If not, and none can be found. then the optimization process must be terminated immediately.)
The next iterate. 8. is a step away from #° by, @' = 8" + .?\.030 Suppose that, 0' violates the
constraints. By constl uction, we know that there is saome value 0 between 8° and, 0 that cloes not
violate the constraint, where “between™ means only that a shcn ter step is taken. Therefore, the
next value for the iteration can be §. The logicis true at every iteration, so a way to proceed is 1o
alter the iteration so that the step length is shortened when necessary when a parameter violates
the constraints,

E.3.6 SOME PRACTICAL CONSIDERATIONS

The reasons tor the good performance of many algorithms, including DFP. are unknown. More-
over, different algorithms may perform differently in given settings. Indeed. for some problems,
one algorithm may fail to converge whereas another will succeed in finding a solution without
great difficulty. In view of Lhis. computer programs such as GQOPTA" Gauss, and MatLab that
offer a menu of different preprogrammed algorithms can be particularly useful. It is sometimes
worth the effort to try more than one algorithm on a given problem.

2 Goldfeid and Quandt (1972).
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Step Sizes Except for the steepest ascent case. an oplimal line search is likely to be infeasible
or lo require more effort than it is worth in view of the potenlially arge number of function
evaluations required. [n most cases, the choice of a step size is likely to be rather ad hoc. But
within limits, the most wrdely uséd algorithms appear to be robust to inaccurate line searches.
For example, one method employed by the widely used TSP computer progr am® is the method
of squeezing, which tries A = 1,1 e 4. and so on until an improvemeit in the function results.
Although this approach is obviously a bit unorthodox, it appears to be quite effective when
used with the Gauss—Newton method for nonlinear least squares problems. (See Chapter 11.) A
somewhat more elaborate rule is suggested by Berndt et al. (1974). Choose an & between 0 and
1. and then find a & such that

F@+3A)—F(8)
: ‘A
Of coitrse., which valug of £ to choose is still open, so the choice of A remains ad hoc. Moreover,
in neither of these cases is there any optimality Lo the choice; we merely find a A that leads toa
function improvement. Other authors have devised relatively efficient means of searching fm a
step size without doing the full optimization at each iteration’®

<1—c¢. (E27)

Assessing Convergence Ideally, the iterative procedure shouid terminate when the gradi-
ent is zero. In practice, this step will not be possible, primarily because of accumulated rounding,
error in the computation of the function and its derivatives. Therefore, a number of alternative
convergence criteria are used. Mosl of them are based on the relative changes in the function
or the parameters. There is considerable variation in those used in different computer programs,
and there are some pitfafls that should be avoided. A critical absolute value for the elements of
the gradient or its norm will be affected by any scaling of the Function. such as normalizing it
by the sample size. Similarly, stopping on the basis of small absolute changes in the parameters
can lead to premature convergence when the parameter vector approaches the maximizer. It
is probably best to use several criteria simultaneously, such as the proportional change in both
the function and the parameters, Belsley (1980} discusses a number of possible stopping rules.
One that has-proved useful and is immune to the scaling problem is 1o base convergence on

gH g

Multiple Solutions 1t is possible for a function to have several local extrema. It is difficolt to
know a priori whether this is true of the one at hand. But if the function is not globally concave,
then it may be a good idea to attempt to maximize it from several starting points to ensure that
the maximein obiained is the global ene. Ideally, a starting value near the optimum can facilitale
matters; in some settings, this can be obtained by using a consistent estimate of the paramelter
for the starting point. The method of moments. if available, is somelimes a convenient device for
doing so.

No Solution Finally, it should be noted that in a nonlinear setting the iterative algorithm can
break down. even in the absence of constraints, for at least two reasons. The first possibility is
thai the problem being solved may be so numerically complex as to defy solution. The second
possibility, which is often neglected. is that the proposed model may simply be inappropriate for
the data. In a linear setting, a low R? or some other diagnostic test may suggest that the model
and data are mismalched, but as long as the full rank condition is met by the regressor matrix,
a linear regression can ahvays be computed. Nonlinear models are not so forgiving. The failure
of an iterative algorithm to find a maximum of the criterton function may be a warning that the
model is not appropriale for this body of data.

“2XHall (1982, p. 147).
FSee, for example, Joreskog and Gruvaeus (1970), Powell {1964), Quandt (1983), and Hal (1982},

!
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E.3.7 THE EM ALGORITHM .

The Iatenl class mode can be characterized as a missing data medel. Consider the mixture model
we used for DocVis m-E‘xan'qﬁe—l&L which we will now-generalize to allow more than two

classest . L Ch apfﬂ" ] *T;E_

F (3 | Xy class) = })‘= 9:: JUE =B g B = LA+ D) 2y =EXP(¥?fﬁjl)- Ya=01.....
: uxp(t,a;)
1 lexp(z’a,)

Prob(class_,- =jle) = =12,.... 1

With all parts incorporated. the log-likelthood for this latent class model is

. lr.I L_‘M =,Z In L”.M C\ - D

=l

EA T
Zm_l Lkp(l.’ Cm) U+exp(x;8,) J \1+exp(x,f,} '

i=1 =1 =1
(E-28)

Suppose the actual class memberships were known (... observed). Then, the class probabili-
ties in In Ly would be uanecessary. The appropriate complete daty logdikelihood for this case
would he

InLe = Zlu L,c / (’ __9;’9
exp{x), 8, ™
.—'Zln {2 DUrII (1 +e}\p(x“ﬂj ) (1+expi(y.;?jﬁj)) }-' (E-29)

j=1

where Dy; is an observed dummy variable that equals one if individual i is from class j, and zero
otherwise. With this specification, the log-likelihood breaks into J separate log-likelihoods, one
for éach (now known) class. The maximum likelihood estimates of 84, ..., 8y would be obtained .
simply by separating the sample into the respective subgroups and estimating the appropriate
model for éach group using maximum likelihood. The method we have used to estimate the
parameters of the full model is to replace the Dy; variables with their unconditional espectations,
Prob(class; = jlz;). then maximize the resulting log-likelihood function. This is the essential logic
of the EM (expectauonmmammlzatlon) algorithm [Dempsier el al. (1977} however, the method

uses the conditional { posterior) class pr obabilities instead of the unconditional probabilitics. The
|luatlve steps of the EM algorllhm are

(Estep) Form the expectation of the missing data log-likelihood, conditional on the pre-
vious parameter estimates and the data in the sample:

(M step) Maximize the expected log-likelihood function. Then either return to the E step
or exit if the estimates have converged.

The EM algorithm can be used in a variety of settings. [See McLachtan and Krishnan {1997).]
It has a particularly appealing form for estimating latent class models. The iterative steps for the
latent class model are as follows:

(E step) Form the conditional {posterior) class probabilities, =;;]2,. based on the current
- estimates. These are based on the likelihood function.
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(M step) For cach class. estimate the class-specific parameters by maximizing a weighted
log-likelihood,

. e

m-_LM'_ﬂfe-f‘ = E wyln L | class = j.
- =l

The parameters of the class probability model are also reestimated, as shown

later, when (here are variables in z; other than a constant term.

This amounts to a simple weighted estimation. For example, in the Jatent class linear regression
model, the M step would amount to nothing more than weighted least squares. For nonlinear
models such as the geometric model above. the M step involves maximizing a weighted log-
tikelihood function.

For the preceding seometric model, the precise sleps are as follows: First. obtain starting
values for 8,,.... 8, o,..., a;. Recall.ay = 0. Then:

1. Form the contributions to the likelihood funciion using (E-28),

J 7
Li= Zﬂu H Fur i%e, B, class; = J)
Je=l (£33
i
= L | class = j. {E-30)
j:}
2. Form the conditional probabilitics, w;; = JL{JCMSS = . (E-31)
Eme:l L"’ l class =_’3."
3. Foreach j. now maximize the weighted log likelihood functions (one at a time),
" I . (I —‘ﬁ L‘:)
n L= w mf’[ ( ! explx 8y \* (E-32)
’ Y =1 3 =1 1+ exp(x:”ﬂj‘) g+ exp(x;lﬁj.}
4. Toupdate the a; parameters, maximize the foltowing log-likelihood function
” r) oy
lnL('cc;.....a;):EZw,-_j Inim'ﬁ&’-)——-— a; =0 (E-33)

Fi : .
i=t =1 2 et eXp(ng))
Step 4 defines a multinomial fogit model (with “grouped™) data. If the class probability model
does not contain any variables in 2, other than a constant, then the solutions 10 this optimization
will be ’
. D Wiy . 7
#p= == thend&; = In-, (E-34)

<5 T I
E?:l Ej:l w"f 4

{Note that this preserves the restriction &; = 0.) With these in hand, we return to steps 1 and 2
to rebuild the weights. then perform steps 3 and 4. The process is iterated until the eslimates of @
Bi..... B converge. Step 1 is constructed in a generic form. For a different model, it is necessary
only to change the density that appears al the end of the expresssion in (E-32). For a cross section
“instead of a panel, the produoct term in step 1 becomes simply the log of the single term.

The EM algorithm has an intuitive appeal in this (and other) settings. In practical terms, it is
often found to be a very slow alaorithm. 1t can take many iterations to converge, (The estimates
in Example 16.16 were computed using a gradient method, not the EM algorithm.) In its faver,
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the EM methaod is very stable. It kas been shown [Dempster, Laird, and Rubin (1977)} that the

algorithm always climbs uphill. The log-likelihood improves with cach iteration. Applications

i differ widely in the methods used to estimate Iatent class models. Adding (o the variety are the
very many Bayesian applications.-none of which use either 8f the methods discussed here.

E.4 EXAMPLES
To illustrate the use of gradient methods. we consider some simple problems.

E.41 FUNCTION OF ONE PARAMETER
o First, consider maximizing a function of a single variable, f(8) = In(@) — 0.16%. The function is
£  shown in Figure E.4. The first and second derivatives are
| = i :' ; . 1
b ! F'8) = 3 —-0.28,

2] _ i _
@) = 55 —02.

Equating £’ to zero yields the solution ¢ = /3 = 2.236. At the solution, f* = 0.4, so this
solution is indeed a maximum. To demonstrate the use of an ilerative method. we solve this
problem using Newton's method. Observe, first, that the second derivative is always negative for
any admissible (positive) 8% Therefore, it should not matter where we start the iterations; we
shall eventually find the maximum. For a single parameter, Newton's method is

b1 =6 ~[F/11
FIGURE E.4 - Function of One Varlablé Parameter. . .-
0.46
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11 this problem, an inequality restriction, @ = 0, is required. As is common, however, for owr first attempt
we shall neglect the constraint.
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TABLE E.1 lterations for Newton’s Method _
dteration é L ' -

0 5.00000 < —D.890562 T ~{(LBO000D ~0.240000
1 166667 - - 0.233048 0.266667 —5.560000
2 2.14286 0.302936 0.030952 —-0.417778
3 223404 0.304718 0.000811 —(0.400363
4 2.23607 0.304719 0.0000004 —~0.400000

The sequence of vatues that results when 5 is used as the starting vaiue is given in Table E.I1. The
path of the iterations is also shown in the table.

E.4.2 FUNCTION OF TWO PAF[AMETERS: THE GAMMA

DISTRIBUTION @
. For random sampling from the gamma distribution, E
[ L - . iy
St Bopy = Fiors Byt~ | o Cavyhm
| Ly I
The log-likelihood is In L8, p) = npInp — nInT(p) — ﬁZfz_l y+p—1Y",n % (See | yefs TO
Section_16.6.4and Examples 13.5 and 15.7.) 1t is often convenient to scale the log-likelihood o i %,

by the sample size. Suppose. as well, thal we have a sample with ¥ = 3 and fny = 1. Then the Nl
function to be maximized is F(8. p)=pn § —InT{p) — 38 + p — 1. The derivatives are =50 11 0 s

aF. p 3F r = A e W
—=L_3 Zchf-=4+l=hg-v 1, |5 Ot
BB ap np-gy+ ng—¥ip)+ \ |

FE.  —p 3?*F _ —([["-T%) _ W () ¥F 1 -

R e P e

Finding agoad set of starting values is often a difficult problem. Here we choose three starting
points somewhat arbitrarily: (6%, 8% = (. 1). (8. 3). and (2. 7). The solution to the problem is
(5.233,1.7438). We used Newlon's method and DEP with a line search to maximize this function:?
For Newton's method, 4 = 1. The results are shown in Table E.2. The two methods were essentially
the same when starting from a good starting point (trial 1), but they differed substantially when
starting from a poorer one {trial 2), Note that DFP and Newton approached the solution from
different directions in trial 2. The third starting point shows the vaiue of a line search. At Lhis

TABLE E.2 Herative Solutions to Max(p, lpIn g ~InI(p) =3 + p~1
Trial 1 Trial 2 Trial 3
DFP Newton DFP Newton Drp Newton

Irer. P i P B I 8 0 8 o 8 [ 8

S 4,000 1.000 4000 1000 8000 3000 8006 3.000 2000 7.000 2000 7.000
3981 1.345 3812 1.203  7.117 2518 2640 0615 6663 2027 —477 233,
4005 1324 4795 1577 7.144 2372 3203 0931 6195 2073 — o
5217 1.743  5.190 1.728 7045 2389 4257 1357 5239 1731 — -
5233 1744 5231 1744 5114 1710 3011 1656 5251 1.754 —_ —
—_- - - - 5239 1747 5219 1.740 5233 1.744 — — .
— — —_ - 5233 1744 5233 1.744 _- - — —

[= SN QS B O R ]

25The one wsed is described in Joreskog and Gruvaeus (1970).
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starting vatue. the Hessian is extremely large. and the second value for the parameter vec-
tor with Newton’s method is (—47.671. —233.35), at which point_F cannot be computed and
this méthod must be abandoned. Beginning with H = I and using a line search, DFP reaches
the point (6.63. 2.03) at the first-iteration. after which convergence occurs routinely in three
more iterations. At the solution, the Hessian is [(—1.72038. 0.191133Y, (0.191153, —0. 210579Y].
The dtagonal elements of the Hessian are negative and its determinant is 0.32574, so it is negative
definite: (The two characteristic roots are —1.7442 and =0.18675). Therefore. this result is indeed
the maximum of lhe lunclton

E.4.3 A CONCENTRATED LOG-LIKELIHOOD FUNCTION

There is another way that the preceding problem might have been solved, The first of the necessary
conditions implies that at the joint solution for (8. p). 8 will equal p/3. Suppose that we impose
this requitement on the function we are maximizing. The concentrated (over §) Iog-lll\c.lihood
function is then produced: :

Fo) = pn(p/3) —InT(p) ~ Hp/3) +p~ 1
= olnf(p/3)—m{p)—~1.

This function could be maximized by an iterative search or by a simple one-dimensional grid
search. Figure E.5 shows the behavior of the function. As expected, the maximum occurs at
2 = 5.233. The value of 8 is found as 5.23/3 = 1.743.

The concentrated fog-liketihood is a useful device in many probiems. (See Section 16.9.6.c
for an application.} Note the interpretation of the function plotted in Figure E.S. The original
function of p and § is a surface in three dimensions. The curve in Figure E5 is a projection of
that function: it is a plot of the function values above the line § = p/3. By virtue of the first-order
condition, we know that one of these points will be the maximizer of the function. Therefore, we
may restrict our search for the overall maximum of E(8, p) to the points on this line.

FIGURE E.5 - Concentrated Log-Liketihood. =
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