-, Greene-50558  book  June 25,2007 116 ra I T |

g CHAPTER 23 + Models for Discrete Choice 837 -

1R.3_ B 2a-tom PANEL DATA APPLICATIONS

The ordered probit model is used to model discrete scales that represent indicators of
: a continuous underlying variable such as strength of preference, performance, or level

of attainment. Many of the recently assembled national panel data sets contain survey

questions that ask about subjective assessments of health, satisfaction, or well-being,

all of which are applications of this interpretation. Examples includei 11 4 [[avin e

¢ The European Community Household Parel (ECHP) includes questions about
job satisfaction [see D’Addio (2004)].

*  The British Household Panel Survey (BHPS) includes questions about health
status [see Contoyannis et al. (2004)].

¢ The German Socioeconomic Household Panel (GSOEP) includes questions
about subjective well being [see Winkelmann (2004)] and subjective assessment of
health satisfaction [see Riphahn et al. (2003) and Example 2348} 18.4

Ostensibly, the applications would fit well into the ordered probit frameworks already
described. However, given the panel nature of the data, it will be desirable to augment
the model with some accommodation of the individual heterogeneity that is likely to
be present. The two standard models, fixed and random effects, have both been applied
to the analyses of these survey data.

! ‘3..3.%.&, fatra, Ordered Probit Models with Fixed Effects

D’Addio et al. (2003), using methodology developed by Frijters et al. {2004) and
Ferrer-i-Carbonel et ai. (2004), analyzed survey data on job satisfaction using the
Danish component of the European Community Household Panel. Their estimator
for an ordered logit model is built around the logic of Chamberain’s estimator for the
H-‘-/. L/ — binary logit model, [See Sectio Because the approach is robust to individual
specific threshold parameters and allows time-invariant variables, it differs sharply from
. the fixed effects models we have considered thus far as well as from the ordered probit
l @~ model of Section 23.10.17>* Unlike Chamberlain’s estimator for the binary logit model,
however, their conditional estimator is not a function of minimal sufficient statistics. As

= such, the incidental parameters problem remains an issue.
Das and van Soest (2000) proposed a somewhat simpler approach. [See, as well,
Long’s (1997) discussion of the “parallel regressions assumption,” which employs this
device in a cross-section framework]. Consider the base case ordered logit model with

fixed effects,

Yir =i+ X B + i, & | Xi ~ N[0, 1],
i = jif Bj-1< Vi<wppji=01,....0 and wu_j=—o00,pup =0,,u_; = 0O,
Th-e modet assﬁmptions impiy that
Prob(y; = j E_X_:‘) = A(uj — o — X ) — Alpjor — o ‘“}_r{rﬂ)’
where A(t) is the cdf of the logistic distribution. Now, define a binary variable

Wi j=1ify>j, j=0,...,J-1.

/ 9 ’SICross-st:ction versions of the ordered probit model with individual specific thresholds appear in Terza
{1985a), Padney and Shicids (2000}, and Greene (2007).
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it follows that
Probwi,; =1 Xi] = Aoy — p5 +|Xf;ﬂ)
' =AE+Xf) i

The " j ™ specific constant, which is the same for all individuals, is absorbed in 8;. Thus,

19.9.4

a fixed effects binar it mod lies to each of the J — 1 binary random variables,
W, ;- 1he method in Sectiom{23. 5 can now be applied to each of the J — 1 random
samples. This provides J — 1 estimators of the parameter vector g (but no estimator of

the threshold par ameters). The authors propose to reconcile these different estimators
by using a minimum distance estimator of the common true 8. (See Section 1537 The

minimum distance estimator at the second step is chosen to minimize 13.3
i-1J-1
a=3_3 B =8 ViulBn -8
_jeu0 mae)

where [V m] is the j, m block of the inverse of the (/ — 1)K x (J — 1)K partitioned
matrix ¥ that contains Asy Cov[ﬁ i, ﬁ,,,] The appropriate form of this matrix for a set
of cross-section estimators is given in Brant (1990). Das and van Soest (2000) used the
counterpart for Chamberlain’s fixed effects estimator but do not provide the specifics
for computing the off-diagonal blocks in ¥,

The full ordered probit model with fixed effects, including the individual specific
constants, can be estimated by unconditional maximum likelihood using the results in
Section 16,9.6.c. The likelihood function is concave [see Pratt (1981)]. so despite its
superficial complexity, the estimation is straightforward. (In the following application,
with more than 27,000 observations and 7,293 individual effects, estimation of the full
model required roughly five seconds of computation.) No theoretical counterpart to
the Hsiao (1986, 2003) and Abrevaya (1997) results on the small T bias (incidental
parameters problem) of the MLE in the presence of fixed effects has been derived
for the ordered probit model. The Monte Carlo results in Greene (2004) (see, as well,

i5

18.3_:.‘%.\3

Chapter /), suggest that biases comparable to those in the binary choice models persist
in the ordered probit model as well. As in the binary choice case, the complication of
the fixed effects model is the small sample bias, not the computatlon The Das and van
Soest approach finesses this problem-—their estimator is consnstent—but at the cost of
losing the information needed to compute partial effects or predicted probabilities,

2300 R A Ordered Probit Models with Random Effects

The random effects ordered probit model model has been much more widely used than |
the fixed effects model. Applications include Groot and van den Brink (2003), who | Ay

studied training levels of emplovees, with firm effects; Winkelmann (2003b), who exam-
ined subjective measures of well being with individual and family effects; Contoyannis
et al. (2004), who analyzed self-reported measures of health status: and numerous oth- |
ers. In the simplest case, the method of the Butler and Moffitt {1982) quadrature method |
{Section 16.9.6.b) can be extended to this model.

Example Ay' Health Satisfaction
The GSOEP German Health Care data that we have usad in Exampl 16.16,Jand
others includes a self-reported measure of health satisfaction, HSAT, that takes values
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: b
A\ 01..., 10X Thisis a typical application of a scale variable that reflects an underlying con-
(vl tinuous variable, “health.” The frequencies and sample proportions for the reported values
AN are as follows:

HSAT . Frequency Proportion

0 447 1.6%
L 258 0.9%
2 642 2.3%
3 1173 4.2%
4 1380 5.0%
5 4233 15.4%
6 2530 9.2%
7 4231 15.4%
8 6172 22.5%
9 3061 11.2%
10 3192 11.6%

Wa have fit pool_ecl and panel data versions of the' ordered probit model to these data,
The madel used is (34 Kid Sy
Vie = P1 + B2 Agey + fa Incomeys + ﬁz_&'d@tion_n + ,BéMargiedy + By Working;, + ez + &,

where ¢, will be the common fixed or random effect. (We are interested in comparing the fixed
and random effects astimators, so we have not included any time-invariant variables such

ol
[ PR 18.12 as gendar in the equation.) 1: 3.21 lists five estimated models. {Standard errors for the
'.,\ iGN estimated threshold parameters arg@imitted.) The first is the pooled ordered probitmodel. The
—= second and third are fixed eff olumn 2 shows the unconditional fixed effects estimates
—"Using the results of Section 56.9.6.0.)Column 3 shows the Das and van Soest estimator. For
4.9 ¢ A the minimum distance estimator, we used an inefficient weighting matrix, the block-diagonal
LR mairix in which the jth block is the inverse of the jth asymptotic covariance matrix for the

individual logit estimators. With this weighting mafrix, the estimator is

9 -1
Buoe = [Z .vr‘] D VA
2 LAy

J=0 il

and the estimator of the asymptotic covariance matrix is approximately equal to the brack- @
eted inverse matrix. The fourth set of results is the random effects estimator computed

using the maximum simulated likelhood method. This model can be estimated using Butler

and Moffitt's quadrature method; however, we found that even with a large number of nodes,

the quadrature estimator converged to a point where the log-likelihood was far lower thanthe | . RO ] =
MSL. estimator, and at parameter values that were implausibly different from the other es- | [ TL ]
timates. Using different starting values and different numbers of quadrature points did not
change this outcome. The MSL estimator for a random constant term (see Section 17.5) | Y0 et |
is considerably slower, but produces more reasonable results. The fifth set of results is the L
Mundlak form of the random effects model, which includes the group means in the modals \ GG

19.2 as controis to accommodate possible comrelation between the latent heterogeneity andthe |-~
- ~ncluded variables. AS 1otad T Eiampﬁ?&ﬁ%?the components of the ordered choice model
must be interpreted with some care. By Construction, the partial ffects of the variables on :

the probabilities of the outcomes must change sign, so the simple coefficients do not show ‘ ‘

r*:-‘\-_ the complete picture implied by the estimated model, Table 23:22-shows the partial effects
| | for the pooled model toillustrate the computations. 15./3

” jiin the originai data set, 40 (of 27,326) vbservations on this variable were coded with noninteger values
between 6 and 7. For purposes of our example, we have recoded all 40 observations ta 7.


Bill
Sticky Note
change to 15.6


l Greene-50558

book June 25, 2007 1:6

/% -4

840 PART VI 4 Cross Sections, Panel Data, and Microeconometrics

TABLE 2821+ Estimated Ordered Probit Models for Health Satisfaction

18.72 )
- . (2 &) (4) Random Effects
() FivedTffects  Fived Effects  Random Mundlak Consrols
Variable Pooled  Unconditional - Conditional Effects Variables  Means
Constant 24739 3.8577 3.2603
{0.04669) (0.05072)  (0.05323)
Age -0.01913  —0.07162 —0.1011 —0.0339 —0.06282 (0.03940
(0.00064)  (0.002743) {0.002878)  (0.00065)  (0.00234)  {0.002442)
Income 0.1811 0.2992 0.4353 .09436 0.2618 0.1461
(0.03774)  {0.07058) {0.07462) (0.03632)  (0.06156) (0.07695)
Kids 0.06081 —0.06385 —0.1170 0.01410  —-0.05458  0.1854
(0.01459)  (D.02837) (0.03041) {0.01421)  (D.02566) (0.03129)
Education  0.03421 0.02390 0.06013 0.04728 0002296 0.02257
(0.002828) {0.02677) (0.02819) (0.002863)  (0.02793) (0.02807)
Married 0.02574 0.05157 0.08505 0.07327 0.04605 —0.04829
{0.01623)  {0.04030) {0.04181) (0.01575)  (0.03506)  (0.03963)
Working 0.1292 ~(.02659 —~0.007969 0.07108  —0.02383 0.2702
(0.01403)  (0.02758) (0.02830) (0.01338)  (0.02311)  (0.02856)
Bt 0.1949 0.3249 02726 0.2752
7 0.5029 0.8449 0.7060 0.7119
#3 0.8411 1.3940 1.1778 L1867
M4 Litl 1.8230 15512 1.5623
s 1.6700 26992 2.3244 23379
P 1.9350 31272 2.6957 2.7097
75 2.3468 3.7923 32757 3.2911
g 3.0023 4.8436 4.1967 42168
e 3.4615 5.5727 4.8308 4.8569
Oy 0.0000 0.0000 1.0078 0.9936
InL -~356813.52 —41875.63 ~53215.54 —53070.43
(KT

e kaelmann (2003b) used the random effects approach to analyze the sub!ec-
. ilve well,being (SWB) question (also coded 0 to 10) in the German Socioeconomic

anel (GSOEP) data set. The ordered probit model in this study is based on the latent

regression
V:m marﬁ + Eime + i+ Y.
JRA3 | | |

‘TABLE 23:22 Estimateéd Marginal Effects: Pooled Model =~ 0

HSAT Age Income Kids Education Married Working
0 0.0006 w).0061 —(1.0020 —0.0012 (L0009 —(0,0046
1 0.0003 ~{).003] —0.0010 —0.0006 —0.0004 —0.0023
2 {0008 ~0.0072 —0.0024 —0.0014 ~0.0010 —0.0053
3 0.0012 —0.0113 —0.0038 —0.0021 —0.0016 ~0.0083
4 0.0012 —0.0113 —0.0037 --0.0021 —0.0016 —{),0080
5 0.0024 —0.0231 -{.0078 ~(.0044 —0.0033 —0.163
6 0.0008 ~0.0073 —0.0025 —0.0014 —0.0010 ~0.0050
7 0.0003 ~0.0024 —0.0009 —0.0005 —0.0003 —0.0012
8 —0.0019 0.0184 0.0061 00035 0.0026 0.0136
9 -0.0021 0.0198 0.0066 0.0037 0.0028 0.0141

10 ~0.0035 0.0336 0.0114 0.0063 0.0047 0.0233
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The independent variables include age. gender, employment status, income, family size,
and an indicator for good health. An unusual feature of the model is the nested random

Iq;qgé.g"r—ﬁ

eifects (see Section9.7. I) which include a family effect, y;, as well as the individual
family member (i in family m) effect, t;y. The GLS/MLE approach we applied to

4.a.6b”

the Tinéar regiession model 1n Section(.7.1)is unavailable in this nonlinear setting,
Winkelmann instead employed a Hermite quadrature procedure to maximize the log-
likelihood function. '

Contoyannis, Jones, and Rice (2004) analyzed a self-assessed ‘health scale that
ranged from 1 {very poor) to 5 (excellent) in the British Household Panel Survey. Their
model accommodated a variety of complications in survey data. The latent regression
underlying their ordered probit model is

H‘ =k uﬁ"l'ﬂrr 13""“1 +9m

where x;; includes marital status, race, education, household size, age, income, and
number of children in the household. The lagged value, H; ;_1.isa set of binary variables
for the observed health status in the previous period. {This is the same device that

18.3 —

was used by Butler et al. in Example(23.18.) In this case, the lagged values capture
state dependence.—the assumption that the health outcome is redrawn randomly in
each period is inconsistent with evident runs in the data. The initial formufation of the
regression is a fixed effects model. To control for the possible correlation between the
effects, o, and the regressors, and the initial conditions problem that helps to explain
the state dependence, they use a hybrid of Mundlak's (1978) correction and a suggestion
by Wooldridge (2002a) for modeling the initial conditions,

o = ap -+ ey + W4 +u,

where y; is exogenous. Inserting the second equation into the first produces a random
effects mode[that can be fit using the quadrature method we considered earlier.

choice among mnltj
Rossi and Allenb

5. Train (2003)
electricity gistomers,

ose, and Greene (2006) analyzecl c




) |, For applications of this approach, see, e.g., Kerkhofs and Lindeboom (1995), Groot and van den |

18.3.5 Extensions of the Ordered Probit Model

The basic specification of the ordered probit model can be extended in the same directions as we
considered in constructing models for binary choice in Chapter 17. These include
heteroscedasticity in the random utility function (see Section 17.3.7.b, Keele and Park (2005) and
‘Wang and Kockelman (2005) for an application) and heterogeneity in the preferences (i.e.,
random parameters and latent classes). [An extensive study of heterogeneity in health satisfaction
based on 22 waves of the GSOEP is Jones and Schurer (2010).] Two specification issues that are
specific to the ordered choice model ate accommodating heterogeneity in the threshold
parameters and reconciling differences in the meaning of the preference scale across different
groups. We will sketch the model extensions in this section. Further. details are given in
Chapters 6 and 7 of Hensher and Greene (2010).

18.3.5.a Threshold Models ﬁ'— Generalized Ordered Choice Models

The model analyzed thus far assumes that the thresholds W are the same for every
individual in the sample. Terza (1985a), Pudney and Shields (2000), King, Murray, Salomon and
Tandon (KMST, 2004), Boes and Winkelmann (2006a), Greene, Harris, Hollingsworth, and
Maitra (2008),and Greene and Hensher (2009), all present applications that include individual
variation in the thresholds of the ordered choice model.

In his analysis of bond ratings, Terza (1985) suggested the generalization,

My = 1y + X8,
With three outcomes, the probabilities are

yf* = a+§?’l.3. + g,
and 0 ify* <0,
' Lif 0.< y* < p+ x5,
2 if y*> p+ x/8.

For three outcomes, the model has two thresholds, yo = 0 and py = p + .xi’S. The three

probabilities can be written @
P,  =Prob(y= Ox) = @[-(o+x/BY] {1174 s
P =Prob(y=1[x) = ®l(a+x/8)< (o +x/B)]* Do +x/B)] ! Ol
P,  =Prob(y;=2}x) = 1- ®[(u+x/8)- (+xP)l. ’ o fl

S LLEY

" Brink (2003) and Lindeboom and van Doorslayer (2003). Note that if § is unrestricted, then

Prob(y; =1{x;} can be negative. This is a shortcoming of the model when specified in this form. .
Subsequent development of the generalized model involves specifications that avoid this internal | el
inconsistency. Note, as well, that if the model is recast in terms of p and ¥ = [a,(B £ 8Y], then the ]
model is not distinguished from the original ordered probit model with a constant threshold
parameter. This identification issue emerges prominently in Pudney and Shield’s (2000)
continued development of this model. :

Pudney and Shields’s (2000) “Generalized Ordered Probit Model,” was also formulated
to accommodate observable individual heterogeneity in the threshold parameters. Their
application was in the context of job promotion for UK nurses in which the steps on the
promotion ladder are individual specific. In their setting, in contrast to Terza’s, some of the
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variables in the threshold equations are explicitly different from those in the regression. The
authors constructed a generalized model and a test of “threshold constancy” by defining g to
include a constant term and those variables that are unique to the threshold model Variables that
are common to both the thresholds and the regression are placed in X, and the model is

reparameterized as . .
AN iy

TS Ia L

Pr(y = gixya) = ©[a/8; = x/(B* 391 Bla/Bes - x/(B 28],

An important point noted by the authors is that the same model results if these common variables
are placed in the thresholds instead. This is a minor algebraic result, but it exposes an ambiguity
in the interpretation of the model -} whether a particular variable affects the regression or the
thresholds is one of the issues that was developed in the original model specification.

As will be evident in the application in the next section, the specification of the threshold
parameters is a crucial feature of the ordered choice model. KMST (2004), Greene (2007a),
Eluru, Bhat and Hensher (2008),and Greene and Hensher (2009) employ a “hierarchical ordered
probit,” or HOPIT model, _

yi* = 5'.x1 + E;,
i =] g <<,
Ho =0, ~

Ry = exp(d; + y'z) (case 1),
or Wy = exp(l; + y/'z) (case2).

If

Case 2 is the Terza (1985) and Pudney and Shields (2000) mode! with an exponential rather than
linear function for the thresholds. This formulation addresses two problems; (i) the thresholds are
mathematically distinct from the regression; (i) by this construction, the threshold parameters
must be positive. With a slight modification, the ordering of the thresholds can also be imposed.
In case 1,

Hi

[exp(M) + exp(ha) + + exp(h)] X exp(y'),
and in case 2, T s ' : e

My = b+ exp(l, + ).

In practical terms, the model can now be fit with the constraint that all predicted probabilities are

greater than zero. This is a numerical solution to the problem of ordering the thresholds for all.

data vectors. TS
This extension of the ordered choice model shows a case of identification through

(1 _j"fun‘ctional form. As we saw in the previous two models, the parameters (A;,y;,B) would not be

separately identified if all the functions were linear. The contemporary literature views models
that are unidentified without a change in functional form with some skepticism. However, the
underlying theory of this model does not insist on linearity of the thresholds (or the utility
function, for that maiter), but it does insist on the ordering of the thresholds, and one might
equally criticize the original model for being unidentified because the model builder insists on a
linear form. That is, there is no obvious reason that the threshold parameters must be linear

functions of the variables, or that linearity enjoys some claim to first precedence in the utility

function. This is a methodological issue that cannot be resolved here. The nonlinearity of the

preceding specification, or others that resemble it, does provide the benefit of a simple way to f
¢, achieve other fundamental results, e.g., coherency of the model (all positive probabilities).
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18.3.2.&) Thresholds and Heterogeneity;b_—',l Anchoring Vignettes

The introduction of observed heterogeneity into the threshold parameters attempts to deal
with a fundamentally restrictive assumption of the ordered choice model. Survey respondents
rarely view the survey questions exactly the same way. This is certainly true in surveys of health | i/, ~
satisfaction or subjective wellbeing. [See Boes and Winkelmann (2006b) and Ferrer-i-Carbonell | -~ ,
and Frijters (2004).] KMST (2004) identify two very basic features of survey data that will make | Spetla
this problematic; first, they often measure concepts that are definable only with reference to | wota "
examples, such as freedom, health, satisfaction, ete. Second, individuals do, in fact, often ! :
understand survey questions very differently, pa:rticu'llar]'y with respect to answers at the extremes. 7
A widely used term for this interpersonal incomparability is differential item functioning (DIF).""'
Kapteyn, Smith and Van Soest (KSV, 2007) and Van Soest, Delaney, Harmon, Kapteyn and
Smith (2007) suggest the results in Figure 18.5 to describe the implications of DIF. The figure
shows the distribution of Health (or drinking behavior in the latter study) in two hypothetical
countries. The density for country A (the upper figure) is to the left of that for country B,
implying that,on average, people in country A are less healthy than those in country B. But, the'
people in the two countries culturally offer very different response scales if asked to report their
health on a five point scale, as shown. In the figure, those in country A have a much more
positive view of a given, objective health status than those in country B. A person in country A
with health status indicated by the dotted line would report that they are in “Very Good” health
while a person in country B with the same health status would report only “Fair.” A simple
frequency of the distribution of self-assessments of health status in the two countries would
suggest that people in country A are much healthier than those in country B when, in fact, the
opposite is true. Correcting for the influences of DIF in such a situation would be essential to -
obtaining a meaningful comparison of the two countries. The impact of DIF is an accepted
feature of the model within a population) but could be strongly distortionary when comparing
very disparate groups, such as across countries, as in KMST (political groups), Murray, Tandon,
Mathers and Sudana (2002) (health outcomes), Tandon et al, (2004) and KSV (work disability),
Sirven, Santos-Egglmann, and Spagnoli (2008), and Gupta, Kristensens. and Possoli (2008)
(health), Angelini et 41, (2008) (life satisfaction), Kristensen and Johansson (2008)..and Bago
d’Uva et al. (2008), all of whom used the ordered probit model fo make cross group
comparisons..

KMST proposed the use of anchoring vignettes to resolve this difference in perceptions
across groups. The essential approach is to use a series of examples that, it is believed, all
respondents will agree on to estimate each respondent’s DIF and correct for it. The idea of using
vignettes to anchor perceptions in survey questions is not itself new; KMST cite a number of
carlier uses. The innovation is their method for incorporating the approach in a formal model for
the ordered choices. The bivariate and multivariate probit models that they develp combine the
elements described in Sectons 18.3.1 -, 18.3.3 and the HOPIT model in Section 18.3 .4.a.

), W [ e
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18.4 MODELS FOR COUNTS OF EVENTS

We have encountered behavioral variables that involve counts of events at soveral points in this
text. In Examples 14.10 and 17.20, we examined the number of times an individual visited the
physician using the GSOEP data. The credit default data that we used in Examples 7.10 and
'17.22 also includes” another behavioral variable, the number of derogatory reports in an
individual’s credit history. Finaily, in Example 17.23, we .analyzed data on firm innovation.
Innovation is often analyzed [for example, by Hausman, Hall and Griliches (1984) and many
others] in terms of the number of patents that the firm obtains (or applies for). In each of these
cases, the variable of interest is a count of events. This obviously differs from the discrete
dependent variables we analyzed in the previous two sections. A count is a quantitative measure
- that is, at least in principle, amenable to analysis using multiple linear regression. However, the
typical preponderance of zeros and small values] and the discrete nature of the outcome variable
suggest that the regression approach can be improved by a method that explicitly accounts for
-these aspects.

Like the basic multinomial logit model for unordered data in Section 18.2 and the simple
probit and logit models for binary and ordered data in Sections 17.2 and 18.3, the Poisson
regression model is the fundamental starting point for the analysis of count data. We will develop
the elements of modeling for count data in this framework in Sections 18.4.1 ~ _18.4.3,Athen turn i
to more elaborate, flexible specifications in subsequent sections. Sections 18.4.4 and 18.4.5 will
present the negative binomial and other alternatives to the Poisson functional form. Section 18.4.6
will describe the implications for the model specification of some complicating features of
observed data, truncation and censoring. Truncation arises when certain values, such as zero, are
absent from the observed data because of the sampling mechanism, not as a function of the data
gené_,ating process. Data on recreation site visitation that are gathered at the site, for example,
will, by construction, not contain any zeros. Censoring arises when certain ranges of outcomes
are all coded with the same value. In the example analyzed below, the response variable is
censored at 12, though values larger than 12 are possible “in the field.” As we have done in the
several earlier treatments, in Section 18.4.7, we will examine extensions of the count data models
that are made possible hen the analysis is based on panel data. Finally, Section 18.4.8 discusses
some behavioral models that involve more than one equation. For an example, based on the large
number of zeros in the observed data, it appears that our count of doctor visits might be generated
by a two, part process, a first step in which the individual decides whether or not to visit the
physician at all, and a second decision, given the first, how many times to do so. The “hurdle
model” that applies here] and some related variants are discussed in Section 18.4.8.
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This chapter wilt"describe modeling approaches for events.! As suggested, the
two measures, caints of events and duration between events, are usually studied with

—

in the bther fields mentioned. The chapter, and this text, end in Section
discussicn of models for duration.

accounts for these
to study such datal

The Poisson regressi odel specifies that each y; is drawn from a Poisson distri-
bution with parameter A;, which is related to the regressors X;. The primary equation of
the model is

e Ml
Prob(Y = y IK,) E=Y - Vi = 0,1,2,.... (?5‘-1)

The most common formulation for A; is the log_liriea;-lnmdel,

Ini; = x;ﬁ

It is easily shown that the expected number of events per period is given by

E i | x:] = Var[y; i.’.‘;] = A = %t

50
dE[w|xi
[.Yi Ir- l] — )'-iﬁ-
B.K_f B
With the parameter estimates in hand, this vector can be computed using any data vector
desired.

In principle, the Poisson model is simply a nonlinear 1'eg1'ession.yBut it is far easier
to estimate the parameters with maximum likelihood techniques. The log-likelihood
function is

"
InlL= Z {—-A,,' +'Vi¥':ﬁ —In y,-.f].

i=t

e pafticulatly rich surveys of these topifs (among do

cn?qe::-'naj‘lab}é) are Cameron éd Tnvc/di/ (19@
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The likelihood equations are
amlL <&
— s = ‘- = 0.
Bﬁ im1 (B Ai)-'x,-" i

The Hessian is

%n L Z
e 22— XX
agap = i

‘The Hessian is negative definite for all x and 8. Newton's method isa sunPle algomhm
for this model and will usually converge rapidly. At convergence, [3 74 A;x,xi] pto-
vides an estimator of the asymptotic covariance mattix for the pamrnetex estimates. |
Given the estimates, the prediction for observation { is 4, = exp(x/#). A standard error %% f
for the prediction interval can be formed by using a linear Taylor%erles approximation. |
The estimated variance of the piedictlon will be Az 'Vx;, where V is the estimated
asymptotic covariance matrix for, 4.

For testing hypotheses, the three standard tests are very convenient in this model.
The Wald statistic is computed as usual. As in any discrete choice rnodei the liketihood

ratio test has the intuitive form

LR = 221 ( )
resm:ted!

where the probabilities in the denominator are computed with using the restricted
model. Using the BHHH estimator for the asymptotic covariance matrix, the LM
statistic is simply

T / T ~lran
M= [ch? O - i.:)] [Z_x:,x,f(.w — Xi )2] {E_my_f_ - qu)} =IGGE'G)' G4,
i=l ‘ i=1 i=1 —
ggr-13)

where each row of G issimply the corresponding row of X multiplied by ¢; = (y: =), A;
is computed using the restricted coefficient vector, and f is a column of ones.

(8 Y.l %ﬂa MEASURING GOODNESS OF FIT

The Poisson model produces no natural counterpart to the R? in a linear regression
model, as usual, because the conditional mean function is nenlinear and, moreover,
because the regression is heteroscedastic. But many alternatives have been suggested. Sk
A measure based on the standardized residuals is
2
qe
i= :
2 Ai
Rp =1-— .

&
\ J‘g-‘Sec the surveys by Cameron and Windmeijer (1993}, Gurmu and Trivedi (1994), and Greene (1995b).
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This measure has the virtue that it compares the fit of the model with that provided by a
model with only a constant term. But it can be negative, and it can iise when a variable
is dropped from the model. For an individual observation, the deviance is

d =2y In(n7%) — (v~ 2] = 2w In(u/A) —e],

where, by convention, 0 1n(0) =0.If the model contains a constant term, then e =0.
The sum of the deviances,

= ijd,— = 22"3 ¥/,
i=1 i=1

is reported as an alternative fit measure by some computer programs, This statistic will
equal 0.0 for a model that produces a perfect fit. (Note that because y; is an inteper
while the prediction is continuous, it could not happen.) Cameron and Windmeijer
(1993) suggest that the fit measure based on the deviances,

e i1 {"i log (,l ) - (¥ - ii):l
=1 i

Vi *
il [}’f log (é)]

has a number of desirable praperties. First, denote the log-likelihood function for the
model in which yfr, isused as the prediction {e.g., the mean) of v as £(, y,) The Poisson
maodei fit by MLE is, then, £(};, ¥:), the model with only a constant term is £(7, ), and
a model that achieves a perfect fit (by predicting y with itself) is /(y:, ). Then

R = £G, 1) ~ €@, )
’ E(yr, W) — &Y, »)
Both numerator and denominator measure the improvement of the model over one

with only a constant term. The denominator measures the maximum improvement,
since one cannot improve on a perfect fit. Hence, the measure is bounded by zero and

one and increases as regressors are added to the model.X We note, finally, the passing
resemblance of R to the “1;)'s.eudo::.-1'22 ” or “likelihood ratio index” reported by some
statistical packages (e.g., Stata),

e(i:fv .v!)

£(3. 30 l

Many modifications of the Poisson model have been analyzed by economists. In this
and the next few sections, we briefly examine a few of them.

Rigy=1-

| .43 YZW TESTING FOR OVERDISPERSION

The Poisson model has been criticized because of its implicit assumption that the
variance of y; equals its mean. Many extensions of the Poisson model that refax this
assumption have been proposed by Hausman, Hall, and Griliches (1984), McCullagh
and Nelder (1983), and Cameron and Tiivedi (1986), to name but a few.

\_-_,3'jﬁotc that multiplying both nwmerator and denominator by 2 produces the ratio of two likelihood ratio
statistics, each of which is distributed as chi-squared.
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‘The first step in this extended analysis is usually a test for overdispersion in the
context of the simple model. A number of authors have devised tests for “overdis-
persion” within the context of the Poisson model. [See Cameron and Trivedi (1990),
Gurmu (1991), and Lee (1986).] We will consider three of the common tests, one based |,
on a regression approach, one-a conditional moment test, and a third, a Lagrange bzl

i< | T multiplier test, based on an alternative model.
Cameron and Trivedi (1990) offer several different tests for ove1d15pe151on A

simple regression-based procedure used for testing the hypothesis
Ho: Varlyi] = E[y],
HiVar{y] = E[n] + ag(En],
is carried out by regressing
o= s A -
M2

where 1, is the predicted value from the regression, on either a constant term or A; with-
out a constant term. A simple ¢ test of whether the coefficient is significantly different

from zero tests Hy versus ffy.
—CaAmeron

ression based test IO overdispersion is fefrnulated
#] = E[w]+g(E [yp7This is a very specific fyfe of overdis-
legenelal hypothgsfS that Var[y;}is complegefy given by E{y;].

The ternative is that'the variance is systefnatically related to the pegressors in a way that
ot complete accounted for by-L [y:]. Formally, we have £y;] = exp(8'x;) = X;.

b€ expected first derivatives afid the moment restrictige

condition moment fest,

Efpe(yi —2)] =0 and E{z}l% - ) — ]} =0.

ocairy out the test, we do the following. Lefe; = v — i andz =¥ out the constant

term.

1. _Zompute the Poisson regres$ion by maximam likelihp6d.
<" Computer =31, z[e}~ &;] = Y, #v; based o
estimates.
Compute M'M >3, 202, D'D = Y7
Compute 8 5»M'M — M'D(D’'D)"'D’'M.
C = r'S~)rfs the chi-squared statistic,
/_.numb of variables in z;. —
d/t O % )
The next section presents the negative binomial model. This model relaxes the
Poisson assumption that the mean equals the variance. The Poisson model is obtained
as a parametric restriction on the negative binomial model, so a Lagrange multiplier
test can be computed. In general. if an alternative distribution for which the Poisson
model is obtained as a parametric restriction, stich as the negative binomial model, can
be specified, then a Lagrange multiplier statistic can be computed. [See Cameron and

;o
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Trivedi (1986, p. 41).] The LM statistic is

- - 2
I _L—M:[E?=l"’"[(yf"*")2?y‘]]. @5-3)
b yamn e |

The weight, W;, depends on the assumed alternative distribution. For the negative
binomial model discussed later, #; equals 1.0. Thus, under this alternative, the statistic

is particularly simple to compute: . ' \
(/e —n)° % (3 -2 O>
LM = o =M ‘ (%’:4)

213
The main advantage of this test statistic is that one need only estimate the Poisson model
to compute it. Under the hypothesis of the Poisson model, the limiting distribution of

the LM statistic is chi-squared with one degree of freedom.

1 8 L{ q Mu—a HETEROGENEITY AND THE NEGATIVE BINOMIAL
REGRESSION MODEL

The assumed equality of the conditional mean and variance functions is typically taken
to be the major shortcoming of the Poisson regression model. Many alternatives have
been suggested [see Hausman, Hall, and Griliches (1984), Cameron and Tiivedi (1986,
1998), Gurmn and Trivedi (1994), Johnson and Kotz (1993), and Winkelmann (2003)
for discussion]. The most common is the negative binomial model, which arises from a
natural formulation of cross-section heterogeneity. [See Hilbe (2007).] We generalize
the Poisson model by introducing an individual, unobserved effect into the conditional
mean,
- Inp=x:8+6 =k +Inu,

where the disturbance g; reflects either qggi;ifiblafﬁon error, as in the classical regression
model, or the kind of cross-sectional heterogeneity that normally characterizes micro-
economic data. Then, the distribution of y; conditioned on x; and u; (i.e., &) remains
Poisson with conditional mean and variance p;: = ]

e ()
vi!
The unconditional distribution f(v; |x;) is the expected value (over &;) of f(yi | x, i),

00 a=Ailhi ¢ 3 gp Y
_f(.va-l:_tj)=fﬂ E——5-'}1’1’3—)—#;(&!;)t.!'a!i-

yi! g

T | xis 15) =

The choice of a density for u; defines the unconditional distribution. For mathematical 14
convenience, a gamma distribution is usually assumed for &; = exp(g;).” As in other T
models of heterogeneity, the mean of the distribution is unidentified if the model con-

tains a constant term (becanse the disturbance enters multiplicatively) so E[exp(g,)] is
e —

’ f’ jAnaltCl'Il&l’ch approach based gff the normal distribution is suggested in Terza (1998), Greene (1995a, 1997a,
T 2007d), Winkelmann (1997), The normal-Poisson mixture is also easily extended to the random cffects
model discussed in the next section. There is no closed form for the nonnal-Poisson mjxture model, but it can

be casily approximated by using Hermite quadrature or simulation. See Sections}(fn.%g.b and 28k, M

I 11.4.%
and Q?p\nalﬂhl\UambacL\}Ma N;ll{on (200'3),
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assumed to be 1.0, With this normalization,

LA
— LY
“ g(ty) = F(Q)e U;

The density for y; is then .

0 g=hith (344 )Y 99 4 g0
i | X ) = du
f(yr | _i) ]B‘ _}’i! 1—'(3) _.f

§oAN
I

{r =]
—(M 48, B4+3—1
= i du;
Ty + DO Jo e

_ 991 T + i)
T T +DTE)R +6)5

_ Te+w R A
o 7 DrEy (0 heren = =
which is one form of the negative binomial distribution. The distribution has conditional
mean »; and conditional variance A;(1 + (1/8));). [This mode! is Negbin 2 in Cameron
and Trivedi’s (1986) presentation.] The negative binomial model can be estimated by
maximum likelihood without much difficulty. A test of the Poisson distribution is often
carried out by testing the hypoth\esisa = 1/& = Qusing the Wald or likelihood ratio test.

) g,(/ . 5/ A,.@Mr.. FUNCTIONAL FORMS FOR COUNT DATA MODELS

The eqmdlspemou assumption of the Poisson regression model, £[y; | x] = Var[y | x],
is a major shartcoming. Observed data rarely, if ever, display this feature. The very large
amount of research activity on functional forms for count models is often focused on
testing for equidispersion and building functional forms that relax this assumption.
In practice, the Poisson model is typically only the departure point for an extended
specification search.

One easily remedied minor issue concerns the units of measurement of the data.
In the Poisson and negative binomial models, the parameter J; is the expected number
of events per unit of time. Thus, there is a p:esumption in the model formulation, for
example, the Poisson, that the same amount of time is observed for each . In a spatial
context, such as measurements of the incidence of a disease per group of A; persons, or
the number of bomb craters per square mile (London, 1940}, the assumption would be
that the same physical area or the same size of population applies to each observation.
Where this differs by individual, it will introduce a type of heteroscedasticity in the
model. The simple remedy is to modify the model to account for the exposure, 7;, of
the observation as follows:

exp(—Tio)(Lig;)
J!
The original model is returned if we write 4; = exp(x{8 + In ;). Thus, when the ex-

posure differs by observation, the appropriate accommodation is to include the log of
exposure in the regression part of the model with a coefficient of 1.0. (For less than

Prob(y; = j 1%, T) =

R e‘xp(}_x/;ﬁ_), j=01,....
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obvious reasons, the term “offset variable” is commonly associated with the exposure
variable 7;.) Note that if [; is the same for all j, In 7; will simply vanish into the constant
term of the model (assuming one is included in x;).
The recent literature, mostly associating the resiilt with Cameron and Trivedi’s
— (1986, 1998) work, defihes two familiar forms of the negative binomial model. The
Pl ; Ne_:gb_inﬂz (NB2) form of the probability is

(9 +yl) ¥ _ ] . R .
Prob(¥ = %) = =~ g =, (1&'10
Ap = exp(x; 8), (25.5)
r=X4/(0+4).

This is the default form of the modelin the received econometrics packages that p10v1de
an estimator for this model. The Negbm 1 (NB1) form of the model resuits if 8 in the
preceding is replaced with G = 6A;. Then, #; reduces tor =1 /(1 4 8), and the density

becomes
Prob(Y = y; |x M r _,,-)91-: ﬁ {/3 ZL) W Y
Tl nv+nmm) : [T
This is not a simple reparameterization of the model. The results in Example ,’ZST- |'*:| XY ",_

demonstrate that the log-likelihcod functions are not equal at the maxima, and the M b
parameters are not simple transformations in one model versus the other. We are not '
aware of a theory that justifies usmg one form or the other for the negative binomial
model. Neither is a restricted version of the other, so we cannot catry out a likelihood [ KT
ratio test of one versus the other. The more general Neghin P (NBP) family does nest
both of them, so this may provide a more general, encompassing approach to finding
the right specification¥The Negbin P model is obtained by replacing ¢ in the Negbin 2
ﬁlm with #2%~F. We have examined the cases of P =1 and P =2 in (35-5} and (33-6).
2005, The full model is : lq 19

Prob(Y = y; | %) =
ST T + DT (022) \ A+ A oA+ A;
The conditional mean function for the three cases considered is
Efwi I)fi,] = exp(x;§) = A;.

The parameter P is picking up the scaling. A general result is that for all three variants

of the model,
Var[y | xi] = A 1+ a}:f“l), where a = 1/8. W

Thus, the NB2 form has a variance fanction that is qnadratic in the mean while the NB1
form’s variance is a simple multiple of the mean. There have been many other functional
forms proposed for count data models, including the generalized Poisson, gamma, and
Polya-Aeppli forms described in Winkelmann (2003) and Greene (2007a, Chapter 24).

The heteroscedasticity in the count models is induced by the relationship between
the variance and the mean, The single parameter € picks up an implicit overall scaling, so
it does not contribute to this aspect of the model. Asin the linear model, microeconomic
data are likely to induce heterogeneity in both the mean and variance of the response

,Q=2-P.
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variable, A specification that allows independent variation of both will be of some virtue.
The result

Varfy [x:] = k(1 + (1/8)x51)

suggests that a natural p;lat'form for separately modeling heteroscedasticity will be the
dispersion parameter, 8, which we now parameterize as

6; = 9 exp(#;3).

Operationally, this is a relatively minor extension of the model. But, it is likely to
introduce quite a substantial increase in the flexibility of the specification. Indeed, a
heterogeneous Negbin P model is likely to be sufficiently parameterized to accommo-
date the behavior of most data sets. (Of course, the specialized models discussed in

Scctiog}SA-;for example, the zero inflati odels, may yet be more appropriate for a
given situation.) we Tt delede kﬁ(’ Rew vr de0 —cmont 5)
Exampie,zé- Count Data Models for Docrtor Visits

The study by Riphahn et al. (2003) that provided the data we have used in numerous sarlier
examples analyzed the tworcount variables DocVis (visits to the doctor) and HospVis (visits
to the hospital). The authors were interested in the jeint determination of these two count
variables. One of the issues considerad in the study was whether the data contained evidence
of moral hazard, that is, whether health care utilization as measured by these two outcomes
was influenced by the subscription to health insurance. The data contain indicators of two
levels of insurance coverage, PUBLIC, which is the main source of insurance, and ADDON,
which is a secondary optional insurance. In the sample of 27,326 observations (family/years),
24,203 individuals held the public insurance. (There is quite a lot of within group variation in
this. Individuals did not routinely obtain the insurance for all periods.) Of these 24,203, 23,689
had only public insurance and 514 had both types. {(One could not have only the ADDON
insurance.} To explore the issue, we have analyzed the DocVis variable with the count data
models described in this section. The exogenous variables in our model are

Xt = {1, Age, Education, income, Kids, Public) .

{Variables are described |n.ésg£;|:i‘4;3:1 _;r“ ble F7..)

Table 261 presents the estimates of the several count models. In all specifications, the
coafficient on PUBLIC is positive, large, and highly statistically significant, which is consistent
with the results in the authors’ study. The various test statistics strongly reject the hypothesis
of equidispersion. Cameron and Trivedi's (1990) semiparametric tests from the Poissan model
see Section 232:2=have t statistics of 22.147 for g =y, and 22.504 for g = u¥. Both of
ase are Tar larger than the critical value of 1.96. The LM statistic is 972,714.48, which is
also larger than the {any) critical value. On these bases, we would reject the hypothesis of
equidispersion. The Wald and likelihood ratio tests based on the negative binomial models
produce the same conclusion. For comparing the different negative binomial models, note
that Negbin 2 is the worst of the three by the likelihood function, although NB1 and NB2 are
not directly comparable. On the other hand, note that in the NBP model, the estimate of P is
more than 10 standarc errors from 1.0000 or 2.000, so both NB1 and NB2 are rejected in favor
of the unrestricted NBP form of the model. The NBP and the heterogeneous NB2 modsl are
not nested either, but comparing the log-likefihoods, it does appear that the hetercgeneous
model is substantially superior. We computed the Vuong statistic based on the individual

contributions to the log-likelthoods, with v, = InL(NBP) = InL;(NB2-H). (See Section 7—6—4)/-

The value of the statistic is —3.27. On this basis, we whuld reject NBP in favor of NB2-H.
Finally, with regard to the original question, the coeffioielht on PUBLIC is larger than 10 times
the estimated standard error in every specification. We would conclude that the results are
consistent with the propositicn that there is evidence of moral hazard.

14. b6
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TABLE 2571  Estimated Models for DOCVIS (standard errars in parentheses)
' Negbin 2 .
- Variable Poisson Negbin 2 Heterogenvous Negbin 1 Neghin P
Constant 07162 03628 0.7928 0.6848 06517
(0.03287) (007247} . (0.07459) (0.06807) (0.07759)
Age (0.01844 0.01803 0.01704 0.01585 0.01907
(OO003316)  (DOK07915)  (0.0U0BI46)  {00007042)  (0.O00B078)
Education  ~0.03429 —0.03839 —0.03581 —(0.02381° T —0.03388
(0.001797) (D.003965) (0.004036) (0.003702) (0.004308)
Income —0.4751 ~0.4206 —0.4108 ~0.1892 —(.3337
{0.02198) (0.04700) (0.04752) (004452) (0.05161)
Kids —1L1582 —(.1513 ~{L1368 —{).1342 —0.1622
(0.007956) {0.01738) (0.01773) (0.01647) (0.01856)
Public (.2364 $.2324 02411 0.1616 .2195
(0.1328) ((.02900) {0.03006) (0L.02678) {.03153)
P 0.0000 2.0000 2.0000 10000 1.5473
{0.0000) (0.00G00) (0.0000) {0.0000) {0.03444)
g 0.0000 1.9242 26060 6.1865 32470
((.0000) (0.02008) (0.05954) {0.06861) (0.1346)
8 (Female) (.0600 0.0000 —{1.3838 (.0000 Q00600
{0.0000) (0.0000) {0.02046) {0.0000) {0.0000)
§ {Married} {0003 (.00060 ~{},.1359 OAKIGG 00000
(000000 {00008 (0.02307) (0.0000) {10000}
InL - 1044403 —60265.49 ~60121.77 -~ O{1260.68 —6019715
—_— e
QA

25.3 PANEL DATA MODELS

\

q&’ﬁ.an

ROBUST COVARIANCE MATRICES

T the Poisson model is

-1

l

- 2
Est. Asy. Var[#] = [__8 o L}

~1
e 'X; == [X’AX}—l,
apap’

values. The BHHH estimator is

. _1 erme.
e~ )(aﬁ)]

n -1
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18.4.6 Truncation and Censoring in Models for Counts

Truncation and censoring are relatively common in applications of models for counts. Truncation
arises as a consequence of discarding what appear to be unusable data, such as the zero values in
survey data on the number of uses of recreation facilities [Shaw (1988) Bockstael et al. (1990)].
In this setting, a more common case which also gives rise to truncation is on,site sampling. When
one is interested in visitation by the entire population, which will naturally include zero visits, but
one draws their sample “on,site, * the distribution of visits is truncated at zero by construction.
Every visitor has visited at least once. Shaw (1988), Englin and Shonkwiler {1995), Grogger and
Carson (1991), Creel and Loomis (1990), Egan and Herriges (2006) and Martinez-Espinera and
Amoako-Tuffour (2008) are among a number of studies that have treated truncation due to on-site
sampling in environmental and recreation applications. Truncation will also arise when data are
trimmed to remove what appear to be unusual values. Figure [8.6 displays a histogram for the
number of doctor visits in the 1988 wave of the GSOEP data THAT we have used in several
examples. There is a suspiciously large spike at zero and an extremely long right tail of what
might seem to be atypical observations. For modeling purposes, it might be tempting to remove
these “non-Poisson” appearing observations in these tails. (Other models might be a better
solution.) The distribution that characterizes what remains in the sample is a truncated
distribution. Truncation is not innocent. If the entire population is of interest, then conventional
statistical inference (such as estimation) on the truncated sample produces a systematic bias
known as (of course) “truncation bias.” This would arise, for example, if an ordinary Poisson
model intended to characterize the full population is fit to the sample from a truncated population.

" Figwe 186 Mumber of Boctes Visits. 1992 Wave of GSOEP Data.,
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Censoring, in contrast, is generaliy a feature of the sampling design. In the application in
Example 18.9, the dependent variable s the selfireported number of extramarital affairs in a
survey taken by the magazine Psychology Today. The possible answers are 0)1) 2] 3,
4-10 (coded as 7) and “monthly, weekly, or daily” coded as 12. The two upper categories are
censored. Similarly, in the doctor visits data in the previous paragraph, recognizing the
possibility of truncation bias due to data trimming, we might, instead, simply censor the
distribution of values at 15. The resulting variable would take values 0,114, “15 or more.” In
both cases, applying conventional estimation methods leads to predlctable biases. However, it is



also possible to reconstruct the estimators specifically to account for the truncation or censoring
in the data.

Truncation and censoring produce similar effects on the distribution of the random
variable and on the features of the population such as the mean. For the truncation case, suppose
that the original random variable has a Poisson distribution (all these results can be directly
extended to the negative bmomlal or any of the other models considered earlier),

TIvuED

POI=Jx) = esphghif =Py ,

If the distribution is truncated at value C - that is, only values Ct1,//..| are observed then the
resulting random variable has probability distribution

__( =j|X) P(yj:j,.xi)
PO = 7170 >0) = P(y,>Clx) 1-P(y,<C|x) 2

The original distribution must be scaled up so that it sums to one for the cells that remain in the |
truncated distribution. The leading case is truncation at zero, 1 2. “left truncation?’ I‘Iwhich, forthe | v 5 .
Poisson model produces | sut s

e Sy

P(J’;=j|-¥ia.y,->0)= . -
T jiexp(-a)] 1-

ENT)

[See, e.g., Mullahy (1986), Shaw (1988), Grogger and Carson (1991), Greene (1998), and
Winkelmann (1987).] The conditional mean function is

; J

E(y,|%,., >0)x_l..;__2“f Jexp(. AN A >4,
=7 [l-exp(=2))] J! {1-exp(-A,)]

The second equality results because the sum can be started at zero - the first term is zero - and

this produces the expected value of the original variable. As might be expected, truncation “from

below” has the effect of increasing the expected value. It can be shown that it decreases the

conditional variance however. The partial effects are

OB Ixy, 200 | 1=By=hk |, o (i8-23)
i ox, (1 “_ﬂo )2 Ak -

The term outside the brackets is the partial effects in the absence of the truncation while the
bracketed term rises from slighter greater than 0.5 to 1.0 as A increases from just above zero.

EXAMFPLE 18.8 Major Derogatory Reports
In Section 17.5.6 and Examples 17.9 and 17.22, we examined a binary choice model for the
accept/reject decision for a sample of applicants for a major credit card. Among the variables
in that model is “Major Derogatory Reports” (MDRs). This is an interesting behavioral
variable in its own right that should be appropriately modeled using the count data
specifications in this chapter. in the sample of 13,444 individuals, 10,833 had zero MDRs
while the values for the remaining 2561 ranged from 1 to 22. This preponderance of zeros
exceeds by far what one would anticipate in a Poisson model that was dispersed enough to
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produce the distribution of remaining individuals. As we will pursue an Example 18.11, a
natural approach for these data is to freat the extremely large block of zeros explicitly in an
extended model. For present purposes, we will consider the nonzero observations apart from
the zeros, and examine the effect of accounting for left truncation at zero on the estimated
models. Estimation results are shown in Table 18.15. The first column of results compared
to the second shows the suspected impact of incorrectly including ‘the zero observations.
The coefficients change only slightly, but the partial effects are far smalier when the zeros are
included in the estimation. It was not possible to fit the truncated negative binomial with

these data. .
Trv ncc:iécl -
TABLE 18.15 Estimated Gensoreti Poison Regression Model (t ratios in parentheses)

Ful;oés::::ﬂe Poisson Truneated Poisson
Constant 0.8756 (17.10) 0.8698 (16.78) 0.7400 (11.89)
Age " 0.0036 {2.38) 0.0035 (2.32) 0.00489 (2.75)
Income -0.003% (-4.78) -0.0036 (-3.83) | -0.0051 (-4.51}
Own-Rent -0.1005 (~3.52) -0.1020 (-3.56) |-0.1415 (-4.18)
Self Employecl -0.0325 (-0.62) -0.0345 (-0.66) | -0.0515 (-0.82)
Dependents 0.0445  (4.69) 0.0440  (4.62) 0.0606  (5.48)
MithsCurAdr 0.00004 (0.23) 0.00005 (0.25) 0.06007 (0.30)
nrl -5379.30 ~-5378.79 -5097.08
) Average Partial Effects
Age 0.0017 0.0085 (3.0084
Income -0.0018 -0.0087 -0.0089
Own-Rent -0.0465 -0.2477 ~0.2460
Self-Emph>+c o -0.0150 -0.0837 -0.0895
Depéndents 0.0206 0.1068 0.1054
MthsCuarAdr 0.000902 0.00012 0.0G0013
Cond’L. Mean 0.4628 2.4295 2.4295
Scale factor 0.4628 2.42895 1.7381

Censoring is handled similarly. The usual case is “right censoring,” in which realized
values greater than or equal to C are all given the value C. In this case, we have a two, part
distribution [sece Terza (1985b)]. The observed random variable, y; is constructed from an
underlying random variable, y;* by

Y = Min(y,-*,g).
] |
Probabilities are constructed using the axioms of probability. This produces

Prob(y, =jlx) = Pij=0,LilL,C—1,

Prob(y.-=C[§f) = Z;CE,;' = I_ZC:SRJ'

4
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In this case, the conditional mean function is

Ely,|x1= 2 JB, + 2.7 CR,

- Z_jzof}?,j "ZFC(J_C)B;
=h=2 U=, -
<X, S .

The infinite sum is computed by using the complement. Thus,

By, 1x)=2~| 27, (~OR, - (-0, |
=4 ~(-C)+ X (G-OF,
=C-Y " (C-)E,

EXAMFLE 18.9 Extramarital Affairs

In 1969, the popular magazine Psychology Today published a 101-question survey on sex
and asked its readers to mail in their answers. The results of the survey were discussed in
the July 1970 issue. From the approximately 2,000 replies that were collected in electronic
form (of about 20,000 received), Professor Ray Fair (1978) exiracted a sample of 601
observations on men and women then currently married for the first time and analyzed their
responses to a question about extramaritai affairs. Fair's analysis in this frequently cited
study suggests several interesting econometric questions. [in addition, his 1977 companion
paper in Econometrica on estimation of the tobit model contributed to the development of the
EM algorithm, which was published by and is usually associated with Dempster, Laird, and
Rubin (1977).]

Fair used-the tobit model that we discuss in Chapter 19 as a platform The
nonexperimental nature of the data (which can be downloaded from the Internet at
http://fairmodel.econ.yale.edu/rayfairiwork.ss.htm and are given in Appendix Table F18.1).
provides a laboratory case that we can use to examine the relationships among the tobit,
truncated regression, and probit models. Although the tobit model seems to be a natural
choice for the model for these data, given the clusterof zeros, the fact that the behavioral
outcome variable is a count that typically takes a small value suggests that the models for
counts that we have examined in this chapter might be yet a better choice. Finally, the
preponderance of zeros in the data that initially motivated the tobit model suggests that even
the standard Poisson model, although an improvement, might still be inadequate. We will
pursue that aspect of the data later. In this example, we will focus on just the censoring
issue. Other features of the models and data are reconsidered in the exercises.

The study was based on 601 observations on the following variables (full details on-
data coding are given in the data file and Appendix Table F18.1):

¥ = number of affairs in the past year, 0, 1, 2, 3, 4-10 coded as7,
“monthly, weekly, or daily,” coded as 12. Sample mean=1.46.
Frequencies=(451, 34, 17, 19, 42, 38).~

z1 = sex=0 for female, 1 for male Sample mean-—O 476,

22 = age. Sample mean=32.5.

z3 = number of years married. Sample mean“*B 18.-

24 = children, 0=no, 1=yes. Sample mean=0.715.-

Z5 = religiousness, 1=anti,|.| || | 5=very. Sample mean=3.12.



s

26 = education, years, Q=grade school, 12=high school,|.|.(4] 20;=fPh.D_ or other.

L Sample mean=16.2.- '

Z7 = occupation, “Hollingshead scale,” 1-7. Sample mean=4.19.-

z8 = self-rating of marriage, 1=very unhappy, ... ; D=very happy. Sample mean=3.93..

The tobit model was fit to y using a constant term and all eight variables. A restricted model
was fit by excluding z1, z4, and 76, none of which was individually statistically significant in
the model. We are able to match exactly Fair's resuits for both equations. The tobit model
should only be viewed as. an approximation for these data. The dependent variable is a
count, not a continuous measurement. The Poisson regression model, or perhaps one of the

many variants of it, should be a preferable modeling framework. Table 18.15 presents ' I

estimates of the Poisson and negative binomial regression models. There is ample evidence
of overdispersion in these data; the t ratio on the estimated overdispersion parameter is
7.014/0.945 = 7.42, which is strongly suggestive. The large absolute value of the coefficient is
likewise suggestive. :

Responses of 7 and 12 do not represent the actual counts. It is unclear what the
effect of the first recoding would be, because it might well be the mean of the observations in
this group. But the second is clearly a censored observation. To remove both of these effects,
we have recoded both the values 7 and 12 as 4 and treated this observation (appropriately)
as a censored observation, with 4 denoting “4 or more.” As shown in the third and fourth sets
of results in Table 18.16, the effect of this treatment of the data is greatly to reduce the
measured effects. Although this step does remove a deficiency in the data, it does not
remove the overdispersion; at this point, the negative binomial model is still the preferred
specification.

TABLE 18.16 Censored Poisson and Negative Binomial Distributions

Poisson Regression Negative Binonial Repression
Standard  Marginal Stundurd  Marginal
Variable Fstimate Error Effect Estimate Error Effect
Rased on Uneensored Poisson Distribuiion
Constant - 2.53 0.197 — 2.19 0.664 —_
Zo "—0.0322 0.00585 —(3,0470 —0.0262 0.0192 —0.00393
F O 116 0.00991 0.168 0.0848 0.0350 0.127
I3 {1,354 0.0309 —D.515 —().422 0.111 —0.632
Fad 0.0798 0.0194 0.116 0.0604 0.0702 (.0906
= —0.409 0.0274 —(L0596 —0.431 0.11% —0.646
o 7.01 0.786
InL —1427.037 —728.2441
RBased on Poisson Distribution Right Censored aty=4
Constant 1.9¢ 0.283 — 479 116 ——
ol -0.0328 0.00833 —(.0235 —0.0166 0.0250 —(L.00428
n 0.105 0.0140 G.0754 0.174 0.0568 0.045
5 —0.323 0.0437 —0.232 - =0.723 0.198 ~(.186
7 0.0798 0.0275 0.0521 0.0900 0.116 0.0232
25 —0.390 0.0391 ~0.279 ~{}L.854 0.216 -0.220
9.40 1.35

o
In L —747.7541 _ —482.0505



Bill
Sticky Note
18.16 is correct


11:56 | { / ?‘“[/

! Greenc-50558  book  July 4, 2007

CHAPTER 25 4+ Models for Event Counts and Duration

TABLE 25.1  Estimated Madéls for DOGYIS (standard errors in parentheses)
Neghin 2

i Yariable Poisson Neghin 2 Heterogeneous Neghin 1 Neghin P
Constant 07162 0.7928 L6848 7
(0.03287) {1.07459) {0.06807) L07759)
Age .01 844 uHIRO3 001704 0.0} 585 0441907
(00003316177 (DONTVI5)  (OINNORI46)  (DONN7P4D (DDONKNTH)
Education —~{103429 ~1().13839 —L03581 —LRAKRT T 003388
73 {0.1M3963) (n004036) WITH2Y (0.004308)
Income —0.4206 —0.4108 (), 18492 —1.3337
3 {D.A4700) {0.04752) (0.04452) {0.05161)
Kids —.1582 —(.1513 —{).1568 —1.1342 —.1622
{(LNT956) {0L.01738) (0.775) (0.01647) {L.O1R56)
Public 0.2364 0.2324 ! (L1616 02145
(41328) {0.02900) {0.02678)
00000 211X 2,000 1eHH 1.3
(DLOUODY {U.L001) {0.0000) (0.IHHKY) ;
¢} 0000 1.4242 2.6061) 61865 32470
{0L000) { (L2008 {0.05954) (0.06861) {0.1346)
8 (Female) L0000 ~(.3438 L.0000
(000009 {0.0246) (.00
§ (Married) 00000 10,1359 : DARKG
{0.0000) (0.02307) LAHHK Y (IR0
n L ' - 1044403 —602635.4Y —60121.77 4 —HIPH)BR HaLoy w e

}8‘,%7,% PANEL DATA MODELS

The familiar approaches to accommodating heterogeneity in panel data have fairly
straightforward extensions in the count data setting. [Hausman, Hall, and Griliches
(1984) give full details for these models.] We will examine them for the Poisson model.
The authors [and Allison (2000)] also give results for the negative binomial model.

) 8.‘/.'}, Q_% ROBUST COVARIANCE MATRICES For POOLED ESTIMAT oS

The standard asymptotic covariance matrix estimator for the Poisson modet is

. LA I A b .
Est. Asy. Var[8] = [—W] = |2 Axx| = [XAX]

“=l

where ﬁ is a diagonal matrix of predicted values. The BHHH estimator i
X ‘
n 3n P 3ln P; -1] @

=[5 (5F)(51)

i=]

2 -1
B {Z bi = ;:)th ‘x:} = [X'E’X} s
il
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A

where l:i'.‘is a diagonal matrix of residuals. The Poisson model is one in which the MLE is
robust to certain misspecifications of the model, such as the failure to incorporate latent
heterogeneity in the mean (i.e., one fits the Poisson model when the negative binomial
is appropriate). Int this case, a robust covariance matrix is the “sandwich™ estimator,

Robust Est. Asy. Var[A] = [X'AX] XEXXAX],

which is appropriate to accommodate this failure of the model. It has become common

to employ this estimator with all specifications, including the negative binomial. One

might question the virtue of this. Because the negative binomial model already accounts
for the latent heterogeneity, it is unclear what additional failure of the assumptions of
the modet this estimator would be robust to. The questions raised in Section }6.8.3 and
16:8.4 about robust covariance matrices would be relevant here,

A related calculation is used when observations occur in groups that may be corre-
lated. This would include a random effects setting in a panel in which observations have
a common latent heteiogeneify as well as more general, stratified, and clustered data
sets, The parameter estimator is unchanged in this case (and an assumption is made that
the estimator is still consistent), but an adjustment is made to the estimated asymptotic
covariance matrix. The calculation is done as follows: Suppose the # observations are
assembled in G clusters of observations, in which the number of observations in the ith
cluster is #;. Thus, Z,_,m = 1. Denote by 8 the full set of model parameters in what-
ever variant of the model is being estimated. Let the obser vqtion-spemﬁc gradients and
Hessians be gi; = 31n £i;/88 = (3 — Ji)x;; and HH = 921In L;; /3898 = i XX
The uncorrected estimator of the asymptotic covariance matrix based on the I—Iesszan 1s

G on =
w=-H"=|-3"3"H,
i=1 j=1

The corrected asymptotic covariance matrix is

5 1
Est. Asy. Vm'[ﬁ] =Vpy (C I) Z Z{,,, Zgu Y.

fm=l

Note that if there is exactly one observation per clustel then this is G/(G —1) times
the sandwich (robust) estimator,

19.93. b %.2 FIXED EFFECTS

Consider first a fixed effects approach. The Poisson distribution is assumed to have

conditional mean % b1
[()g Ajp o= ﬁfx.ir + “is

where now. x;; has been redefined to exclude the constant term. The approach used
in the linear model of transforming Yir to group mean deviations does not remove the
heterogeneity, nor does it Jeave a Poisson distribution for the transformed variable.
However, the Poisson model with fixed effects can be fit using the methods described
for the probit model in Section 23:52: The extension to the Poisson model requires
only the minor modifications/g;, = ( v, —Ajt) and B, = — ;. Everything else in that
derivation applies with only #/simple change in the notation. The first-order conditions

{$.9.

TR

~24)
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for maximizing the log-likelihood function for the Poisson model will inclucte

alnf. &
; o }:i,(_yn —e%py) =0 where p; = %E.
Y —i |
This implies an explicit so!utfdn for o; in terms of 8 in this model, [ / X ’ZY )
i _ 3

N /T35 vir ¥

& =In| ———===" J = | == ). o {25-8)
(LT 3500 i £

Unlike the regression.or the probit model, this does not require that there be within-
group variation in y;,-rall the vahies can be the same. It does require that at least one
observation for lndlwduan be nonzero, however. The rest of the solution for the fixed
effects estimator follows the same lineg as that for the probit model. An alternative
approach, albeit with little practical gain, would be to concentrate the log-likelihood
function by inserting this solution for o; back into the original log-likelihood} then (. |
maximizing the resuiting function of 8. While logically this makes sense, the appr oach
suggested earlier for the probit model is simpler to Implement

An estimator that is not a function of the fixed effects is found by obtaining the
joint distribution of (v, ..., %y) conditional on their sum, For the Poisson model, a
close cousin to the multinomial logit model discussed earlier is produced:

Zx) _(Bhn)E [%_9 f3-2)

p (J’n- ¥ideooy WiT
=1 Hr—l Vlf r—

where
oS Bre etuf gll-ﬁ (13 "’):J’)
— S T ST D
The contriblition of group { to the conditional log-likelihood is
i

In L,' =] Zy,',— In Bit.
t=1

Note, once again, that the contribution to In L of a group in which y;, =0 in every
period is zero. Cameron and Trivedi (1998) have shown that these two approaches give
identical results.

Hausman, Hall, and Griliches (1984) (HHG) report the following conditional den-
sity for the fixed effects negative binomial (FENB) model: :

- b T .
( i ) r (1 + 2 ,}';‘:) r (zr=t A”) £ (v + Air)
pl ¥, v, Nz i | = . AT
=1 r (zrﬁ:[ Yie E:il )'.i.f) 1=1 ra+ “““)r(}ll’v-’)

which is free of the fixed effects. This is the default FENB formulation used in popular
software packages such as SAS, Stata, and LIMDEP. Researchers accustomed to the
admonishments that fixed effects models cannot contain overall constants or time;
invariant covariates are sometimes swprised to find (perhaps accidentally) that this
fixed effects model allows both. [This issue is explored at length in Allison (2000) and
Allison and Waterman (2002).] The resolution of this apparent contradiction is that the
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HHG FENB model is not obtained by shifting the conditional mean function by the
_ fixed effect, Ind; =X, 8 + ;. as it is in the Poisson model. Rather, the HHG model is
B oobtained by building the fixed effect into the model as an individual specific 8 in the
Negbin 1 form in {25-6). The conditional mean functions in the models are as follows

m (we have changed the notation sllghtly to conform to our earlier formulation):
1§t NBI(HHG): Ely: | ] = bih = 6 exp(x, ).
NB2: ELyie | %] = explaiddi = Aip = exp(x}, 8 + ).

The conditional variances are
NBI(HHG): Varly;, | xi;] = 8i¢{1 + &1},

Letting u; = In 6;, it appears that the HHG formulation does provide a fixed effect in the
mean, as now, ]y, | x;,} = exp(x/,# + u;). Indeed. by this construction, it appears (as
the authors suggest) that there are separate effects in both the mean and the variance.
They make this explicit by writing 6; = exp(u;): so that in their model,

E[yir | Xit] = 1 explx;, + ui).
Vatl v [Xir} = yi exp(x;, B + un)/[1 + v explu)]-

The contradiction arises because the authors assert that u; and »; are separate parame-
ters. In fact, they cannot vary separ ate]v only §; can vary autonomously. The firm-specific
effect in the HAG model is still isolated in the scaling parameter, which falls out of the
conditional density. The mean is homogeneous, which explains why a separate constant,
or a time invariant regressor {or another set of firm-specific effects) can reside there.
[See Gleene {2007d) and Allison and Waterman (2002} for further discussion.]

[ 843. o ®B-2633 RANDOM EFFECTS

The fixed effects approach has the same flaws and virtues in this setting as in the pro-
bit case. It is not necessary to assume that the heterogeneity is uncorrelated with the
included. exogenous variables, If the uncorrelatedness of the regressors and the hetero-
geneity can be maintained, then the random effects model is an attractive alternative
model. Once again, the approach used in the linear regression model, partial deviations
from the group means followed by generalized least squares (see Chapter W
usable here. The approach used is to formulate the joint probability conditioned upon
the heterogeneity, then integrate it out of the joint distribution. Thus, we form

%

POy L) = T e 9.
f==]

‘Then the random effect is swept out by obtaining

P(-”“""'»"”E}:f POYiLe o N, iy iy
1y

= / PCYins o i ) g () duyg
fi;

= EulpGits - .. v | )]
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This is exactly the approach used earlier to condition the heterogeneity out of the
Poisson model to produce the negative binomial model. I, as before, we take PO |M,

to be Poisson with mean A; = exp(x” 8 + u;) In which exp{u;) is distributed as gamma

with mean 1.0 and var Iance 1 /a then the preceding steps produce a negative binomial

distribution.
[H: i Vh-' r (5 + Elil ,Vfr) Q‘a{l _ Qj)Ezl M 2—‘13)

ron] (@)™ 1528

PV ...l i) =

where
o

8+ Yo it
For estimation purposes, we have a negative binomial distribution for ¥; = I, Yie with
mean A; = X;A;.

Like the fixed effects model, introducing random effects into the negative binomial
model adds some additional complexity. We do note, because the negative binomial
model derives from the Poisson model by adding latent heterogeneity to the condi-
tional mean, adding a random effect to the negative binomial model might well amount
to introducing the heterogeneity a second time. However, one might prefer to interpret
the negative binomial as the density for v, in its own right;and treat the common ef-
fects in the familiar fashion. Hausman et al’s (1984) random effects negative binomial
(RENB) model is a hierarchical model that is constructed as follows. The heterogene-
ity is assumed to enter Aje additively with a gamma distribution with mean 1, I8, ).
Then, 8 /(146;) is assumed to have a beta distribution with parameters a and b [see Ap-
pendix B.4.6)]. The resulting unconditional density after the heterogeneity is integrated
out is -

O =

M@ +or(a+Lh )w) r (!’? + 2k ”‘)
'armr (_ﬂ +E,_11 A+ b+ Eril y“) .

As before, the relationship between the heterogeneity and the conditional mean func-
tion is unclear, because the random effect impacts the parameter of the scedastic func-
tion. An alternative approach that maintains the essential flavor of the Poisson model
{and other random effects models) is to augment the NB2 form with the random effect,

@+ Yir)
(v + DHINEY
l._fr == exp(xnﬂ + Ej N

Fir = Air/ (8 + 2y ).
We then estimate the parameters by forming the conditional (on &;) log-likelihood and
infegrating &; out either by quadrature or simulation, The palametels are simpler to

interpret by this construction. Estimates of the two forms of the random effects model
are presented in Example 28.2 for a comparison.

Plyit. via, ... i) =

Prob(Y = yir | xir, &) = el =),

[ 8.10

There 1s a mild preference in the received literature for the fixed effects estimators
over the random effects estimators. The virtue of dispensing with the assumption of
uncorrelatedness of the regressors and the group specific effects is substantial. On the
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other hand, the assumption does come at a cost. To compute the probabilities or the
i marginal effects, it is necessary to estimate the constants, @;. The unscaled coefficients
s in these models are of limited usefulness because of the nonlinearity of the conditional
mean functions. e -

Other approaches to the random effects model have been proposed. Greene (1994,
1995a), Riphahn et al. (2003), and Terza (1995) specify a normally distributed hetero-
geneity, on the assumption that this is a more natural distribution for the aggregate of
small independent effects. Brannas and Johanssen (1994) have suggested a semipara-
metric approach based on the GMM estimator by superimposing a very general form
of heterogeneity on the Poisson model. They assume that conditioned on a random
effect £;;, y; is distributed as Poisson with mean £, 4;,. The covariance structure of gy is
allowed to be fulty general. Fort,s =1, ... , 1, Var[ey] = o, Covlei, £5] = (|t —s]).

(s | Forjlong time series, this model is likely to have far too many parameters to be identified
| without some restrictions, such as first-order homogeneity (8; = g Y1), uncorrelated-
ness across groups, [y;;(.) = 0 for i 5 j]. groupwise homoscedasticity (67 = az,‘g{i ), and
nonautocorrelatedness [y () = 0¥ 5 0]. With these assumptions, the estimation pro-
cedure they propose is similar to the procedures suggested earlier. If the model imposes
enough restrictions. then the parameters can be estimated by the method of moments.

The authors discuss estimation of the model in its full generality. Finally, the latent class

mode] discussed in Section 469:7 and the random parameters model in Section 19.5 1=
Txwend tiaturally to the Poisson model. Indeed, most of the received applications of
0 the latent class structure have been in the Poisson regression framework. [See Greene / f—?
/ Lf' I (2601) for a survey.]
/810

Example, 2  Panel! Data Models for Doctor Visits

The German health care panel data set contains 7,293 individuals with group sizes rang-

W'A' ing fro ble 25:2 presents the fixed and random effects estimates of the equa-

. @ tion for DocVis. The pooled estimates are also shown for comparison. Overall, the panel

L3 data treatments bring large changes in the estimates compared to the pooled estimates.

/ 8 - /6 There is also a considerable amount of variation across the specifications. With respect to

= the parameter of interest, Public, we find that the size of the coefficient falls substantially

AT with all panel data treatments. Whether using the pooled, fixed, or random effects specifi-

g 9 ' cations, the test statistics (Wald, LR} all reject the Poisson model in favor of the negative

binomial. Similarly, either common effects specification is preferred to the pooted estimator.

There is no simple basis for choosing between the fixed and random effects models, and

we have further blurred the distinction by suggesting two formulations of each of them. We
do note that the two random effects estimators are producing similar results, which one .

might hope for. But, the two fixed effects estimators are producing very different estimates. R P

The NB1 estimates include two coefficients, income and Edlication, that are positive, but (/111 ¢ 11 |

negative in every other case. Moreover, the coefficient on Pubiic, which is large and sig-

nificant throughout the table, has become small and less significant with the fixed effects \ L‘ 00 "

estimators. F
We also fit a three-class latent class madel for these data. (See Section 2) The three
class probabilities were modeled as functions of Married ard Female, which appear from

the results to be significant determinants of the class sorting. The average prior probabili-
ties for the three classes are 0.09212, 0.49361, and 0.41427. The coefficients on Public in
the three classes, with associated ¢t ratios are 0.3388 (11.541), 0.1907 {3.987), and 0.1084
{4.282). The qualitative result concerning evidence of moral hazard suggested at the outset
of Example &5-1 appears to be supported in a variety of specifications (with FE-NB1 the sole
exception).

\% .-q'
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18.4.8 Two Part Models: Zero Inflation and Hurdle Models

Mullahy (1986), Heilbron (1989), Lambert (1992), Johnson and Kotz (1993), and Greene (1994)
have analyzed an extension of the hurdle model in which the zero outcome can arise from one of
two regimes:” In one regime, the outcome is always zero. In the other, the usual Poisson process
is at work, which can produce the zero outcome or some other. In Lambert’s application, she
analyzes the number of defective items produced by a manufacturing process in a given time
interval. If the process is under control, then the outcome is always zero (by definition). If it is not
under control, then the number of defective items is distributed as Poisson and may be zero or
positive in any period. The model at work is therefore

Prob(y; =0 I.»’-‘rt".) = Prob(regime 1) + Prob(y; = 0] x;, regime 2)Prob(régiﬁe 2),
Prob(y; =7 | x:) = Prob(y;=j | X, regime 2)Prob(regime 2), j =1, 2,

Let z denote a binary indicator of reg1me 1 (z = 0) or regime 2 (z = 1), and let y* denote the
outcome of the Poisson process in regime 2. Then the observed y is 2%y*. A natural extension of
the splitting model is to allow z to be determined by a set of covariates. These covariates need
not be the same as those that determine the conditional probabilities in the Poisson process. Thus,
the model is

Prob(z; =0 [w;) = F(w, ‘y_), (Regime 1: y will equal zero.)
exp(-A )M
!

Prob(y;=jix;, zi=1)= (Regime 2: y will be a count outcome.)

The zero inflation model-can also be viewed as a type of latent class model. The two class

pRi probablhtles are F(w,,fy) and 1 F(wy), and the two regimes are y = 0 and the Poisson or negative

binomial data generating process:®  The extension of the ZIP formulation to the negative
binomial model is widely labeled the ZINB model:'?” [See Zaninotti and Falischetti (2010) for an
application.]

The mean of this random varlable in the Poisson case is

|l.'

Elyi[xuw; | = Fix 0+ (1'—F,-) < Elyxuzi=11 = (1=F)A,.
= |

Lambert (1992) and Greene (1994) consider a number of alternative formulations, including logit
and probit models discussed in Sections 17.2 and 17.3, for the probability of the two regimes.

I._ i 1

_‘3‘5 The model is variously labeled the “With Zeros,” or WZ, model [Mullahy (1986)], the_,@groelrr_l_ﬂ:tgd
i Poisson, or ZIP, model [Lambert (1992)], and “Zero-Altered Poisson,” or ZAP, model [Greene (1994)]

* Harris and Zhao (2007) applied this approach to a survey of teenage smokers and nonsmokers in
Australia, using an ordered probit model. (See Section 18.3.)

17 Greene {2005) presents a survey of two, part models, including the zero inflation models.
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It might be of interest to test simply whether there is a regime splitting mechanism at
work or not. Unfortunately, the basic model and the zero-inflated model are not nested. Setting
the parameters of the splitting model to zero, for example, does not produce Prob[z = 0] = 0. In
the probit case, this probability becomes 0.5, which maintains the regime split. The preceding
tests for over- or underdispersion would be rather indirect. What is desired is a test of non-
Poissonness. An alternative distribution may (but need not) produce a systematically different
proportion of zeros than the Poisson. Testing for a different distribution, as opposed to a different
set of parameters, is a difficult procedure. Because the hypotheses are necessarily nonnested, the
power of any test is a function of the alternative hypothesis. and may, under some, be small.
Vuong (1989) has proposed a test statistic for nonnested models that is well suited for this
setting when the alternative distribution can be specified. (See Section 14.6.6.) Let J ixy)
denote the predicted probability that the random variable ¥ equals y; under the assumption that the
distribution is £ (v{x), forj =1, 2, and let

m, = In(fl(yj !Xt)]
LX)

Then Vuong’s statistic for testing the nonnested hypothesis of model ! versus model 2 is

__hkmm] s

%; 2;;1 (m[. = Iﬁ)z -Sm

This is the standard statistic for testing the hypothesis that £[m, ] equals zero. Vuong shows that

v has a limiting standard normal distribution. As he notes, the statistic is bidirectional. If |v| is less

than two, then the test does not favor one model or the other. Otherwise, large values favor model

1 whereas small (negative) values favor model 2. Carrying out the test requires estimation of both
models and computatign of both sets of predicted probabilities. In Greene (1994), it is shown that

the Vuong test has some power to discern the zero inflation phenomenon. The logic of the testing |
procedure is to allow for overdispersion by specifying a negative binomial count data process,” i
then examine whether, even allowing for the overdispersion, there still appear to be excess zeros.

In his application, that appears to be the case.

i

Example 1 8.t10 Zero Inflation Models for Major Derogatory Reports

In Example 18.8, we examined the counts of major derogatory reports for a sample of 13,444

credit card applicants. It was noted that there are over 10,800 zeros in the counts. One

might guess that among credit card users, there are a certain {probably large) proportion of

individuals who would never generate an MDR, and some other proportion who might or

might not, depending on circumstances. We propose to extend the count models in Example
o 10.8 to accommodate the zeros. The extensions to the ZIP and ZINB models are shown in
Y& [.";'-' %[ Table 18.47. Only the coefficients are shown for purpose of the comparisons. Vuong's
/ diagnostic statistic appears to confirm intuition that the Poisson model does not adequately
describe the data; the value is 20.6981. Using the model parameters to compute a prediction
of the number of zeros, it is clear that the splitting model does perform better than the basic
Poisson regression. For the simple Poisson model, the average probability of zero times the
sample size gives a prediction of 8609. For the ZIP model, the value is 10914.8, which is a
dramatic improvement. The by the likelihood ratio test, the negative binomial is clearly
preferred; comparing the two zero inflation models, the difference in the log; likelihood
functions is over 1,000. As might be expected, the Vuong statistic falls considerably, to
4.5943. However, the simple model with no zero infiation is still rejected by the test.
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TABLE 18.17 Estimated Zero Inflated Count Models

AEIS

Poisson Negative Binomial
. Zero Inflation . Zero Inflation
Poisson s Negative -
Regression Regression Zef‘o Binomial Regression Zero

Regime Regime
Constant -1.332786 0.75483 2.06919 -1.54536 -0.39628 4.18910
Age 0.01286 0.00358 -0.01741 0.01807 ~0.00280 -0.14339
Income -0.02577 -0.05127 | ~0.03023 ~0.02482 -0.05502 -0.33%03
OwnRent -0.17801 -0.15593. | —0.01738 -0.18885 -0.28591 -0.50026
Self Empl) 0.04691 —0.01257 T 0.97920 0.06817
Dependents 0.13760 0.06038 -0.08098 0.14054 0.0859% ~0.32897
Cur. Add. 0.00195 G.000C46 0.60245 0.00257
o 6.41435 4.85653
InL ~15467.71 -11569.74 -10582.88 -10516.46
Vuong 20.6981 4.5943

In some settings, the zero outcome of the data‘generating process is qualitatively
different from the positive ones. The zero or nonzero value of the outcome is the result of a
separate decision whether or not to “participate” in the activity. On deciding to participate, the
individual decides separately how much, that is, how intensively. Mullahy (1986) argues that this~ .7
fact constitutes a shortcommg of the Poisson (or negative binomial) model and suggests a hurdle ~—

‘model as an alternative:* In his formulation, a binary probability model determines whether a

s

zero or a nonzero outcome occursy then, in the latter case, a (truncated) Poisson distribution (477
describes the positive outcomes. The model is

Prob(y, =

Prob(y, =/ | x)=(1

_ 8—9)

0lx)=e?

exp(—A,)A;

J1—exp(-3,)]"?

=12....

This formulation changes the probability of the zero outcome and scales the remaining
probabilities so that the sum to one. Mullahy suggests some formulations and applies the model to
a sample of observations on daily beverage consumption. Mullahy’s formulation adds a new

restriction that Prob(y; =0 | x;) no longer depends on the covariates, however.

The natural next

step is to parameterize this probability. This extension of the hurdle model would combine a
binary choice model like those in Section 17.2 and 17.3 with a truncated count model as shown in

Section 18.4.6. This would produce, for example, for a logit participation equatnon and a Poisson

intensity equation,

Prob(y; = Om_r;)

Prob(y; =j |x, Wiy, > 0) =

¥ For a similar treatment in continuous data application, see Cragg (1971).

= AwiY)

(1= AGw]exp(-2 )N
J![1~exp(=2,)]
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The conditional mean function in the hurdle model is

I=Fwl, A, =exp(x;B).

E ? gend
Ly [ X, W, 1= = exp(-A)]

where F() is the probability model used for the participation equation (probit or logit). The
partial effects are obtained by differentiating with respect to the two sets of variables separately,

@’—;{l—] = [1-F OV
a..E[yj fvxpwt] - —f(W:'Y)?Lt
ow,  |l-exp(=nl) "

where 8, is defined in (18-23) and f.) is the density corresponding to F{(.). For variables that
appear in both X; and w;, the effects are added. For dummy variables, the preceding would be an
approximation; the appropriate result would be obtained by taking the difference of the
conditional mean with the variable fixed at one and zero.

It might be of interest to test for hurdle effects. The hurdle model is similar to the zero
inflation model in that a model without hurdle effects is not nested within the hurdle model;
setting y = { produces either ¥ = o, a constant, or F = % if the constant term is also set to zero.
Neither serves the purpose. Nor does forcing y = B in a model with w, = x, and F = A with a
Poisson intensity equation, which might be intuitively appealing. A complementaly log log
model with

| i--".“—'ll-\\

Prob(y; = Olw;) = exp[-exp(w; )]

does produce the desired result if w; = x;. In this case, “hurdle effects™are absent if ¥ = p. The
strategy in this case, then, would be a test of this restriction. But, this formulation is otherwise
restrictive, first in the choice of variables and second in its unconventional functional form. The
more general approach to this test would be the Vuong test used earlier to test the zero inflation
model against the simpler Poisson or negative binomial model.

The hurdle model bears some similarity to the zero inflation model! however, the
behavioral implications are different. The zero inflation model can usefuily be viewed as a latent
class model. The splitting probability defines a regime determination. In the hurdle model, the
splitting equation represents a behavioral outcome on the same level as the intensity (count)
equation. Both of these modifications substantially alter the Poisson formulation. First, note that
the equality of the mean and variance of the distribution no longer follows; both modifications
induce overdispersion. On the other hand, the overdispersion does not arise from heterogeneity; it
arises from the nature of the process generating the zeros. As such, an interesting identification
problem arises in this model. If the data do appear to be characterized by overdispersion, then it
seems less than obvious whether it should be attributed to heterogeneity or to the regime splitting
mechanism. Mullahy (1986) argues the point more strongly. He demonstrates that overdispersion
will always induce excess zeros. As such, in a splitting model, we may misinterpret the excess
zeros as due to the splitting process instead of the heterogeneity.



C18-22
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Example 18.4:!‘ Hurdle Model for Doctor Visits
The hurdle model is a natural specification for models of utilization of the health care system, .~
and has been used in a number of studies. Table 18.18 shows the parameter estimates fora ' |
hurdle model for doctor visits baswed on the entire pooled sample of 27,326 observations.
The decomposition of the partial effects shows that the participation and intensity decisions
each contribute substantively to the effects of Age, Income,and Public insurance. The value
of the Vuong statistic is 51.16, strongly in favor of the hurdle model compared to the pooled
. Poisson model with no hurdle effects. The effect of the hurdle model on the partial effects .
-.are shown in the last column where the result; for the Poisson model are shown in
parentheses. ' -

]

TABLE 18."6 Estimated Hurdle Model for Doctor Visits

Participation Eqnati{_m Intensity Equation Total
Parameter I]’Eaf;tis::l Parameter l;:afli'_teicatl Partial Effect
ec .

Constant ~0.0598 11203 (Poisson Model)
mége ) 0.0221 0.0244 0.0113 0.0538 0.0782 ( 0.0625)
‘Income 0.0725 0.0800 ~-0.5152 -2.44770 -2.3670 ({-1.8130)
Kids -0.0842 -0.4000 -(.4000 (-0.4836)
Public 0.2411 0.2663 0.196¢6 0.98338 1.2001 ( 0.9744)
Education -0.0291 -0.0321 -0.0321
Married -0.0233 -0.0258 -0.0258
. Working -0,.3624 -0.4003 -0.4003




18.4.9 ENDOGENOUS VARIABLES AND ENDOGENOUS PARTICIPATION

As in other situations, one would expect to find endogenous variables in models for
counts, For example, in the study on which we have relied for our examples of health care
utilization, Riphahn, Wambach and Million (RWM, 2003), the authors were interested in the role
of insurance (specifically the 4dd-On insurance) in the usage variable. One might expect the
choice to buy insurance to be at least partly influenced by some of the same factors that motivate
usage of the health care system. Insurance purchase might well be endogenous in a model such
as the hurdle model in Example 18.12. - :

The Poisson model presents a complication for modeling endogeneity that arises in some
other cases as well. For simplicity, consider a continuous variable, such as Jucome, to continue
our ongoing example. A model of income determination and doctor visits might appear

.""'

Income = z,!."? + u;, ¢ m -|._:._'\ \

Prob(DocVis; = jlgt,v,'llngomg,-) = exp(-A), M/, k= exp(x;'B +_”f|Income,-).

’ (heexomple, '
Endogeneity as we have analyzed it, e.g., in Clhapter 8 and Sections 17.3.5 and 17.5.5, arises
through correlation between the endogenous variable and the unobserved, omitted factors in the
main equation. But, the Poisson model does not contain any unobservables. This is a major
shortcoming of the specification as a “regression” model; all of the regression variation of the
dependent variable arises through variation of the observables. There is no accommodation for
unobserved heterogeneity or omitted factors. This is the compelling motivation for the negative
binomial model or, in RWMS case, the Poisson-normal mixture model. [See Terza (2010, pp.
555r1,556) for discussion ofﬁ this issue.] If the model is reformulated to accommodate
heterogeneity, as in

A = exp(x/B + dIncome, +g,),
then Income; will be endogenous if ; and &, are correlated.

A bivariate normal model for (u,e) with zero means, variances oi and o and
correlation p provides a convenient (and the usual) platform to operationalize this idea. By
projecting €, on u;, we have

& = (po/onu; + v, PR

where v; is normally distributed with mean zero and variance of(l - p%). It will prove convenient
to parameterize these based on the regression and the specific parameters as follows:

& = po, (Income, —z,)c, + v,

Il

T [(Income, — 2, )/o,] + Ow,.

where w, will be normally distributed with mean zero and variance ome while © = po: and
0* = &(1 — p). Then, combining terms,

€ = "C_ui* + BW,
With this parameterization, the conditional mean function in the Poisson regression model is

A= exp(xB+ &EIncome,- +1u* + Ow).
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_ The parameters to be estimated are B, v, 3, o,, o,jand p. There are two ways to proceed.
A twoy,step method can be based on the fact that y and o, can belconsistentlyl estimated by linear
regression of Income on z. After this first step, we can bompute values of »* and formulate the
Poisson regression model in terms of .=

h(#,) = explxiB + 8Income, + vi, +Ow]. :
The log likelihood to be maximized at the secohd ‘step is
[ als = L* ) A
L@Smolw) = 3.~ —h,(w)+y Ik, (w)~Iny,!.

A remaining complication is that the unobserved heterogeneity, yv_,-)remains in the equation so it
must be integrated out of the log likelthood function. The unconditional log,likelihood function is
obtained by integrating the standard normally distributed w; out of the conditional densities.

. . %
IIIIL(ﬁ,:Y,I‘C,IIe) = Z; In J“’" exp(_;\-i(wj))(xi(wf)) .¢(Wr)dW, 8

- !

The methed of Butler and Moffitt or maximum simulated likelihood that we used to fit a probit
model in Section 17.4.2 can be used to estimate B, 8, 7,and 6. Estimates of p and o, can be

deduced from the last two of these; ¢, = 6 + 1° and p = t/c,. This is the control function method —
discussed in Section 17.3.5 and is also the “residual inclusion” method discussed by Terza, Basu, | (1

'

and Rathouz (2008).
The full set of parameters can be estimated in a single step using full information

maximum likelihood - To estimate all parameters simultaneously and efficiently, we would form |

the log likelihood from joint density of DocVis and Income as P(Doc VislIncome)f Income). Thus,

| A (W[ A (w) ] ~z!
f(DocVis, Income)= oxp[ A ol 1 ¢[Income E'I'J
g i ! o, »

A (w)=exp(x;B+ S:Income,. +t(Income, - zy)/ o, +0w,)
As before, the unobserved w; must be integrated out of the log, likelihood function. Either
quadrature or simulation can be used. The parameters to be estimated by maximizing the full log :
likelihood are (B;y,'&,cu,'ge,p). The invariance principle has been used to simplify the estimation a
bit by parameterizing the log, likelihood function in terms of t and 0. Some additional
simplification can also be obtained by using the Olsen (1978) [and Tobin (1958)] transformations,

n=1lo,and o = (1/ou)y. :

¥
M
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An endogenous binary variable, such as Public or AddOn in our DocVis example is
handled similarly; but is a bit simpler. The structural equations of the model are

I* = 2y +u, u~N[0,1],
T = 1{T*>0), A
A =exp(x'B+8T+e) &~N[0,02),

with Cov(ue) = po,. The endogéneify"ﬁf T is implied by a nonzero p. We use the bivariate
normal result '

u = (p/o)e + v

where v is normally distributed with mean zero and variance 1 — p’. Then, using our earlier
results for the probit model (Section 17.2),

P(Tk) = @ (2T—1)[w] ,T=0,1,

J1-p°

It will be convenient once again to write € = G.w where w ~ N[0,1]. Making the substitution, we
have :

PIw) = @ (2T-1)(MJ L, T=0,1.

J1-p?

The probability density function for yT;w is Poisson with Aw) = exp(x'p + 8T + cm).
Combining terms,

oxp[Am]A} (2T_1)[zw+pw] |

y! Jyi1-p’

This last result provides the terms that enter the log, likelihood for (B,y,8,p,0.). As before, the
unobserved heterogeneity, w, must be integrated out of the log, likelihood, 30 either the quadrature
or simulation method discussed in Chapter 17 are used to obtain the parameter estimates. Note
that this model may also be estimated in two steps, with 4 obtained in the first,step probit, The
two, step method will not be appreciably simpler, since the second term in the density must
remain to identify p. The residual inclusion method is not fesible here since 7* is not observed.
‘This same set of methods is used to allow for endogeneity of the participation equation in
the hurdle model in Section 18.4.8. Mechanically, the hurdle model with endogenous
participation is essentially the same as the endogenous binary variable. [See Greene (2005 ,'-%007).]

Ly, Tw) =
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18.5 SUMMARY AND CONCLUSIONS

The analysis of individual decisions in microeconometrics is largely about discrete decisions such
as whether to participate in an activity or not, whether to make a purchase or not, or what brand
of product to buy. This chapter and Chapter 17 have developed the four essential models used in
- that type of analysis. Random utility, the binary choice model,and regression-style modeling of
probabilities developed in Chapter 17 are the three fundamental building blocks of discrete choice
modeling. This chapter extended those tools into the three primary areas of choice modeling;
unordered choice models, ordered choice models, and models for counts. In each case, wé
developed a core modeling framework that provndes the broad platform then developed a variety
of extensions.

In the analysis of unordered choice models, such as brand or locatlon the mult1nom1al
logit (MNL) model has provided the essential starting point. The MNL works well to provide a
basic framework, but as a behavioral model in its own right, it has some important shortcomings.
Much of the recent research in this area has focused on relaxing these behavioral assumptions.
The most recent research in this area, on the mixed logit model has produced broadly flexible
functional forms that can match behavioral modeling to empirical specification and estimation.

The ordered choice model is a natural extension of the binary choice setting and also a
convenient bridge between models of choice between two alternatives and more complex models
of choice among multiple alternatives. We began this analysis with the ordered probit and logit
model pionecred by Zavoina and McKelvey (1975). Recent developments of this model have
produced the same sorts of extensions to panel data and modeling heterogeneity that we
considered in Chapter 17 for binary choice. We also examined some multiplejequation
specifications.. For all its versatility, the familiar ordered choice models have an important
shortcoming in the assumed constancy underlying preference behind the rating scale. The current
work on differential item functioning, such as King et al. (2004) has produced significant
progress on filling this gap in the theory.

Finally, we examined probability models for counts of events. Here, the Poisson
regression model provides the broad framework for the analysis. The Poisson model has two
shortcomings that have motivated the current stream of research. The functional form binds the
mean of the random variable to its variance, producing an unrealistic regression specification.
Second, the basic model has no component that accommodates unmeasured heterogeneity. (This
second feature is what produces the first.) Current research has produced a rich variety of models
for counts, such as two, part behavioral models/ that account for many different aspects of the
decision,  making process and the mechanisms that generate the observed data.
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Exercises

1. We are interested in the ordered probit model, Our data consist of 250 observations, of which
the responsé are

y 01234
n 5040458035 .

Using the preceding data, obtain maximum likelihood estimates of the unknown parameters of the
model. (Hint: Consider the probabilities as the unknown parameters.)

2. For the zero-inflated Poisson (ZIP) model in Section 18.4.8, we derived the conditional mean
function, Ey; [x,w,] = (1 —F)A:
a. For the same model, now obtain Var{y|x,w,]. Then, obtain t; =Var[y Ix;, il / E{yix; wi.
Does the zero inflation produce overdispersion? (That is, is the ratio greater than one?)
b. Obtain the partial effect for a variable z that appears in both w; and x;.

3. Consider estimation of a Poisson regression model for ylx; . The data are truncated on the
left—these are on-site observations at a recreasion site, so zeros do not appear in the data set. The
data are censored on the right;-any response greater than 5 is recorded as a 5. Construct the log-
likelihood for a data set drawn under this sampling scheme. X

Applications

1. Appendix Table F18.1 provides Fair’s (1978) Redbook Magazine survey on extramarital
affairs. The variables in the data set are as follows:

id = an identification number,’

C = constant, value =1,

yrb = a constructed measure of time spent in extramarital affairs,-
ﬂ\ = g rating of the marriage, coded 1 to 5,/
V2 = age, in years, aggregated,

v3 = number of years married,

v4 = number of children, top coded at 5,
v5 = religiosity, 1 to 4, 1 = not, 4 = very,
v6 = education, coded 9, 12, 14, 16, 17, 20,
v7 = occupation,

v8 = husband’s occupation,

and three other variables that are not used. The sample contains a survey of 6,366 married
women, For this exercise,we will analyze, first, the binary variable 4= 1 if yrb > 0, 0 otherwise.
The regressors of interest are ¥1 to v8; however, not necessarily all of them belong in your model.
Use these data to build a binary choice model for A, Report all computed results for the model.
Compute the marginal effects for the variables you choose. Compare the results you obtain for a
probit model to those for a logit model. Are there any substantial differences in the results for the
two models?



S i I coded 0, 1,2 3,4, e.g., LIMDEP. Be sure to determine which is appropriate for the program you | *©
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2. Continuing the analysis of the first application, we now consider the self-reported rating, vl
This is a natural candidate for an ordered choice model, because the simple four-item coding is a
censored version of what would be a continuous scale on some subjective satisfaction variable. I Lol s
Analyze this variable using an ordered probit model. What variables appear to explain the o~
response to this survey question? (Note the variable is coded 1, 2, 3, 4, 5. Some programs accept

'|data for ordered choice modeling in this form, ejg., Stata, while others require the variable to be | _ g 2y P
[ €], &

| 'are using and transfgrm the data if necessary.) Can you obtain the partial effects for your model? *
Report them as well. What do they suggest ‘about the impact of the different independent
variables on the reported ratings?

3. Several applications in the preceding chapters using the German health care data have
examined the variable DocVis, the reported number of visits to the doctor. The data are described
in Appendix Table F7.1. A second count variable in that data set that we have not examined is
HospVis, the number of visits to hospital. For this application, we will examine this variable. To
begin, we treat the full sample (27,326) observations as a cross section.

a. Begin by fitting a Poisson regression model to this variable. The exogenous variables are listed
in the Appendix Table F7.1. Determine an appropriate specification for the right-hand side of
your model. Report the regression results and the partial effects.

b. Estimate the model using ordinary least squares and compare your least squares results to the
partial effects you computed in part a. What do you find?

c. Is there evidence of overdispersion in the data? Test for overdispersion. Now, reestimate the
model using a negative binomial specification. What is the result? Do your results change? Use a
likelithood ratio test to test the hypothesis of the negative binomial model against the Poisson.

4, The GSOEP data are an unbalanced panel, with 7,293 groups. Continue your analysis in
Application 3 by fitting the Poisson model with fixed and with random effects and compare your
results. (Recall, like the linear model, the Poisson fixed effects model may not contain any t1me =
invariant variables.) How do the panel data results compare to the pooled results?

5. Appendix Table F18.2 contains data on ship accidents reported in McCullagh and Nelder
(1983). The data set contains 40 observations on the number of incidents of wave damage for
oceangoing ships. Regressors include “aggregate months of service,” and three sets of dummy
variables, Type (1, . . ., 5), operation period (1960—1974 or 1975 1979) and construction period
(1960——1964 1965- 1969 or 1970-; 1974). There are six missing values on the dependent variable,
leaving 34 usable observations. s ol

a. Fit a Poisson model for these data, using the log of service months, four type dummy variables,
two construction period variables, and one operation period dummy variable. Report your results.
b. The authors note that the rate of accidents is supposed to be per period, but the exposure
(aggregate months) differs by ship. Reestimate your model constraining the coefficient on log of
service months to equal one.

c. The authors take overdispersion as a given in these data. Do you find ev1dence of
overdispersion? Show your results.



