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CHAPTER 23 4+ Models for Discrete Choice 801

to symmetric distributions such as the normal and logistic, so that the probability can
be conveniently written as Prob(¥; = v, [x,,) = Plgic(e + X 78] It will be convenient

tolet ziy = o + X}, 8 50 Prob(¥, = yir | Xu) = Plguzir).

In our previous application of this model, in the Jinear regression case, we found
that estimation of the parameters was made possible by a transformation of the data

14

to deviations from group mgans which eliminated the person specific constants from
The estimator. (See Seaﬁ@ Save for the special case discussed later, that will not
be possibie here, so that if one desires to estimate the parameters of this model, it will
be necessary actually to compute the possibly huge number of constant terms at the same
time. This has been widely viewed as a practical obstacle to estimation of this model be-
cause of the need to invert a potentially large second derivatives matrix, but this is a mis-
conception. [See, e.g., Maddala (1987), p. 317.] The method for estimation of nonlinear

i4.9.6.4

fixed effects models such as the probit and logit models is detailed in Sectio@/
The problems with the fixed effects estimator are statistical, not pr actical

estimator relies on_7; increasing for the constant terms to be consistent—in essence,
each a; is estimated with J; observations. But, in this setfing, not only is T fixed, it is
likely to be quite small. As such, the estimators of the constant terms are rot consistent
(not because they converge tosomething other than what they are trying to estimate, but
because they do not converge at allj. The estimator of # is a tunction of the estimators
of a, which means that the MLE of § is not consistent either. This is the incidental
parameters problem. [See Neyman and Scott {1948) and Lancaster (2000).] There is, as
well, a small sample (small_T;) bias in the estimators, How serious this bias is remains
a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) resuits
for a binary logit model [with additional results in Abrevaya (1997)] and Heckman and
MaCurdy’s (1980) results for the probit model. Hsiao found that for Jj = 2. the bias in
the MLE of 8 is 100 percent, which is extremely pessimistic. Heckman and MaCurdy
found in a Monte Carlo study that in samples of n = 100 and 7" = 8, the bias appeared to
be on the order of 10 percent, which is substantive, but certainly less severe than Hsiao's
results suggest. No other theoretical results have been shown for other models, although
in very few cases, it can _be shown that there is no incidental parameters problem.

(The Poisson model mentioned in Chapter{l6)is one of these special cases.) The fixed
effects approach does have some appeal in that it does not require an assumption of
orthogonality of the independent variables and the heterogeneity. An ongoing pursuit
in the literature is concerned with the severity of the tradeoff of this virtue against the

gc"ﬂ‘é n 5.5 2.

incidental parameters problem. Some commentary on this issue appears in Arellano (2]
(2001). Results of our own investigation appear in Wreene (2004). /

Example 23. Einary Choice Models/for Panel Data
(23.4Xwe fit a pooled binary logit fodel y = 1(DocVis > usmg/&j: rman

ization data examined in Examiple(T1.13, The model is

gt random and fixed affecty’models. There is a gurprising
amount of variation across thegstimators. The coefficients aye in bold to facilitate réading the
table. It is generally difficult folcompare across the estimators. The three estimdtors would
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Z
TABLE 23.6 Estimated Partial Effects f 'I5,ane! Data Binary Choice Modéls
Model Apge Incom Kids Educatio Married

" Logit, P* 0.0048133 435213 —0.053598 - —0?6@6 0.019936
Logit: RE.Q" 0.0064213 - 35835 ~0.035448 —0410397 0.0041049
Logit: EL¢ 0.024871 - 7.0.014477 o —0.020991 0.027711 -{.013609
Logit: F.Cd 0.0072991 —{.0043387 ~0,0066967 —(.0078206 —0.0044842
Probit, P* 0.004837, ~{}.043883 —0.053414 —0.010597 0.019783
Probit RE.Q® 0.005 —0.0008836 —0.0093756 . 0.0045426
Probit:RE,5¢ 0. S —0.0010582 —0.01197 (.0039878
Probit: FU* /3 23958 —0.013152 ~0.027659 —0.012557

tt estimator

ifferent estimates in any of the three /specmcatlons—recall

be expected to produce very
tor is inconsistent in either the fi ;d/w random effects cases.

for example, the pooled esti
The logit results include tw.
(inconsistent) estimator.
afl three fixed effects

ixed effects estimators. The line market “U” is the unconditional
one marked “C” is Chamberlain’s z0onsistent estimator. Note for,
imators, it is necessary to drop from the sample any groups that ha
or one for every period. There were 2,046 such groups, which is apout
random effects model in

this case, the estimators are very i
correlatiopcosfficient, p, iscomputed as o2 /(524 6,

..|-_|u| ICEa 1) g than-ths noole
Ci
Why d:d-' € mmdental parameters problem arise here and not in the linear regres-
ES SR WeN &i ki, sion model? Recall that estimation in the regression model was based on the deviations

ixed £ e b ne/ from group means, not the original data as it is here. The result we exploited there was
F < that although f(vi | X;) is a function of oy, f(y|, X,, ¥i) is not a function of «;, and we (T
s ’17'1 mator used the latter in estimation of 8. In that setting, ¥ is a minimal sufficient statistic for **
P o;. Sufficient statistics are available for a few distributions that we will examine, but not
(R S for the probit model. They are available for the logit model, as we now examine.
S A fixed effects binary logit model is
g8
1+ e‘”f'!"f;a.# :
The unconditional likelihood for the nT independent observations is

L= HH(F Pl — Fy)t =,

L
Chamberlain (1980) [following Rasch (1960} and Andersen (1970)] observed that the

' conditional likelihood function,
: Z
z:,v,-,),

1=1

Prob(y,; = 1)xi) =

"
= HPI‘Ob(YEI =¥ Y2 = yi2, ... Yig = ig;
i=l




(13-5r)

" The incidental parameters problem does show up in ML estimation of the FE linear
model, where Neyman and Scott (1948) discovered it, in estimation of 6%, The MLE of
o: is e'e/nT, which converges to (T-1/T]odl<| a2,

P e ._-\-._-lI
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is free of the incidental parameters, ;. The joint likelihood for each set of 7; observations

conditioned on the number of ones in the set is

Prob(lh =y Yz =¥i2...., Yz =y

& i
z Vit data) J '-.?;

t=1 L
exp (S, 1) (13-%)

2% dyms; EXP ()::11 4 f.’-‘;rﬁ-)

= The function in the denominator is summed over the set of all (E) different sequences
SN of 7; zeros and ones that have the same sum as 5 == Eil _\{;}'?ﬂ-:ﬂ?’
[ 30 ) Consider the example of T; = 2. The unconditional likelihood is

L= H Prob(¥1 = vi1)Prob(¥ = w2).

For each pair of observations, we have these possibilities:

I. wvy=0and Yiz = 0. Prob(0, 0| sum = 0) = 1.

2. yi=1land ¥iz=1.Prob(l,1|sum =2) = 1.

The ith term in L€ for either of these is just one, so they contribute nothing to the con-

_ 3 ditional likelihood functionj‘f When we take logs, these terms (and these observations)
%= L -3_," will drop out. But supposé that v; =0and y» = 1. Then
\ B! Prob(0, 1 and sum = 1) Prob(0, 1)
i . Prob(0,1 =1 = - = .
3 ob(0, 1]sum =1) Prob(sum = 1) Proby{0, 1) 4 Prob{1,0)

Therefore, for this pair of observations, the conditional probability is

1 etitxnf,
14 eu B 1 4 o b5f _ b
1 e%taA e tNnf, 1 T Ay

14 Bt & g®itXad + 1 4 @B | 4 @t

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these
terms for the pairs of observations for which the two observations are (0, 1). Pairs of
observations with one and zero are included analogously. The product of the terms such
as the preceding, for those observation sets for which the sumis not zero or 7;, constitutes
the conditional likelihood. Maximization of the resulting function is straightforward and
may be done by conventional methods

As in the linear regression model, it is of some interest to test whether there is
indeed heterogeneity. With homogeneity («; = o), there is no unusual problem, and the

30 2pe enumeration of all thess computations stands to be quite a burden-_i;scc Arcllano (2000, p. 47) or
Baltagi (2003, p. 235). In fact, using a recursion suggested by Krailo and Pike (1984), the computation cven
~with 7; up to 100 is routine.

.3_.’ “#Recall that in the probit model when we encountered this situation, the individual constant term could not
be estimated and the group was removed from the sample. The same effect is at work here.
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model can be estimated, as usual. as a logit model. It is not possible to test the hypothesis

using the likelihood ratio test, however, because the two likelihoods are not compara-

" ble. (The conditional likelihood is based on a restricted data set.) None of the usual tests
of restrictions can be used because the individual effects are never actually estimated. 22

, | Hausman’s (1978) specification test is a natural one to use here, however. Under the
‘-~~~ null hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood
estimatar (CMLE) and the usual maximum likelihood estimator are conmsistent, but
Chamberlain’s is inefficient. (It fails to use the information that ¢; = &, and it may not

use all the data.) Under the alternative hypothesis, the unconditional maximum like-

ey 5,3 . lthood estimator 1§ Inconsistent,® whereas Chamberlain's estimator is consistent andI A
o efficient. The Hausman test can be based on the chi-squared statistic '.‘)L ~& @

2 = (BemL — AmLY (Var[CML] - Var[ML])'l_(ﬁ oML — AML)-

The estimated covariance matrices are those computed for the two maximum likeiihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible
that the covariance matrix for the maximum likelihood estimator will be larger than
that for the conditional maximum likelthood estimator. If so, then the difference matrix
in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore zero.

gales growth, and (6) sales

g i " as it is defined as a three-

year intep¥al for magazine i . Thus, a magazine that had beepon the newstands for nine years

woul a three constants, not just one. In addition to eStimating several specifications of

thefirice change model, Cecchetti used the Hausman tést in (23-42) to test for the existence
the common effects. Some of Cecchetti's resuligAppear in Table 23.7.

Willis {2006) argued that Cecchetti's estimatesvere inconsistent and the Hausman testis

variables. This state dependence invailidajes the use of the sum of the observatlons fo

_proposes, instead, a method suggestsd by Heckman and Singer (1984b} fo incorpo
unchserved heterogeneity in the unednditional likelihood function. The Heckman a
model can be formulated as a Igként class model (see Sections 16.9.7 and 23.
the classes are defined by diffefent constant terms—the remaining paramete

——-d-""_-_-_.—-.-—_
2 * This s produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in
W the next section. Because the fixed effects are not estimated, it is not possible to compute probabilities or

marginal effects with these estimated coefficients, and it is a bit ambiguous what one can do with the resuits of
the computations. The brute force estimator that actually computes the individual effects might be preferable.

23 AHsiao {2003) derives the result explicitly for some particular cases.
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because they do not ¢e
of «, which mean

—”#‘Eéhémgm’ we fit a pooled binary logit mo = 1{DocVis > 0) using the German Oppen di
galth care utilization data examined in he model is e L

IF 4 | Example 238 Binary Choice Models for Panel Data

3.3 Prob{DocVis; > 0) = A(fs + B2 Agey, + 33 Incomey; + B Kidsi: Table

+ ps Education;; + fc Marrieds,). F ]

No account of the panel nature of the data set was taken in that exercise. The sample contains

e & total of 27,326 observations on 7,293 families with T; dispersed from one to seven, {Seeo
gl = B i) Tablet23.5)ists estimates of parameter estimates and estimated
1.4 ) standard errors for probit and{logit random and fixed effects models. There is a surprising
L amount of variation across thejestimators. The coefficients are in bold to facilitate reading the
table. It is generally difficult tq compare across the estimators. The three estimators would

13.€
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TABLE Z56 Estimated Partial Effects for Panel Data Binary Choice Models

. Model Age Income Kids Education Married
Logit, P? 0.0048133 - —0.043213 ~-0.053598 ©  —0.010596 0.019936
1 ogit; RE,Q% 0.0064213 - - 0.0035835 . —0.035448 ~0.010397 0.0041049
Logit: FU% 0.024871 -0.014477 - —~0.020991 ~0.027711 —0.013609
Logit: EC% 0.0072991 ~0.0043387 —0.0066967 -0.0078206 —0.0044842
Probit, B4 0.0048374 —0.043883 —0.053414 —0.010597 0.019783
Probit RE.Qb 0.0056049 —0.0008836 —0.042792 —0.0093756 = 0.0045426
Probit:RE 8% 0.0071455 —0.0010582 —0.054633 —0.011917 0.0059878
Probit: EUS- 0.023958 —0.013152 —0.018495 —0.027659 ~0.012557
“APooled estimator

bButler and Moffitt estimator
«“Unconditional fixed effects estimator
Aconditional fized effects estimator
 EMaximum simuiated likelihood estimator

be expected to produce very different estimates in any of the three specificationsf-_-recafl,

for exampile, the pooled estimator is inconsistent in either the fixed or random effects cases.

The logit resuits include two fixed effects estimators. The line market “U” is the unconditional

{inconsistent) estimator. The one marked “C” is Chamberlain's consistent estimator, Note for

all three fixed effects estimators, it is necessary to drop from the sample any groups that have

DocVisy equai to zero or one for every petiod. There were 3,046 such groups, which is about

42 percent of the sample. We also computed the probit random effects model in two ways,

first by using the Butler and Moffitt method, then by using maximum simulated likelihood

estimation. In this case, the estimators are very similar, as might be expected., The estimated

correlation coefficient, p, is computed as o2 /(a2 +a2). For the probit model, o2 = 1. The MSL

= estimator computes 5, = 0.9088376, from which we obtained p. The estimated partial effecis

151749 ~———fortho MOTTS AP SHown In Table 2879 The average of the fixed effects constant terms is

i used to obtain a constant term for the fixed effects case. Once again there is a considerable

amount of variation across the different estimators. On average, the fixed effects models
tend to produce much farger values than the pooled or random effects models.

- .

Why did the incidental p ¢ and not in the [inéar regres——-

=¥ Yo =Ya,.... Xg =y
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hypoghesis of homogeneity.
thay'the covariance matri

pr i
' 7. % Example ;;9 Fixed Effects Logit Models: Magazine Prices Revisited
The fixed effects model does have some appeal, but the incidental parameters problem is
a significant shortcoming of the unconditional probit and logit estimators. The conditional
MLE for the fixed effects logit model is a fairlly common approach. A widely cited application
of the model is Cecchetti’s (1986) analysis of changes in newsstand prices of magazines.
Cecchetti’s model was

. Prob{(Price change in year i of magazine t) = A{a; +x,8),

where the variables in x;; are (1) time since last price change, (2} inflation since fast change,

{3) previous fixed price Thange, (4) current inflation, (5) industry sales growth, and (6) sales

volatiiity. The fixed effect in the model is indexed “ /* rather than “/” as it is defined as a three; A

year interval for magazine i. Thus, a magazine that had been on the newstands for nine years 13-48

) would have three constants, not just one. In addition to estimating several specifications of

7 5N the price change model, Cecchetti used the Hausman test in ( =5 10 testTor the exi € ” %)

[ of the common effects. Some of Cecchetti's results appear in Table 83-7- -

L L Willis (2006) argued that Cecchett’s estimates were inconsistent and the Hausman test is
invalid because right-hand-side variables (1), (2}, and (6) are all functions of lagged dependent
variables. This state dependence invalidates the use of the sum of the observations for
the group as a sufficient statistic in the Chamberlain estimator and the Hausman tests. He

proposes, instead, a method suggested by Heckman and Singer {1984b) to incorporate the 14.10
unobserved heterogeneity in the unconditional likelihood function Heck and Singar y

the classes are defined by different constant terms—the remaining parameters in the modei

model can be formulated as a latent class model (see Sections(16.9. 5. 3NN WhHIG 134 '_}.
are constrained to be equal across classes. Willis fit the Heckman and Singer model with -

itis a bit ambigugis what one carydo with the resyfts of
the computatighs. The brute forde estimator that aglually computes the/individual effeghs might be prefgrable.
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1 3.0 |
TABLE Z&7  Models for Magazine Price Changes (standard errors in
, parentheses) : ' ) _
: ' Unconditional Conditional Conditional Heckman
Pooled - .- . FE FE Cecchettt FE Willis and Singer
B ~1.10 (003) 007 (0.03) . 112 (3.66) 1.02 {028) —0.09 (0.04)
B 6.93 (1.12) 883 (125) 1157 (1.68) 19.20 (7.51) 823 {1.53)
Bs —036 (0.98) —1.14 (1.06) 585 (1.76) 7.60 (3.46) ~0.13 (1.14)
Constant 1 —1.90 (0.14) - =-1.94 {0.20)
Constant 2 ~29.15 {{.1el1)
InL —500.45 —~473.18 —82.% —83.72 —499.65
Sample size 1026 1026 543 1026
Jtio
two classes to a reWrsion of Cecchetti's model using variables (1), (2), and (5).
The resuits in Table 28-#Show some of the results from Willis's Table I. (Willis reports that

he could net reproduce Cecchetli's resulis-~the ones in Cecchetti's second column would

be the countarparts —because of some missing values. In fact, Willis’s estimates are quite

far from Cecchetti’s resuits, so it will be difficult to compare them. Both are reported here.) EAYe)
The two “mass points” reported by Willis are shown in Table 23-7_ He reports that these

two values (—1.94 and —29.15) correspond to class probabilities of 0.88 and 0.12, though it is

difficult to make the translation based on the reported values. He does note that the change

in the log-likelihood in going from cne mass point {pooled logit model) to two is marginal,

only from —500.45 fo —488.65. Theie is another anormaly in the results that is consistent

with this finding. The reported standard error for the second “mass point” is 1.1 x 10", or

essentially +oo. The finding is consistent with averfitting the latent class model. The results
suggest that the better model is a one-class (pocled) model.

— ,
23.5.3 MODELING HETEROGENEI!

The panel data analysis considered thysfar has focused on modeling hetgrogeneity with
the fixed and random effects specifi¢ations. Both assume that the hegefogeneity is con-
tinuously distributed among indi¢iduals. The random effects modef'is fully parametric,
requiring a full specification of the likelihood for estimation. fixed effects model is
essentially semiparametrje It requires no specific distributigrfal assumption, however,
it does require that theaealizations of the latent heterogengity be treated as parameters,
either estimated igAhe unconditional fixed effects estimdtor or conditioned out of the
likelihood functitn when possible. As noted in the ppéceding example, Heckman and

tforward method of implementing
in which the classes are distingunished

the Heckman and Singer {(1984b)
results under different specificati

the 7,293 groups in the samplé, 3,056 are not used in estimation of the fixed effects models
because the sum of Doctory/is either 0 or T, for the group. The mean,ahd standard deviation
\of the estimated underiying heterogeneity distribution are compupéd using the estimates of
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17.4.5 Mundlak’s Approach, Variable Addition and Bias Reduction

Thus far, both the fixed effects (FE) and the random effects (RE) specifications present problems
for modeling binary choice with panel data. The MLE of the FE model is inconsistent even when
the model is properly specified - this is the incidental parameters problem. (And, like the linear

- model, the FE probit and logit models do not allow time, invariant regressors.) The random

effects specification requires a strong, often unreasonable, assumption that the effects and the
regressors are uncorrelated. Of the two, the FE model is the more appealing, though with modern
longitudinal data sets with many demographics, the problem of time,invariant variables would
seem to be compelling. This would seem to recommend the conditional estimator in Section
17.4.4, save for yet another complication. With no estimates of the constant terms, neither
probabilities nor partial effects can be computed with the results. We are left making inferences
about ratios of coefficient. Two approaches have been suggested for finding a middle ground:
Mundlak’s (1978) approach that involves projecting the effects on the group means of the time =
varying variables and recent developments such as Fernandez-Val’s approach that involves
correcting the bias in the FE MLE.

The Mundlak (1978) Jand Chamberlain (1984) and Wooldridge, e.g., (2002a)] approach
augments (17-%:5) as follows:

Vit = o, +.X;P + €
Pl'Ob()/_;'; = 1lX;;) = F(CL,‘ + X;;B) ]

where we have used X, generically for the group means of the time varying variables in, X The
reduced form of the model is '

Prob(y; = 1[xy) = Flaw + X8 +xuB + ).

(Wooldridge and Chamberlain also suggest using all years of x; rather than the group means.
This raises a problem in unbalanced panels, however. We will ignore this possibility.) The
projection of o; on X, produces a random effects formulation. As in the linear model (see

Section 11.5.6), it also suggests a means of testing for fixed vs. random effects, Since d = 0
produces the pure random effects model, a joint Wald test of the null hypothesis that § equals
zero can be used.

Example 17.13 Panel Data Random Effects Estimators
Example 17.11 presents several estimators of panel data estimators for the prebit and logit
models. Pooled, random effects and fixed effects estimates are given for the probit model

Prob{DocVisy > 0) = ®(B1 + B2 Agey + Ba Incomey + B4 Kids;
+ Bs Education, + B Marriedy).

We continue that analysis here by considering Mundiak's approach fo the common effects
model. Table 17.11 presents the random effects model from earlier, and the augmented
i estimator that contains the group means of the variables, all of which are time varying. The
addition of the group means to the regression brings large changes to the estimates of the
parameters, which might suggest the appropriateness of the fixed effects model. A formal
test is carried by computing a Wald statistic for the null hypothesis that the last five
coefficients in the augmented model equal zero. The chijquared statistic equals 113.282 with
five degrees of freedom. The critical value from the chi, squared table for 95% significance is

f |y
[ perognd |



. L \
11.07, so the hypothesis that § equals zero, that is, the hypothesis of the random effects
mode! (restrictions), is rejected. The two log likelihoods are -16273.96 for the REM and
=16222.06 for the augmented REM. The LR statistic would be twice the difference, or 103.8.

A AT

This produces the same conclusion. The FEM appears to be the preferred model.

Table 17.11 Estimated Random Effects Models

Constant | Age Income Kids Education | Married

Random 0.03411 0.02014 _ | -0.00318 20.15379 <0.03369 0.01633
Effects (0.09635) | (0. 00132_), (0.06667) | {0.02704) | (0.00629) | {C.03135)
Augmented | 0.37485 0.05035 | -0.03057 -0.04202. | —0.05449 -0.02645
Model (0.10501) | ¢0.00357) | (0.09318) | (0.03751) | (0.03307) | (0.05180)
-0.03659 | -0.35065 —0.22509 0.02387 0.14668

Means {0.00384) | (0,13984) | (0.05499) | (0.03374) | (0.06607)

A series of recent studies have sought to maintain the fixed effects specification while
correcting the bias due to the incidental parameters problem. There are two broad approaches.
Hahn and Kuersteiner (2004), Hahn and Newey (2005), and Fernandez-Val (2009) have

developed an approximate, “large I” result for th(ﬂn; — —B) that produces a direct

correction to the estimator, itself. Fernandez-Val (2009) develops corrections for the estimated
Arellano and Hahn (2006, 2007) propose a modification of the log
likelihood function with, in turn, different first, order estimation equations, that produces an A
approximately unbiased estimator of 3. In a similar fashion to the second of these approaches,
Carro (2007) modifies the firsi;i order conditions (estimating equations) from the original log
likelihood function, once again to produce an approximately unbiased estimator of B. (In general
given the overall approach of using a large T approximation, the payoff to these estimators is to
reduce the bias of the FE-MLE from O(1/T) to O(1/T%), which is a considerable reduction. } These
estimators are not yet in widespread use., The received evidence suggests that in the simple case
we are considering here, the incidental parameters problem is a secondary concern when 7T
reaches say 10 or so. For some modern public use data sets, such as the BHPS or GSOEP which
are beyond their 15" wave, the incidental parameters problem may not be too severe. However,
most of the studies mentioned abeve are concerned with dynamic models (see section 17.4.6},
followmg), where the problem is possible more severe than in the static case. Research in this /

constant terms

area is ongoing.

as well.

T
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The derivati
. after estim riate estimator of the asymptotic covafiance matrix is the
sandwich Astimator discussed.in Section 23.4.1, H-TBH™! (with/weighted B and H),
instead gf B or H along (The weights are not squared in computing B )2 +

{?7 4{ é “FFFFF~ DYNAMIC BINARY CHOICE MODELS
F L J

A random or fixed effects model that explicitly allows for lagged effects would be
Yie = HX}B + @i + y¥ie—1 + &y > 0).

Lagged effects. or _i}éfsiépellce, ina_ l:_)irﬁmry choice setting can arise from three sources,
serial correlation in &, the heterogeneity, ;. or true state dependence through the
term yy;,-1. Chiappori (1998) [and see Arcllano (2001)] suggests an application to
the French automobile insurance market in which the incentives built into the pricing
system are such that having an accident in one period should fower the probability
of having one in the next (state dependence). but, some drivers remain more likely
to have accidents than others in every period. which would reflect the heterogeneity
instead. State dependence is likely to be particularly important in the typical panel
which has only a few observations for each individual, Heckman (19%1a) examined
this issue at length. Among his findings were that the somewhat muted small sample
bias in fixed effects models with 7" = & was made much worse when there was state VT
. _dependence. A related problem is that with a relatively short panel. the initial con- =~ —
“1 ¥ ditions, vip. have a crucial impact on the entire path of outcomes. Modeling dynamic
effects and initial conditions in binary choice models is more compiex than in the lin-
ear mode], and by comparison there are relatively fewer firm vesults in the applied
\ literature.* -39 : _
2y ) Much of the contemporaryhterature has focused opmfethods of avoiding the strong
= parametric adsumptions e probit and logit modeTs. Manski (1987) and Honore '

no other exagenous variables in it, which li
Lewbel420001) has extended his fixe

pling estimator are not the ffee lunch they may appear 3 be. That which
ghting undoes. It is commog/ for the end result to be vy iarge standard
unfortunate. insofar as the purpose of the biased sam ing was to balance

errogX, which might be viewed
theAlata precisely to avoid ihi

311 A survey of some of these resuits is given by Hsiao (2003). Most of Hsiao (2003) is devoted to the linsar
"/ reyression model. A number of studies specificalty focused on discrete choice models and panel data have
appeared recently, including Beck, Epstein, Jackman, and O"Halloran (2001}, Arelianc (2061) and Greene

{2001}, Vella and Verbeek (1998) provide an application to the joint delermination of wages and union

membertip. Obher 1 mportant cebecences are. RavicreBgabirio
Ond Mica ('ZOID>/ Carero CuDj’)_Jana Fe\'\no.nc)eé —Val (ZOOQ)
S-}-C'Qarf (.ZODG) ond O r‘u\ampa\am anc Si—cwap_} (2’001_) .
fr"i\h‘cfg SCVehQ\ fresvlitrs g—cb f‘f"ac.-\-—\'\'lohc,r\s.




-

((7-66)

IR |

L

The correlation between «; and ;. in the dynamic binary choice model makes
¥id1 endogenous. Thus, the estimators we have examined thus far will not be consistent.
Two familiar alternative approaches that have appeared in recent applications are due to
Heckman (1981) and Wooldridge (2005), both of which build on the random effects

specification. Heckman’s approach provides a separate equation for the initial condition,

Prob(y; = 1|x,-1,’z,-,a,.) CD(x,}'S +ai T+ Oa,) -
PrOb(yrt 1|Xz:a)f:* -1 ,(11) (D(er B+ sz r 1 + a‘l)a L 23"3,Tb

where z; is a set of “instruments” observed at the first period that are not contained in Xir.
The conditional log likelihood is

nlg=Y, @[y -Dszz+ 00| |, @[@r 0B+ 1+

=Z:_'=1 nZ | o,

We now adopt the random effects approach and further assume that o; is normally
distributed with mean zero and variance Ga . The random effects log likelihood function
can be maximized with respect to @1 7.0 B,y,cra) using either the Butler and Moffitt
quadrature method or the maximum simulated likelihood method described in Section
17.4.2. Stewart and Arulampalam (2007) suggest a useful shortcut for formulating the
Heckman model. Let D, = 1 in period I and 0 in every other period and let C;y = 1 — Dy,
Then, the two parts may be combined in

mZje=Y" n]T% {@[@5 -0{(C, KB+ i)+ D, ®iB+7m +A+2D)ax,) |-

In this form, the model can be viewed as a random parameters (random constant term)
model in which there is heteroscedasticity in the random part of the constant term.

Wooldridge’s approach builds on the Mundlak device of the previous section..
Starting from the same point, he suggests a model for the random effect conditioned on
the initial value. Thus,

2
oulyinzi ~ Noo +nyi + 2T, 64

Assembling the parts, Wooldridge’ s model is a bit 31mpler than Heckman’s;

N r-" .r'- s

PrOb(y:t llxn‘ayllauf) q)[(?,y,, (oo + Xit B T Vit + Wit Z; T + ur)]s t= 2, ,T

| ]



Greene-50558 book June 25, 2007 11:6 ‘

794 PART VI + Cross Sections, Pa icroeconometrics

Ifferent values.

where w; = y;(w1/p1) + (1 — y)(wo/ps). Note that w; takes only two
The derivatives and the Hessian4re likewise weighted. A final
after estimation; the appr ) 1ate estimator of the asymptotic variance matrix is the

serial correlation in &, t

term yvi,—1. Chlappor'

081a) examined
¢ were that the somewhat-muted small sample
bias in fixed effects models with.#"= 8 was made much wors€ when there was state
dependence. A related problein is that with a relatively gshort panel, the initial con-
ditions, y;, have a cruciatimpact on the entire path ofutcomes. Modeling dynamic
effects and initial copditions in binary choice modelgds more complex than in the lin-
ear model, and by comparison there are relative}f fewer firm results in the applied

issue at length. Among his findi

% ' Much ofthe contemporary literature has focused on methods of avoiding the strong
" parametric assumptions of the probit and logit models. Manski (1987) and Honore and
Kyriazidou (2000) show that Manski’s (1986) maximum score estimator can be ap-
plied to the differences of unequal pairs of observations in a twd,lperiod panel with
fixed effects. However, the limitations of the maximum score estimator have moti-
vated research on other approaches. An extension of lagged effects to a parametric
model is Chamberlain (1985), Jones and Landwehr (1988), and Magnac (1997), who
added state dependence to Chamberlain’s fixed effects logit estimator. Unfortunately,
once the identification issues are settled, the model is only operational if there are _
no other exogenocus variables in it, which limits'i is-usefulness for practical application, 1=
U Lewbei (2000) has cxtended his ﬁxed effects esumator to dynarmc models as welI nl.

Hsiao (2003) is devoted o t
regrasSion model. A number of studies gffecifically focused on discrofe choice models and panel gata have

eared recently, including Beck, Epgfein, Jackman and O'Hallorgn (2001), Arellano (2001) apd Greene
(2001). Vella and Verbegk (1998) ppévide an application to the jbint determination of wag and_unigr%‘,s
membership.
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Deona angd qubol (2010) have exiendsd Lewbel’s™ s?a.c.'m). (‘ccst‘c:‘::io('”

Medhod do duyname Linarcychoice models and have devised an

ES{ima+oﬁ \eaScJ . Lalefew : - |

o~ 2a XV linear reacecssion.
AT prECar apptentisa Honore and Kyriazidou (2000) have combined the logic

of the conditional logit model and Manski’s maximum score estimator. They specify

|

Prob(ys =1 ]!x,-_, o) =pﬂ(x,, a;) Whel‘é_,:‘i_,' = (Xy. X2, o Xi ),
Prob(yic = 1| X, 7, Y10, 341> i) = FX B+ +yyie)) t=1.....T.

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting
estimator resembles Chamberlain’s but relies on observations for which x; = x;,-1,
which rules out direct time effects as well as, for practical purposes, any continuous
variable. The restriction to a single regressor limits the generality of the technique as
well. The need for observations with equal values of x;, is a considerable restriction, and
the authors propose a kernel density estimator for the difference, x;; — %;,_1, instead
which does relax that restriction a bit. The end result is an estimator that converges
(they conjecture) but to a nonnormal distribution and at a rate slower than 2=/,
Semiparametric estimators for dynamic models at this point in the development
are still primarily of theoreticalinterest. Models that extend the parametric formulations
to include state dependence have a much longer history, including Heckman (1978,
1981a, 1981b), Heckman and MaCurdy (1980}, Jakubson (1988), Keane (1993), and
Beck et al. (2001) to name a few.?” In general, even without heterogeneity, dynamic

Z= 3/5;' ' maodels ultimately involve modeling the joint outcome (v, . .., 1), which necessitates
LENN some treatment involving multivariate integration. Example 237F describes-acrerpne Gu]
(25, application. Stewart {2006) provides another. ' 13.44
= 1.0 /4

Exampic 2877 An intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women, The focus
of the study is the high degree of persistence in the participation decision. Data used in the
study were the years 1979- 1985 of the Panel Study of Income Dynamics. A sample of 1,812
continuously married couples were studied. Exogenous variables that appeared in the model
were measuras of permanent and transitory income and fertility captured in yearly counts of
the number of children from 0-2, 315, and 6{&,—17 years old. Hyslop's formulation, in general
terms, is L

(initial condition) yio = 1{X/oBo + o > 0},
(dynamic model) yjr = 1(X/ 8.+ v¥is—1 +a + Vi > 0)
(heterogeneity correlated with participation) ey = 25+,

{stochastic specification)

w1 X ”',N[O.G,f].
via | X%~ N[0, 53],
wit | Xi ~N[0, o],
Vit = pVig-1 + Wi, 0 +og = 1.
Corrfvip, vil=p% t=1,....,T -1

’!,5 : ichck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they
: observe a large sample of countrics (147) observed over a fairly large number of years, 40. As such, thay are
able to formulate their modeis in a way that makes the asymptotics with respect to T appropriate. They can
analyze the data essentially in a time-series framework. Sepanski (2000) is another application that combines

state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).
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The presence of the autocorrelation and state dependence in the model nvalidate the simple
maximum likelihood procedures we examined earlier. The appropriate fikelihood function is
constructed by formulating the probabilities as

Prob(yio, ¥i1, . ) = Prob(yig) x Prob(yis 1y0) % - -+ x Prob{yir {y;,7-1).

This =till involves a T = 7 order normal integration, which ig approximated in the

using & simulator similar to the GHK simulator discussed inQ7,3.3JAmong Hyslop's results ($.6.72 b

are a comparison of the model fit by the simulator for the muitivariate normal probabilities Tt

with the same meodel fit using the maximum simulated likelihood technicue described in

Section tL5+F>
15.6

.
23.5 BINARY CHOICE MODE

FOR PANEL DATA

growing literature.
The structuralahode| for a possibly unbalanced panel6f data woukd be written

Yi=xf4e, i=1.... . &l i,
yvie=1 if 3% > 0. and 0 othrwise,

e computing

ariate distribution. which is generally problematic,” (We

r.) A more promising approach is an
XpBtvptu, i=1,....mt=1,7
=1 if ¥}, > 0, and 0 otherwise,

om”™ and “fixed” effects models by
tion that «; is unrelated to x;,. so that

ir} is ngt’dependent on x;;. produces the random |
aces a restpiCtion on the distribytion of TCIEILY,

approach based on the GMM estimatioh methad has been s

ested by Avery,
ltinormal integrals
¢ r has appeared in the ligprature. See. for example.

e, and Runkle (1994, 1997). The GEE gstimator of Diggle. Liang4nd Zeger (1994) [sce also,
eger (1986) and Stata (2006)] seems to e another possibility. However, in all these cases, it must
embered that the procedure specifies estithation of a correlation mafrix for a 7; vector of unobserv
vafiables based on a dependent variable that takes only two values. W€ should not be toa optimistic abou
thisif 7; is even moderately large.
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parentheses) -

.. Uncouditi
Pooled Bl

Heckman
and Singer

Conditional - Conditional
FE Ceccherti  FE Willis

A —1.10 (0.03) 007 (0.03) * 112 (3.66) 1.02 (M28) —0.09 (0.04)
883 (1.25) 1157 (1.68) 19207(7.51) 823 (1.53)
—1.14 (1.06) 585 (1.76) 760 (3.46) —0.13 (1.14)
~1.94 (0.20)
-29.15 (1.1

Constant 1
Constant 2

~3500.45 —473.18
1026 1026

f Cecchetti's model using varebles (1), {2), and (5).
e of the results from Willis's Table I, (Willis reports thal

s& of some missing values. In
far from Cecchetti’s ts, so it will be difficult to comparé
The two “mass i
two values (—1.
difficult to m
iKelihood in going from one mas

-

A SEMIPARAMETRIC MoDEL POR INPIVEDULAL
(.4 %% =zws MODEONG HETEROGENEITY

The panel data analysis considered thus far has focused on modeling heterogeneity with
the fixed and random effects specifications. Both assume that the heterogeneity is con-
tinuously distributed among individuals. The random effects model is fully parametric,
requiring a full specification of the likelihood for estimation. The fixed effects model is
essentially semiparametric. It requires no specific distributional assumption; however,
it does require that the realizations of the latent heterogeneity be treated as parameters,
either estitated in the unconditional fixed effects estimator or conditioned out of the
likelihood function when possible. As noted in the preceding example, Heckman and
Singer’s (1984b) model provides a less stringent model specification based on a discrete
distribution of the latent heterogeneity. A straightforward method of implementing
their model is to cast it as a latent class model in which the classes are distiriguished
by different constant terms and the associated probabilities. The class probabilities are
treated as parametesi:s to be estimated with the model parameters. 1102
Exampile z?z'.—'.g, Semiparameitric Models of He 7
We have extended the random effects and fixed eff Ogit models in Example QW
BN the Heckman and Singer (1984b) model. Table-238shows the specification search and the
v results under different specifications. The first column of results shows the estimated fixed
R | wm%m%m The conditional estimates are shown in parentheses. Of
the 7,293 groups in the sample, 3,056 are not used in estimation of the fixed effects modeis

because the sum of Doctor; is either 0 or T; for the group. The mean and standard deviation
of the estimated underlying heterogeneity distribution are computed using the estimates of

L

)’#-14
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TABLE 2538 Estimated Heterogeneity Models
Number of Classes
K Fived Effect I 2 3 4 3
B 0.10475 0020708 - 0030325 0.033684 (.034083 0.034159
{0.084760) ‘ o
i —0.060973 ~0.18592 0.025550 —0.0058013 ~0.0063516 —0.013627
(—0.030383)
B —(.088407 —(.22947 -0.24708 ~0.26388 —0.26590 - —0.26626
(—0.077764)
Ba —0.11671 —0.045588  —(.050924 —~0L, 058022 ~0.059751 -0.059174
(—0.090816)
Bs —0.057318 0.085293 0.042974 0.037944 0.029227 0.030699
(—0.52072) .
o —2.62334 0.25111 1.91764 1.71669 1.94536 2.76670
(1.00000)  (0.62681)  (0.34838)  (029309)  (0.11633)
o —1.47800 —2.23491 —-1.76371 118323
{0.37319) {0.18412) {0.21714) {0.26468)
o3 ~(.28133 ~0.036739 —1.96750
(046749) (0.46341) {0.19573)
oy —4,03970 —0.25588
{0.026360)  (0.40930)
o5 —6.48191
(0.013960)
Mean —2.62334 0.00000 0.023613 0055059 0.063685 0.054705
Std. Dev. 3.13415 0.00000 1.158655 1.40723 1.48707 1.62143
InL —9438.638 —17673.10 -16353.14 —16278.56 —16276.07 —16275.85
(—6299.02)
AlC 1.00349 1.29394 1.19748 1.19217 1.19213 1.19226

-

« for the refmaining 4,237 groups. The remaining five columns in the table show the results
for different numbers of latent classes in the Heckman and Singer mode). The listed constant
terms are the “mass points” of the underlying distributions. The associated class probabilities
are shown in parentheses under them. The mean and standard deviation are detived fromthe
2- to 5-peint discrste distributions shown. It is noteworthy that the mean of the distribution
is relatively stable, but the standard deviation rises monctanically. The search for the best

13-

model would be based on the AIC. As noted in Section sing a likelihood ratio test
in this context is dubious, as the number of degrees of freedom Is ambiguous, Based on the
AIC, the four-class model is the preferred specification.

MeD&LI NG

13.48 2a5 PARAMETER HETEROGENEITY

S’eoh.m i1
In Ehapter9, we examined specifications that extend the underlying heterogeneity

i

to all the parameters of the model. We have considered two approaches, The random "
parameters, or mixed models discussed in Chapter +7allow parameters to be distribute /5
pecifics jC.1o

continuously across individuals. The latent class model in Section(16.9,

discrete distribution instead. {The Heckman and Singer modet in the previous section
applies this method to the constant term.) Most of the focus to this point, save for
Example 16.16, has been on linear models. However, as the next example demonstrates,
the same methodscan be applied to nonlinear models, such as the discrete choice models.



Greene-50558

.16

book

'235.2 Fixed Effects Mddels

June 25,2007  11:6 i , J, __72 .

a model w1th a random constant term

Ya =t X B+e, i=1...nt=1..T, @
vy =1 if y;'; > 0, and 0 otherwise,

where o; = o +oyu;. This is simply a reinterpretation of the model we just analyzed. We | ( TS B

might, however, now extend this formulation to the full parameter vector. The resulting i

structure is b K
Vi=XpBiten i=1,..nt=1..T, L nsyp
yiu =1 if y} > 0, and O otherwise, | et

where 8, =8 + I'u; where I is a nonnegative definite diagona! matnx—some of its

diagonal elements could be zero for nonrandom parameters. The method of estimation ;5 ma Kimou m

W.—-\_._.

mn&d*rﬂmsame-a&hefo;e The simulated log-likelihood is now e d
im [ ed
g 1 R
18 I Simutatea = Ehﬁ {72 >, [H Flgu (%, (8 + I‘!l_i_r)}]} } . ke l

=1
The simulation now mvolves R draws from the muitivariate distribution of u. Because

the draws are uncorrelated—T is diagonal-l-this is essentially the same estimation prob-
lem as the random effects model considered previously. This model is estimated in

==r=1

133 Example 237. Example 2:11 presents a similar model that assumes that the distribu-

tion of 8, is discrete rather than continuous.

The fixed effects model j
o;dy +X,’-,ﬁ +e, i=1,...,

ractical aspects of estimation
+ K) — nis not limited here,

ability of the observed outcome, for example, ®lg; (o; + x;
for the probit medel or Alg;(w; + X, 8)] for the logft model. What follows
extended to any’index function n_lodel, but for the pfesent, we’ll confine our dttention
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EX
TABLE 229  Estimated Heterogeneous Parameter Models :
Pooled ~ Random Parameters Latent Class

Variable Estimate: 8 Estimate: 8 Estimate: o Estimate: 8§ Estimate: § Estimate; §
Constant 0.25111 —0.034964. " 0.81651 0.96605 —0.18579 —1.52595

(0.091135)  (0.075533)  (0.016542)  (0.43757) (0:23907)  (0.43498)
Age 0.020709 0.026306 0025330 0.049058 0.032248 0.019981

(0.0012852)  (0.0011038)  (0.0004226) (0.0069455)  (0.0031462)  (0.0062530)
Income —-0.18592 —{).0043649 0.10737 02707 —~0.068633 0.45487

(0.075064)  (0.062445)  (0.038276)  (0.37149) (0.16748)  (0.31153)
Kids —(1.22947 —0.17461 0.55520 —0.28385 —0.28336 —0.11708

(0.029537)  (0.024522)  (0.023866)  (0.14279) (0.066404)  {0.12363)
Education —0.045588 —0.040510 0037915 —0.025301 —-0.057335 —0.09385

(0.0056465)  (0.0047520)  (0.0013416) (0.027768)  (0.012465)  (0.027965)
Married 0.085293 0.014618 0070696  —0.10873 0.025331 0.23571

(0.033286)  (0027417)  (0.017362)  (0.17228) (0.075929)  (0.14369)
Class 1.006000 1.00000 0.34833 0.46181 1.18986
Prob. {(.00D000O) {(0.00000}) (0.038495) {0.028062) {0.022335)
InL —17673.10 —=16271.72 —16265.59

7-#B/C I$.1and
Example 2374 Parameter Heterogenelty in a Binary Choice M | 3. '6
We have extended the logit model for doctor visits from Examiple mﬁm‘:—_— L2

eters to vary randomly across individuals. The random paramsters logit model is
Prob{Doctory; = 1) = A{By + fu Agey, + BaIncomey + Py, Kids + Bs Educ + By Married),
where the two models for the parameter variation we have emiployed are!
Continuous: Bg = fi + olly, Uy ~ N[0, 1, k=1, ..., 6, Covluy, Um] =0,
Discrete: w = By with probability :
. £ with probability

B with probability 7. 1}.18

3 We have chosen a three-class latent class model for the “W application, one

3. 1 . might undertake a systematic search, such as in Example 1o find a preferred speci-

. ication. lal presents the fixed parameter (pooled) logit model and the two random
— |5

parameters versions. (There are infinite variations on these spacifications that one might
explore--See Chapfer r dISCUSSlOI'I —we have shown oniy the S|mplest to ilustrate the

| %‘c els. - OMeE-SAROEaTO-SRCCHHS e -
f b igure shows the implied dlstnbutlon for the coefficwnt on age. For the continuocus
= [-;1_ 3 “distribution, we have simply plotted the normal density. For the discrete distribution, we first

obtained the mean (0.0358) and standard deviation (0.0107). Notice that the distribution is
tighter than the estimated continuous normal {(mean, 0.026, standard deviation, 0.0253). To
suggest the variation of the parameter (purely for purpose of the display, because the distri-
bution is discrets), we placed the mass of the ¢enter interval, 0.462, between the midpoints of
the intervals between the center mass point and the two extremes. With awidth of 0.0145 the
density is 0.461 /0.0145 = 31.8. We used the same interval widths for the outer-segments.
This range of variation covers about five standard deviations of the distribution.

1302%

2*We have arrived {once again) at a point where the question of u?w ises. Nonreplicability is an
ongomg challenge in empirical work in economics. (Sce, e.g.. Exampl eproblem is particularly acate
in analyses that involve simulation such as Monte Carlo studies and random parameter models. In the interest
of replicabifity, we note that the random parameter estimates in TablcmT:re computed with NLOGIT

36

[Econometric Software (2007)] and are based on 50 Halton draws. We used the first six sequences (prime
numbers 2,3, 5,7, 11, 13) and discarded the first 10 draws in each sequence.

%19
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23.6 SEMIPARAMETRIC ANALYS

In hisfurvey of qualitative response modeld, Amemiya (1981) reports the fofowing
widgly cited approximations for the lingaf probability (LP) model: Over thetange of
prdbabilities of 30 to 70 percent,

Aside from confirmin
model and providin

» we would once again obtain a scaled version of the correct coefficient vector.
ationship Biogc = 1.68probit» Which fol-

whereas the probit coefficients must be scalgd dowmward. If the sample proportion happens to
0.5, then the right scale factor will be roughly ¢[¢—1(0.5)] = 0.3989. But the density falls rapi
away from 0.5,

#See Ruud (1986) and Gourieroux ct af. (1987).
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17.4.9 Nonresponse, Attrition and Inverse Probability Weighting

Missing observations is a common problem in the analysis of panel data. Nicoletti and Peracchi
(2005) suggest several reasons that, for example, panels become unbalanced:
* Demographic events such as death;
¢ Movement out of the scope of the survey, such as mstltutlonallzataon or
emigration;

» Refusal to respond at subsequent waves,

o Absence of the person at the address;’

e Other types of nonscontact..*~
The GSOEP that we (from Riphahn, Wambach,and Million (2003)) have used in many examples
in this text is one such data set. Jones, Koolman and Rice (2006) (JKR) list several other
applications, including the British Household Panel Survey (BHPS), the European Community
Household Panel (ECHP),and the Panel Study of Income Dynamics (PSID).

If observations are missing completely at random (MCAR), then the problem of
nonresponse can be ignored, though for estimation of dynamic models, either the analysis will
have to be restricted to observations with uninterrupted sequences of observations, or some very
strong assumptions and interpolation methods will have to be employed to fill the gaps. (See
Section 4.7.4 for discussion of the terminology and issues in handling missing data.) The
problem for estimation arises when obseryations are missing for reasons that are related to the /4
outcome variable of interest. “_Nop_rosponse bias” and a related problem, “attrition blas
(individuals leave permanently during the study) result when conventional estimators, such as
least squares or the probit maximum likelihood estimator being used here, are applied to samples
in which observations are present or absent from the sample for reasons related to the outcome
variable. It is a form of “sample selection bias,” that we will examine further in Chapter 19.

Verbeek and N1_1man (1992) have suggested a test for endogeneity of the sample response
pattern. (We will adopt JKR’s notation and terminology for this.) Let A denote the outcome of
interest and x denote the relevant set of covariates. Let R denote the pattern of response. If . @
nonresponse is (completely) random, then E[A[x,R] = E[A[x]. This suggests a variable addition
test (neglecting other panel data effects); a pooled model that contains R in addition to x can | V1L
provide the means for a simple test of endogeneity. JKR (and Verbeek and Nijman) suggest | g e
using the number of waves at which the individual is present as the measure of R, Thus, adding R |y hol 'V
to the pooled model, we can use a simple ¢ test for the hypothesis - "

Devising an estimator given that (non)response is nonignorable requlres a more detailed a7
understanding of the process generating the response pattern. The crucial issue is whether the { )
sample selection is based “on unobservables™ or “on observables.” Selection on unobservables “ —
results when, after conditioning on the relevant variables, x.and other mformatlon z, the sampling
mechanism is still nonrandom with respect to the disturbances in the models. Selection on
unobservables is at the heart of the sample selectivity methodology pioneered by Heckman
(1979) that we will study in Chapter 19. (Some applications of the role of unobservables in
biased estimation are discussed in Chapter 8, where we examine sources of endogeneity in
regression models.) If selection is on observables, then conditioned on an appropriate (/)
specification involving the observable information, (x,z), a consistent estimator of the model
parameters will be available by ¢ purgmg the estimator of the endogeneity of the sampling
mechanism.

JKR adopt an inverse probablllty welghted (IPW) estimator devised by Robins,
Rotnitsky, and Zhao (1995), Fitzgerald, Gottshalk and Moffitt (1998), Moffitt, Fitzgerald, and
Gottshalk (1999).and Wooldridge (2002). The estimator is based on the -general MCAR
assumption that P(R = 1}h,x,z) = P(R=1|x,2). That is, the observable covariates convey all the
information that determines the response pattern — the probability of nonresponse does not vary
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systematically with the outcome variable once the exogenous information is accounted for.

Implementmg this idea in an estimator would require that x and z be observable when R|5 0, that
is, the exogenous data be available for the nonresponders This will typically not be the case in
an unbalanced panel, the entire observation is mlssmg Wooldridge (2002) proposed, somewhat
stronger assumption that makes estimation feaSIble P(R = 1h,x,z) = P(R = l|z) where Z is a set of
eovariates available at wave 1 (entry to the study).” To compute Wooldrldge s IPW estimator, we
will begin with the sample of all individuals who are present at wave 1 of the study. (In our
example 17.17, based on the GSOEP data, not all individuals are present at the first wave.) At
wave 1, (X,Z1) are observed for all individuals to be studied; z, contains information on
observables that are not included in the outcome equation and that predict the response pattern at
subsequent waves, including the response variable at the first wave. At wave ] then,

_P(R,,—l[x,;,,z,l) = 1. Wooldridge suggests using a probit model for P(R;, = 1|x,1,z,,), = 2,04 for

the remammg waves to obtain predicted probabilities of response, p”- The IPW estimator then
maximizes the weighted log likelihood

In Ly = Z_l 2_1 ;_fl nL,.

l

Inference based on the weighted log, likelihood function can proceed as in Section 17.3. A
remaining detail concerns whether the use of the predicted probabilities in the weighted log-

likelihood function makes it necessary to correct the standard errors for two,step estimation. The"'

case here is not an application of the two,step estimators we considered in Section 14, 7, since the
first step is not used to produce an estimated parameter vector in the second. Wooldridge (2002)
shows that the standard errors computed without the adjustment are “conservative” in that they
are larger than they would be with the adjustment.

Example 17.17 Nonresponse in the GSOEP Sample

Of the 7,293 individuals in the GSOEP data that we have used in several earlier examples,
3,874 were present at wayve 1 (1984) of the sample. The pattern of the number of waves
present by these 3,874 are shown in Figure 17.4. The waves are 198411988, 1991, and
1994. A dynamic model would be based on the 1,600 of those present at wave 1 who were
also present for the next four waves. There is a substantial amount of nonresponse in these
data. Not all individuals exit the sample with the first nonresponse, however, so the resulting
panel remains unbalanced. The lmpresswn suggested by Figure 17.4 could be a bit
misleading ~ the nonresponse pattern is quite different from simple attrition. For example, of
the 3,874 individuals who responded at wave 1, 364 did not respond at wave 2, but returned
to the sample at wave 3.

To employ the Verbeek and Nijman test, we used the entire sample of 27,326 household
years of data. The pooled probit model for DocVis > 0 produced the results at the left in table

“I N 17.14. At (Wald) test of the hypothesis that the coefficient on number of waves present is

| zero is strongly rejected, so we proceed to the inverse probability weighted estimator. For
computing the inverse probability weights, we used the following specification:

X1 = constant, age, income, educ, kids, married,

Ziy = female, handicapped dummy, percentage handicapped,
university, working, blue collar, white collar, public servant, yy;

Yir = Doctor Visits > Q in period 1.+

This first)year data vector is used as the observed explanatory variables in probit models for
waves 2.7 for the 3,874 individuals who were present at wave 1. There are 3,874
observations for each of these probit models, since all were observed at wave 1. Fitted
probabilities for Ry are computed for waves 2";7, while R;; = 1. The sample means of these

S -2 )
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probabilities which equal the proportion of the 3,874 that responded at each wave are 1.000,
0.730, 0.672, 0.626, 0.682, 0.568¢ and 0.386, respectively. Table 17.14 presents the
estimated models for several specifications In each case, it appears that the weighting
brings some moderate changes in the parameters and, uniformly, reductions in the standard

errors.

a/

—

Fraquancy.
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TABLE 17.14 Inverse Probability Weighted Estimators

. Random Effects -
Poole i
Endog, d Model Mundlak Fixed Effects
Variable Test Unwtd, IPW Unwitd. IPW Unwtd. IPW
Constant 0.26411 ~ .| 0.0336% | -0.02373 0.09838 0.13237
(0.05893) (0.07684) | (0.06385) | {0.16081) | (0.17019)
Age 0.01369 0.01667 0.01831 0.05141 0.05656 0.06210 0.06841
{0.00080) (0.00107y | {0.00088} | {0.00422) | {0.00388) | (0.00506) | (0.00465)
Income -0.12446 -0.17097 | -0.22263 0.05794 0.01659 0.07880 0.03603
(0.046386) (0.05981) | (0.04801) | (0.11256) | (0.10580) | (0.12891) | {0.12193)
Education | -0.02925 -0.03614 | -0.03513 | -0.06456 | -0.07058 | -0.07752 | -0.08574
{0.00351) (0,00448) | (0.00365) | (0.06104) | (0.05792) | (0.06582) | (0.06149)
Kids -0,13130 -0.13077 | -0.13277 | -0.04961 | -0.03427 | -0.05776 | -0.03546
(0.01828) (0.02303) | (0.01950) | (0.04500) | (0.04356) | (0.05296) | (0.05166)
Married 0.06759 0.06237 0.07015  -0.06582 | -0.09235 | -0.07939 | -0.11283
{0.02060) (C.02616) | (0.02097) | (0.06596) | (0.06330) | (0.08146) | (0.07838)
Mean Age -0.03056 | -0.03401
{0.00479) | (0.00455)
Mean -0.66388 ~0,78077
Income (0.18646) | {0.18866)
Mean 0.02656 0.02899
Education (0.06160) | (0.05848)
Mean -0.17524 -0.20615
Kids (0.07266) | (0.07464)
Mean 0.22346 0.25763
Married (0.08719) (0.08433)
Number -0.02977
of Waves (0.00450)
p 0.46538 0.48616
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17.5 BIVARIATE AND MULTIVARIATE PROBIT MODELS

In Chapter 10, we analyzed a number of different multiple-equation extensions of the classical
and generalized regression model. A natural extension of the probit model would be to allow
more than one equation, with correlated disturbances, in the same spirit as the seemingly
unrelated regressions model. The general specification for a two-equation model would be

¥ =xB +&, » =1 ify; >0, 0 otherwise, ~ [

¥ =X3By+5,, y,=1ify; >0, 0 otherwise, _ (17-49)

e )

This bivariate probit model is interesting in its own right for modeling the Jjoint determination of
two variables, such as doctor and hospital visits in the next example. It also provides the
framework for modeling in two common applications. In many cases, a treatment effect, or
endogenous influence, takes place in a binary choice context. The bivariate probit model provides

3
|

a specification for analyzing a case in which a probit model contains an endogenous binary "

variable in one of the equations. In example 17.21, we will extend (17-41,?) to

W =xiB,+5, W =1ifW >0, 0 otherwise, 44
Y =x3B, +YW +€,, y =1 ify’ >0, 0 otherwise, (17-50)

GG )

This model extends the case in Section 17.3.5, where 7*, rather than W, appears on the right-
hand side of the second equation. In the example, W denotes whether a liberal arts college
supports a women’s stiidies program on the campus while y is a binary indicator of whether the
economics department provides a gender economics course. A second common application, in
which the first equation is an endogenous sampling rule, is another variant of the bivariate probit
model;

S"=xip,+5, S =1ifS >0, 0 otherwise,

¥ =xiB,+¢,, y =1ify" >0, 0 otherwise, &7

02

(¥ x,) observed only when § =1.
| .
In Example 17.22, we will study an application in which § is the result of a credit card application
(or any sort of loan application) while y; is a binary indicator for whether the individual defaults
on the credit account (loan). This is a form of endogenous sampling (in this instance, sampling
on unobservables) that has some commonality with the attrition problem that we encountered in
Section 17.4.9. )

At the end of this section, we will extend (17-49) to more than two equations. This will
allow direct treatment of multiple binary outcomes. It will also allow a more general panel data
model for T periods than is provided by the random effects specification.

|

LS|
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approach to estimafing the structural parameters. In an application somewhat simijar
to Example 23.13/they apply the technique to a labef force participation modef for

icome increases by more than tepfold.
The case in which the endogenous variable in the main equa¥on is, itself, a binary
variable occupies a large segtfient of the recent literature. Congider the model

W =xB+yT+e,
¥ =1 > 0),
Flei | T} #0,

where 7; is g'binary variable indicating some kind ¢f program participation (e.g., grad

y=1 if yt > 0,0 dtherwise,
'»82 + 8, W= 1 if}’i= = 0,

ov[er, £2 | X1, X2] = p.
N .

| +.5. | 238" MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

X3 K]
Prob(X; < x1, X3 < x) = f / $2(21, 22, p) dz1d2s,
—o0 J —co
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SRS which we denote ®2(x1, X2, ). The density is™ ~
i ) : ‘ e~ (/DG +3—2px 3 /(1—e2)
= "f 2(X 3 X ) ="
: $2(x1, x2 .?) T — B

To construct the Iog—lik'elihoc;d; letgiy =21 —~1and g = 2yi2 ~ 1. Thaus, gy =1 if
yij=Tland —1if y; =0for j =1 and 2. Now let
p=Xy; and wy =%, j=12,
and
P = di1di2p-

Note the notational convention. The subscript 2 is used toindicate the bivariate normal
distribution in the density ¢ and cdf ®;. In all other cases, the subscript 2 indicates the
variables in the second equation. As before, ¢(.) and ®1(.) without subscripts denote the

univariate standard normal density and cdf,
The probabilities that enter the likelihood function are

Prob(¥i = yu, ¥ = yn | %1, %2) = ®2(win, w2, pie),

which accounts for all the necessary sign changes needed to compute probabilities for

& [;'* 3 ¥’s equal to zero and one. Thus',ws'ﬂ

n_
Inl = Z In P20y, win, P‘g‘_:).
_i=1
The derivatives of the log-likelihood then reduce to

dlnlL 2 (q,-jg,-f)
e =220 ] x4, f=<1,2,
- 38 azl: ®, )R8

=
134 5|
ok i e~ P
nl qi1qi
=Z 14292

oA R £3 o

where 13 ﬁ ) i
Wiz — Dis Wil]

i1 =¢Wi)P | e

and the subseripts 1 and 2 in g;; are reversed to obtain gi2. Before considering the
Hessian, itis useful to note what becomes of the precedingif p = 0.For8In L/38,,if p =
5| pp = 0, then gi1 reduces to ¢ (wi) @ (wi2), ¢z is (w;i1)¢ (wi2), and By is P (w;1) P (wi). 2
| 355 SeThing these resulfsy =43) with g, and g;; produces (23-2§). Because both func- 13-21
tions in 3 In L/8p factor into the product of the univariate functions, 3 In L/3p reduces
to Y0 Aitas, where Ay, i =1,2,is defined in (5}1—2-}) (This result will reappear in the
LM statistic shown later.) s
The maximum likelihood estimates are obtained by simultaneously setting the three
derivatives to zero. The second derivatives are relatively straightforward but tedious.

‘}q’ See Section B.9.
38 /Mo avoid further ambiguity, and for convenience, the observation subscript will be omitted from &2 =

=27 ®lwn. W, ) and from ¢y = $2(wa, w2, P )-
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Some,simplifications are useful. Let
1

V]."’p‘n, -

8 =

viL = 8 (wip — ppwit)s 80 i1 = $(wi)Plvn),
v = §(wit — pmwiz), SO gy = ¢ (wi2)P(vi).

By muitiplying it out, you can show that
Sip(wir) (vi1) = 8 pwindp (viz) = ¢n.

Then
NPlogl. & X [ Wiigin Pt 33?'1]
= E X1 X)) | — B ’
31381 5 °
e , [ #2 _ gage
381385 gqﬂq@l*” [765 el |
e . Ei
—_ jod o ’
2% ;%zm &2 [p, L =4 22
9 log L
apf = Z.__ D, [52,0.*(1 3 W)+ 8 wnwn — @@2] ’

(17-8

819

L

54

)3-52
(23=47)

where MR"lw, = 8Hwh + wh — 2pwiwiz). (For B2, change the subscripts in 821n L/
88198] ‘and 8? ln_L/aﬁlap accordingly.) The complexity of the second derivatives for
this model makes it an excellent candidate for the Berndt et al, estimator of the variance

matrix of the maximum likelihood estimator.

/
Example Tetrachoric Correlation | ':I- Han A seyeral sfhe rs,

Returning once again to the health care application of Examples 1
we now consider a second binary variable,

Hospitalyy = 1 if HospVis;, > 0 and 0 otherwise.

Our previous analyses have focused on
Doctary =1 if DocVis;e > 0 and 0 otherwise.
A simple bivariate frequency count for these two variables is

Hospital
Doctor o 1 Total
0 9,715 420 10,135
1 15,216 1,975 17,191
Total 24,631 2,395 27,326

Locking at the very large value in the lower-left cell, one might surmise that these two binary
variables (and the underlying phenomena that they represent) are negatively correlated. The
usual Pearson, product moment comrelation would be inappropriate as a measure of this
correlation since it is used for contmuous variables, Consider, instead, a bivariate probit

“model,”
Hi = 1 +eyy,  Hospital, =1{H}; > 0),
D7 = pa + 6251, Doctory = 1{Dj; > 0),



]
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7.5 2

1F =445
where (24, £3) have a bivariate nonna,distribution with means (0, 0), variances (1, 1) and cor-
relation p. This is the model in { } without independent variables. In this representation,

~ the tetrachoric correlahon, which is a correlation measure for a pair of binary varables,

is precisely the p in this model—lt is the comelation that would be measured between the
underlying continuous varlabfes If they could be observed. This suggests an interpretation
of the correfation coefficient in a bivariate probit model—as the conditional tetrachoric cor-
relation, It also suggests a method of easily estimating the tetrachoric correlation coefficient
using a program that is built into nearly all commercial software packages.

Applied to the hospital/doctor data defined earlier, we obtained an estimate of p of
0.31108, with an estimated asymptotic standard error of 0.01357. Apparently, our earlier
intuition was incorrect.

FEEZE TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence
of correlation in this model. Under the null hypothesis that p equals zero, the model
consists of independent probit equations, which can be estimated separately, Moreover,
in the multivariate model, all the bivariate (or multivariate) densities and probabilities
factor into the products of the marginals if the correlations are zero, which makes
construction of the test statistic a simple matter of manipulating the results of the
independent p1 obits. The Lagrange multiplier statistic for testing Hy: p =01in a bivariate
probit model is ™3 ﬁ

[ ¢(Wi1)¢(wl’)
M= Ak YUY YO
- 2
z{i [¢(Wl l)¢(W:2)]
=1 (w1 (—wi) D (wi2) @ (—win)

As usual, the advantage of the LM statistic is that it obviates computing the bivariate
probit model. But the full unrestricted model is now fairly common in commercial soft-
ware, so that advantage is minor. The likelihood ratio or Wald test can often be used with
equal ease. To cairy out the likelihood ratio test, we note first that if p equals zero, then
the bivariate probit model becomes two independent univariate probits models. The
log-tikelihood in that case would simply be the sum of the two separate log-likelihoods.
The test statistic would be

Ar = 2[In Lprvariate — (In L; + In £5)].

This would converge to a chi-squared variable with one degree of freedom. The Wald
test is carried out by referring

. 2
A‘WALD = [PMLE/\/ESL Asy. Val'{ﬁMLE]]

to the chi-squared distribution with one degree of freedom. For 95 percent significance,
the critical value is 3.84 (or one can refer the positive square root to the standard normal
critical value of 1.96). Examplc 23:;1'# demonstrates.

.-,?

39 AThis is derived in Kicfer (1952).

o
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PARTTIAL
I'-} 5,7 28T NMARGINAL EFFECTS

There are several “marginal effects” one might want to evaluate in a bivariate probit

qo° ‘model.#Z A natural first step would be the derivatives of Prob[y =1, 2= 1]x;, xz]

) _ -5—‘-0 "These can be deduced from (Mby multiplying by &, removing the sign carrier, &
A and differentiating with respect to x X/ rather than 8;. The result is

3¢2(,K|%1’;¥2ﬁ2, P _ $x, B (.’-‘2921 ﬂx;.ﬁ-l ) By
G vi—p

Note, however, the bivariate probability, albeit possibly of interest in its own right, is not
aconditional mean function. As such, the preceding does not correspond to a regression
coefficient or a slope of a conditional expectation.

For convenience in evaluating the conditional mean and its partial effects, we will
define a vector X = x; U X and let x{8; = x'y,. Thus, y; contains all the nonzero
elements of By and poss:bly some zeros in the positions of variables in x that appear
only in the other equation; 72 is defined likewise. The bivariate probability is

Probly; =1, vy = 1|x] = ®2f¥'y1, X712, pl.

Signs are changed appropriately if the probability of the zero outcome is desired in
either case. (See 2—3-44:") The marginal effects of changes in x on this probability are
given by UL B
=0 a0,
13- 5‘!

9%,
wheie g) and g> are dem-ﬂé) The familiar univariate cases will arise if p =0,
and effects specific to one equation or the other will be produced by zeros in the corre-

sponding position in one or the other parameter vector. There are also some conditional
mean functidns to consider. The unconditional mean functions are given by the univari-
ate probabilities:

=& + 8272,

E[_Vj ].Ix] =,';1>(§f}’;), j = 11 21
so the analysis of 82}3—9) and (38-10) applies. One pair of conditional mean functions
that might be of interest are
Probly; =1, y; = 1x]
Probly; = 1| x]

Elpilyp=1x]=Problyy =11y = 1,x] =

_ P X'y, X2, 0)
Sxy2)
and similarly for E[y2 | y1 = 1, x]. The marginal effects for this function are given by

B.E[,wi}n=1,xlm( 1 )[ (“ ¢('rz)) }
ox ~\aayn/ BR T\ Ponyy, )7

Finally, one might construct the nonlinear conditional mean function

_ DXy, @y — DX'yy, Qya — D]
Elnlyx] = B[2y - Dxys] '

o‘-’i"Scc Greene (1996b) and Christofides et al. {1997, 2000).

TL,_, clpr‘wq-’»—\ue; (_, -H"\i}' 'LU/\C‘I‘IW are 4le. Same., As

Lhose ?fe.genl-ec! ear‘.er widh S1gmn CLtheS ' Sever o
qu(r:.s L 5 ‘jz “o s $he arqume ntd
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Example 281& 89 ivariate Probit Model for Health Care Utilization

We have exterxied the b!varlate problt model of the previous example by specifying a set of
independent variables,

= Constant, Female,, Age,;, Incomey,, Kids,;, Education;,, Married,.

We have specified that the same exogenous variables appear in both equations. (There is no
requirement that different variables appear in the equations, nor that a variable be excluded
frem each equation.) The comect analogy here is to the ssemingly unrelated regressions
model, not 1o the linear simultaneous eguations model, Unlike the SUR maodel of Chapter 10,
it is not the case here that having the same variables in the two equations implies that the
model can be fit equation by equation, one squation at a time. That result only applies to the
estimation of sets of linear regression equations.

Table 22-1Zcontains the estimates of the parameters of the univariate and bivariate probit
models. The tests of the null hypothesis of zero correlation strongly reject the hypothesis
that » equals zero, The t statistic for p based on the full model is 0.2981 /0.0139 = 21.446,
which is much larger than the critical valus of 1,96, For the likelihood ratio test, we compute

Ap = 2{—25285.07 — [~17422.72 — { ~8073.604)}} = 422.508.

Once again, the hypothesis is rejected. (The Wald statistic is 21.446° =< 459.957.) The LM
statistic is 383.953. The coefficient estimates agree with expactations. The income coefficient
is statistically significant in the doctor equation but not in the hospital equation, suggesting,
perhaps, that physican visits are at least to some extent discretionary while hospital visits
OCCUr Oh an emergency basis that would be much less tiad to income. The table also contains
the decomposition of the partial effects for E[y1 | y2 = 1]. The direct effect is [gn / d(xy2)]y+
in # iven earlier. The mean estimate of E[y, | y» = 1] is 0.821285. In the table in
Example , this would correspond to the raw proportion P(D =1, H =1} /P(H =1) =
(1975 / 27326) / 2305 / 27326) = 0.8248.

17./8

CL
TABLE Z3%F  Estimated Bivariate Probit Madat™

Doctor Hospital

Model Estimates Partial Effecis Model Estimaies
Variable  Univariate  Bivariate Direct Indirect Total Univariate  Bivariate
Constant —0.1243 —0.1243 ~1.3328 —~1.3385
{0.05815) (0.05814) (0.08320)  (0.07937)
Female (.3559 0.3551 0.09650 —0.00724 0.08926 0.1023 0.1050

(0.01602)  (0.01604)  (0.004957) (0.001515) (0.005127) (0.02195) (0.02174)

Age 0.01189 0.01188 0003227 —000032  0.002009 0004605  0.00461
(0.0007957) (0.000802) (0.000231) (0.000073) (0.000238) (0.001082) (0.001058)
Income —0.1324  ~0.1337  ~0.03632 0003064 —0.03939 003739  0.04441
(D.04655)  (D.04628)  (0.01260) (0.004105) (0.01254) (0.06329)  (0.05946)
Kids —0.1521  —0.1523  —0.04140 0001047 —0.04036 —001714 —0.01517

(0.01833)  (0.01825) (D.005053) (DODI773) (D.005168) (D.02562)  (0.02570)

Education —0.01497 —0.01484 —0.004033  0.001512 —0.002521 —-0.0219% -0.0219]

(0.003575)  (0.003575) (0.000977) (D.00035) (0.0010)  (0.003215) (0.005110)

Married 0.07352 0.07351 0.01998 0003303 002328 004824 -0.04789

(0.02064)  {0.02063) (0.005626) (0.001917) (0.H05735) (0.02788)  (0.02777)

O €

stimaled correlation cocllicie st = 0.290 (0.0124).
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17.5.4 A Panel Data Model for Bivariate Binary Response

Extending multiple equation models to accommodate unobserved common effects in panel data
settings is straightforward in theory, but complicated in practice, For the bivariate probit case, for
example, the natural extension of (17-49) would be

* ' v ¥ .
N = .Xi,nﬁ1 TELy T N =1 ify,, >0, 0otherwise,

* . o e * .
Yo it :_,x'z,f:_ﬁz +8yy Ty Yoy =1 ify,, >0, 0 otherwise,

et 2((a) 7

The complication will be in how to treat (allaz). A fixed effects treatment will require estimation
of two full sets of dummy coefficients, will likely encounter the incidental parameters problem in
double measure, and will be complicated in practical terms. As in all earlier cases, the fixed
effects case also preempts any specification involving time, invariant variables. It is also unclear
in a fixed effects model, how any correlation between o; and o; would be handled. It should be
noted that strictly from a consistency standpoint, these considerations are moot. The two
equations can be estimated separately, only with some loss of efficiency. The analogous situation
would be the seemingly unrelated regressions model in chapter 10. A random effects treatment
(perhaps accommodated with Mundlak’s approach of adding the group means to the equations as
in Section 17.4.5) offers greater promise. If (o,05) = (ul,'-yg) are normally distributed random
|

effects, with
U i | 0 0'2 oG
2 'XI{;XN ~N » : PoI%2 )
U, T 0)\poo, o

then the unconditional log likelihood for the bivariate probit model,
n I »
Inz= Zf=1 In Lh% H,=1 Dy (W [, Wy |83 00 ). (U585 )d“yd“zzx >

can be maximized using simulation or quadrature as we have done in previous applications. A
possible variation on this specification would specify that the same common effect enter both
equations. In that instance, the integration would only be over a single dimension, In this case,
there would only be a single new parameter to estimate, 6, the variance of the common random
effect while p would equal one. A refinement on this form of the model would allow the scaling
to be different in the two equations by placing u; in the first equation and 8y, in the second. This
would introduce the additional scaling parameter, but p would still equal one. This is the
formulation of a common random effect used in Heckman’s formulation of the dynamic panel
probit model in the Section 17.4.6.



Example 17.20 Bivariate Random Effects Model for Doctor and Hospital Visits

We will extend the pooled bivariate probit model presented in Example 17.18 by allowing a
general random effects formulation, with free correlation between the  time, varying
components (e,.az) and between the time,invariant effects, (_U1,U2) We used simulation to fit
the model. Table 17.16 presents the pooled and random' effects estimates.
likelihood functions for the pooled and random effects models are -25285.07 and =23769.67, |

- respectively. Two times the difference is 3030.76. This would be a chi squared with three

degrees of freedom (for the three free elements in the covariance matrix of s and ). The
95%. critical value is 7.81, so the poohng hypothesis would be rejected. The change in the
correlation coefficient from 2681 to .1501 suggests that we have decomposed the
disturbance in the model into a ttmej. varying part and a time, invariant part. The latter seems
to be the smaller of the two. Although the time, invariant elements are more highly correlated,
their variances are only 0.2233° = 0.0499 and '0.63382 = 0.4017 compared to 1.0 for both &,
and €.

TABLE 17,16 Estimated Random Effects Bivariate Probit Model

The log=,

Doctor Hospital
Pooled Random Effects Pooled Random Effects
Constant -0.1243 -0.2976 -1.3385 -1.5855
{0.05814) (0.0965D) (0.07957) {0.10853)
Female 0.3551 0.4548 0.1050 0.1280
(0.01604) (0.02857) (0.02174) {0.02954)
Age 0.01188 0.01983 0.004861 0.00496
(0.000802) (0.00130) {0.001058) (0.00139)
Income -0.1337 ~0.01059 0.04441 0.13358
(0.04628) (C.06488) {0.0594¢6) {(0.07728)
Kids -0.1523 -0.1544 -0.01517 0.02155
{0.01825) (0,02692) (0.02570) (0.03211;
Education -0.01484 ~-0.02573 -0,02191 -0,02444
(0.003575) (0.00612) {0.005110) {0.00675)
Married 0.07351 0.02876 -0.04789 -0.10504
{(0.02063) {0,03167) (0.02777) (0.03547)
Corr(e.e,) 0.2981 0.1501 0.2981 C.1501
Corr(uyu,) 9.0000 0.5382 0.0000 0.5382
Std. Dev. u 0.0000 0.2233 0.0600 0.6338
Std. Dev. & 1.0000 1.0000 1.0000 1.0000




17.5.5 Endogenous Binary Variable a Recursive Bivariate Probit Model

Section 17.3.5 examines a case in which there is an endogenous variable in a binary choice
(probit) model. The model is

x
W =xB +¢,, _

y =xiB, +7W +g,, y =1 ify’ >0, 0 otherwise,

QNG 5

The application examined there involved a labor force participation model that was conditioned
on an endogeous variable, the spouse’s hours of work. In many cases, the endogenous variable in
the equation is also binary, In the application we will examine below, the presence of a gender
economics course in the economics curriculum at liberal arts colleges is conditioned on whether
or not there is a women’s studies program on the campus. The model in this case becomes

W =xiB +e, W=1ifW" >0,0 otherwise,
Y =x3B, +1W +5,, y =1 ify" >0, 0 otherwise,

a2

This moedel illustrates a number of interesting aspects of the bivariate probit model. Note L]
. that this model is qualitatively different from the bivariate probit model in (17-49); the first |
/TFIN%  dependent variable, W, appears on the right-hand side of the second equation:*" This model is a
w1~ rrecursive, simultaneous-equations model. Surprisingly, the endogenous nature of one of the
/1.1 variables on the right-hand side of the second equation can be ignored in formulating the log;
likelihood. [The model appears in Maddala (1983, p. 123).] We can establish this fact with the
following (admittedly trivial) argument: The term that enters the log-likelihood is P(y =1, W=1)
=Py=1| W= 1)P(W = 1). Given the model as stated, the marginal probability for /¥ is just
®(x'B), whereas the conditional probability is .C_Dz(...){(I)(}l'lﬁo. The product returns the bivariate
normal probability we had earlier. The other three terms in the log-likelihood are derived
similarly, which produces (Maddala’s results with some sign changes): — - @

P(y =17 =1)=D(x;B, +7, X)), |
Py=1W=0=0008, ,-xB) | o .
Ply=0F =1)=B-(%f, + Nix,p) Loty TN
P(y =0} =0) = O(=x;,.-xip,.p) v
wi Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint

(recursive) effect of W = veteran status on ¥, smoking behavior. The estimator they used was two-stage
least squares and GMM.
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1L
These terms are exactly those of (17-49) that we obtain just by carrying W in the second equation
with no special attention to its endogenous nature. We can ignore the simultaneity in this model
and we cannot in the linear regression model because, in this instance, we are maximizing the
log-likelihood, whereas in the linear regression case, we are manipulating certain sample
moments that do not converge to the necessary population parameters in the presence of

- simultaneity.

Example 17.21 Gender Econom.iés Cbixfses at Liberal Arts Colleges
Burnett (1997) proposed the following bivariate probit model for the presence of a gender
ecocnomics course in the curriculum of a libera! arts college: ' :

Prob[G=1, W=1|, )g_G',‘xw] = y(Xa'Be + ¥ W, XwPw, P).
The dependent variables in the model are

G = presence of a gender economics course,
W = presence of a women's studies program on the campus. .

The independent variables in the model are

z, = constant term; .

Z, = academic reputation of the college, coded 1 (best), 2, . . . to 141;

Z3 = size of the full-time economics faculty, a count:” .
24 = percentage of the economics faculty that are women, proportion (0 to 1);
zs = religious affiliation of the college, 0 = no, 1 = yes; .

zgs = percentage of the college faculty that are women, proportion (0 to 1);
sz'l—_zw = regional dummy variables, South, Midwest, NortheastWest. ...

The regressor vectors are

Xo =21, 2p, Z3, 24, Z5 (gender economics course equation),
Xw=22.7s Zg, Zr-Z1o  (WOmen's studies program equation).

Maximum likelihood estimates of the parameters of Burnett's model were computed by
Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools offer gender
economics, 58 have women’s studies, and 29 have both. (See Appendix Table F17.1.) The
estimated parameters are given in Table 17.17. Both bivariate probit and the single-equation
estimates are given. The estimate of p is only 0.1359, with a standard error of 1.2359. The
Wald statistic for the test of the hypothesis that p equals zero is (0.13594.2539)% = 0.011753.
For a single restriction, the critical value from the chi-squared table is 3.84, so the hypothesis
cannot be rejected. The likelhood ratio statistic for the same hypothesis is
2[-85.6317 |~| (-85.6458)] |=10.0282, which leads to the same conclusion. The Lagrange
multiplier statistic is 0.003807, which is consistent. This result might seem counterintuitive,
given the setting. Surely “gender economics” and “women’s studies” are highly correlated, but
this finding does not contradict that proposition. The correlation coefficient measures the
correlation between the disturbances in the equations, the omitted factors. That is, P
measures (roughly) the correlation between the outcomes after the influence of the included
factors is accounted for. Thus, the value 0.1359 measures the effect after the influence of
women's studies is already accounted for. As discussed in the next paragraph, the
proposition turns out to be right. The single most important determinant (at least within this
model} of whether a gender economics course will be offered is indeed whether the college
offers a women's studies program.

The marginal effects in this model are fairly involved, and as before, we can consider
several different types. Consider, for example, z,, academic reputation. There is a direct



effect produced by its presence in the gender economics course equation. But there is also
an indirect effect. Academic reputation enters the women's studies equation and, therefore,
influences the probability that W equals one. Because W appears in the gender economics
course equation, this effect is transmitted back to y. The total effect of academic reputation
and, likewise, religious affiliation is the sum of these two parts. Consider first the gender
economics variable, y. The conditional mean is :

EIG | Xe, Xwl|=|  Prob[W= 1] E[G | W= 1, X6, %]
~7 +Prob[W= 0] £]G | W= 0, Xo, Xu]

= Qo(XsBe + v, XwBw 0) + Do(XcBe~ Xw/Bw,~P).

Derivatives can be computed using our earlier results. We are also interested in the effect of
religious affiliation. Because this variable is binary, simply differentiating the conditional mean
function may not produce an accurate result. Instead, we would compute the conditional
mean function with this variable set to one and then zero, and take the difference. Finally,
what is the effect of the presence of a women’s studies program on the probability that the
college will offer a gender economics course? To compute this effect, we would compute

Prob[G=1| W=1, Xg, Xw] — Prob[G = 1| W= 0, Xg, Xw].
In all cases, standard errors for the estimated marginal effects can be computed using the

delta method or the method of Krinsky and Robb.
- Table 17.18 presents the estimates of the marginal effects and some descriptive statistics

| for the data. The calculations were simplified slightly by using the restricted model with p = 0.

Computations of the marginal effects still require the preceding decomposition, but they are
simplified by the result that if p equals zero, then the bivariate probabilities factor into the
products of the marginals. Numerically, the strongest effect appears to be exerted by the
representation of women on the faculty; its coefficient of +0.4491 is by far the largest. This
variable, however, cannot change by a full unit because it is a proportion. An increase of 1
percent in the presence of women on the faculty raises the probability by only +0.004, which
is comparable in scale to the effect of academic reputation. The effect of women on the
faculty is likewise fairly small, only 0.0013 per 1 percent change. As might have been
expected, the singlé most important influence is the presence of a women's studies program,
which increases the likelihood of a gender economics course by a full 0.1863. Of course, the
raw data would have anticipated this result; of the 31 schools that offer a gender economics
course, 29 also have a women’s studies program and only twe do not. Note finally that the
effect of religious affiliation (whatever it is) is mostly direct. -
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TABLE 23"1%’ Estimates of a Reclrsive Simultaneous Bivariate Probit Model
 (estimated standard-errors in parentheses)

Single Equation Bivariate Probit
Variable Coefficient Standard Error Cocfficient Standard Error
. Gender Economics Eguation
- Constant —1.4176 - {0.8768) -1.1911 (2.2155)
AcRep ~{1L01143 __(0.003610) -0.01233 (0.007937)
WomStud 11095 . -~ (0.4699) 08835 (2.2603)
EconFac 0.06730 {0.05687) 0.06769 {0.06952)
PctWecon 2.5391 {0.8997) 2.5636 (1.0144)
Relig —0.3482 {0.4212) ~0.3741 {0.5264)
Women’s Studies Equation
AcRep —0.01957 (0.004117) —(L01939 {0.005704)
PetWiac 1.9429 {0.9001) 1.8914 (0.8714)
Relig | {44094 (0.3072) ~0.4584 (0.3403)
South 1.3597 (0.5948) 1.3471 (0.6897)
West 2.3386 (0.6449) 23376 {0.8611)
North 1.8867 {0.53927) 19009 {0.8495)
Midwest 1.8248 {0.6595) 1.8G70 (0.8952)
P 0.0000 {0.0000) 0.1359 (1.2539)
In L —85.6458 —85.6317

TAELEa:uAj Marginal Effects fniGender Ecanomics Model

Direct Toial (Std. Error) Ivpe of Variable, Mean)

Gender Economics Equation

AcRep -0.002022  ~0.001453 0003476  (0.001126)  (Continuous, 119.242)

PotWecon  +0.4491 +0.4491 (0.1568) (Continucus,  .24787)

EeonFac +0.01180 41,1190 (0.01292) {Continucus,  6.74242)

Relig -0.06327 —0.02306 ~0.08632 (0.08220) (Binary, 0.57576)

WomStud  +0.1863 +0,1863 (0.0868) (Endogenous,  (.43939)

PetWiac +0,14434 +0.14434 {0.09051) {Continuous,  035772)
Women's Studies Equation

AcRep —0.00780 -~{.00780 (0.001654)  (Continvous, 119.242)

PetWiac +0.77489 +0.77489 {0.3591) {Continuous, 0.35772)

Relig ~017777 ~017777 (0.11946) {Binary, 0.57576)

13-90
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17.5.6 Endogenous Sampling in a Binary Choice Model

We have encountered several instances of nonrandom sampling in the binary choice setting. In
Section 17.3.6, we examined an application in credit scoring in which the balance in the sample
of responses of the outcome variable, C = 1 for acceptance of an application and C = 0 for
- rejection, is different from the known proportions in the population. The sample was specifically
skewed in favor of observations with C = 1 to enrich the data set. A second type of nonrandom
sampling arose in the analysis of nonresponse/attrition in the GSOEP in Example 17.17. The data
suggest that the observed sample is not random with respect to individuals’ presence in the
sample at different waves of the pancl. The first of these represents selection specifically on an
observable outcome, - the observed dependent variable. We constructed a model for the second
of these that relied on an assumption of selection on a set of certain observables “the variables
that entered the probability weights. We will now examine a third form of nonrandom sample
selection, based crucially on the unobservables in the two equations of a bivariate probit model.

We return to the banking application of Example 17.9. In that application, we examined
a binary choice model,

Prob(Cardholder = 1) = Prob(C =1 | x)
= OB + B2 Age + B3 Income + By OwnRent
+ Bs Months at CurrentAddress
+ Be SelfEmployed
+ By Number of Major Derogatory Reports
+ Bs Number of Minor Derogatory Reports).

From the point of view of the lender, cardholder status is not the interesting outcome in the credit
history, default is. The more interesting equation describes Prob(Default = 1}z, C=1). The
natural approach then, would be to construct a binary choice model for the interesting default
variable using the historical data for a sarnple of cardholders. The problem with the approach is
that the sample is not randomly drawii’ = applicants are screened with an eye specifically toward
whether or not they seem likely to default. In this application, and in general, there are three
economic agents, the credit scorer (e.g., Fair Isaacs), the lender, and the borrower. Each of them
has latent characteristics in the equations that determine their behavior. It is these latent
characteristics that drive, in part, the application/scoring process and, ultimately, the consumer
behavior.
A model that can accommodate these features is (17- 5 1)

s =xB +g, S =1if S’ >0, 0 otherwise,
_J" =x,B,+€,5, y =1 ify' >0, 0 otherwise,

0l 1
(El |_)|£l,_x2]~N[[ J[ p”’
£, i 0 1 o 1
(¥ 4x,) observed only when S =1,

which contains an observation rule, S = 1, and a behavioral outcome, y=0or 1. The endogeneity
of the sampling rule implies that

Prob(y =1|8=1,x;) # O(x,').
|
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From properties of the bivariate normal distribution, the appropriate probability is

Prob(y=1|S=1,x.,X,) = Q{MP_L]

Ji-¢?

If p is not zero, then in using the snmple univariate probit model, we are omitting from our model
any varlables that are in x; but nat in X,, and in any case, the estimator is inconsistent by a factor
(1+ p'"™.  To underscore the source of the bias, if p equals zero, the conditional probability
returns to the model that would be estimated with the selected sample. Thus, the bias arises
because of the correlation of (i.e., the selection on) the unobservables, ¢; and &;. This hodel was
employed by Wynand and van Praag (1981) in the first application of Heckman’s (1979) sample
selection model in a nonlinear setting, to insurance purchases, by Boyes, Hoffman, and Lowe
{1989) in a study of bank lending, by Greene (1992) to the credit card application begun in
Example 17.9 and continued in Example 17.22, and hundreds of applications since. [Some
discussion appears in Maddala (1983) as well.]

Given that the forms of the probabilities are known, the appropriate log, likelihood
function for estimation of B, 3, and p is easily obtained. The log likelihood must be constructed
for the joint or the margmal probabilities, not the conditional ones. For the “selected
observations,” that is, (y=0, S‘—l) or (y=1 S—l) the relevant probability is simply

f r.'- %,

Prob(y=0 or 1[S51) x Prob(S = 1) = ®,[(2y )% Bor 11 @1, (2:1)p]

For the observations with S = 0, the probability that enters the likelihood function is simply

Prob(gSf—';"Olel) = @(-x,'B1). Estimation is then based on a simpler form of the bivariate probit log--l-

likelihood that we examined in Section 17.5.1. Partial effects and post estimation analysis would
follow the analysis for the bivariate probit model. The desired partial effects would differ by the
application, whether one desires the partial effects from the conditional, joint, or marginal
probability would vary,, The necessary results are in Section 17.5.3.

Example 17.22 Cardholder Status and Default Behavior
in Example 17.9, we estimated a logit mode! for cardholder status,

Prob{Cardholder = 1) = Prob(C = 1 | x)
=0(B, + B2 Age + B3 [ncome + B4 OwnRent
+ Bs CurrentAddress |+ Bs SelfEmployed
+ 7 Major Derogatory Reports
+ Bg Minor Derogalory Reports)-;-

using a sample of 13,444 applications for a credit card. The complication in that example
was that the sample was choice based. In the data set, 78.1% of the applicants are
cardholders. In the population, at that time, the true proportion was roughly 23.2%, so the
sample is substantially choice based on this variable. The sample was deliberately skewed
in favor of cardholders for purposes of the original study [Greene (1992)]. The weights to be
applied for the WESML estimator are 0.232/0.781 = 0.297 for the observations with C = 1 and
0.768/0.219 = 3.507 for observations with C = 0. Of the 13,444 applicants in the sample,
(10,499 were accepted (given the credit cards). The'default ratevin the sample is 996/10,499
||or 9.48%. This is slightly less than the populatlon rate at the time, 10.3%. For purposes of a
less complicated numerical example, we will ignore the choice, based sampllng nature of the

data set for the present. An orthodox treatment of both the selection issue and the cheice -

based sampling treatment is left for the exercises [and pursued in Greene (1992).]



We have formulated the cardholder equation so that it probably resembles the policy of
credit scorers, both then and now. A major derogatory report results when a credit account
that is being monitored by the credit reporting agency is more than 60 days late in payment.
A minor derogatory report is generated when an account is 30 days delinquent. Derogatory
reports are a major contributor to credit decisions. Contemporary credit processors such as
Fair Isaacs place exiremely heavy weight on the “credit score,” a single variable that
- summarizes the credit history and credit,carrying capacity of an individual, _We did not have

- access to credit scores at the time of this study. The selection equation’is'given above. The
default equation is a behavioral model. There is no obvious standard for this part of the
model. We have used thrée variables, Dependents, the number of dependents in the
household, /ncome, and Exp_fncome, which equals the ratio of the average credit card
expenditure in the 12 months after the credit card was issued to average monthly income.
Defauit status is measured for the first 12 months after the credit card was issued. '

Estimation results are presented in Table 17.19. These are broadly consistent with the

earlier results ~"the model with no correlation from Example 17.9 are repeated in Table _

17.19. There are two tests we can employ for endogeneity of the selection. The estimate of p
is 0.41947 with a standard error of 0.11762. The t ratio for the test that p equals zero is 3.57,
by which we can reject the hypothesis. Alternatively, the likelihood ratio statistic based on the
values in Table 17.19 is 2(8670.78831 ~ 8660.90650) = 19.76362. This is larger than the
critical value of 3.84, so the hypothesis of zero correlation is rejected. The results are as
might be expected, with one counterintuitive result, that a larger credit burden, expenditure to
income ratio, appears to be associated with lower default probabilities, though not
significantly so.

Table 17.19 Estimated Joint Cardholder and Default Probability Modals

Endogenous Sample Model Uncorrelated Equations

Variable/Equation Estimate | Standard Error Estimate | Standard Error
. Cardholder Equation
~Ceonstant 0.30516 0.04781 ( 6.38) 0.31783 0.04780 ( 6.63)
Age 0.00226 0.00145 ( 1.56) 0.00184 0.00146 ( 1.26)
Current Address 0.00091 0.00024 { 3.80) 0.C0095 0.00024 ( 3.92)
Own Rent ~0.18758 0.03030 { 6.19) 0.18233 0.03048 { 5.98)
Tncome 0.02231 0.00093 { 23.87) 0.02237 0,00093 (23.95)
Self Employed -0.43015 0.05357 ({ -8.03) -D.43625 0.05413 (-8.086)
Major Derogatory -0.69598 0.01871 (-37.20} -0.69912 0.01839 (-38.01)
Minor Derogatory -0.04717 0.01825 ( -2.58) -0.02126 0.01829 ({ -2.26)
Default Equation

Constant -0.96043 0.04728 (-20,32) ~0.81528 0.02104 (-19.86)
Dependents 0.04995 0.61415 ( 3.53) 0.04993 0.01442 { 3.46)
Income -0.01642 0.00122 (-13.41) -0.01837 0.00119 (-15.41)
Expend/Income ~0.16918 0.14474 ( -1.17) -0.14172 0.14913 ( -0.95)
Correlation 0.41947 0.11762 ( 3.57} 0.000 0.00000 (0)
log Likelihood -8660. 20650 -8670.78831

(3-93
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B26 'PART Vi + Cross Sections, Panel Data, and Microecoanometrics ~

LRI 0.573 0.535 . 0407 _ 0279 0.000
Ry 0.844 0.844 0.797 0.754 0.641
A 0.565 1560,/ 0.526 (.444 0.319 0.600

2 0.561 0.530 0.475 .343 0.000
R, 0.708 0.672 0.589 0.447 0.000
R 0.687 0.679 0.628 0.567 0.545 0.000

101 101 0
Mo 31 0

Before closing this application, we can use thi€ opportunity to examine the fit mea-
sures listed in Section 23.4.5, We computed the ¥rious fit measures using seven different
specifications of the gender economics equafion:

Single-equation probit estimates, 21, 23, 73, Z4. Z5, W
Bivariate probit model estimateg 2y, 23, 72, 24, 75, ™
Single-equation probit estimafes, z1, 22, 23, 24, 25

} 78, Y2
Single-equation probit gétimates, 25, 73,  Zs
Single-equation probif estimates, z;, 5
Single-equation ppdbit estimates z; (constant only).
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re removed from the model. The Ben-Akiva measure ha€ an obvious flaw in that with
only a constantterm, the model still obtains a “fit” of 0.641. From the prediction matrices,
it is clear that the explanatory power of the modek such as it is, comes from its ability
to predict the ones correctly. The poorer the mddel, the greater the number of correct
predictions of y = 0. But as this number risgg the number of incorrect predictions rises
and the number of correct predictions 9% = 1 declines. All the fit measures appear to
react to this feature to some degree. THe Efron and Cramer measures, which are nearly
identical, and McFadden’s LRI appear to be most sensitive to this, with the remaining
two only slightly less consisten

+

13.5- & “=ZZ53= A MULTIVARIATE PROBIT MODEL N
|3 %
In principle, a multivariate probit model would simply extend (23=#4} to more than

two outcome variables just by adding equations. The resuiting equation system, again
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analogous to the seemingly unrelated regressions model. would be
Yoo = XouBm + €my You = Lif v, > 0.0 otherwise, m=1...., M,
.E[Sm |§1 sees ’_lux{W] =10
Varlew | X1, ... Xyl =1,
COV[_gjn Em l_,_Kl, - ,XM} =’pj"?!,
(&1y ..., ea) ~ Nyf0, R].

The joint Pl'c&%ities of the observed events, [yi1, vi2 ..., Yis 1 X, %20 o Xiphy § =

1...., n that{from\the basis for the log-likelihood function are the M-variate normal
probabilities,

/ Ly = Oplanxis B - - . GiuXipePus, R,

Sfo(.“\ Gim = 2%m — 1

B.?m = ‘-E'ij_q:'mp_jm- _ @

where

The practical obstacle to this extension is the evaluation of the M-variate normal in- [ Prov it
14.9.6. ¢ tegrals and their derivatives. Some_pragress has been made on using quadrature for | 7 | ¢ha o
trivariate infegration (see Section {85:6:45), but existing results are not sufficient toallow | = . (14,

accurate and efficient evaluation for more than two variables in a sample of even moder- "
ate size. However, given the speed of modern computers, simulation-based integration
using the GHK simulator or simulated likelihood methods (see G‘lmpmm%)ﬂr 42~
N estimation of 1elat1velv large models. We consider an application in Example%’%—LH -q_ 2 3
Lt The multwgugte Rloblt model in another form presents a useful extension of the
| H4 random effects probit model for panel data (Section 23-5-£. I the parameter vectors | T. ‘f- pA
in all equations are constrained to be equal, we obtain what Bertschek and Lechner
(1998) call the “panel probit model.”

Vi = X8 + ey = 1if 3} > 0,0 otherwise,i =1,...,m1=1,...,7T,
(&1, - .-, &7) ~ N[0, R]. 1942

The Butler and Moffitt (1982} approach for this model (see Section 23:5-1) has proved

useful in many applications. But, their underlying assumption that Covle;, ;] = p

is a substantive restriction. By treating this structure as a multivariate probit model

: _ with the restriction that the coefficient vector be the same in every period, one can

(1% obtain a model with free correlations across periods*\Hyslop (1999), Bertschek and
LSt B Lechner (1998), Greene (2004 and Example 23.16), and\Cappellari and Jenkins (2006) | /- /

are applications. =
1992 %3

Lf 7’ ‘EStudles that propose improved methods of smﬂéatmg probabilities inciude Pakes and Pollard (1989) and
1| . especially Borsch-Supan and Hajivassilion {1990), Geweke (1989), and Keane (1994). A symposiunt in the
(W s ! MNovember 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in speci-
fication and estimation of models based on simulation of probabilitics. Applications that employ sunulauon
1.1 g techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for cxnmplc, ‘ q, 2_3
xample which applics the technique to a panel data application with T = 7. Exampl
dcvclops a ﬁvc~varmtc application.

’1 3 "By assuming the coefficient vectors are the same in all periods, we actually obviate the normalization that
the dmgonal clements of R are all equal to one as well The restriction identifies T — 1 relative variances

P = oT/o "Fhis aspect is cxamined in Greene {2004).
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1L:6

.23
Example é@* A Multivariate Probit Model for Product Innovations

Bertschek and Lechner applied the panel probit model to an analysis of the product innovation
activity of 1,270 German firms observed in five years, 19841988, inresponse to imports and
N - foreign d:rect |nvestment {See Bertschek (19956).] The prob:t model to be estimated is based

on the fatent regresswn

where

The coefficients on import share (8) and FOI share (8s) were of parficular interest. The
objectives of the study were the empirical investigation of innovation and the methodological
development of an estimator that could obviate computing the five-variate normal probabil-
ities necessary for a full maximum likelihood estimation of the model. o

presents the single-equation, pooled probit model estimates: G Given the
structure of the model, the parameter vector could be estimated consistently with any single

; _ 12.20 _ ,
"' ) TABLE 2376 - Estimated Pooled Probit Model

abie

¥t = 1 if & preduct innovation was realized by firm i in year ¢, 0 otherwise,
X2+ = Log of industry sales in DM,
X34 = Import share = ratio of industry imports to (industry sales plus imports), -
x.,;,,_ = Relative firm size = ratio of employmaent in business unit to employment
in the industry (times 30),.
Xs,1 = FDI share = Ratio of industry foreign direct investment to

(industry sales plus imports),/

gt = Productivity = Ratio of industry value added to industry employment,
X7+ = Raw materials sector = 1 if the firm ig in this sector,
Xyt = Investment goods sector = 1 if the firm is in this sector, «

Vit = B '*“Z:‘(k,nﬂk'i"é‘m__yh =1{y,"¢ >0),i=1,...,

k=2

1,270, = 1984, .. .,

Marginal Effects

1088,

Estimated Standard Errors

Variable Estimate® SE(IP SE@2)x SE@®)Y  SEd):- Partial Sid. Ere. tratio
Constant —1.960 0.239 0.377 0.230 0.373 — —_ —

log Sales 0.177 0.0230 00375 00222 0.0358 00683 0.0138 4,96
Rel Size 1.072 0.206 0.306 0.142 0.269 0.413% 0103 4.01

Imports 1.134 0.153 0.246 0.151 0.243 0.437% 0.0938 4,66
FD1 2.853 0.4567 0.679 0.402 0.642 1.099¢ 0.247 4.44
Prod. —2.341 1.114 1.300 0.715 1.115 —0.902¢ 0.429 —2.10
Raw Mil —~(.279 0.0966 0,133 0.0807 0.126 —0.1108 0.0503 —2.18
Inv Good 0.188 0.0404 00630  0.0392  0.0628 0.07238  (.0241 3.00

.SRccomputcd Only two digits were reported in the earlier paper.

>Obtained from results in Bertschek and Lechner. Table 9.

-cBased on the Avery et al. (1983) GMM estimator.

. Squm‘c roots of the diagonals of the negative inverse of the Hessian
¥ Based an the cluster estimator.

S ocfficient scaled by the density evaluated at the sample means
2Computed as the differcncs in the fitted probability with the dummy variable equal to one, then zero,

Lf 7 ﬁWe are grateful to the authors of this study who have generously loaned us their data for our continued
analysis. The data are proprictary and cannot be made publicly available, unlike the other data sets used in

our examples,

17-9¢
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period’s data, Hence, pooling the observations, which produces a mixture of the estimators,
will also be consistent. Given the panel data nature of the data set, however, the conventlonal
standard errors from the pooled estimator are dubious. Because the marginal distribution
- - will produce a cansistent estimator of the parameter vector, this is a case in which the

chister éstimalor (see Section?f6.8.4)provides an appropriate asymptotic covariance matrix.
Note that the standard errors.in column SE(4) of the table are considerably higher than the
uncotrected ones in columns 1-3

The pooled estimator is consistent, so the further development of the estimator is a matter
of {1} obtaining a more efficient estimator of g and (2) computing estimates of the cross-

period correiatzon coefficients J1 he authors proposel st of GIVIM estimigtors based on T8
& Implied by the single-equation conditional meari functions:

E{[y!t— nﬂ)”xi}: .

[111 — &(x}y 8)]
D’ra - d:'(x:zﬂ -0

A(X)
Dir 58]

where A(X;}18 a P x T matrix of instrumental variables constructed from th
for individQal 7.

Usifig only the raw dlata as A(X); strong exogenaity of the regressor§in every period would
p evide TK moment equationg of the form Efx;(y;s ~ &(x!,8))] =& for each pair of periods,
6r a total of T?K moment #Quations altogether for estimatiop6f K parameters in B. [See
Wooldricige (1995).] The fuli set of such orthogonality condifighs would be E[{l; @ x;)u] =0,
where x; = Dy, ... 071, W = (U4, ....u7) and U ¥ — S(x),8). This produces 200
orthogonality congitions for the estimation of the 8 patafneters, The empirical counterpart to
the left-hand sidé of (6) is

Y1 = (x5, 8]
{¥2 — d(x},8)]

bir — ®(x( )]

is defined by the choice of ingtfument matrix A(X;) and
rs suggest several. In their appligdtion {see p. 337), only dat
t are used in the #th moment condition. This reduces the number of moment

{ENN € —Astted, fhe FIML estlmates of the modef can be computed using the GHK simulator#* 4§

W”-zl @

.Ill,l.- !

TheFlMLestlmates Petes

-.45 ';i e full computation required about one hour of computing time. Computation of the single-cquation
(poolcd) estimators required only about 17100 of the time reported by the authors for the same models,
which suggests that the evolution of computing technology may play a significant role in advancing the FIML
estimators.
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TABLE 2547 Estimated Constrained Multivariate Probit Model {estimated standard
errors in parentheses)

Full Maximum Likelihood _ Randoem Effects
Coefficients Using (;HK .S.rmﬂ!amr W p = 0578 (0.018Y)
Constant —1.797%  (0.341) ] —2839 (05334
log Sales 0.154%  (0.0334) 02445 {0.052%)
Relative size 0.953%  (0.160) 1522 (0.25%) 9
Imports 1.155%  (0.228) 1779 (D.360)
FDI 2426%  (0.573) 3652 (0.870)
Productivity —1.57%  (1.216) —2307 (1911)
Raw material —0.292* (0.130) —0477 (0.202)
Investment goods 0.224%  (0.06053) 5787 (0.0189)
log-likelihood ~3522.85 ﬂss.ss G52

Estimated Correlations @-331

1984, 1985 0.4600 (0.0301)
1984, 1986 0.59%%  (0.0323)
1985, 1986 0.643*  (0.0308)
1984, 1987 0.540%% (0.0308)
1983, 1987 0.546%  (0.0348)
1986, 1987 0.6100  (0.0322)
1984, 1988 0.483%  (0.0364)
1985, 1988 (4465 {0.0380)
1986, 1988 0.524  (0.0355)
1987, 1988 0.605%*

(0.0325)

*Indicates significant-at-95 percentlevel, ** indicates significant at 99 percent level based on a two-tailed test.

/3-98

-

—
'TABLE 23. 18 ‘Unrestricted Five-Period Multivariate Pmbrt Model (estl_‘

" standard errors in paréntheses)
1984 )2/& 1986

ted

Coefficients

1987 1988 Constrained
Constant —1.802% —2.080* —2.630™ -1.7 —1.729* — 1,707
:532) (0.519) (0.542) 534) {0.523) {0.341)
log Sales 0.167 0.178% 0.274% 0.163* 0.130% 0,154
{0.0538) (0.0365) {0.0560) ((L0519) {0.0334)
Ative size 0.658** 1.280+ 1.77 1,085 0.826™ 0,953
{0.323) (0.330 {0.431) {0.351) (0.263) {0.160)
Imports 1.118* i 0.936™ 1.091** 1301 1,135+
0377 (0.361) {0.370) (0.338) (0.342) {0.228)
Fo1 2.0070% 1.509* 3.759* 3. 718 3834 .
835) (0.769) (0.990) {1.214) {1.108) 573)
Productivit —2.615 —{(1.252 3,565 ~3.905 —{1.98 —1.578
(4.110} (3.802) (3.537) {3.188) O57) (1.216)
material —0.346 —0.357 —0.260 —(,294 ~0.292
{0.283) (0.247) (0.299) (0218) (0.130)
Investment 0.239** 0.177* 0.0467 (Q.280™ 0.224**
goods {0.0864) (0.0875) {0.089 (0.0923) {0.0605)
/

—
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beaiate protit TITIEE) Also noteworthy in Table m ence of the random
. ; sie: The log-likelihood functlon is —3535.55 for the

- random effects model and 3522 85 for the unrestricted model. The chi-squared statistic for

the 9 restrictions of the equicorrelation model is 25.4. The-ctitical value from the chi-squared
table for 9 degrees of freedom is 16.9 for 95 percent and 21.7 for 99 percent significance, so
the hypothesss of the random effects model would be rejected

surprising amount ofvariation in the parametef vector. The log-
ricted model is —-3494.57. The chi-squared stefistic for testing the
mogeneity hypothesig'is twice the d:fference or 56.56. The cntl ol

4=

Bond ratings
Results of taste tests
Opinion surveys

NAY AW

£
B
g
<
B
=4
=]
=

alysis would err in the opp
survey. If the responses are ¢éded 0, 1, 2, 3, or 4, then linear regression would

3 the same as that between a 3 and a 2, whereas

23.10.1 THE ORDER

pers, Beggs, Cardell, and Hausman (1981) and Hausman and Risud (1986), the authors analyze a
cification of the logit model when respondents provide their pafikings of the full set of alternatives in
addition to the identity of the most preferred choice. This appficatiop4alls somewhere between the conditional
logit model and the ones we shall discuss here in that, rather tiin provide a single choice among J either
ordered or ordered alternatives, the consumer chooses pfe of the J! possible orderings of the set of

unordered alternatives.
_-———'—'—-_-—-_-—-_-——

13499
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17.6 SUMMARY AND CONCLUSIONS

This chapter has surveyed a large range of techniques for modeling a binary choice
variable. The model for choice between two outcomes provides the framework for a
large proportion of the analysis of microeconomic data. Thus, we have given a very large
~ amount of space to this model in its own right. In addition, many issues in model
specification and estimation that appear in more elaborate settings, such as those we will
examine in the next chapter, can be formulated as extensions of the binary choice model
of this chapter. Binary choice modeling provides a convenient point to study endogeneity
in a nonlinear model, issues of nonresponse in panel data sets, and general problems of
estimation and inference with longitudinal data. The binary probit model in particular
has provided the laboratory case for theoretical econometricians such as those who have
developed methods of bias reduction for the fixed effects est1mator in dynamic nonlinear
models.

We began the analysis with the fundamental parametric probit and logit models
for binary choice. Estimation and inference issues such as the computation of appropriate
covariance matrices for estimators and partial effects are considered here. We then
examined familiar issues in modeling, including goodness of fit and specification issues
such as the distributional assumption, heteroscedasticity and missing variables. As in
other modeling settings, endogeneity of some right;hand variables presents a substantial
complication in the estimation and use of nonlinear models such as the probit model. We
examined the problem of endogenous right hand side variables, and in two applications,
problems of endogenous samphng The a.naly31s of binary choice with panel data
provides a setting to examine a large range of issues that reappear in other applications.
We reconsidered the familiar pooled, fixed, and random effects estimator estimators, and
found that much of the wisdom obtained in the linear case does not carry over to the
nonlinear case. The incidental parameters problem, in particular, motivates a
considerable amount- of effort to reconstruct the estimators of binary choice models.
Finally, we considered some multivariate extensions of the probit model. As before, the
models are useful in their own right. Once again, they also provide a convenient setting
in which to examine broader issues, such as more detailed models of endogeneity
nonrandom sampling, and computation requiring simulation.

Chapter 18 will continue the analysis of discrete choice models with three
frameworks; unordered multinomial cheice, ordered choice,and models for count data.
Most of the estimation and specification i issues we have examined in this chapter will
reappear in these settings.
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Exercises

1. A binomial probability model is to be based on the following index function model:

v o 4 B g,
y=1 ify* >0,
= otherwise.

The only regressor, 4. is a dummy variable. The data consist of 100 observations
that have the following:

1132 16

Obtain the maximum likelihood estimators of « and 8, and estimate the asymptotic
standard errors of your estimates. Test the hypothesis that 8 equals zero by using a
Wald test (asymptotic ¢ test) and a likelihood ratio test. Use the probit model and
then repeat, using the logit model. Do your results change? (Hint: Formulate the
log-likelihood in terms of & and § =« + B.)

2. Suppose that a linear probability model is to be fit to a set of observations on a
dependent variable y that takes values zero and one, and a single regressor x that
varies continuously across cbservations. Obtain the exact expressions for the least
squares slope in the regression in terms of the mean(s) and variance of x, and
interpret the result.

3. Given the data set

X
X

1 0
i 9 2

01100111

5467 352¢
estimate a probit model and test the hypothesis that x is not influential in determin-
ing the probability that y equals one.

4. Construct the Lagrange multiplier statistic for testing the hypothesis that all the
slopes (but not the constant term) equal zero in the binomial logit model. Prove
that the Lagrange multiplier statistic is # R? in the regression of (y; = p) on the x’s,

where pis the sample proportion of 1.
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terested in the ordere

obit model. Our data consist of 250 observations,

Usi recedi a, 1 maximum likelihood estimates of the unkngsn
/pé’meters of the model~{Hint: Consider the probabilities a< the unkrown
arameters.) 7

5’ 6. The following hypothetical data give the participation rates in a particular type of
recycling program and the number of trucks purchased for collection by 10 towns
in a small mid-A flantic state:

Town I 2 3 4 5 6 7 8 9 10

Trucks 60 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to
achieve a 95 percent rate of participation. Using a probit model for your analysis,
a. How many trucks wouid the town expect to have to purchase to achieve its goai?
(Hint: You can form the logjlikelihood byleplacmg ¥; with the par hc:patlon rate . ..
(e.g.,0.11 for observation 1) and (1 — ) with L—~the rate in (W 323
b. If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget
of $6.5 million? (That is, should they expect to reach the goal?)
¢. According to your model, what is the marginal value of the 301st truck in terms
of the_increase in the percentage participation? '
é . A data set consists of 1= + 1 + 13 observations on y and x. For the first
observations, y= 1 and x = 1. For the next i, observations, y=0and x =1, For the
fast n3 observations, y =0 and x = 0. Prove that neither (23‘:’9-) nor (?12—1-) has a
solution. _ 'ﬁ 49 7 —2|
T 2 Provesds 17 20 Jg *
8 9 Inthe panel data models estimated in Section , neither the logit nor the probit
model provides a framework for applying a Hausman test to determine whether
fixed or random effects is preferred. Explain. (Hint: Unlike our application in the .
linear model, the incidental parameters problem persists here.)

Applications

N4
1. Appendix Table F2Z&1 provides Fair’s (1978) Redbook survey on extramarital
affairs. The data are described in Application 1 at the end of Chapter ﬁ and in
Appendix E The variables in the data set are as follows: 8

id = an identification number,
(= constant, value =1,/
yrb = a constructed measure of time spent in extramarital affairs,”
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vl = arating of the marriage, coded 1 to 4,
v2 = age, in years, aggregated.

v3 = number of years married,”

v4 = number of children, top coded at 5,
u5 = religiosity. 1'to 4. I = not, 4 = very. :

¥6 = education, coded 9, 12, 14, 16, 17, 20,
7 = occupation,

¥& = husband’s occupation,

and three other variables that are not used. The sample contains a survey of 6,366
married women, conducted by Redbook magazine. For this exercise. we will analyze,
first, the binary variable

A=11i yrb = 0, 0 otherwise.

The regressors of interest are o1 to 48 however, not necessarily all of them belong
in your model. Use these data to build a binary choice model for A. Report ail
computed results for the model. Compute the marginal effects for the variables
you choose. Compare the results you obtain for a probit model to those for a logit
model. Are there any substantial d]ffﬂlences in the results f01 the two models?
2. Totiinuing the analysis of the
rating, v1. This is a natuy;

ling in this form, e.g., Staia,
11,2, 3, eg., LIMDEP. Be sur

\ mé-' nd 17



