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LIMITED DEPENDENT VARIABLES - v
TRUNCATION, CENSORINGHAND SAMPLE SELECTION

19 1" Introduction = g
T 17

This chapter is concerned with truncatlon and qensormg As we saw in Section 18.4.6, these
features complicate the analys1s of data that might otherwise be amenable to conventional
estimation methods such as regression. “Truncation” effects arise when one-attempts to make
inferences about a larger population from a sample that is drawn from a distinct subpopulation.
For example, studies of income based on incomes above or below some poverty line may be of
limited usefulness for inference about the whole population. Truncation is essentially a
characteristic of the distribution from which the sample data are drawn. Censoring is a more
common feature of recent studies. To continue the example, suppose that instead of being
unobserved, all incomes below the poverty line are reported as if they were af the poverty line.
The censoring of a range of values of the variable of interest introduces a distortion into
conventional statistical results that is similar to that of truncation. Unlike truncation, however,
censoring is essentially a defect in the sample data. Presumably, if they were not censored, the
data would be a representative sample from the population of interest, We will also examine a
form of truncation called the sample se!ectlon _problem. Although most empirical work in this
area involves censoring rather than truncation, we will study the simpler model of truncation first.
It provides most of the theoretical tools we need to analyze models of censoring and sample
selection,

The discussion will cxamine the general characteristics of truncation, censoring and
sample selection, then, in each case, develop a major area of application of the principles. The
stochastic frontier model [Aigner, Lovell and Schmidt (1977), Fried, Lovell and Schmidt (2008)]
is a leading application of results for truncated distributions in empirical models. Censoring
appears prominently in’the analysis of labor supply and in modeling of duration data. Finally, the
sample selection model has appeared in all areas of the social sciences] and plays a significant
role in the evaluation of treatment effects and program evaluation.
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241 INTRODUCTI

This chapter is corcerned with truncation and censorjng.” The effect of truncatio;
a larger population of interest!
above or below some poverty lin

This chapfer will discuss three broad fopje§ truncation, censoring, and a form of
truncation called the sample selection probpfem. Aithough most empirical work in this
area involves censoring rather than tpuncation, we will study the simpler model of
truncation fifst. It provides most of the theoretical tools we need to analyze models of
censoring and sample selection.?

/7.0 Mb2in TRUNGATION

In this section, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population.

]9.2.] 3F=T TRUNCATED DISTRIBUTIONS /9.2
A truncated (liétfi!')ilf_ion isthe part of an untrunggzsﬁstribution that is above or below
some specified value. For instance, in Example24+%, we are given a characteristic of the
distribution of incomes above $100.000. This subset is a part of the full distribution of
incomes which range from zero to (essentially) infinity.
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- /9.1
THEOREM 244  Density of a Troncated Random Varmb]c H" .

N - [fa continvous random vauab!e X has pdf j{x) and a is o constant, ther X
1 1\ I
I"a- ! o . . f(l)

f XX > (I = —e—,

: ( | ) Prob(x > a}

The proof follows from the definition of conditional probability and amounts
merely 1o scaling the density so that it integrates to one over the range above 4.
/ Note that the truncated distribution is a conditional distribution.

‘ Most recent applications based on continuous random variables use the trunwtq:d
it f normal distributjon. If v has a normal distribution with mean u and standard deviation

o, then

1
Piob{x > a) =1 — ¢(£-—~w~) =1~ dla),
a
where o = (¢ — 1)/ and ®(.) is the standard normal cdf. The density of the truncated
normat distribution is then

1 fa—n
o) O T L L g¢ P
_ - D) =0 1 1-0@
PN where ¢(.)is the standmdnomnl pdf. The truncated standardnonmal distribution, with )4 .
u =0ande = l.isillustrated fora = —0.5, 0.and 0.5in Flgul@_ LPAnother truncated ‘
distribution that has appeared in the recent literature, this on¢Tor a discrete random
variable, is the truncated at zero Poisson distribution.
N (e A /! (e*20)/ y!

ProbfY =y|v > 0] = Isl'ob[}" > 0] =1z ProblY = 0]

_ (e~*A8 /¥!

flrle>a)= 5

., Ax>0,vy=1,...
_ 1—e? 3 '
/f -.I'-'.-{. L This distribution is used in models of uses of recreation and other kinds of facilities
A where observations of zero uses are discarded.*>”

For convenience in what follows, we shall call a random variable whose distribution
is truncated a truncated random variable. [/

| @.7.0 “ZZ2F" MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interesteéd in the mean and variance of the truncated random variable.
They would be obtained by the general formula:

(=]
Elxix>a] =[ xfxjx > aydx
@
for the mean and likewise for the variance.

| F=
3The case of truncation from above instead of below is handied in an analogous fashion and does not reguire
, ARy newr esults.

43¢ Shaw (1988). An n.p?hcq‘\'lo-h_ of Hais model QPPERNS (n Section
19.4.6 and € xample 18.8
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Example 28T Truncated Uniform Distribution
If x has a sfandard uniform distribution, denoted U({0, 1), then

fix)=1, O0=x=<1.

The truncated at x = 3 distribution is also unifom‘ii

AN L I
(-3) ~mmpy @ 8

The expected valus is
1
E)(|x:=-l =/ X 2 dx:g.
-] 3 1 \2/)7 3

A
-

For a variable distributed uniformly between L and U, the variance is (U — L)?/12.

Thus,
Var[x|x > 3} = &.

The mean and variance of the untruncated distribution are 3 and %, respectively.
7
Example 2%.1 illustrates two results.

865

1. If the truncation is from below, then the mean of the truncated variable is greater
than the mean of the original one. If the truncation is from above, then the mean
of the truncated variable is smaller than the mean of the original one. "Hifs e

2. Tluncatlon reduces the variance comp'ued with the variance in the untruncated

distribution. I &%

Henceforth, we shall use the terms trlmmtcd mean and trumate(l varldme to refer to

the mean 'md variance of the random variable with a tmnc"ltecl distr lbutton
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For the truncated normatl distribution, we have the following theoremif

= . 92 _
THEOREM 242~ Moments of the Truncated Normal Distribution
Ifx ~ Nlu, o%) and a is a constant, then

E[x | truncation] = p + o i{w), (lzi-l)
Var{x [ truncation] = o2l — §(e)], o (’FFZ)
wiltere o = (a4 — p) /o, P(a) is the standard normal density and 2
AMa) =¢la)/[1 - ®(a)] if truncation is x > a, (24-32)
Aa) = —¢la)/ D) if puncationis x < 4, (ﬁ-?ab)
and 9
$a) = ra)[Ala) —a]. (234)

An important result is

0 < 8{w) <=1 forallvalues of @,
19.4

which implies point 2 after Example 2&71. A result that we will use at several points below L
is dgp(@)/de = —a¢{a). The function (o) is called the inverse Mills, rahn. The function

92 in ("4- 3a)i 1; also called the ha.mrd funmun for the standard normal distribution.

Example 25-'5.’, A Truncated Lognormal Incorme Distribution

. “The typical. upper affluent American’ ... makes $142,000 per year. ... The people surveyed

F A WP | had household income of at least $100, 000 " Would this statistic tell us anything about the
gy “typical American™? As it stands, it probably does not (popular impressions notwithstanding).
o Y The 1987 ariicle where this appeared went on to state, “If you're in that category, pat yourself

== - on the back-——only 2 percent of American households make the grade, according to the

¢ 7 survey.” Because the degree of truncation in the sample is 98 percent, the $142,000 was

probably quite far from the mean in the full population.

Suppose that incomes, x, in the population were lognormally dlstnbuted—-see
Section B.4.4. Then, the log of income, y, had a normal distribution with, say, mean 4 and
standard deviation, o. Suppose that the survey was large enough for us to treat the sample

average as the true mean. Assuming so, we'll deduce . and oilthen determine the population

mean income.

Two useful numbers for this example are In 100 = 4.605 and In 142 = 4.956. The article

states that
Probfx. = 100] = Problexp(y} = 100} = 0.02
or
Prob{y < 4.605) = 0.98.
qD:‘:ta:ls may be found in Johnson, Kotz. and Batakrishnan {1994, pp. 156—1 58). e Darc $ earin

‘(9-5

£7)

AN ey

“1/03ce New York Post (1987). Cameron and T rived; (2oosg),
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This implies that
- Probl{y — 1) /o < (4.605 — u} Jo] = 0.98.
Because &f{4.605 — u) /v] = .98, we know that )
$1(0.98) = 2.054 = (4.605 — 1) /o,
or
4605 = + 2.0540.
The article also states that
Efx | x > 100] = Elexp(y) | exp(y) > 100] = 142,
or
_Elexp(y) | y > 4.645] = 142,

To proceed, we need another result for the lognormal distribution:

&(a —(a - p)/o)

if y ~ N, o], then Efexp(y) |y > a] = exp{u +0%2) x T-a{a—n)/o)"

{See Johnson, Kotz and Balakrishnan (1995, p. 241).} For our application, we would equate
this expression to 142, and a to In 100 = 4.605. This provides a second equation. To estimate
the two parameters, we used the method of moments. We solved the minimization problem

Minimize, . [4.805 —{u + 2.0540)F + [142&{{n — 4.605) /o) — exp(u +52/2) ®(o — (4.605 — p) /o) >

The two solutions are 2.89372 and 0.83314 for i and o, respectively. To obtain the mean
income, we row use the result that if y ~ Nfu, 0®] and x = exp(y), then E[x] = exp(u -+ o2 /2).
Inserting our values for x and o gives Flx] ~ $25,554. The 1987 Statistical Abstract of
the United States gives the mean of household incomes across all groups for the United
States as about $25,000. So, the estimate based on surprisingly little information would have
been relatively good. These meager data did, indeed, tell us something about the average
Ametrican.

1 T.Z- 3 *2=pey THE TRUNCATED REGRESSION MODEL
In the model of the earlier examples, we now assume that
_ nL=XiB
is the deterministic part of the classical regression model. Then
i =X B+ e
where
g |.x ~ N[O, 62,
so that

¥ 1x ~ Nxig, 0 . (#-5)



" Greene-50558

book  June 23,2007  13:17 i f q _ 7’

9
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We are interested in the distribution of y; given that y; is greater than the truncation
point a. This is the result described in Theorem 242, It follows that 19,72

“ Ll = al = xp + o 2L HB0] X
L [.“I’ I.l-, >‘£_1'} ——._.x;ﬂ + o d)[(ﬂ o X’ﬁ)fo’] (ﬂ"‘ﬁ)

The condmonal mean is therefore a nonlmeal function of a,0, X x. and g,
effects in this model in the subpopulation can  be obtqlned by wyitin
il;nﬂgmd b g

Elvi| v > a] =3‘:f3 + oiday), (&7)
where now &; = (a —x! £)/o. For convenienv:.;e. let A; = Aley) and § = 8(e;). Then
=ﬁ+c(}tg—ﬂf_i f)(—_ﬁ/‘-‘f) (12;‘-3)
= B(1 = +aidi)

Note the appearance of the scale factor 1 — §; from the truncated variance. Because
(1 — &) is between zero and one, we conclude that for every element of x;, the marginal /71~

effect is less than the corresponding coefficient. There is a similar attenlmtlon of the -
variance. In the subpopulation y; > «. the regression variance is not a2 but
J

artial Var(y | v > a] = a2l — ). (.%9)

Whether the massinat effect in ('3&‘3Il -7) or the coefficient § itself is of interest depends on
the intendedinferences of the study, Ifthe analysisisto be confined to the subpopulation,
en (28-7) is of interest. If the study is intended to extend to the entire population,
however, then it is the coefficients 4 that are actually of interest.
One’s first inclination might be to use or dinary least squares to estimate the param-
eters of this regression maodel. For the subpopulation from which the data are drawn,

WG) in the form 1
9 Yilvio>a = E[yi |y > a] + :.?_C';_ﬁ;i- o + 4, (H#-10)

where #; is v minus its conditional expectation, By construction. «; has a zero mean,
but it is heteroscedastic:

Varly;] = o (] m12+k,a,) =21 - &)

which is a function of x;. If we estimate (??10) by ordinary least squares regression of
-y on X, then we have omitted a variable, the nonlinear term ;. All the biases that arise
because of an omitted variable can be expected 5

Without some knowledge of the distribution of x. it is not possible to determine
how serious the bias is likely to be. A result obtained by Chung and Goldberger (1984)
is broadly suggestive. If E[x | v] in the full population is a linear function of y, then plim
b = gz for some proportionality constant z. This result is consistent with the widely obs-
erved (albeit rather rough) pr oportlonallty relationship between least squares estimates
‘?Scc Heckman (1979) who formulates this as a “specification error™
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- Wl
SN of this model and maximum likelihood estimates.] The proportionality result appears
. to be quite general. In applications. it is usually found that. compared with consis-
=T = fent maximum llkellhood esnmates, the OLS estimates are biased toward zero. (See

Examplem:)> . 7. | Y

24.3 CENSORED DATA

A very common problem in mpitroeconomic data is cens y of the dependent variable.
When the dependent varjable is censored, values ipd certain range are all transformed
to {or reported as) a sifigle value. Some exampl€s that have appeared in the empirical
literature are as fgHows:

is zero, although this is #nly a convenient normalization. Iaa truncated distribution,
only the part of distriution above y = 0 is relevant to ot computations, To make the
distribution integpdte to one, we scale it up by the pfobability that an observation in
the untruncateghpopulation falls in the range tha#interests us, When data are censored,
the distribugion that applies to the sample dgeti is a mixture of discrete and continuous
distributions. Figure 24.2 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from
the original one, v*. by

y=0 ify <0,
y=* ify* >0

The distribution that/applies if y*~ N[u.6?] is Prob(y=10)=Prob{y* <0)=
D(—pjo)=1-—O(u/d). and if y* > 0, then y has the density of v*.

This distribution is a mixture of discrete and continuous parts. The total probabilit
is one, as required, but instead of scaling the second part, we simply assign the full
probability i 'eq region to the censorir his case, zero,

PTE

See the appendix in Hausman and Wise (1977) and Greene {198’%) as well.

MR | 1t AR ab L
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A tengthy literature commencing with theoretical work by Knight (1933). Debreu
(1951), and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and 1) -
Schmidt (1977) has been directed at models of production that specifically acc—cz:l.yt, k]
for th&Textbook proposition that a production function is a theoretical ideal" If
¥ =_f{x) defines a production relationship between inputs, x. and an output, y, then

“for any given X, the observed value of y must be less than or equal to f (x) The

implication for an empirical regression model is that in a formulation such as
¥ = A(x. f#)+ . « must be negative. Because the theoretical production function is
an ldeal—the frontier of efficient production-—any nonzero disturbance must be in-
terpreted as the result of inefficiency. A strictly orthodox inter pretation embedded in
a Cobb-Douglas production model might produce an empirical frontier production
model such as

Inv=p8+Xiftny, —u, u=0 — 4 -?

The gamma model described in Examplfli)\)kas an application. One-sided disturbances
such as this one present a particularly difficult estimation problem. The primary theoret-
ical problem is that any measurement error in In y must be embedded in the disturbance.
The practical problem is that the entire estimated function becomes a slave to any single
errantly measured data point.

Aigner, Lovell, and Schmict proposed instead a formulation within which observed
deviations from the production function could arise from two sources: (1) productive
inefficiency, as we have defined it earlier and that would necessarily be negative, and
(2) idiosyncratic effects that are specific to the firm and that could enter the model with
either sign. The end result was what they labeled the stochastic frontier: (% Ty

Inye=pg+ThInxe—u+v, uz0 v~N[0, orf].

= 1+ Zghr In X+ &

'The frontier for any particular firm is 2(x, ) + v. hence the name stochastic fron-
tier. The inefficiency term is u, a random variable of particular interest in this setting,
Because the data are in log terms,  is a measure of the percentage by which the partic- L
ular observation fails to achieve the frontier, ideal production rate. oY §ar0 .
To complete the specification. they suggested two possible distributions for th distribotion
inefficiency term: the absolute value of a normally distributed variable and an expo- Shown in
nentially distributed variable. The density functions for these two compound variables [, guce 1.l
are given by Aigner, Lovell, and Schmidt: let ¢ = v — i, A = 6,/0,,0 = (o2 + 02)1/2 /

8

.i_pfhcqt-é

@( S§ survey by Greene (ZOQia) appears in Fried, Lovell. and Schnudt (”1])\) Kumbh'lkar and Lovell (2000)

isa comprehcnswe reference on the subject.
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FIGURE M Density for the Disturbance in the Stochastic Frontier
/L] 1 - Model. .

and ©(2) =the probability to the left of z in the standard normal distribution (see
Section B.4.1). For the “half-normal™ model,

1y, 2 17/g)\° —gjh
ln!j(s,-|_ﬂ.l.cr)_[-—lna—k(i)]n;—i(;‘) +[n¢>( > )}

whereas for the exponential model

i, i
Inkis; | B.0.0.) = {ln 8 + :2-920_3 +8e + In@ (—5&' - b"cr_l,)] .

L

Both these distributions are asymmetric. We thus have a regression model with a
nonnormal distribution specified for the disturbance. The disturbance, £, has a nonzero
mean as well: E[e] = —g,(2/m)'7 for the half-normal model and —1/¢ for the expo-

nential model, Figure 16.4)1lustrates the density for the half-normal model witho =1
and A = 2. By writing fg = p1 -+ £[¢] and e* = ¢ — E[¢], we obtain a more conventional

formulation
Inv= fo+ Zpbeny +¢”,

which does have a disturbance with a zero mean but an asymmetric, nonnermat distri-
bution. The asymmetry of the distribution of &* does not negate our basic resuits for
least squares in this classical regression model. This model satisfies the assumptions
of the Gauss.Markov theorem, so least squares is unbiased and consistent (save for
the constant term) and efficient among linear unbiased estimators. In this model, how-
ever, the maximum likelihood estimator is not linear, and it is more efficient than least

squares.
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The log-likelihood function for the half normal model is given in ALS (1977)?_

=

2

143 2 1 n £, Sl
hli=-nho+=h=—-= —+ Ind 18-11)
o+ Zn2- 137 ()05 we( AL e

Frid: «

Maxmnzatmn programs for this model are built into modern software packages such as Stafa, | =pcl
, NLOGIT and ISP. The logJ. likelihood is: simple enough that it can also be readily adapted to the |
generic optimization routines in, e:g., MarLab or Gauss. Some treatments in the literature use the | ' <
q parameterization employed by Battese and Coelli (1992) and Coelli (1996), y = crf/(s Thisis a
v one;to;one transformation of A; A = («//(1—«,())”2 so which parameterization is-employed is a matter
/=Y of convenience; the empirical results will be the same. The log, likelihood function for the
b exponential model can be built up from the density given earlier. For the half-normal model, we
would also rely on the invarlance of maximum llkehhood estimators to recover estimates of the - |
TN structural variance parameters, o,” = 02/(1 +17) and 6,” = "XA1 + 1%) ‘:’ (Note the variance of "/
% | the truncated variable, uj,is not cu ; using (19-2), it ‘reduces to (1 - 2/7t)cru 1Y Tn addition, alffin s \
R structural parameter of interest is the proportion of the total variance of ¢ that is due to the
inefficiency term. For the haif-normal model, Var[e] = Var[y] + Var[v] = (1 — 2/1:)0;, + crv
whereas for the exponential model, the counterpart is 1/6° + 0,2.
Modeling in the stochastlc frontier setting is rather unlike what we are accustomed to up
to this point, in that the disturbance, specifically #, not the model parameters, is the central focus
of the analysis. The reason is that in this context, the disturbance, %, rather than being the catchall
for the unknown and unknowable factors omitted from the "equation, has a particular
mterpretatlonn—- it is the firm specific inefficiency. Ideally, we would like to estimate #; for each
firm in the sample to compare them on the basis of their productive efficiency. Unfortunately, the
data do not permit a direct estimate, because with estimates of B in hand, we are only able to
compute a direct estimate of g; = y; — x,/B. Jondrow et al. (1982), however, have derived a useful
approximation that is now the standard measure in these settings,

Elu, |€]= U;“ 6z 2|z =
T M l-eG) Y o

( .
o sl NHE

for the half-normal model, and

¢(Zi / Gv)

Eu, {e}=z +0, o

z;=~(g; +00})

for the exponential model. These values can be computed using the maximum likelihood estimates
of the structural parameters in the model. In some cases in which researchers are interested in
discovering best practice [e.g., WHO (2000), Tandon et al. (2000)], the estimated values are
sorted and the ranks of the individuals in the sample become of interest.

A vexing problem for estimation of the model is that if the ordinary least squares residuals are skewed in

the positive (wrong) direction (See Figure 19.2), OLS with A =0 will be the MLE. OLS residuals with a
el positive skew are apparently inconsistent with a model in which, in theory, they should have a negative
' skew. [See Waldman (1982) for theoretical development of this result.]
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19-12
Research in this arena since the methodological developments beginning in the 1930s and | Ao T
the building of the empirical foundations in 1977 and 1982, has proceeded in several directions. |~
The research agenda has included the following areas: o T
Most theoretical treatments of “inefficiency” as envisioned here attribute it to aspects of [ 71U
management of the firm. It remains to establish a firm theoretical connection between the theory | he
of firm behavior and the stochastic frontier model as a device for measurement of inefficiency.
" In the context of the model, many studies have developed alternative, more flexible
functional forms that (it is hoped) can provide a more realistic model for inefficiency. Two that

are relevant in this chapter are Stevenson’s (1980) truncated normal model and the normal-
gamma frontier. One intuitively appealing form of the truncated normal model is

-~ M“ +_._zi'as Guz]a
w = |Ul.

The original normal — half,normal model results if p equals zero and a equals zero. This is a
device by which env1ronmental thelvariables noted in the next paragraph can enter the model of
inefficiency. A truncated notmal model is presented in Example 19.3. The halfinormal,
truncated normal, and exponential models all take the form of distribution shown in Figure 19.1.
The gamma model, T
£ Tt

f) = O7T@)] explouu’™,

is a flexible model that presents the advantage that the distribution of inefficiency can move
away from zero. If P is greater than one, then the density at ¥ = 0 equals zero and the entire
distribution moves away from the origin, The implication is that the distribution of inefficiency
- among firms can move away from zero. The gamma model is estimated by simulation methods -
either Bayesian MCMC [Huang (2003) and Tsionas (2002)] or maximum simulated likelihood
[Greene (2003)] Many other functional forms have been proposed. [See Greene (2008) for a
survey. |

There are usually elements in the environment in which the firm operates that impact the
firm’s output and/or costs, but are not, themselves outputs, inputs, or input prices. In our-example
19.3, the costs of the Swiss railroads are affected by three variables; track width, long tunnels and
curvature. It is not yet yet specified how such factors should be incorporated into the model; four
candidates are in the mean and variance of u, directly in the function, or in the variance of v,
[See Hadri, Guermat, and Whittaker (2003) and Kumbhakar (1997c).] All of these can be found in
the received studies. This aspect of the model was prominent in the discussion of the famous
World Health Organization efficiency study of world health systems [WHO (2000), Tandon,
Murray, Lauer, and Evans (2000), and Greene (2004)]. In Example 19.3, we have placed the
environmental factors in the mean of the inefficiency distribution. This produces a rather extreme
set of results for the JLMS estimates of inefficiency = 'many railroads are estimated to be
extremely inefficient. An alternative formulation would be a “heteroscedastic” model in which
Cyi= cuexp(z,'S) or g,; = cvexp(z, ), or both. We can see from the JLMS formula that the term
heteroscedastic is actually a bit misleading, since both standard deviations enter (now) As» which
is, in turn, a crucial parameter in the mean of inefficiency.

How should inefficiency be modeled in panel data, such as in our example? It might be
temptmg to treat it as a time, 1nvar1ant “effect” (as in Schmidt and Sickles (1984) and Pitt and Lee
(1984) in two pioneering papers)' Greene (2004) argued that a preferable approach would be to
allow inefficiency to vary freely over time in a panel, and to the extent that there is a common
time, invariant effect in the model, that should be treated as unobserved heterogeneity, not
inefficiency. A string of studies, including Battese and Coelli (1992, 1995), Cuesta (2000),
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Kumbhakar (1997&) Kumbhakar and Orea (2004).and many others have proposed hybrid forms

that treat the core random part of inefficiency as a time invariant firm, specific effect that is

modified over time by a deterministic, possibly firm,specific function. The Battese-Coelli form,
s

e = expln(DU] where U N[Oloy7]

has been used in a number of apphcations Cuesta (2000) suggests allowing n to vary across
firms, producing a model that bears some re]at10nsh1p to a fixed effects specification. This thread
of the literature is one of the most active ongoing pursuits.

Is it reasonable to use a possibly restrictive parametric approach to modeling
inefficiency? Sickles (2005) and Kumbhakar, Simar, Park, and Tsionas (2007) are among
numerous studies that have.. explored less parametric approaches to efficiency analysis,
Proponents of “data envelopment analys1s” [see, e.g., Simar and Wilson (2000, 2007)] have
developed methods that i impose absolutely no parametric structure on the production function.
Among the costs of this high degree of flexibility is a difficuity to include environmental effects
anywhere in the analysis, and the uncomfortable implication that any unmeasured heterogeneity
of any sort is necessarily included in the measure of inefficiency. That is, data envelopment
analysis returns to the deterministic frontier approach where this section began.

Example 19.3 Stochastic Cost Frontier for Swiss Railroads
Farsi, Filippini, and Greene (2005) analyzed the cost efficiency of Swiss railroads. In order to
use the stochastic frontier approach to analyze costs of production, rather than production,
we rely on the fundamental duality of production and cost [see Samuelson (1938), Shephard
(1953),and Kumbhakar and Love[l (2000}]. An appropriate cost frontier modei for a flrm that
produces more than one output - the Swiss railroads carry both freight and passengers will
appear as the following:

IN(CIPy} = o+ EK_I By In{P/Px) + EM Yool lem +v+ou
=L

The requirement that the cost function be homogeneous of degree one in the input prices has/’ o
been imposed by hormalizing fotal cost, C, and the first K=1 prices by the Kth input price. n~

this appllcatlon the three factors are labor, capital, and electricity = the third is used as the
numeraire in the cost function. Notice that the inefficiency term, u enters the cost function
positively; actual cost is above the frontier cost. [The MLE is modified simply by replacing
with -g; in (19-11).] In analyzmg costs of production, we recognize that there is an additional
source of inefficiency that is absent when we analyze production. On the production side,
inefficiency measures the difference between output and frontier output, which arises
because of technical inefficiency. By construction, if output fails to reach the efficient level for
the given input usage, then costs must be higher than frontier costs. However, costs can be
excessive even if the firm is technically efficient; if it is “allocatively inefficient.” That is, the
firm can be technically efficient while not using inputs in the cost minimizing mix (equating the
ratio of marginal products to the input price ratios). It follows that on the cost side, “v" can
contain both elements of inefficiency while on the production side, we would expect to
measure only technical inefficiency. [See Kumbhakar (1997b).]
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The data for this study are an unbalanced panel of 50 railroads with T; ranging from 1 to
13. (37 of the firms are observed 13 times, 8 are observed 12 times, and the remaining 5 are
observed 10, 7, 7, 3, and 1 times. ) The variables we will use here are

CT. Total costs adjusted for inflation {1000 Swiss franc),—

QP. Total passenger-output in passenger-kilometers,

QF: Total goods-output in ton-kilometers,-

PL: Labor prlce adjusted for inflation (in Swiss Francs per person per year),’

_PK: Capital price uses total number of seats as a proxy for capital stock (Swiss franc per. |

seat)
PE: Price of electricity (Swiss franc per kWh)

L.ogs of costs and prices (InI__CT, In'PK. Ir||PL) are normalized by PE. We will also use these'
environmental variables: !

NARROW_T: Dummy for the networks with narrow track {1 m wide) The usual width

{ R is 1.435m.
TUNNEL: Dummy for networks that have tunnels with an average length of more
than 300 meters,
VIRAGE: Dummy for the networks whose minimum radius of curvature is 100

meters or less.

The full data set is given in Appendix Table F19.1. Several other variables not used here are
presented in the Appendix Table. In what follows, we will ignore the panel data aspect of the
data set. This would be a focal point of a more extensive study.

There have been dozens of models proposed for the inefficiency component of the
stochastic frontier model. Table 19.1 presents several different forms. The basic half, normal
mode! is given in the first column. The estimated cost function parameters across the
different forms are broadly similar, as might be expected as (u B) are consistently estimated
in all cases. There are fairly pronounced differences in the implications for the components
of 2, however,

There is an amblgwty in the model as to whether modifications to the distribution of U will
affect the mean of the distribution, the variance, or both. The results belew suggest that it is
both for these data. The gamma and exponentlar models appear to remove most of the
inefficiency from the data. Note that the estimates of o, are considerably smaller under these
specifications, and o, is correspondmgly larger. The'second to last row shows the sample
averages of the Jondrow estimators - o this estimates E.E[ule]] = E[u]. There is substantial
difference across the specifications.

The estimates in the rightmost two columns illustrate two different placements of the
measured heterogenelty., in the variance of & and directly in the cost function. The Iog
likelihood function appears to favor the first of these. However, the models are not nested,
and involve the same number of parameters. We used the Vuong test (see Section 14.6.6),
instead,’and obtained a value of -2.65 in favor of the heteroscedasticity model. Figure 19.3
describes the values of Euje] estimated for the sample observations for the half;normal,
heterosedastlc and heterogeneous models. The smaller estimate of oy for the third of these
is evident in the fi igure, which suggests a somewhat tighter concentration of values than the
other two.
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Table 19.1 Estimated Stochastic Frontier Cost Functions®

Model
Variable N(})Iri::fal T;‘L’:,ﬁ;fd Exponential Gamma Heterosced. | Heterogen.
Constant -10.0799 -9.80624 -10.1838 -10.1941 -9.82189 -10.2891
InQP 0.64220 0.62573 0.64403 0.64401 0.61976 0.63576
1hQF 0.06904 0.07708 0.06803 0.06810 0.07970 0.07526
InPK 0.26005 0.26625 . 0.25883 0:25886 0.25464 0.25893
InPL 0.53845 0.50474 ] 0.56138 0.56047 0.53953 €.56036
Constant G.44116 0 _ -2.482180
Narrow 0.29881 2.16264% 0.14355
Virage ~0.20738 -1.52964% -0.10483
Tunnel 0.01118 0.35748% -0.01914
o 0.44240 0.38547 {0.34325) (0.34288) 0.45392° 0.40597
2 1.27944 2.35055 0,91763
P 1.0000 1.22520
0 13.2922 12,6915
G, {0.34857) (0,35471) {0.07523) {0,09685) 0.37480% 0.27448
G, (0.27244) (0.15090) 0.33490 0.33197 0.25606 0.29912
Mean Efulg] 0.27908 0.52858 0.075232 0.096616 0.29499 0.21926
InL. -210.495 -200.67 -211,42 -211,091 -201.731 -208.349

* Estimates in parentheses are derived from other MLEs.
#Estimates used in computation of ¢,
+¥ Obtained by averaging A = o, /c, over observations.
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19.3 55 CENSORED DATA , \ flyr Term
o - . -i s ) 1 gl
A very common problem in microeconomic data is censoring of the dependent variable. | Cefjo i
When the dependent variable is censored, values in a certain range are all transformed | o8 o0 B[
to (or reported as) a single value. Some examples that have appeared in the empirical e [,

/1 Y literature are as follows™ 8 .4 s i N
¥: | A 1. Household purchases of durable goods [Tobin (1958)].- e _r =
i 2. 'The number of extramarital affairs [Fair (1977. 1978))..
3. The number of hours worked by a woman in the Jabor force [Quester and Greene
i
(1982)].~
W 4. The number of arrests after release from prison [Witte (1980)).7
v 5. Household expenditure on various commodity groups [Jarque (19873~
6. Vacation expenditures [Melenberg and van Soest {1996)],

Each of these studies analyzes a dependent variable that is zero for a significant fraction
ofthe observations. Conventional regression methods fail to account for the qualitative
difference between fimit (zero) observations and noniimir {continuous) observations,

13.2.] 2484 THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a gqn_s_o_ré_ﬁ_ variable is similar to that for a truncated
one. Once again, we begin with the normal distribution, as much of the received work
has been based on an assumption of normality. We also assume that the censoring point
is zero, although this is only a convenient normalization. In a truncated distribution.
only the part of distribution above y = 0 is relevant to our computations. To make the
~ distribution integrate fo one. we scale it up by the probability that an observation in
the untruncated population falls in the range that interests us. When data are censored,
the distribution that applies to the sample data is a mixture of discrete and continuous

/AN, Y ww illustrates the effects.
[ a4 ) ,q‘a_ oanalyze this distribution, we define a new random variable y transformed from
— the original one. y*, by

y=0 ify <0,

r=y" iyt =0 _
The distribution that applies if y*~ N[u.06?] is Prob(v=0) =_-'| Prob(y* < 0) =/

@ (—pfoy=1—O(ufo). and if y* > 0, then v has the density of y*.
This distribution is a mixture of discrete and continuous parts. The total probability
is one, as required. but instead of scaling the second part, we simply assign the full

probability in the censored region to the censoring point. in this case, zero.

-

W Re-the- 3PP
Vo /. ® More extensi

ve listings may be found in Amemiya (1984) and Maddala (1983),
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TN
Capacity Seats demanded

—— = Capacity Tickets sold
FIGURE 2425 Partially Censared Distribution.

179

19.3
THEOREM 223 Moments of the Censored Normal Variable

If y* ~ N, o) and y=aify* <aqorelsey=y* then

E[y] = ®a+ (1 — d}u +ak),

and
Var[y] = a2(1 — )1 — &) + (« — 2)?9],
where
®l(a — p)fo] = ®(@) =Prob(y* <a) =®. 1 =¢/(1 - ),
and

3 =22 —ia.
Proaf: For the mean,
Elyl = Prob{y = @) x E[y|y = a} + Prob(y > a) x E[y|y > a]
= Prob(y* < a) x a + Prob(y* > a) x E[y*| ¥ > 4]
=®a+ 1 ~P)u+ok)

using Theorem 2. For the variance, we use a counterpart to the deconiposition
in (B-09), that is, Var[y] = E[conditional variance] ++ Var[conditional mean)],
and Theorem 242,

/

4.
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For the special case of ¢ = 0, the mean simplifies to

$(u/o)
N (/o)
For censoring of the upper part of the distribution instead of the lower, it is only neces-

sary to reverse the role of ® and 1 — ® and redefine 4 as in Theorem %;F%i
9. .
Example Censored Random Varlabie

Elvia =0] = ®{ufo)(u +oi), wherej =

14-1¢

We are Interested in the number of tickets demanded for events at a ‘certain arena. Our

only measure is the number actually sold. Whenever an event sells out, however, we know
that the actual number demanded is larger than the number sold. The number of tickets
demanded is censored when it is transformed to obtain the number sold. Suppose that
the arena in question has 20,000 seats and, in a recent season, sold out 25 percent of the
time. If the average attendance, including sellouts, was 18,000, then what are the mean and
standard deviation of the demand for seats? According to Theorem 243 the 18,000 is an
estimate of 19.3

E[sales] = 20,000(1 — &) + [ + oA]d.

Because this is censoring from above, rather than below, il=|—¢(«}/®{x). The argument
of &, ¢, and A is o ={20,000— ) /0. [f 25 percent of the events are sellouts, then & =0.75. In-
verting the standard normal at 0.75 gives « = 0.675. In addition, if «|=/0.675, then —¢{0.675) /.
0.75 =2 =— 0.424. This result provides two equations in 4 and o, (8) 18, 000=10.26{20, 00Q)|+|
0.75(1« — 0.424¢0) and (b) 0.6750 = 20,000 — p. The solutions are o = 2426 and 1= 18,362,

For comparison, suppose that we were told that the mean of 18,000 applies only to the
events that were nof sold out and that, on average, the arena sells out 25 percent of the
time. Now our estimates would be obtained from the squations (a} 18,000 = . — 0.424¢ and
{b} 0.675¢0 = 20,000 — (. The solutions are ¢ = 1820 and 1+ = 18,772.

19.3.72 B3 THE CENSORED REGRESSION (TOBIT) MODEL

The xeglesswn moclel based on the plecedlng discussion is referred to as the ceuwrcd

_“regression model or the tnblt mudel [In reference to Tobin (19538}, where the model

was first pr oposed] The regression is obtained by making the mean in the preceding
cortespond to a classical regression model. The general formulation is usually given in

terms of an index function,
vi=xp+e,
=0 ify <0 (

w=y ify >0

There are potentially three conditional mean functions to consider, depending on the
purpose of the study. For the index variable, sometimes called the lntent variable,
Ef{y}|x:] is x{B. If the data are always censored, however, then this result will uso-
ally not be useful. Consistent with Theorem Wﬂvation randomly drawn
fromn the population, which may or may not be censored, 9.2

Elv ',xI] = ( 'ﬁ)(x’,ﬁ + o),

where
P[0 —xif)/e]  ¢&B/o)

- _ 2
1- [0 -xB)/s] DX B/0) 2

A=
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Finally. if we intend to confine our attention to uncensored observations, then the
results for the truncated regression model apply. The limit observations should not
- be discarded. however, because the truncated regression mode! is no more amenable
to least squares than the censered data model. It is dn unresolved question which of
these functions should be used for computing predicted values from this model. Intu-
ition suggests that £y | x;] is correct, but authors differ on this point. For the setting

‘—"LEIESF’IEM for predicting the number of tickets sold, say, to plan for an upcoming
event, The censored mean is obviously the relevant quantity. On the other hand, if the

objective is to study the need for a new facility. then the mean of the latent variable y*

would be more interesting. E a '\-L ya .

There are differences in the effects as well, For the index variable,

3E [y | %] 8
o
But this result is not what will usually be of interest, because y! is unobserved. For the

observed data, y;. the following general result wilt be useful: mﬁl;;?

9, ‘f Partialk
THEOREM 2#7  Margad Effects in the Ci.nsurt.d
Regression Model

In the censored regression model with latent regression y* = X'+ ¢ and observed
dependent variable, y=a if v* < a, y=bif y* = b, and v——\ * otherwise, where a
und b are constants, !e! f (e)and F(g) denotethe density and cdf ofe. Assume thar ¢
is a continuous random variable with mean 0 and variance 62, and f(e | X)= fe)
Then

- aE]yv|x

- ————%}Iu = B x Probe < ¥* < b].
Proof: By definition, .

E{v|x] = a Prob[y* < a{x] + bProb[y* = b]x]
+Probla < v* < bix]E[¥"|a < y* < b|x].

Letaj = gj —_gg_’_ﬂ)/cr, Fi= Flag), fi = fla;), and | = a, b Then

E[_y}x] =aFy +b(1 — F) + (Fp — ﬁ,)E[_v“ la < ¥* <b,x]
Because v* = x'B + o[ (y* — B'x)/a ], the conditional mean may be writien

a—x8 yv—-x'B bh- x’ﬂ]
b XL £272

o g o

_ (efo) f (s/a)
XB+ao [ T J(a).

Iﬂ

R
Elyla=<y <_b‘;‘]=-'£’l3+a.l‘7[y *

e

ﬂ‘ ‘ﬁ ;BSce Greene {1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura
(1983) for applications based on the normal distribution.

lal-:mi
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TABLE 221 Tobit Estimates of an Hou 'orked Equation _
- Wikite Wives Black Wives / ) .
Least Scaled
Coefficient -%pe Coefficiens Sfa;;e/ Squares OLS
Coonstant 180313 -/ —2753.87
(864 (-~9.68)
Smalt kids ~1324.8 —~355.89 —824.1% 376,33 35263 —766.56
Education 08 —14.00 1032 147 249
difference .
Relative wage 312.07 90.90 130,93 123.95 269.4
(5.71)
Second marriage 175.85 51.5t 11.57 13.14
347
Mean divorce 417.39 121.58 219.75 219.22 476.57
probability {6.52) 5.
High divorce 670.22 578.66 264.36 244 330.80
probability (8.40) (5.33)
o 1359 1511 826
Sample siz 7459 2798
Proporti . 0.46

ppropriate.
The figures in pargritheses are the ratio of the coefficient sétimate to the estimated asymp-
in the survey year. “Small kids" is
the household. The “education dif-
ference” and “ i i
The wage rafé used for wives was predicted us:ng previously estimated regresslon mo
and lSthUS vailable for alt individuals, whether wo,

a large mlcrosmulatlon mode! pregented
in ano er study [Oroutt, Caldwell, and WeriHeimer (1976)). The variables used hére were
dumidy variables indicating “mean” if the predicted probability was between 0,
high” if it was greater than 0.03. The slopes are the marglnal effects degcribed earlier.
Note the marginal effects compared

The effects of the divorce probability variables were as expected and ere qurte large. One
of the questions raised in connectibn with this study was whether t
could reasonably be treated as i
the number of hours worked

77.3.3 zma=m  ESTIMATION

Saisi 7 The tobit model
has become so routine and been incorporated in so many computel packages that
despite formidable obst'lcfes in years past, estimation is now essentially on the level of
ordinary linear regression. ¥ The log-tikelihood for the censored regression model is

'ﬂ)z]urvz_:ol [1— ( ﬁ)] (2;13)

Inl = Z-—— [log(er)—}-lna +

v

Fduth s
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19.4
THEOREM 222 (Continued)

Colleciing ferms, we have -

e ] Lt
Elvlx] =aFs -l—_b(l—'f'}:)+(:°b-—f’}:)ﬁ_'x+cr/ (i) ,r(i)_d(f).
. ) =) -

g o
Now, differentiate with respect to X The only complication is the last term, for
which the differentinion is with respect to the limits of integration. We use
Leibnitz’s theorem and use the assumption that f(g) does not involve X. Thus,

L (s - (B)os+ - mop+ worih— i 3F)

ax o

—ea)

After inseriing the definitions of a, and oy, and collecting terms, we find all terms
st to zero save for the desired resuls,

e wm (L — Fo)B = B x Probla < ¥f < b].

Note that this general result includes censoring in either or both tails of the distribu-
tion, and it does not assume that ¢ is normally distributed. For the standard case with
censoring at zero and normally distributed disturbances, the result specializes to

L[y Ix] _ p q,(u;g )
:_ 8,?‘: T a
Although not a formal result, this does suggest a reason why, in general, least squares
estimates of the coefficients in a tobit model usually resemble the MLEs times the
proportion of nonlimit observations in the sample.
McDonald and Moffitt (1980) suggested a useful decomposition of 3£y | x:]/3x:.
v | x . E
,__.[&m_i = B x { @[l —dilei + 1)) + gilay + A}
Wt
where o; = x/8/0, ®; = ®(e;) and i; = ¢;/P;. Taking the two parts separately, this
result decomposes the slope vector into
3Evi | %] aE v | X, 5 > 0]
Sz L gl A EIAVER Elvilx. v > 0] —b2i 7
9% 3x; tEbslgy > O 8%
Thus, a change in X; has two effects: It affects the conditional mean of y! in the positive

part of the distribution, and it affects the probability that the observation will fall in
that part of the distribution

3 Probly > 0]

= Prob[y; > 0]

19-21
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The two parts correspond to the classical regression for the nonlimit observations and
the relevant probabilities for the limit observations, respectively. This likelihood is a
nonstandard type. because it is a mixture of discrete and continuous distributions, In
a seminal paper, Amemiya (1973) showed that despite the complications, proceeding
in the usual fashion to maximize In L would produce an estimator with all the familiar
desirable properties attained by MLEs, - = (KT

The log-likelihood function is fairly involved., but Olsen’s (1978) reparameterization

simplifies things considerably. With y = 8/0 and 8 = 1/o. the log-likléh:'hooais_' '

: /
Infl= }% ——%[ln(Z:r,) —In 8% + {6y, -—I:x;;}_’)zl + gln[l —2ixip)]. (£—14)

The results in this setting are now very similar to those for the truncated regression. The

Hessian is always negative definite, so Newton's method is simple to use and usually
converges quickly. After convergence, the original parameters can be recovered using

o =1/6 and 8=y /6. The asymptotic covariance matrix for these estimates can beob- . ,':
tained from that for the estimates of [y, 8] using the delfa |i1ethndi Est. Asy. Var[g.4]= |

_ J Asy. Var[, 617, where

g 3873y 8pree Tasel (—1/8hy
"~ |8a/8y" 8o/08| v (=1/8% "

W

Researchers often compute ordinary least squares estimates despite their incon-
sistency. Almost without exception, it is found that the OLS estimates are smatler in

SN ™ s o . .
i 'I'; absolute value than the MLEs. A striking empirical regularity is that the maximum _| |-
-~ likelihood estimates can often be approximated by dividing the OLS estimates by the %
1q. 9 /N B \_proportion of nonlimit observations in the sampler*® The effect ts illustrated in the last
- |

| 14 A/ two columns.of Table¥4. 1) Another strategy is to discard the limit observations, but we
"' now see thatjust trades the censoring problem for the truncation problem,

SOME ISSUES IN

dta. heteroscedasticit

Tsetting™ 1 4

nonnoy-

consistent the maximum JiKelihood estimator will be hen heterosce?.lasticify
Not surprisingly. the dggfee of censoring is the prim y determinant. Unfortunpely, all
the analyses have beé€n carried out in the setting

ith groupwise heterosce
the primary lesson is the very general conclusfon that heteroscedasticity gmerges as an
i erious problem.

J

Z}_ﬁﬂmmpt is explored further in Greene (1980b). Goldberger (1981). and Chung and Goldberger (1984).

/ 7‘ Ty symposia. tat containynumerous resultf on these subjegfs are Blunde! 1987) and Dugkan (1986b),
Anjapplication tHat exploref these two issuey/in detail is Mei berg and van Joest (1995), =




" Greene-50558  book  June 23,2007 13:17 ! q =2 3\ §

CHAPTER 24 4+ Truncation, Censorlng, and Sample Selecw

19.4
THEOREM 2% (Continucd)
Collecting terms, we have

Ely|x] = aF, + b{l = Fy)

8Evix] _

ax

es the slope vector into
3E[AV,' |Xf, ¥ > 0}
ax;

~-~——~——:— - = Prob[w > 0]

part &f the distribution, and it affects the giobability that the gbservation will fall in

thaf part of the distrjbution ¥

Exampie 282 Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives,
Quester and Greene (1982) were interested in whether wives whose marriages were statisti-
cally more likely to dissolve hedged against that possibility by spending, on average, more
time working. They reported the tobit estimates given in Table 247t The last figure in the

9.2
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/9.2
TABLE 2471 Tobit Estimates of an Hours Worked Equation
. . 17
- White Wives Black Wives Least Scaled
; Coefficient Slope Coefficient Slope Squares OLY
Constant ~I803.4% . | —2753.87
(~8.64) = (—9.68)
Small kids ~1324.84  —385.89 —824.19 376353 35243 76656
(—19.78) {—10.14) )
Education - —48.08 ~14.00 22.39 1032 {147 24.93
difference {—4.77) (1.96) _
Relative wape 312,07 H.50 286.39 130.93 123.95 26946
(5.71) {3.32)
Second marriage 175.85 5151 25.33 11.57 13.14 28.57
(3.47) {0.41)
Mean divorce 417.39 121.58 481.02 219.75 21922 476.57
probability (6.52) {5.28)
High divorce 670.22 195.22 578.66 264,36 24417 - 530.80
probability (8.440) (5.33)
G 1339 618 1511 826
Sample size 7459 2798
Proportion working 0.29 0.46

table implies that a very farge proportion of the women reported zer hours, so least squeares
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the sstimated asymp-
totic standard error. The dependent variable is hours worked in the survey year. “Small kids” is
adummy variable indicating whether there were chitdren in the household. The “aducation dif-
ference” and “relative wage” variables compare husband and wife on these two dimensions.
The wage rate used for wives was predicted using a previously estimated regression model
and is thus available for all individuals, whether working or not. “Second marriage” is a dummy
variable. Divarce probabilities were produced by a large microsimulation model presented
in another study [Orcutt, Caldwell, and Wertheimer (1976)]. The variables used here were
dummy variables indicating “mean” if the predicted probability was between 0.01 and 0.03
and “high” if it was greater than 0.03. The “slopes™ are the marginal effects described eatlier.

Note the marginal effects compared with the tobit coefficients. Likewise, the estimate of
o is quite misleading as an estimate of the standard deviation of hours worked.

The effects of the divorce probability variables were as expected and were quite large. One
of the questions raised in connection with this study was whether the divorce probabilities
could reasonably be treated as independent variables, It might be that for these individuals,
the number of hours worked was a significant determinant of the probability.

77.3.3 2878  ESTIMATIO

despite formidable obstacles in years past. ¢stimation is now essenpally on the level
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19.3.4 Two,Part Models and Corner Solutions

The Tobit Model contains a restriction that might be unreasonable in an economic setting.
Consider a behavioral outcome v = charitable donation. Two 1mphcat10ns of the tobit model are
that

Prob(y > 0[x) = Prob@;’ﬁ +e>0x) = CD(I)_E:B/G)

and [from (19-7)]

EDly> 0ix] = B+ oo(x/B/c)/D(x'Blo).
Differentiating both of these, we find from (17-11) and (19-8),

6Prob(y > 0x)/0x = [¢(xp/c)/c]p = a positive multiple of B,

JEDy > 0x)/0x = {[1-8(x'P/c)}/c}B =a positive multiple of B,

Thus, any variable that appears in the model affects the participation probability and the intensity
equation with the same sign. In the case suggested, for example, it is conceivable that age might
affect participation and intensity in different directions. Fin and Schmidt (1984) suggest another
application, loss due to fire in buildings; older buildings might be more likely to have fires but,
because of the greater value of newer buildings, the actual damage might be greater in newer
buildings. This fact would require the coefficient on age to have different signs in the two
functions, which is impossible in the tobit model because they are the same coefficient.

In an early study in this literature, Cragg (1971) proposed a somewhat more general
model in which the probability of a limit observation is independent of the regression model for
the nonlimit data. One can imagine, for instance, the decision of whether or not to purchase a car
as being different from the decision of how much to spend on the car, having decided to buy one,
A more general model that accommodates these objections is as follows:

1. Participation equation:

Prob[y,* > 0] = ®(x;7y), d;=1ifyx >0,

Prob[y* <0]=1-&(x/y), d;=0if y*<0. (19-15)
2. Intensity equation for nonlimit observations:

Elyildi = 1]=xB+ 0k,

[ b |
according to Theorem 19.2. This twojmodel is a combination of the truncated regression model of |
Section 24.2 and the univariate probit model of Section 17.3, which suggests a method of

analyzing it. Note that it is precisely the same approach we considered in Section 18.4.8 and
Example 18.12 where we used a hurdle model to model doctor visits. The tobit model returns if v

=Pp/o. The parameters of the regression (intensity) equation can be estimated independently using

the truncated regression model of Section 19.2. An application is Melenberg and van Soest
(1996).

Lin and Schmidt (1984) considered testing the restriction of the tobit model. Based only
on the tobit model, they devised a Lagrange multiplier statistic that, although a bit cumbersome
algebrajcally, can be computed without great difficulty. If one is able to estimate the truncated
regression model, the tobit model, and the probit model separately, then there is a simpler way to
test the hypothesis. The tobit log-likelihood is the sum of the log-likelihoods for the truncated
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regression and probit models. To show this result, add and subtract 2, lﬁd)(x,-'B) in (24-13). |

This produces the loglikelihood for the truncated regression model (considered in the exercises) |
plus (23-20) for the probit model. Therefore, a likelihood ratio statistic can be computed using

, A==2[In LT—(In LP + In LTR))],
where '
LT |5 likelihood for the to‘bit'ﬁlodel.in (19-13), with the same coefficients;
LP = likelihood for the probit model in (17-17), fit separately,

LIR = likelihood for the truncated regression model, fit separately.*

The two , part model just considered extends the tobit model, but it stops a bit short of the

'. generality we mlght achieve. In the) hurdle model. above, we have assumed that the same

regressors appear in both equations. Although this produces a convenient way to retreat to the
tobit model as a parametric restriction, it couples the two decisions perhaps unreasonably. In our
example to follow, where we model extramarital affairs, the decision whether or not to spend any
time in an affair may well be an entirely different decision from how much time to spend having
once made that commitment. The obvious way to proceed is to reformulate the hurdle model as

1. Participation equation?
Prob[di* > 0] = O(z"y), di=1ifdx >0, .
Prob[d* < 0] =1 - O(zy), di=0ifd*<0. (19-16)
2. Intensity equation for nonlimit observations:
Elyildi=11=x/p + oh..

This extension, however, omits an important element; it seems unlikely that the two decisions
would be uncorrelated; that is, the implicit disturbances in the equations should be correlated.
The combination of these produces what has been labeled a “Type II tobit model.” [Amemiya
(1985) identified five possible permutations of the model “specification and observation
mechanism. The familiar tobit model is Type I, this is Type IL] The full model is

1. Participation equation .
a* =gyt w ~_NO1]
d; = 1lifdx> 0,0 otherwise,,
2. Intensity equation
¥* = x'B +e, g~N0c",
3. Observation mechanism '
(@ y* = 0ifdi=0andy,=y*ifd =l
(b} y; = y*ifd;=1andy,is unobserved if d; = 0.
4. Endogeneity B
(y,-,ls_,-) ~ bivariate normal with correlation p.

Mechanism (a) produces Amemiya’s Type Il model. (Amemiya blends these two interpretations.
In the statement of the model, he presents (a), but in the subsequent discussion, assumes (b). The
difference is substantive if X, is observed in case (b). Otherwise, they are the same, and “y; = 0” is
not actually meaningful.” Amemiya notes, “y* = 0 merely significs the event d* < 0.” Ifx, is
observed when d, = 0, the these observations will contribute to the likelihood for the full sample.
! not, then they will not. We will develop this idea later when we consider Heckman’s selection
model {which is case (b) without observed x; when d, = 0},

-
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There are two estimation strategies that can be used to fit the Type Il model. A two step
method can proceed as follows: The probit model for d; can be estimated using maximum
likelihood as shown in Section 17.3. For the second step, we make use of our theorems on
truncation (and Theorem 19.5 that will appear later) to write

Elyld; = 15:2) AP+ Blel 4~ Lxge].

C oz a
T IB_.pG(D(,) (1a-13)
= XB+por;

Since we have estimated y at step 1, we can compute 7L =9(zi¥)/ (IJ(z 'y) using the first, step
estlmates, we can estimate 3 and 8 = (po) by least squares regression of y; on X and ?L It will be

necessary to correct the asymptotic covariance matrix that is computed for (_B 9) This is a

template application of the Murphy and Topel (2002) results that appear in Sectlon 14.7. The
second approach is full information maximum likelihood, estimating all of the parameters in both
equations simultaneously. We will return to the details of estimation of the Type II tobit model in
Section 19.5 where we examine Heckman’s model of “sample selection” model (which is the

Type II tobit model).

Many of the applications of the tobit model in the received literature are constructed not
to accommodate censoring of the underlymg data, but, rather, to model the appearance of a large
cluster of zeros. Cragg’s application is clearly related to this phenomenon. Consider, for
example, survey data on purchases of consumer durables, firm expenditure on research and
development, or consumer savings. In each case, the observed data will consis‘gk of zero or some
positive amount. Arguably, there are two decisions at work in these scenarios; first, whether to
engage in the activity or not, and second, given that the answer to the first question is yes, how

intensively to engage in 1t——~how much to spend, for example. This is precisely the motlvatlon [ =)

behind the hurdle model. This specification has been labeled a “corner solution model”;
Wooldridge (2002a, pp. 518-519). CETS

In practical terms, the difference between the hyrd Ie iﬁgdel and the tobit model should be
evident in the data. Often overlooked in tobit analyses is that the model predicts not only a cluster
of zeros (or limit observations), but also a grouping of observations near zero (or the limit point).
For example, the tobit model is surely misspecified for the sort of (hypothetical) spending data
shown in Figure 19.5 for a sample of 1,000 observations. Neglecting for the moment the earlier
point about the underlying decision process, Figure 19.6 shows the characteristic appearance of a
(substantively) censored variable. The implication for the model builder is that an appropriate
specification would consist of two equations, one for the “participation decision,” and one for the
distribution of the positive dependent variable. Formally, we might, continuing the development
of Cragg’s specification, model the first decision with a binary choice (e.g., problt or logit
model). The second equation is a model for y | y > 0, for which the truncated regression model
of Section 19.2.3 is a natural candidate. As we will see, this is essentially the model behind the
sample selection treatment developed in Section 19.5.
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Two practical issues frequently intervene at this point. First, one might well have
a model in mind for the intensity (regression) equation, but none for the participation
equation. This is the usual backdrop for the uses of the tobit model, which produces the
considerations in the previous section. The second issue concerns the appropriateness of

the truncation or censoring model to data such as those in Figurg i we consider only
- /9.
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] 4.5

- - be truncated at all. The truncated regression model in Sectio fit to these data will
not depart signiﬁcantgtféj?rdinary least squares [because the underlying probability

the nonlimit observations in Figuree underlying disttibiiin does not appear to 19.2.3

! 9-6 mt Te denominator 6I{{24-6) will equal one and the numerator will equal zero). But,

t not the case of a Tobit model forced on these same data. Forcing the model in
24-13} on data such as these will significantly distort the estimatorz-all else equal, it will
significantly attenuate the coefficients, the more so the larger is the proportion of limit

1 8-13

solute deviations (LAD
ack to ifs use is its co

fan tests, Lagrange multiplier tests
ee (1982}], and condifional mome

sistent under both hypothéses but ineffi-
under the null hypothesis. Thus, we"will require a robust estir

s [e.g., Melenberg
and van Soest (1996)] have used the Pfausman test to compare the tabit/normal estimator
with Powell’s consistent, but ine . Another approach
testing is to embed the norma

Duncan (1983, 1986b) Goldberger (1983), Pa
will examine one of e tests more closely in t

observations in the sample. Once again, this stands as a caveat for the modgl builder.
The tobit model is manifestly misspecified for data such as those in Flgu.r /9.5



Example 19.6 Two.Part Model for Extramarital Affairs

In Example 18.9, we examined Fair's (1977) Psychology Today survey data on extramarital
affairs. The 601 observations in the data set are mostly zero_&; 451 of the 601. This feature
of the data motivated the author to use a tobit model to analyze these data. In our example,
we reconsidered the model, since the nonzero observations were a count, not a continuous
variable. Anocther data set in Fair's study was the Redbook Magazine survey of 6,366
married women. Once again, the outcome variable of interest was extramarital affairs.
However, in this instance, the outcome data were transformed to a measure of time spent,
which, being continuous, lends itself more naturally to the tobit model we are studying here.
The variables in the data set are as follows (excluding three unidentified and not used):

id = |dentification number,

C = Constant, value =1,/

yrb = Constructed measure of time spent in extramarital affairs,
v = Rating of the marriage, coded 1 to 4, «

v2 = Age, in years, aggregated,

V3 = Number of years married, /

V4 = Number of children, top coded at 5, *

v = Religiosity, 1to 4, 1 = not, 4 = very,’

VB = Education, coded 9, 12, 14, 16, 17, 20, -

v7 = Wife’s Occupation 5 Hollingshead scale

v8 = Husband's occupation ~ Hollingshead scale.”

This is a cross section of 6,366 observations with 4,313 zeros and 2053 positive values..
Table 19.3 presents estimates of various modeis for yrb. The leftmost column presents

>} the OLS estimates. The least squares estimator is inconsistent in this model. The empirical

regularity that the OLS estimator appears to be biased toward zero, the more so is the
smaller the proportion of limit observations. Here, the ratio, based on the tobit estimates in
the second column, appears to be about 4 or 5 to 1. Likewise, the OLS estimator of o
appears to be greatly underestimated. This would be expected, as the OLS estimator is
treating the limit observations, which have no variation in the dependent variable, as if they
were nonlimit observations. The third set of results is the truncated regression estimator. In
principle, the truncated regression estimator is also consistent. However, it wiil be less
efficient as it is based on less information. In our example, this estimator seems to be quite
erratic, again compared to the tobit estimator. Note, for example, the coefficient on years
married, which. although it is “significant” in both cases, changes sign. The t ratic on
Religiousness falls from =11.11 to -1.29 in the truncation model. The probit estimator based
on yrb|~0 appears next. As a rough check on the corner solution aspect of our model, we
would expect the normalized tobit coefficients (B/c) to approximate the probit coefficients,
which they appear to. However, the likelihood ratio statistic for testing the internal
consistency based on the three estimated models is 2[7804.38 - 3463.71 - 3469.58] =
1742.18 with 9 degrees of freedom. The hypothesis of parameter constancy implied by the
tobit model is rejected. The last two sets of results are for a hurdle model in which the
intensity equation is fit by the twg step method.

(9-30
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Table 19.3 Estimated Censored Regression Models (fratios in parentheses)
Model
Linear . Truncated . ) Hurdle Hurdle
OLS Tobit Regression Probit Tobit/a Participation | Intensity
Constant 3.62346 7.83653 | 8.89449 2.2i010 | 1.74189 1.56419 4,84602
{13.63) {10.98) {2.90) (12.60) 117.75) (5.87)
RateMarr | -0-42053 -1.53071 | -0.44303 -0.42874 | -0.34024 | -0.42582 -0.24603
| & (-14.79) {-20.85) | {-1.45) (-23.40) {-23.61) (-.486)
Age -0.01457 -0.10514 | -0.22394 ~0.03542 | #0,02337 -0.01903
(-1.59) (-4.24). | (-1:83) | {-5.87) (-.77)
YrsMarr | -0.01599 0,12829 | -0.94437 |  0.C6563 0.02852 ~0.16822
(-1.62) { 4.86) {=7.27) {10.18) (-6.52)
NumKids | -0-01705 -0.02777 | -0.02280 ~0.003%4 | -0.00617 | 0.14024 -0.28365
(-.57) {-0.36) (-0.06) (-0.21) {11..55) (-1.49)
Religious | —0.24374 -0.94350 | -0.50490 -0,22281 | -0.20972 | -0.21466 ~0.05452
(-7.83) {(-11.11) | (-1.29) {~10.88) {(-10.64) {-0.19)
Education | ~0-01743 -0.08598 | -0.06406 -0.02373 | -0.01911 0.00338
(~1.24) {-2.28) {-0.38) {-2.60) (0.09)
Wife Oce. | 0.06577 0.31284 0.00805 0.09539 0.06954 0.01505
(2.10} {3.82) {(0.02) {4.75) (0.19)
Hus. Oce. 0.00403 0.C1421 | -0.09946 0.00659 0.00316 -0.02911
{0.19} {0.26) (=0.41) {0.49) (-0.53}
c. 2.14351 4.49887 5,46846 3.43748
R’=0.05479 | -7804.38 | -3463.71 -3469.58

[n:L,,
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19.3.5 SOME ISSUES IN SPECIFICATION

Two issues that commonly arise in microecor_:omjc data, heteroscedasticity and nonnormality,
have been analyzed at length in the tobit setting, ™/}

19.3.5.a Heteroscedasticity

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and Brown and
Moffitt (1982) all have varying degrees of pessimism regarding how inconsistent the maximum
likelihood estimator will be when etel_'oscgdés‘i:ici occurs. Not surprisingly, the degree of
censoring is the primary determinant. Unfortunately, all the analyses have been carried out in the
setting of very specific models;—for example, involving only a single dummy variable or one
with groupwise heteroscedasticity—so the primary lesson is the very general conclusion that
heteroscedasticity emerges as an obviously serious problem.

o i,

% Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986D).

An application that explores these two issues in detail is Melenberg and van Soest (1996). Developing

< pecification tests for the tobit model has been a popular enterprise. A sampling of the received literature

includes Nelson (1981); Bera, Jarque, and Lee (1982); Chesher and Irish (1987); Chesher, Lancaster, and
Irish (1985); Gourieroux et al. (1984, 1987); Newey (1986); Rivers andVuong (1988); Horowitz and
Neumann (1989); and Pagan and Vella (1989). Newey (1985a, b) are useful references on the general
subject of conditional moment testing!Moregeneral treatments of specification testing are Godfrey (1988)
and Ruud (1984). -
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i2.9Y%
TABLE 2477 Estimates of a Tobit Model (standard errors
in parentheses)

- Homoscedastic - Heteroscedustic
8 8 g

Constanl —18.28 (3.10) —4.11{3.28) —0.47{0.60)
Bela 10.97 (3.61) 2.22 (2.00) 1.20(1.81)
Nonmarkel 0.65 (7.41) (.12 {1.50) 0.08 (7.55)
Number 0.75(5.74) 0.33 (4.50) .15 (4.58)
Merger 0.50 (5.90) 0.24 {3.00) 0.06(4.17)
Option 2.56(1.51) 2,96 (2.99) 0.83 (1.70)
InL —547.30 —466.27
Sample size 200 200

Onmne can approach the heteroscedasticity problem directly. Petersen and Waldman
{1981) present the computations needed to estimate a tobit model with heteroscedastic-
ity of several types. Replacing ¢ with o; in the log-likelihood function and inclucling o
in the summations produces the needed generality. Specification of a particular model
for o; provides ‘tge empirical model for estimation.

Example 235" Multiplicative Heteroscedasticity in the Tobit Model

Petersen and Waldman {1981} analyzed the volume of short interest in a cross section of

common stocks. The regressors included a measura of the market component of heteroge-

neous expectations as measured by the firm's BETA coefficient; a company-specific measure

of heterogeneous expectations, NONMARKET; the NUMBER of analysts making earnings

forecasts for the company; the number of common shares to be issued for the acquisition

P ; of another firm, MERGER; and a dummy variable for the existence of OPTIONs. They report

f1e 1. the results Tisted in Table 242 for a mode! in which the variance is assumed to be of the form

| {9H) of = exp{X/a). The values in parentheses are the ratio of the coefficient to the estimated
asymptotié standard error.

The effect of heteroscedasticity on the estimates is extremely large. We do note, however,
a common misconception in the literature. The change in the coefficients is often misleading.
The marginal effects in the heteroscedasticity model will generally be very similar to those
computed from the model which assumes homoscedasticity. (The calculation is pursued in
the exercises.) ‘

A test of the hypothesis that a|= 0 (except for the constant term) can be based on
the likelihood ratio statistic. For these results, the statistic is —2[—547.3 — (—466.27)] =
162.06. This statistic has a limiting chi-squared distribution with five degrees of freedom,
The sample value exceeds the critical value in the table of 11.07, so the hypothesis can be
rejected.

In the preceding example, we carried out a likelihood ratio test against the hypoth-
esis of homoscedasticity. It would be desirable to be able to carry out the test without_r_'/ K
having to estimate the unrestricted model. A Lagrange multiplier fest can be used for —
that purpose. Consider the heteroscedastic tobit model in which we specify thatl

s bed ?.-‘g
o = o fexpwio) . (2FES)

This model is a faltly general specification that includes many familiar ones as special
cases. The null hypothesis of homoscedasticity is & =0. (We used this specification
e probit model in Sectiofi_Z3.4.4.bdnd in the linear regression model in Sec-
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a Lagrange multiplier statistic as follows: Let z; = 1 if y is positive and 0 otherwise,

a =Z:(€—;) + —_Zf)((_l)li)
. EA\o - = o

2_ 1y 19-19
b=z (@f—l))ﬂl ,)(( W’), (Z4-16)

202
L o SEig/o)
=1 —.fI’(,{F_Fﬁ/U)'

The data vector is g; = [a;x], &y, biw!]'. The sums are taken over all observations, and
all functions involving unknown parameters (¢;, ¢, ©;, X/ B, o, A;) are evaluatied at the

restricted (homoscedastic) maximum likelihood estimates. Then, 19.20

LM = {G[G'G]'G'i = nR* (A-17)
in the regression of a column of ones on the K + 1+ P derivatives of the log-likelihood

function for the model with multiplicative heteroscedasticity, evaluated at the estimates
from the restricted model. (If there were no limit observations, then it would reduce to

'1@-3?

.52

the Breusch—Pagan statistic discussed in S&Cthﬂ@ Given the maximum likelihood
estimates of the tobit model coefficients, it is quite s:mple to compute. The statistic
has a limiting chi-squared distribution with degrees of freedom equal to the number of
variables in w;.

24.3.4.b Misspecification of Prob[y* #0]
In an early study in this literature, Cragg #41971) proposed a somewhat ffiore general
model in which the probability of a limit' observation is independent of the regression
model for the nonlimit data. One caw'imagine, for instance, the degi§ion of whether or
not to purchase a car as being diffetent from the decision of howfuch to spend on the

0] = ¢(x(y), z = 1ify* > 0,
Problyf <0] =1 - ®d(xjy), z =0ify’ <0.
2. Regression equatiopfor nonlimit observations;

Elyilz =11=x8 + ok,

according (¢ Theorem 24.2,

This model4s a combination of the truncated regregsfon model of Section 24.2 and
the univariate probit model of Section 23.3, which€uggests a method of analyzing it.
The tobit model of this section arises if y = gfo. The parameters of the regression

|
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the nonlimjgobservations in Figure 24.3, the underlying distriBution does not appear to
be trunc ed at all The tr unmtecll g] ession model in Sectiof 24.2.3 fit to these data will

denominator of (2-‘#6) I
i€ is not the case of a-tobit, bdel forced on these saime data. Forcing the mod
estimator—all else equal, #
observations in the sample. Once again, this standd as a caveat for the mode)builder. -
The tobit model is mapffestly misspecified for ctah such as those in Figure 24(3.

" 3484t Nonnormality

12.3.@ Nonnormality is an especially difficult problemi in this setting, It has been shown that
4. b if the underlying disturbances are not normally distributed, then the estimator based
on_(24713) is inconsistent. Research is ongoing both on alter native estimators and on

K methods for testing for this type of mlsspemﬁcatlon\"i sl
LN One approach to the estimation is to use an alternative distr ibution. Kalbfleisch and
| o i/.:' Prentice (2002) present a unifying treatment that includes several distributions such as

M the exponential, lognormal, and Weibull. (Their primary focus is on survival analysis
in a medical statistics setting. which is an interesting convergence of the techniques in
very different disciplines.) Of course, assuming some other specific distribution does not
necessarily solve the problem and may make it worse. A preferable aiternative would be |
to devise an estimator that is robust to changes in the distribution. Powell’s (1981, 1984) -%—//é
. least absolute deviations {1LAD) estimator appears to offer some promises & mam
ENN drawback to its use is its computational complexity. An extensive application of the
LAD estimator is Melenberg and van Soest (1996). Although estimation in the nonnor-
mal case is relatively difficult, testing for this failure of the model is worthwhile to assess
the estimates obtained by the conventional methods. Among the tests that have been l‘g-
cleveloped are Hausman tests, Laglange multlpllet tests [Bela and Jar que (1981 1982

with normality—and an estinator i i - bath hypotheses but ineffi-
cient under the null hy

t applications [e.g.. Melenberg
1996)} have used the Hausman test togbmpare the tobit/normal estimator

1@‘ 4Sce Duncan (1986a,b) for a symposium on the SubjcCl and Amemiya (1984). Additional references are
Newey, Powell, and Walker (1990); Lee (1996); and Robinson (1988).

n 3
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with respect to the constant term., so

of the log-densiti
1 _

ei = —3[zn = %8y — (L —AD)odi],

is defined in (24-‘_18) and A; is defined i (24:16). This residual is an estimate
hat accounts for the censoring in-the disifibution. By construction, Ee¢; | x;] = 0.
if the model actually does contain a cop€tant term, then 37, ¢; = 0: this is the first
f the necessary conditions for the MLJE. The test is then carried out by regressing a
column of ones on d;, where the elegaénts of d; are computed as follows:

(1 — z)y “+ Zidi.
= —(l — )& A +z (@} 1),
=—(1-z)2+&)n  +ad,
e =~1~2) (38 + &)\ +z (e —3).

i ?
di = [el'lxj’ €2, €3, 81'4]-

tobit log-likelihood. Let >
behe n x (K -+ 3) matrix with /th row equal to d/. Thep{ D) = [G, M] where the & + 1
olumns of G are the derivatives of the tobit log-likpfihood and the two colummns in M
are the last two variables in d;. Then the chi-squaréd statistic is n R that is,
LM = ¥D{IY,

The necessary conditions that define the MLE are "G = 8, so the first K + 1 elements
of i'D are zero. Using (A-74), then, thgA.M statistic becomes

LM = i'M[MM — M’'G(G'G)~ ' G'M]~ Wi,
which is a chi-squared statistig’with two degrees of freedom. Note the simi
(24-17), where a test for homdscedasticity is carried out by the same meth

so often in this frameworl( the test of the distribution actually focuses of the skewness
and kurtosis of the regifuals. Pagan and Vella (1989) and Ruud (1984) have developed

similar tests for sevgfal specification errors.!”

o
(%, W&J PANEL DATA APPLICATIONS

%,
I q ! Extension of the familiar panel data resuits to the tobit model parallel the probit model,
3 with the attendant problems. The random effects or random parameters models dis-
cussed 1n Chapter™®3.can be adapted to the censored regression model using simulation
or quadrature. The same reservations with respect to the orthogonality of the effects and
the regressors will apply here, as will the applicability of the Mundlak (1978) correction

to accommodate it.

1 has been/a popalar enterprise. A sampling
received literatnre includes Nylson (1981); Bera, Jptque, and

ts of specification testing are G odfigy {1988) and

subject of conditional mongent testing. More genéral treatm
Ruud (1984),

e
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Most of the attention in the theoretical literature on panel data methods for the tobit
model has been focused on fixed effects. The departure point would be the maximum
. likelihood estimator for the static fixed effects model,

rv; ="¢; + x_,f‘,ﬁ + &, By ™ Nm"’z]-
vir = Maxt0, ¥;,).

However, there are no firm theoretical results on the behavior of the MLE in this
model. Intuition might suggest. based on the findings for the binary probit model. that-
the MLE would be biased in the same fashion, away from zero. Perhaps surprisingly. the
results in Greene (2004} persistently found that not to be the case in a variety of model
spec1ﬁcat|ons Rather, the incidental parameters, such as it is, manifests in a downward
bias in the estimator of ¢, not an upward (or downward) bias in the MLE of 8. However,
this is less surprising when the tobit estimator is juxtaposed with the MLE in the lincar
regression mode] with fixed effects. In that model. the MLE is the within-groups (LSDV)
estimator which is unbiased and consistent. But. the ML estimator of the disturbance
variance in the linear regression model is &) spverspv/ (1 1), which is biased downward
by a factor of (7 — 1)/ I".[This is the result found in the original source on the incidental
parameters problem, Neyman and Scott (1948).] So, what evidence there is suggests
“that unconditional estimation of the tobit mode! behaves essentially like that for the
linear regression model. That does not settle the problem, however} if the evidence is
correct, then it 1mplles that although ccnsistent estimation of g is possible appropriate
statistical inference is not. The bias in the estimation of & shows up in any estimator of
the asymptotic covariance of the MLE of 8.

Unfortunately, there is no conditional estimator of g for the tobit (or truncated re-
gression) model. First differencing or taking group mean deviations does not preserve
the model, Because the latent variable is censored before observation, these transforma- cFRT
tions are not meaningful, Some progress has been made on theoretical, semiparameftric :

o

AR estimators for this model. See. for example, Honore and Kyriazidou (2000) for a survey. (57 #Ve
Much of the theoretical development has also been directed at dynamic models where '

the benign result of the previous paragraph (such as it is) is lost once again. Arellano

(2001) contains some general results. Hahn and Kuersteiner (2004) have characterized

the bias of the MLE, and suggested methods of reducing the bias of the estimators in

dynamic binary choice and censored regression models.

example, Xella (19984, which is an extensive
in many'other fici :ncludmg. for example dong serics of stock’market returns by ﬁnanct economists ("'sur-
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19.4 MODELS FOR DURATION

The leading application of the censoring models we examined in Section 19.3 is models for
durations and events. We consider the time until some kind of transition as the duration, and the
transition, itself, as the event. The length of a spell of unemployment (until rehire or exit from
‘the market), the duration of a strike, the amount of time until a patient ends a health related spell
in connection with a disease or operation, and the length- of time between origination and
termination (via prepayment, default or some other mechanism) of a mortgage are all examples of
durations and transitions. The role that censoring plays in these scenarios is that in almost all
cases in which we as analysts study duration data, some or even manly of the spells we observe do
not end in transitions. For example, in studying the lengths of unemployment spells, many of the
individuals in the sample may still be unemployed at the time the study ends —the analyst
observes (or believes) that the spell will end some time after the observation window closes.
These data on spell lengths are, by construction, censored. Models of duration will generally
account explicitly for censoring of the duration data.

This section is concerned with models of duration. In some aspects, the regression-like
models we have studied, such as the discrete choice models, are the appropriate tools. As in the
previous two chapters, however, the models are nonlinear, and the familiar regression methods
are not appropriate. Most of this analysis focuses on maximum likelihood estimators. In modeling
duration, although an underlying regression model is, in fact, at work, it is generally not the _
conditional mean function that s of interest. More likely, as we will explore below, the objects of ']
estimation are certain probabilities of events, for example in the conditional probability of a
transition in a given interval given that the spell has lasted up to the point of interest. These are
known as “hazard models” - the probability is labelled the hazard function - and are a central

ol

focus of this type of analysis.
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Estimates of a Zero-lpflated Poisson Model

Poisson Regression Logit ,Sp_liniﬂg Model Muarginal ffects

Sraad Standard
LIEstimate . Exor ~ Estimate Error ZIP /S Tobit (0) Tobit (G, 4)
/

127 (439 185" 0.664

216 —0.0420 00218

—0.00422 0.0122 0.0397 0.0190 —()
0.0331 0.0231 —0.0981 0.0318 - A0702 0130 0.0654 -
= 0.0909 0.0721 0.306 0.0951 -0210 —0.3%4 —0.199
Occupation 0.0205 0.0441 - 0.0677 0.0607 0.0467 00762 0.0399
Happiness  —{.817 0.0666 0.458 0.0949 0273 —0.534 -0.2N

generated to the Poisson form.) Finally,
arginal effects, § = 3 E[y|x]/8x, are’shown in Table 25.7 for three models: the

into the ZIP model. a refinemént that would be relatively straightfofward.)
We conclude that the

the marginal effects pro
the Poisson model. Buy/the approximation became much bgiter when the data were

recoded and treated g8 censored. Figure,%./l also shows t
model (narrow barsf.

data, then ghe vector of marginal effects is 8 = [40.0586, 0.2446, —0.692, 0/115, —0.787],
which is gxtremely large. Thus, perhaps mor IP model can
be furtifer improved, and one might reconsider the hurdle model—buiwe have tortured
Fair’y’data enough. Further exploration i

—

. s

it

| % q.\ /MG MODELS FOR DURATION DATA *
. l'/lf‘u "\__. .

s Intuition might suggest that the longer a strike persists, the more likely it is that it will
end within, say, the next week. Or is it? It seems equally plausible to suggest that the
longer a strike has lasted, the more difficult must be the problems that led to it in the
first place, and hence the less likely it is that it will end in the next short time interval.

]1’ ~*There are  large number of highly technical articles on this topic,but relatively few accessible sources for
the uninitiated. A particularly usefui introductory survey is Kiefer (1988), upon which we have drawn heavily
for this section. Other useful sources are Kalbfleisch and Prentice (2002), Heckman and Singer (1984a).

a4 Lancaster (1990), 43¢t Florens, Fougere, and Mouchart (1996)"\’ and Camercon and Trived :
. ‘
(200$‘J C hop'\'ers I‘?,%\Q)_



* Greene-50558

book

June 25, 2007 17:35

932 PART VI 4 Cross Sections, Panel Data, and Microeconometrics

A similar kind of reasoning could be applied to spells of unemployment or the interval
between conceptions. In each of these cases, it is not only the duration of the event, per
se, that is interesting, but also the likelihood that the event will end in “the next period”
given that it has lasted as long as it has.

Analysis of the length of vime until failure has interested engineers for decades.
For example, the models discussed in this section were applied to the durability of
electric and electronic components long before economists discovered their usefulness.

Likewise, the analysis of survival nmesmfm example. the length of survival after the

onset of a disease or after an opelatlon such as a heart transplant-—has long been a
staple of biomedical research. Social scientists have recently applied the same body of
techniques to strike duration, length of unemployment spells, intervals between con-
ception, time until business failure, length of time between arrests, length of time from
purchase until a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration
data. As usual, we will restrict our attention to a few straightforward, relatively uncom-
plicated techniques and applications, primarily to introduce terms and concepts. The
reader can then wade into the literature to find the ext nsions and variations. We will
concentrate primarily on what are known as ga;ametru ‘models. These apply familiar
inference techniques and provide a convenient departure point. Alternative approaches
are considered at the end of the discussion.

)q.'-lf.q"

/93

ZZ83 DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses
from the beginning of some event either until its end or until the measurement is taken,
which may precede termination. Observations will typically consist of a cross section of
durations, f1,f2,. . ., f,. The process being observed may have begun at different points
in calendar time for the different individuals in the sample. For example, the strike
duration data examined in Example 254 are drawn from nine different years.
Censoring 13 a pervasive and usually unavoidable problem in the analysis of
duration data. The common cause is that the measurement is made while the pro-
cess is ongoing, An abvious example can be drawn from medical research. Consider
analyzing the survival times of heart transplant patients. Although the beginning times
may be known with precision, at the time of the measurement, observations on any
individuals who are still altve are necessarily censored. Likewise, samples of spells of
unemployment drawn from surveys will probably include some individuals who are still
unemployed at the time the survey is taken. For these individuals, duration, or survival,
is at least the observed ;. but not equal to it. Estimation must account for the cen-
sored nature of the data for the same reasons as considered in Section 3437 The conse-

19-40

quences of ignoring censoring in duration data are similar to those that arise inregression
analysis.

In a conventional regression model that characterizes the conditional mean and
variance of a distribution, the regressors can be taken as fixed characteristics at the
point in time or for the individual for which the measurement is taken. When measuring
curation, the observation is implicitly on a process that has been under way for an
interval of time from zero to £. If the analysis is conditioned on a set of covariates (the
counterparts to regressors) x,, then the duration is implicitly a function of the entire
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time path of the variable x{t), r = (0, 1), which may have changed during the interval.
For example, the observed duration of employment in a job may be a function of the
individual’s rank in the firm. But their rank may have changed several times between
the time they were hired and when the observation was made. As such, observed rank
at the end of the job tenure is not necéssarily a complete description of the individual’s
rank while they were employed. Likewise, marital status. family size, and amount of

education are all variables that can change during the duration of unemployment and- T

that one would like to account for in the dur atlon model The treatment of time- varymg
covariates is a considerable complication. X 187!

jq.4- 3 @M@ A REGRESSION-LIKE APPROACH: PARAMETRIC MODELS

OF DURATION

We will use the term spell as a catchall for the different duration variables we might
measure. Spell length is represented by the random variable T. A simple approach to
duration analysis would be to appty regression analysis to the sample of observed spells.
By this device, we could characterize the expected duration, perhaps conditioned on a
set of covariates whose values were measured at the end of the period. We could also
assume that conditioned on an X that has remained fixed from T=0to 7=, has a
normal distribution, as we commonly do in regression. We could then characterize the
probability distribution of observed duration times, But, normality turns out not te
be particularly attractive in this setting for a number of reasons, nof least of which is
that duration is positive by construction, while a normally distributed variable can take
negative values. (Llognormality turns out to be a palatable alternative, but it is only one
among a long list of candidates.)

2588w~ Theoretical Background
Suppose that the random variable T has a continuous probability distribution f(¢),
where ! is a realization of T. The cumulative probability is

t
Finy = / f(s)ds = Prob(T < 1).

We will usuaily be more interested in the probability that the spell is of length at least
1, which is given by the survival function; <1 )

Sty =1— Fit) =Prob({ = 1).

Consider the question raised in the introduction: Given that the spell has lasted until
time /. what is the probability that it will end in the next short interval of time, say, As?
Itis
ft Ay =Probt s T=<t+At|T = 1) L
P [ T

A useful function for characterizing this aspect of the distribution is the _haii:ardl rate,
Proby s T<t+A1| T2 tim Fu+an-Feo)  fu)

Al CAs0 ALS(E) SO

M0 = fm,

See Petersen (1986) for one approach to this problem.

c1a-41
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Roughly, the hazard rate is the rate at which spells are cornpleted after duration, given
that they last at least untll 1. As such, the hazard function gives an answer to our original
question.

The hazard function. the den51ty, the CDF and the survival function are all related.
The hazard function is - -
' —d In S(1)
At) = —a

50

7)) = S,

Another usefut function is the infegrated Hazard function
!
A(D) =f A(s) ds,
a .

for which
S(r)y = e~ 80,
50
All) = --ln S1).

The integrated hazard function is guneralneﬂ resu]na] in this setting. [See Chesher and
Irish (1987) and Example zéﬂ/ X

Modeis of the Hazard Function

For present purposes, the hazard function is more interesting than the survival rate
or the density. Based on the previous results, one might consider modeling the hazard
function itself, rather than, say, modeling the survival function then obtaining the density
and the hazard. For example, the base case for many analyses is a hazard rate that does
not vary over time. That is, A(f) is a constant i. This is characteristic of a process that
has no memory: the conditional probability of “failure” in a given short interval is the
same regardless of when the observation is made. Thus,

M) = A

From the earlier definition, we obtain the simple differential equation,

—dinSy)

da
The solution is
InS@)y=k—xt,

or

Su) = Ke™,

where K is the constant of integration. The terminal condition that S(0) =1 implies that
K =1, and the solution is

S(ty= e,

14-92
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This solution is the xponentlal distribution, which has been used to model the time
until failure of electﬁMnents Estimation of A is simple, because with an expo- |
nential distribution, £[t} =1 /A The maximum likelihood estimator of A would be the
reciprocal of the sample mean. !

A natural extension mlght be to model the hazard rate as a linear function, A(f) =
o + Bi. Then A{)=atf + 3817 and f(1)=A()S() = A¢) exp[—A(1)]. To avoid a nega-
tive hazard function, one might depart from A (1) = exp[g((, 8)], where # is a vector of
parameters to be estimated. With an observed sample of durations, estimation of a and
B is, at least in principle, a straightforward problem in maximum hkehhood [Kennan
(1985) used a similar approach.]

A distribution whose hazard function slopes upward is said tohave posmve duratmn
dependence. For such distributions, the likelihood of failure at time ¢, conditional upon
duration up to time . is increasing in 1. The opposite case is that of decreasing hazard
or negative duration dependence. Our questlon in the introduction about whether the
strike is more or less likely to end at time ¢ given that it has tasted until time f can be
framed in terms of positive or negative duration dependence. The assumed distribution
has a considerable bearing on the answer. If one is unsure at the outset of the analysis
whether the data can be characterized by positive or negative duration dependence,
then it is counterproductive to assume a distribution that displays one characteristic
or the other over the entire range of {. Thus, the exponential distribution and our sug-
gested extension could be pr oblematic, The literature contains a cornucopia of cho:ces ULE
for duration models: normal, inverse normal [inverse Gaussian; see Lancaster (1990)],-
lognormal, F, gamma, Weibull (which is a popular choice), and many others.” [o
illustrate the differences, we will examine a few of the simpler ones Table W

the hazard functions and survival functions for four commonly used distributions. Each | Hi
involves two parameters, a location parameter, A and a scale parameter, p. [Note that in | s

) the benchmark case of the exponential distribution, A is the hazard function. In all other
cases, the hazard function is a function of A, p and, where there is duration dependence,
| t as well. Different authors, e: 8- Kiefer (1988), use different parameterizations of these |

omple | models. We follow the convention of Kalbfleisch and Prentice (2002).]
All these are distributions for a nonnegative random variable. Their hazard func.
™. tionsdisplay very different behaviors, as can be seen in Figure ﬁmm

[ ta )
X |ﬂ'-__'..--'

for the exponential distribution is constant, that for the Weibull is monotonically in-
creasing or decreasing depending on p. and the hazards for lognormal and loglogistic

TABLE ¥5%&” Survival Distributions ,
Distribution Huzard Function, L(1) Survival Function, S(t)

Exponential A SH=e™
Weibull Ap(at e, S(r) = e R*
Lognormal f{1) = (pft)$[pIn(us)] 8(r) = df—p In(ar)]
[In # is normally distributed with mean —In X and standard deviation 1/ A
Loglogistic Aty = apnEHL 4 (A4, S(0) = /{1 + (.)?]

[In ¢ has a logistic distribution with mean —In A and variance 72/(327).]

VZ

.T-‘f- ':aThrcﬂ sources that contain numerons specifications are Kalbfleisch and Prentice (2002), Cox and Oakes
(1985), and Lancaster {1990).
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FIGURE 28,2 Parametric Hazard Functions.

(9

distributions first increase and then decrease. Which among these or the many alterna-
tives is likely to be best in any application is uncertain.

}19.Y4. 3.¢ Mé\a—ef' Maximum Likelihood Estimation

The parametgrs A and p of these models can be estimated by maximum likelihood.
For observed duration data, t1, t1, . . ., I, the log-likelihood function can be formulated
and maximized in the ways we have become familiar with in earlier chapters. Censored
observations can be incorporated as in Section 243 for the tobit model. {See (2&13‘)]

As such, -@)Q‘B B /1-13
mL®= > Wfel®+ Y Sule)

uncensored censored
observalions observations

where § = (A, p). For some distributions, it is convenient to formulate the log-likelihood
function in terms of f(1) = A(#)S(t) so that

nL= 3 iglH+ >, mSuie.

uncensored all
observations observations

Inference about the parameters can be done in the usual way. Either the BHHH estima- -
tor or actual second derivatives can be used to estimate asymptotic standard errors for
the estimates. The transformation w = p(In ¢+ In 1) for these distributions greatly facil-
itates maximum likelihood estimation. For example, for the Weibull model, by defining
w = p{lnt + Ini), we obtain the very simple density_f(w) = exp[w — exp(w)] and
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12909
survival function S(w) = exp(—exp{w)). 1’{ Therefore, by using In ¢ instead of f. we
greatly simplify the log-llkehhood functlon Details for these and several other dis-
tributions may be found in Kalbfleisch and Prentice (2002, pp. 68—70) The Weibull
distribution is examined in detall in the next section.

Exogenous Variables B
One limitation of the models given earlier is that external factors are not given a role

in the survival distribution. The addition of “covariates” to duration models is fairly-

straightforward, although the interpretation of the coefficients in the model is Jess so.
Consider, for example, the Weibull model. (The extension to other distributions will be
similar.) Let

—x!,
Ai=¢e -‘F-,

where X; is a constant term and a set of variables that are assumed not to change from
time T =0 until the “failure time,” T=;. Making ; a function of a set of regressors
is equlva]ent to changing the units of measurement on the time axis. For this reason,
these models are sometimes called accelerated failure time models. Note as well that
in all the models listed (and generally). the regressors do not bear on the guestion of
duration dependence, which is a function of p.

let o =1/p and let §; =1 if the spell is completed and §; =0 if it is censored. As
before, let

PR
wi = pIn(Ait;) = M,
o

and denote the density and survival functions f{w;) and S{w;). The observed random
variable is
= lnf,-:o*w;+x’ﬁ

The Jacobian of the transformation from w; to Iny; is dw;/dInf; =1/o, so the density
and survival functions for In; are

fdns|x,8,0) = mf(w), and S(ing|x;, f,0) = s('“"" ““-’-‘f‘.ﬁ),
a a - a

The log-likelihood for the observed data is

In 18,0 |data) = Z[&' In f(lns 1%, 8.0) + (1 - &) In Sy | xi, 8, 0)]
=1 '

For the Welbull modc.l for example (see footnote N)|
F(wi) = exp(w; —e™), 710
and
__S(w,-) = exp({—eri).
Eﬁ;— transformation is cxp{w)-(}.t)‘“ so t—(l/l){cxp(w)}t”’ The Jacobian of the transformation is
dt jdw =[exp(w)]Y# /(Ap). The densily in Table 25:8 is Apfexp(w)]~ (/P [exp(— exp(w))). Multiplying by

the Jacobian produces the result, f(w)= explw A exp{w}]. The survival function is the antiderivative,
[exp(—exp(w))].

|a-4s
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Making the fransformation to In/; and collecting terms reduces the log-likelihood to

' —— C_x!
- In L(8,0 |data) = Z l:&;(lﬂ-’-'a—"x'ﬁ'—lna) — exp (u)] .

: o
i

195

(Many other distributions, including the others in Table mhe sarme way.
The exponential model is obtained by setting o toone.) The derivativescan be equatedto
zero using the methods described in Section E.3. The individual terms can alsobe usedto. [ ]
' s ) formthe BHHH estimator of the asymptotic covariance matrix for the cstimatol‘.*{l‘h_e/_ﬂff
\_ |~ Hessian is also simple to derive, so Newton’s method could be used instead. 222
Note that the hazard function generally depends on t, p, and x. The sign of an
_ estimated coefficient suggests the direction of the effect of the variable on the hazard
/¢ N function when the hazard is monotonic. But in those cases, such as the loglogistic, in
| 7Y ) which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of
— the effects may also be difficult to interpret in terms of the hazard function. In a few
cases, we do get aregression-like interpretation. In the Weibull and exponential models,
Eftixi] = exp@&{B)T[(1/p) + 1], whereas for the lognormal and loglogistic models,
E[lnf|x] = x!8. In these cases, f; is the derivative (or a multiple of the derivative)
of this conditional mean. For some other distributions, the conditional median of ¢
is easily obtained. Numerous cases are discussed by Kiefer (1988), Kalbfleisch and
Prentice {2002}, and Lancaster {1990).

l 7£/3 e H—mﬂr Heterogeneity

The problem of hetero ceneit y in duration models can be viewed essentially as the result
of an incomplete specification. Individual specific covariates are intended to incorpo-
rate observation specitic effects. But if the model specification is incomplete and if
systematic individual differences in the distribution remain after the observed effects
are accounted for, then inference based on the improperly specified model is likely to
be problematic, We have already encountered several settings in which the possibility
of heterogeneity mandated a change in the model specification; the fixed and random
effects regression, logit, and probit models all incorporate observation-specific effects.
Indeed, all the failures of the linear regression model discussed in the preceding chap-
ters can be interpreted as a consequence of heterogeneity arising from an incomplete
specification.

There are a number of ways of extending duration models to account for het-
erogeneity. The strictly nonparametric approach of the Kaplan-Meier estimator (see
Section 25:6:3) is largely immune to the problem, but it is also rather limited in how

[ 4. 4 much information can be culled from it. One direct approach is to model heterogeneity
in the parametric model. Suppose that we posit a survival function conditioned on the
individual specific effect v;. We treat the survival function as $(1;]J»;). Then add to that
a model for the unobserved heterogeneity f(v;). (Note that this is a counterpart to the
incorporation of a disturbance in a regression model and follows the same procedures /9. 3.2

/

JEL
Al ;ENote that the log-likelihood function has the same form as that for the tobit model in Scctior@y just
reinterpreting the nonlimit observations in a tobit setting, we can, therefore. use this framework to apply a
4 .} wide range of distributions to the tobit madel. {See Greene (1995a) and references given therein,)

’qu ﬂ.See Kalbfleisch and Prentice (2002) for numerous other examples.
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that we used in the Poisson model with random effects.) Then

- ' S(t) =_Eu{§(1 jv)] = /.5(! I v)f(v}dv 24
. 23"

/ Fiv ™ The gamma distribution is flequently ‘used for this purpose.* Consider, for example,

) using this device to incorporate heterogeneity into the Weibull model we used eartier.
As is typical, we assume that v has a gamma distribution with mean 1 and variance
8 = 1/k. Then

f(v) — _k}'c_e—fﬂ.'vk-ﬂ-!
r'to ’

and
S(t | v) = e~ WADE,

After a bit of manipulation, we obtain the unconditional distribution,

S = f St i) f@) do = [1 +6(?]” 18,
The limiting value, with o = 0, }S the Weibull survwal model 50 @ = ( corresponds to

/T r_{'\‘-‘ Var{v]=0, or no hetelogenelty The hazard function for this model is

[ 2% AT i) = apGnE (SO,

which shows the relationship to the Weibull model.

This approach is common in parametric modeling of heterogeneity. In an important
paper on this subject, Heckman and Singer (1984b) argued that this approach tends
to overparameterize the survival distribution and can lead to rather serious errors in
inference. They gave some dramatic examples to make the point. They also expressed
some concern that researchers tend to choose the distribution of heterogeneity more
on the basis of mathematical convenience than on any sensible economic basis.

/9.9 7 VP 4253~ NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much
structure on the data as they do, the models may distort the estimated hazard rates.
it may be that a more accurate leplesentatlon can be obtained by imposing fewer
restrictions. C T
The K'lplanuMelel (1958) product ] limit estimator is a strictly empirical, nonpara-
metric approach to survival and hazard function estimation. Assume that the obset-
vations oh duration are sorted in ascending order so that f1 < i and so on and, for
now, that no observations are censored. Suppose as well that there are K distinct swr-
vival times in the data, denoted T;; K will equai n unless there are ties. Let s denote
2l
1%3 ESv:::a, for example. Hausman, Hall, and Griliches (1984) who use it to incorporate heterogeneily in the / 57 . 9'. ?
A )" Poisson regression model, The application is developed in Section 13,3.

24 )jﬁor the strike data analyzed in Figure 25.2-the maximum likelihood estimate of @ is 0.0004, which suggests
that at least in the context of the Wedbull model, latent heterogeneity does not appear to be a feature of

these data.
193
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EXr

the number of individuals whose observed duration is at least 7. The set of individuals
whose duration is at least T is called the mk set'at this duration. (We borrow, once
again, from biostatistics, where the risk set is those individuals still “at risk”™ at time T;).
Thus, #; is the size of the risk-set at time_T;.. Let & Qenote the number of observed
spells completed at time 7. A strictly empirical estimate of the survivor function would
be

T = fI i =t =
! | m
The estimator of the hazard rate is ] 9-‘2 |
L =2, (R

B

Corrections are necessary for observations that are censored. Lawless (1982),

Kalbfleisch and Prentice (2002), Kiefer (1988), and Greene (1995a) give details. Susin

(2001) points out a fundamental amblgmty in this calculation (one which he arguesap-_ _ / 2.2/
pears in the 1958 source). The estimator in (25-14) is ot a “rafe™ as such, as the width

of the time window is undefined, and could be very different at different points in the

chain of calculations. Because many intervals, particularly those late in the observation

period, might have zeros. the failure to acknowledge these intervals should impart an

apward bias to the estimator. His proposed alternative computes the counterpart to

(}i—’M) over a mesh of defined intervals as follows:

J=at J‘

where the interval is from ¢t = @ tot = b, /i; is the number of failures in each pe- @

riod in this interval, s, ; 1s the number of individuals at risk in that period and bj 1

is the width of the period. Thus, an interval (g, b) is likely to include several “peri- o K [ i

OdS.” I__.L ~ f..-|- |__" IHIJ '\'
, Cox’s (1972) approach to the proportional ]l.uard model is another populal semi- T

: paramemc method of analyzing the effect of covariates on the hazard rate. The model | '§en flafcaitie

specifies that | medel" O
At} = exp(x;B)Ao(4) '

The function Ag is the “baseline™ hazard, which is the individual heterogeneity. In princi- ( 7
ple, this hazard is a parameter for each observation that must be estimated. Cox’s parﬁal

~ likelihood estimator provides a method of estimating g without requiring estimation of

2o. The estimator is somewhat similar to Chamberlain’s estimator for the logit model
with panel data in that a conditioning operation is used to remove the heterogeneity.
See Section 28.32.) Suppose that the sample contains K distinct exit times, T, ..., Tx.
For any time 7, the risk-set, denoted Ry, is all individuals whose exit time is at least
T;. The risk set is defined with respect to any moment in time 7 as the set of individ-
uals who have not yet exited just prior to that time. For every individual / in risk set
Ry, 1; = Ti. The probability that an individual exits at time T; given that exacily one
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logit model in Chapteri23

X8
\"'/Plob[h Iglnsll{setk] ﬁ

tje Ry

individual exits at this :@e (which is the counterpart to the conditioning in the binary

Thus. the conditioning sweeps out the baseline hazard fumctions. For the simplest case
in which exactly one individual exits at each distinct exit fime and there are no censored.

observations, the partial log-likelihood is

K
mL=) Ixif—Ind &%
k=1 |7 JeR

If my, individuals exit at time 7, then the confribution to the log-likelihood is the sum

of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations because
it is a reasonable compromise between the Kaplan-Meier estimator and the possibly

excessively structured parametric models. Hausman and Han (1990} and Meyer (1988),

among others, have devised other, “semiparametric™ specifications for hazard models,

19 g m Example %A' Survival Models for Strike Duration l 9 ,.'&L

The strike duration data given in Kennan (1985, pp. 14-1€) haw€ become 2 familiar standard
for the demonstration of hazard models. Appendix Table F2€& lists the durations, in days, of
62 sirikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000
workers and began at the expiration or reopening of a contract. Kennan reported the actual
duration. In his survey, Kiefer (1985), using the same observations, censored the data at

80 days to demonstrate the effects of censoring. We have kept the data in their original form; "%
problem. ¥

the interested reader is referred to Kiefer for further analysis of the censori
Parameter estimates for the four duration models are given in Table he estimate
of the median of the survival distribution is obtained by solving the equati n S(t) = 0.5. For
example, for the Weibull model,
19.6

S(M) = 0.5 = exp[~(AM)7],
or
M = [(In2)"*}/x.

For the exponential model, p=1. For the lognormal and loglogistic models, M = 1/x. The
delta method is then used to estimate the standard error of this function of the parameter
estimates. (See Section 4,4.4.) All these distributions are skewed to theright. As such, £ [f] is

TABLE aZg Estimated Duration Models (estimated standard errors
R in parentheses} .

A P Median Duration

Exponential 0.02344 (0.00298) 108000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27,543 (3.997)
Loglagistic 0.04153 (0.00707) 1.33148 (0.17201) 24,079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08863) 22.152 (3.954)

25 O ur statistical results are nearly the same as Kiefer's despite the censoring,

14-49
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the normal, £ [t] = (1/2)[exp(1/p%)]"2. The implied hazard functions are shown in Figure

greater than the median. For the exponential and Weibuli riodels, Elf]=[1/AT(1/p) +g%/p\. [ ? .‘}

The variable x reported with the strike duration data is a measure of unanticipated ag-
gregate industrial production net of seasonal and trend componants. It is computed as the
residual in a regression of the log of industrial production in manufacturing on time, time
squared, and monthly dummy variables. With the industrial production variable inciuded as
a covariate, the estimated Weibull modsl is

—Ini =3.7772 - 9.3515%, P =1.00288,
(0.1394) (2.973) (0.1217),

median strike length = 27.35(3.667) days, £ [t] = 39.83 days.

Note that the Waeibull model is now elmost identicalto the exponential model {p = 1). Because
the hazard conditioned on x is approximately equal to i, it folows that the hazard function
is increasing in “unexpected” industrial production. A1 percent increase in x leads to a
9.35 percent increase in A, which because p ~ 1 translates into a 9.35 percent decrease in
the madian strike length or about 2.6 days. (Note that M.= In2/x.)

The propottional hazard model does not have a constant term. (The bassline hazard is an
individual specific constant.) The estimate of g is —-9.0726, with an estimated standard error
of 3.225. This is very similar to the estimate obtained for the Weibuil model.

\Va ZB.7 ; SUMMARY AND/CONCLUSIONS

is chapter has surveyed models for events.

e analyze these data in two for

ork node, and so on. The Poisso:
its limitations usually motivate re
¢ count data models are essentially nonlinear
ut it is more fruitful tg'do the modeling in terms of the probabilities of
her than as a model of/a conditional mean. We considered’ basic cases, as
extensions that accompdodate features of data such as ce oring, truncation.
tnflation, and unobseryed heterogeneity. The second type 21 event history data
t we considered are dyrations. It is useful to think of durati€n, or survival data. as
€ measurement of tim€ between transitions or changes of4tate. We examined three
modeling approache p Chapter W nonparametric
‘miparametric (the proportional ard models), and parametri
{various forms suCh as the Weibull model).

* Negative duration
dependence

¢ Negbin 1 form

+ Negbin 2 form

s Negbin P mods

» Conditional pfoment test
» Count daiy '
s Della mé
» Devj

niegrated hazard function
¢ Lagrange multiplier test

* Loglinear madel + Partj
+ Marginal effects » PgiSson regressio
e Negative binomial model

« Exponential model
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erature on panel data methods for the tobit
The departure point woul the maximum

However, there are i 6n the behavior of the MLE in this
model. Intuition my ht suggest, based on the nclmgs for the bm'nyplobn rnodel that

Gups (LSDV)
the disturbance

gression) model. First differencing
the model. Because the latent varj

Much of the theoretical
the benign result of t
(2001) contains so

dynamic binary choice and censored regression morlels.

INCTDEVTAL TRVVEHTION AND
245 SAMPLE SELECTION -
P -" Ey
The topic of sample selection, or mculmta! trlmcatlon, has been the subject of an
enormous recent literature, both theoretical and applied. ‘T This analysis combines both
i of the previous topics. -flfolf'
i}

%. x ;EA large proportion of the analysis in this framework has been in the area of labor economics, See, for
example, Vella (1998), which is an extensive survey for practitionecrs, The results, however, have been applied
in many other fields, including, for example, long series of stock market returns by financial sconomists (“sur-
vivorship bias™) and medlcal tlcatmcm and response m long-tcrm studles by clinical researchers (“attrition

: FE Somc sludlcs that comment on mcthodo!oglcal issues are Hn:ckman (1990},
Manskl (1989 1990, 1992) and Newey, Powell, and Waltker (1990).
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9.
Example 241? . Incidental Truncation 14.% _
Inthe high-income survey discussed in Example 242, respondents were also included in the
survey if their net worth, not including their homes, was at least $500,000. Suppose that
- the survey of incomes was based only on people whose net worth was at least $500,000.

This selection is a form of truncation, but not quite the same as in Section 24:2, This selection __ 1% ,Z.
criterion does not necessarily exclude individuals whose incomes at the time might be quite
low. Still, one would expect that, on average, individuals with a high net worth would have a
high income as well. Thus, the average incomae in this subpopulation would in all likelihood

also be misleading as an indication of the income of the typical American. The data in such
a survey would be nonrandomly selected or incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects
of sample selection on the properties of conventional estimators such as least squares;
have produced a variety of alternative estimation techniques; and, in the process, have
yielded a rich crop of empirical models. In some cases, the analysis has led to a reinter-
pretation of earlier resulis.

/?_ f.’ SerST™ INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation p. We are interested
in the distribution of y given that z exceeds a particular value. Intuition suggests that if
y and z are positively correlated, then the truncation of z should push the distribution
of y to the right. As before, we are interested in (1) the form of the incidentally trun-
cated distribution and (2) the mean and variance of the incidentally truncated random
variable. Because it has dominated the empirical literature, we will focus first on the
bivariate normal distribution.”
The truncated jeins density of y and 7 is

frzlz>a)= -lalmobizu'b-fl)

To obtain the 1nc1dent‘1[1y truncated marginal density for y. we would then integrate z

== out of this expression. The moments of the incidentally truncated normal distribution
SN are given in TheonemZ‘élS 230 >
| i 41

’?a{
TI—IEOREM ZAF Moments of the Incidentally Truncated Bivariate
Normal Distribution

If v and 7 have a bivariate normal distribution with means uy and Wy, standard
deviations ay and oz and correlation p, then

Elyiz > a]l = py + payi{ay), m

Var[y| z > a] = qﬁ[l - p28(a:z)],

where
oy = (a — puz)/o,, A'l(a’_z) = ¢(az)/[i - (D(dz)]- and 5(6\'2) = )\-(a_z}{}‘-(a_z) —az]-

N 2 -wMuch more general forms of the result that apply to multivariate distributions are given in Johnson and
5 Kotz (1974). See also Maddala (1983, pp. 266-267).
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j9.2

Note that the expressions involvi;f{are analogous to the moments of the truncated
distribution of x given in Theorem 24:2. If the truncation is 7 < a, then we make the
replacement Ale;) = —¢ () /Pla;).

As expected the truncated mean is pushed in the direction of the correlation if the
truncation is from below and in the opposne direction if it is from above In addition,
the incidental truncation reduces the variance. because both 8(cr) and p? are between
zero and one.

2578 REGRESSION IN A MODEL OF SELECTION \q.5

To motivate a regression model that couesponds to the results in Theorem 2475, we
consider the following example.
[3.10
Example 247 A Model of Labor Supply
A simple modqzef f_gmale labor supply that has been examined in many studies consists of
two equations: 2,'3 g

1. Wage equation. The difference between a person's market wage, what she could
command in the labor market, and her reservation  wage, the wage rate necessary to
make her choose to participate in the labor market, is a function of characteristics such
as age and education as well as, for example, number of children and where a person
lives.

2. Hours squation. The desired number of labor hours supplied depends on the wags,
home charactetistics such as whether there are simall children present, marital status,
and so on.

The problem of truncation surfaces when we consider that the second equation describes
desired hours, but an actual figure is observed only if the individual is working. {In most
such studies, only a participation equation, that is, whether hours are positive or zero, is
observable.) We infer from this that the market wage exceeds the reservation wage. Thus,
the hours variable in the second equation is incidentally truncated.

To put the preceding examples in a general framework, let the equation that deter-
mines the sample selection be

=iyt
and let the equation of primary interest be
w=Xp+e.

The sample rule is that y; is observed oﬁly when zf is greater than zero, Suppose as
well that &; and «; have a bivariate normal distribution with zero means and correlation
p- Then we may insert these in Theorem 245-to obtain the model that applies to the

observations in our sample 9.5 ’
s |

E[yi v is observed] = Efy; | 7 > 0] — Y

Loy R

= P,[yf [g; > =W ),’_;"]

=X B+ Elai|u; > —wiy]
=X/ + pocii (@)

= X; I8+ Bakiletu),

28 jiSec for example. Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and

Lewis (1974).

19-573)
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where oy = “WE}'/O’M and A(ay) = d’(W:J'/o'u)/(D{w:)’/o'u) Sa.
' .Vilz;‘b‘O:::F[V,'i_Z?}O}-i-v;
] = x,ﬁ + ﬂlll(ar.r) “+ v,

Least squares legressmn using the obsel ved data—for 1nstance OLS regression of hours
onits determinants, using on!y ata forwomen who are w01k1ng~—p1 oduces inconsistent
estimates of 8. Once again, we can view the problem as an omitted variable. Least
_ squares regression of v on x and ). would be a consistent estimator. but if 1 is omitted,
/T -rthen the : specification error of an omitted variable is committed. Finally, note that the
5 ~ " second part of Theorem 24-5 implies that even if A; were observed, then least squares

9.5 — would be Tnefficient. The disturbance y; is hetemséeclastic.
The marginal effect of the regressors on y; inn the observed sample consists of two
components. There is the direct effect on the mean of y;, which is 8. In addition. for a
particular independent variable, if it appears in the probability that z} is positive, then
it will influence_y; through its presence in A;. The full effect of changes in a regressor

that appears in both x; and w; on yis

3E1Z >0, (M)_
T-—ﬁk Yk o 8 (o),

)

z|’l\. Wb

3
wheress
Nt b =3 - aph

Suppose that p is positive and E]y }isgreater when z¥ is positive than when itisnegative.
Because 0 < §; < 1, the additional term serves to reduce the marginal effect. The change
in the probability affects the mean of y; in that the mean in the group 2f > 0 is higher.
The second term in the derivative compensates for this effect, leaving only the marginal | 4.12.
effect of a change given thai 2zt > 0 io begin with. Consider Example 24:97and suppose ' °
that education affects both the probability of migration and the income in either state.
If we suppose that the income of migrants is higher than that of otherwise identical
people who do not migrate, then the marginal effect of education has two parts, one
due to jts influence in increasing the probability of the individual’s entering a higher; -
income group and cone due to its influence on income within the group. As such, the
coefficient on education in the regression overstates the marginal effect of the education
of migrants and understates it for nonmigrants. The sizes of the various paris depend
on the setting. [t is quite possible that the magnitude, sign, and statistical significance of
the effect might all be different from those of the estimate of 8, a point that appears
frequently to be overlooked in empirical stixlies. :

In most cases, the selection variable z* is not observed. Rather, we observe only
its sign. To consider our two examples, we typically observe only whether a woman is
working or not working or whether an individual migrated or not. We can infer the sign
of z*, but not its magnitude, from such information. Because there is no information on
the scale of z*, the disturbance variance in the selection equation cannot be estimated.
{We encountered this problem in Chapter -’Z%-in connection with the probit model.)

Also, as such, 0A/8e = —s fm
T‘\ceﬂ w 9.5
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Thus, we reformulate the model as follows:

selection mechanism: zf = wiy +u;, & =1 if zf > 0 and 0 otherwise:

- Prob(z; = 1]w;) = O(wiy)’ and
Prob(z; = 0] W) =1-—2mly). (W
regression model: i =2 ; B+ observed only ifz; =1, ( 19 .-'Lt)

(1#;, &) ~ bivariate normal [0, 0, 1, ag,_p]. .

Suppose that, as in many of these studies. z; and y are observed for a random sample
of individuals but y; is observed only when g =1. This model is precisely the one we
examined earlier, with

Elyilzi =1,%.%] =x8 + po.i{W;y)-

v _, sSTEP [ £ 27>
/95 3 Tzqzéw ESTllm";a{%l(:)l\/lmAy'nwwI TrEE.

S35~ '___l‘hg_g%‘ametels of the sample selection model can_be estimated by maximum like-

— ?ﬂ lthood.™ However, Heckman's (1979) two-step estimatlou procedure is usually vsed
SN instead. Heckman's method is as follows:™ g0 .15
St 1, Estimate the probit equation by maximum likelihoed to obtain estimates of y. For

b each observation in the selected sample, compute /Lj = ¢( w’ i2)/@{w;7) and
/ 81 == A’l(ll +, W'J’) .
2. FEstimate 8 and B, = po, by least squares regression oﬁ yonxand A.

It is possible also to construct consistent estimators of the individual parameters p
and o,. At each observation, the true conditional variance of the disturbance would be

N of = aX(1 - p*%).

The average conditional variance for the sample would converge to
L 1S 2 25
pllm ;; Zl:al' =g, (- £e8),
i=

which is what is estimated by the least squares residual variance ¢’e/n. For the square
of the coefficient on A, we have

: 22
plimp? = p?a?,

whereas based on the probit results we have

i=1
We can then obtain a consistent estimator of o7 using

1, -
) = —ge + 8B,

s 7

A
%Q See Greene (1995a).
430 A Perhiaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be knowa as
~ the “Heckit” estimator.
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Finally, an estimator of p° is

(19-23)

¥
2 M 5
=23 . 12
% Y

which provides a complete set of estimators of the model’s parameters."—“‘
To test hypotheses, an estimate of the asymptotic covariance matrix of [W, 5] is
needed. We have two problems to contend with. First, we can see in Theorem % 1.5
the disturbance term in
19-24

(i bz = 1,%, 1) = XIB + poshi +v (242D
is heteroscedastic;
Vaifpi |2 =1,%, ] = okl — p*8).

Second, there are unknown parameters in A;. Suppose that we assume for the moment
that A; and & are known (i.e., we do not have to estimate_y). For convenience, let
X! = [x;, ;], and let b* be the least squares coefficient vector in the regression of y on
X* in the selected data. Then, using the appropriate form of the variance of ordinary
least squares in a heteroscedastic mode! from Chapter E,iwe would have to estimate

Varlb'] = o/ (XX, [Z“ & sz?:).&.'.‘?-?ﬁ?'] XX,

i=1

= XXX - AAOXXX T

where 1 — p?A is a diagonal matrix with (1 — p%4;) on the diagonal. Without any other
complications, this result could be computed fairly easily using X, the sample estimates
of o2 and p?. and the assumed known values of 4; and ;. .

The parameters in ¥ do have to be estimated using the probit equation. Rewrite
(2421) as )
19-29 . .
il =1 X, W) = X8 + Bki + v — Brlhi — Ai).

In this form, we see that in the preceding expression we have ignored both an additional
source of vartation in the compound disturbance and correlation across observations:
the same estimate of y is used to compute 3; for every observation. Heckman has
shown that the earlier covariance matrix can be appropriately corrected by adding a
term inside the brackets, _

Q = p* (X, AW)Est. Asy. Var[p](WAX.) = p°EVE,

where V = Est. Asy. Vai[#], the estimator of the asymptotic covariance of the probit
coefficients. Any of the estimators in (23-22) to (23'—24) may be used to compute Y. The

complete expression ise320b 1} 13
30~ Est. Asy. Varfh, h] = 2[X,X.] X 0 - 24X, + QXX
\@\ Whath, --'\-‘.-.- - ¥ T

j Note that 37 is not a sample correlation and, as such, is not limited to {0, 1]. See Greene (1981 ) for discussion.

AThis matrix formulation is derived ip.Gyeene (1981). Note that the Murphy and Topel (1985) results for
two-step estimators given in Theore ould apply here as well. Asymptotically, this method would give
the same answer. The Heckman formulation) has become standard in the literature.




(19-5 #

The sample selection model can also be estimated by maximum likelihood. The full log
likelihood function for the data is built up from "

Prob(selection) x density | selection for observations with z; =1,
and ‘ .
' Prob(non-selection) for observations with z= 0,

Combining the parts produces the full _légl.,l'ike]i_hood function,

. exp(~(1/2)e? /o2 _ :
lnEL _ ZZ=1 ln{ P( ) _ )q)[ps, /o, +W,.YH+Z‘?=O [1—‘ln'<D(ﬂw_;x_)_],

GV 2m V1-p7

where €, = 3, - x/B. Note, the FIML estimator with its assumption of bivariate normality is not

less robust than the two,step estimator. because the latter also requires bivariate normality to form

the conditional mean for the regression. .

Two virtues of the FIML estimator will be the greater efficiency brought by using the
.. likelihood function rather than the method of moments and, second, the estimation of psubjectto

/it 22 the constraint -1 < p < 1. (This is typically done by reparameterizing the model in terms of the /a0
monotonic inverse hyperbolic tangent, T = (‘/z)Iq[( I4p)/(1-p)] = atanh(p). The transformed
parameter, T, is unrestricted. The inverse transformation is p = [exp(27)<1]/[exp(2t)H1] which is
bounded between zero and one.) One possible drawback (it might be argued) could be the
complexity of the likelthood function that would make estimation more difficult than the two step
estimator. However, the MLE for the selection model appears as a built in procedure in modern
software such as Stata and NLOGIT, and it is straightforward to implement in Gauss and MatLab,
so this might be a moot point. Surprisingly, the MLE is by far less common than the two;step
estimator in the received applications. The estimation of p is the difficult part of the estimaton
process (this is often the case). It is quite common for the method of moments estimator and the
FIML estimator to bevery different 'I%'I our application in Example 19.11 is a case. Perhaps
surprisingly so, the moment, based estimator of p in (19-23) is not bounded by zero and one, [See
Greene (1981).] This would seem to recommend the MLE.

The fully parametric bivariate normality assumption of the model has been viewed as a
potential drawback. However, relatively little progress has been made on devising informative
semi- and nonparametric estimators ;%_-;‘see, for one example, Gallant and Nychka (1987). The
obstacle here is that, ultimately, the model hangs on a parameterization of the correlation of the
unobservables in the two equations. So, method of moment estimators or kernel based estimators
must still incorporate this feature of a bivariate distribution. Some results have been obtained
using the method of copula functions. [See Smith (2003, 2005) and Trivedi and Zimmer (2007).]
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TABLE 243 Estimated Selection Corrected Wage Equation
Two-Step Maximum Likelihood Least Squares

Estimate Sid, Err,. Estimate Std-Err. Estimate S, Err
B —0971 (206) - . —1963 (1.684) —2.56 (0.929)
3 0.021 (0.0625) 0.0279  (0.0756) 00325  (0.0616)
B3 0000137 (0.00188) —0.0001 (0.00234) —0.000260  {6.00184)
B 0.417 (0.100) 0.457 (0.0964) 0481 {0.0669)
Bs 0.444 (0.316) 0.447 {0.427) 0.318 (0.449) —"
(po) —1.098 {1.266) \T.{'l/
0 —0.343 —0.132 {0.224) 0.000
o 3.200 3.108 (0.0837) 3111

192 121
Exampie 88 Female Labor Supply

I'3.1 ) Examples 2371 an -5 proposed a labor force participation model for a sample of
' 753 married women in a sample analyzed by Mroz {(1987). The data set containg wage and
hours information for the 428 women who participated in the formal market (LFP =1}, Fol-
lowing Mroz, we suppose that for these 428 individuals, the offered wage exceeded the
reservation wage and, moreover, the uncbserved effects in the two wage equations are cor-
related. As such, a wage equation based on the market data should account for the sample

salection problem. We specify a simple wage model:

Wage = B1 + B, Exper + By Exper® + b, Education + s Clly +
where Exper is fabor market experience and City is a dummy variable indicating that the indi-

P vidual lived in a large urban area. Maximum likelihood, Heckman two-step, and ordinary least iq -_)_
g J v f‘  squares estimates of the wage equation are shown in Table 2473 The maximum likelihood ‘ o
[ 1" 1) estimates are FIML estimates—the labor force participation equation is reestimated at the .
\ = same time. Only the parameters of the wage equation are shown below. Note as well that /'“*' |

the two-step estimator estimates the single coefficient on 2; and the structural parameters o

and p are deduced by the method of moments. The maximum liketihood estimator computes

estimates of these parameters directly. [Details on maximum likelhood estimation may be Q-+

found in Maddala (1983} 1.
The differences between the two-step and maximum likelihood estimates in Table 245"

are surprisingly large. The difference is even more striking in the marginal effacts. The effect® ¥ S0
for education is estimated as 0.417+0.0641 for the two, step estimators am@ﬁ@—t&aﬁ;
the maximum likelthood esti : the kids variable, the marginal effect is =293 for the
two-step estimates and only—0.0113 for the MLEs. Surprisingly, the direct test for a selection
effect in the maximum likelihood gstimates, a nonzero p, fails to reject the hypothesis that p

equals zero.
q —. /003

In some settings, the selection process is a nonrandom sorting of individuals into
two or more éé'oups. The mover-stayer model in the next example is a familiar case.

—————
’ q.[ 1  Exampfle A Mover-Stayer Model for Migration
The model of migration analyzed by Nakostesn and Zimmer (1980} fits into the framework
described in this section. The equations of the model are

net benefit of moving: M =wjy +u;,
income if moves: M =x,8, + €11
income if stays: o =X B+ sio.

One component of the net benefit is the market wage individuals could achieve if they move,
compared with what they could cbtain if they stay. Therefore, among the determinants of
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7.8 "
TABLE 244  Estimated Eainings Equationis . _
- : Migrant Nonmigrant

Migration Earnings _ Earnings
Constant ~1.509. - 9.041 8.593
SE ~0J0R (—5.72) T —4.104 (=9.54) —~4,161 (=57.71)
AEMP —1.488 (-2.60) — —
APCI 1455 (3.14) — —
Age -0.,008 (-5.29) s =
Race —0.065 (—1.17) —_ —
Sex —~.082 (~2.14) —— —
ASIC (1,948 (24.15) —0.790 (—2.24) —(1,927 (=9.35)
b3 — 0.212 (0.50) 0.863 (2.84)

the net benefit are factors that aleo affect the income recsived in either place. An analysis

of income in a sample of migrants must account for the incidental truncation of the mover's

income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated

an a nonpositive net benefit. The model implies an income after moving for all observations,

but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied _ f
the selectivity model to a sample of 9,223 individuals with data for 2 years (1971 and 1973) lwe
sampled from the Social Security Administration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The independent
variables In the migration equation wera as follows:

SE = self-employment dummy variable; 1 if yes,/
AEMP = rate of growth of state employment,
APC! = growth of state per capita income,
X = age, race (nonwhite =1}, sex (female=1),
ASIC = 1 if individual changes industry.

— The earnings equations included ASIC and SE. The authors reported the results given in
AT /_'Ealj% The figures in parentheses are asymptotic ¢ ratios.
(%) 9.8 A - :

24.5.4 REGRESSION ANA 1S OF TREATMENT E

ded in an impressive variety
d wide use is the measurement

€sting application that has f
<"and program effectiveness.2
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Percen! Louer
0-5 (].000591" 000783 Sample gize/s= 1.347
5-10 0.000787 / 0001061 - Average scofe = (.137238
10-15 (L.00106 0001377 - Std. Dev store == {3.274079
15-20 0.001 0.001748
20-25 0.0y 1.002321 Lower Upper # 0l
25-30 0.002956 (.00059 0098016 1

30-35 002974 0.004057 (.098016 0.195440

0.004059 0605272 3 0.195440 0.390289 63
0.005278 0.007486 4 0.390289 0.5851 36
0.007557 5 .585138 32
0.010563 0.01 6 0.779986 . 17
0.014686 7 0.877411 (926123 7

0.022621
0.035075
0.051415

0.926123 (L974835

051415
0.076188
0.134189
0.320638
0.616002
0949418
0.974835

and (24-23) using the entire sample. Thé estimates of 3, p, and o were (—1.01437, 035519,
1.38426). Using the results from the probit model, we averaged the result in (24-24) for the
entire sample, obtaining an estimated treatment offect of $1,476.30,

/7, Cf e~ SAMPLE SELECTION IN NONLINEAR MODELS

The preceding analysis has focused on an extension of the linear regression (or the
estimation of simple averages of the data). The method of analysis changes in nonlinear
models. To begin. it is not necessarily obvious what the impact of the sample selection

v is on the response variable, or how it can be accommodated in a model. Consider the
model analyzed by Boyes, Hoffman. and Lowe (1989):

vi1 = 1 if individual / defaults on a loan. 0 otherwise,
vi2 = 1 if the individual is granted a loan, ( otherwise,

- Wynand and van Praag (1981) also used this framework to analyze consumer insurance @
purchases in the first application of the selection methodology in a nonlinear model. | Al
Greene (1992) applied the same model to v; = default on credit card loans. in which | [T 5 Con'0l
¥2 denotes whether an application for the card was accepted or not. [Mohanty {2002) _

also used this model to analyze teen employment in California.] For a given individual. | =~ ' = -~ 4
¥ is not observed unless y;; = 1. Following the lead of the linear regression case in | >4 @ -
“Section 24.5.3;a natural approach might seem to be tofit the second (selection) equation . 5 K
using a univariate probit model, compute the inverse Mills ratio, ;, and add it to the
first equation as an additional “control™ variable to accommodate the selection effect. .. A

[This is the approach used by Wynand and van Praag (1981 )'I The problems with s Greene (14 qq)
control function approach are. first, it is unclear what in the mode is being “controiled™

and, second, assuming the first model is correct, the appropriate model conditioned

W



Bill
Sticky Note
should be 19.5.3


T Greene-50558 book

June 23, 2007 1317

o

896 PART VI + Cross Sectians, Panel Data, and Microeconometrics

19-2¢

=

on the sample selection is unlikely to contain an inverse Mills ratio anywhere in it. That
result is specific to the linear model, where it arises as_Efg; | selection]. What would
seem to be the apparent counterpart for this probit model,

Prob(y; =1| séléction_ on yiz = 1) = ®(x;, B + k),

is not, in fact, the appropiiate conditional mean, or probability. For this particular ap-
plication, the appropriate conditional probability {extending the bivariate probit model
of Section23.8) would be

.5 @2(x!1 81, X282, )

O (x1>82)
We would use this result to build up the likelihood function for the three observed out-
comes, as follows: The three types of observations in the sample, with their unconditional
probabilities, are
¥i2 =0:Prob(y; =0 | Xit Xi2) =1~ (D(X,opz) 19.28
yi1 =0, yp3 = 1: Prob(y;; =0, yo = 1|x,1, Xi2) = Da(=X; 81 X282, —P), (24-25)
vt =12 =1Prob(y;; =1, v2 = I{x,l,x,g) szx,L,B], ,2,89, o).

Problyin =1 |y =1] =

(_zo\o)
’Uo. 95"0“ '

ya-60

The log-likelihood function is based on these plobﬂblllt]es?ﬁ 3% An apep Vication appexrs in

19.13 Seckion 13.S. b

Example 2771  Doctor Visits and Insurance
Continuing our analysis of the utilization of the German health care system we observe that
the data set {SEExamptectI RN containg an indicator of whether the individual subscribes to
the “Public” heailth insurance or not. Roughly 87 percent of the observations in the sample do.

We might ask whether the selection on public insurance reveals any substantive difference ]'-,[ .L’.

in visits to the physician. We estimated a logit specification for this model in Exampl

=ing as the framework, we define yi. to be presence of insurance and y;+ to be the
binary variable defined to equal 1 if the individual makes at least one visit to the doctor in the
survey year.” 9.9

The estimation results are given in Table 24-6. Based on these results, there does appear

to be a very strong relationship. The cosfficients do change somewhat in the conditional
modsl. A Wald test for the presence of the selection effect against the null hypothesis that o
equals zero produces a test statistic of {--7.188)2 = 51.687, which is larger than the critical
value of 3.84. Thus, the hypothesis is rejected. A likelihood ratio statistic is computed as
the difference between the log-likelihood for the full modal and the sum of the two separate
log-likelihoods for the independent probit models when ¢ equals zero. The result is

M = 2[—23069.58 — (—15536.39 -+ (~8471.508)) = 77.706

The hypathgsis is rejected once again. Partial effects were computed using the results in

11.5.3

I'3.18

Sactio

The large correlation coefficient can bs misleading. The estimated —0.9299 does not
state that the presence of insurance makes it much less likely to go to the doctor. This is
the correlation among the unobserved factors in each equation. The factors that make it
more likely to purchase insurance make it less likely to use a physician, To obtain a simple
correlation between the two variables, we might use the tetrachoric correlation defined in

amp! .135This would be computed by fitting a bivariate probit modet for the two binary
variables without any other vatiables. The estimated value is 0.120,

37,
= j;Exteusions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and

Abowd and Farber (1982).
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/9.9

TABLE 2%6 Estimated Probit Equations for Doctor Visits a : :
N Independent: No Selection Sample Selection Model
Stundard . Partial T Standard Partial

Variable Estimate -Error Effect Estimare Error Effect
Constant 0.05588 0.06564 —9.4366 0.06760
Ape 0.01331 0.0008399 0.004971 0.01284 0.0008131 0.005042
Income —0.1034 0.05089 ~(.03860 —0.1030 004582 - —0.04060
Kids —~0.1349 0.01947 —0.05059 —0.1264 001790 —.04979
Education —0.01920 0.004254 —0.007170 0.03660 0.004744 0.002703
Married 0.03586 0.02172 001343 0.03564 0.0216 0.61404
InL - ~15336.39
Constant 3.3585 0.06959 3.2699 G.06916
Age 00001868  0.0009744 —0.0002679  0.001036
Education  —0.1854 0.003941 —0.1807 0.003936
Female 0.115¢ 0.02186 0.0006% 02230 0.62101 0.01446"
InL —8471 508
P 0.0000 0.0000 —0.9299 01294
InL —24007.90 ~23969.58
Andirect effect from second equation. c-se“.t ’ o o

: pe 2008 o

m“____hix%g%g cases arejtypically much less straightforward. Greene (1882, 2006) and
399 ,20(0 Terza (. " ) sample selection models for nonlinear specifications /
based on the underlying logic of the Heckman model in Section 24-5-% that the influence 753

of the incidental truncation acts on the unobservable variables in the model. (That is

the source of the “selection bias” in conventional estimators.) The modeling extension

introduces the unobservables into the model in a natural fashion that parallels the

regression model. Te ¢ ya (2010) pre sents o sury ey o £ the qe ne ral resulls,
The generic model will take the form

1. Probit selection equation: ;
= Wi + 1 in which 4; ~ N[0, 1], (}126) FARY
% -=1if z} > 0,0 otherwise. -

2. Nonlinear index function model with unobserved heterogeneity and sample |

selection: (R I
| fri={
pile =xB+oce, e~ NO1J, / | et ¢l
i [ Xi. & ~ density g(v 1 X, &) = f(vi 1xig +oep), (24:27) =
¥, % are observed onlywhen z; = 1,
[, &:] ~ N[O, 1), (1, p, ]. Used
For example, in a Poisson regression model, theg€onditional mean function becomes
By LX) = A = expl(X[B + o) = exp(py). (We-n this specification of the model
in Chapter ¥ to introduce random effects in the Poisson regression model for panel
data.) 18

The log-likelihood function for the full model is the joint density for the observed
data. When z; equals one, (¥, Xiy Zi» Wi) are all observed. To obtain the joint density
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plvi, & = 1|x;, w;). we proceed as follows:
o0

P, % = 1| X, wi) mf PO G = 11X, W, £0) f(&1)ds;.

] R —-00

Conditioned on g;, 7 and y; are independent. Therefore, the joint density is the product,
Pioinz = 1|X. Wi, &) = [ | X+ ae)Probiz =1 | Wi, &)

The first part, f (¥ [;_\_t; # + og) is the conditional index function model in (24-27). By

joint normality, f(u: &) = N|pe;, (1~ 25, s0 1 l& = pei + (#; — pei) = p&i + v;

where Efy;] =0 and Var[y,] = (1 — p?). Therefore,

we + e )

Prob(z; =1|w: &) =@
- fl _ pz
Combining terms and using the earlier approach, the unconditional joint density is
. \ exp(—e2/2 9
“{.a + pEE'. etp( ‘?: / ) dgi- ('H-Zﬂ)
V1i—p? «/_ 2 T -
The other part of the likelihood function for the observations with zi = Owill be

o0
Prob(z; = 0fwi) = / Prob(z; = 0] w;. &) f(&)ds;.
i . .

~ W+ ps; 19

_ f’" o[- tpe) ) exp(—e}/2)
s 31— p2 2 :

For convenience, we can use the invariance principle to reparameterize the likelihood
function in terms of y = g/+/1 — p2 and ¢ = p/+/T — p?. Combining all the preceding
terms, the log-likelihood function to be maximized is

POz =11%.%9) =/ Fn i +oe)d (

I o0 _l°l
InL= Z in ] (X —z)+2 [y | X8 +oen) @[22 — )Wy + 1)) (5))de;. (24-30)
i e ' = -

This can be maximized with respectto (8, o, ¥, 7) using quadrature or simulation. When
done, p can be recovered from p = JEREFR 1/(1 + )12 and o = (1— 2412y, All that

ditfers from one model to another is the specification of f(y; [x;8 + o¢;). This is the
[ specification used in Greene={19821 Terza (1998),-’3&1 Terza and Kenke! (2001). (In these

Q1 S© —pwrtwopapers. the authorsnalyzed Ely;| z = 1] peterommteconditonstdensits
YIS TheRk.estimator was based on nonlinear least squares, but as earlier, it is necessary.to

integrate the unobserved heterogeneity out of the conditional mean function.) Greene (2o16)
applees Jhe mefhod do a
/7S5 2amw PANEL DATA APPLICATIONS OF SAMPLE S4ochash
chaste Frontder
SELECTION MODELS mod @Q
-] .

The development of methods for extending sample selection models to panel data
settings parallels the literature on cross-section methods. It begins with Hausman and
Wise (1979) who devised a maximum likelihood estimator for a two-period model with
attrition——the “selection equation” was a formal model for attrition from the sample.
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Subsequent research has drawn the analogy between attrition and sample selection in
a variety of applications, such as Keane et al. (1988) and Verbeek and Nijman (1992),
-and produced theoretical developments including Wooldridge (2002a, b).

The direct extension of panel data methods to sample selection brings several new
issues for the modeler. An immediate question arises concerning the nature of the

Viy/ selection itself. Although much of the theoretical literature [e.g.. Kyriazidou (1997,

2001)] treats the pane] as if the selection mechanism is run anew in every period, in
practice, the selection process often comes in two very different forms. First, selection
may take the form of selection of the entire group of observations into the panel data
set. Thus, the selection mechanism operates once, perhaps even before the observation
window opens. Consider the entry (or not) of eligible candidates for a job training
program. In this case, it is not appropriate to build the model to allow entry, exit, fine
then reentry. Second, for most applications, selection comes in the form of attrition or
retention. Once an observation is “deselected,” it does not return. Leading examples
would include “survivorship™ in time-series-cross-section models of firm performance
and attrition in medical trials and in panel data applications involving large national
survey data bases, such as Contoyannis et al. (2004). Each of these cases sugpests the
utility of a more structured approach to the selection mechanism.

| 9.5,.5. o. 2488n_. Common Effects in Sample Selection Models

A formal “effects” treatment for sample selection was first suggested in complete form
by Verbeek {1990), who formulated a random effects model for the probit equation and
a fixed effects approach for the main regression. Zabel (1992) criticized the specification
forits asymmetryin the treatment of the effectsin the two equations. He also argued that
the likelihood function that neglected correlation between the effects and regressors in
the probit mode! would render the FIML estimator inconsistent. His proposal involved
fixed effects in both equations. Recognizing the difficulty of fitting such a model, he
then proposed using the Mundlak correction. The full model is

Yio=ni + X8+ &ie,  mio=Xxw +rwi,wi ~ N[O, 1],

d,’? =6 4:,!?,9? +ty, 8= 713 + aet_fn_.vs.'v N[0, 1}, (21:31)
(eir i) ~ N[0, 0), (0%, 1, po)].

The “selectivity” in the model is carried through the correlation between gie and wiq.

The resulting log-likelihood is built up from the contribution of individual /,

L = / H D[—z),0 — Z'8 — wui 1o (vi)dv;

P diy=l0
oo foo 2500 + 8+ wv; + (0/0)ei
w q) S .._j_.n = f
[Lf T fetitsey
x=¢ () atwr, widdvidw. (232)

&i = Yir = X B — X — 1wy

The logdikelihood is then In L = Z; In ;.
The log-likelihood requires integration in two dimensions for any selected obser-
vations. Vella (1998) suggested two-step procedures to avoid the integration, However,
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the bivariate normal integration is actually the product of two univariate normals, be-
cause in the preceding speciﬁcation,_v,' and w; are assumed to be uncorrelated. As such,

“19-cs

"’l‘ 3 ~—The Tikelihood Tunction in (Z4-32) can be readily eva!ﬁwﬂmw 15 .6
or quadrature techniques. [See Sections 169-6cbr and Vella and Verbeek (1999) *

99.¢.c.

&

> suggest this in a Tootnote, but'do not pursue it.] To show this, note that the first line
in the log-likelihood is of the form £,[[],_ ®(...)] and the second line is of the form
B E[®C. )9(.. )/o]]. Either of these expectations can be satisfactorily approximated
with the aver age of a sufficient number of draws from the standard normal populatlons
that genemte w; and v;. The term in the simulated ]lkellhood that follows this preserip-
tion is

F 14
§ T o7 - 73 — wuv,]

r_.l =0
x~ Zl}—.[] @ |4 Z, 0 +Z’3+T1i,—rp-l- (p/a)e,,,] %¢ (Gi;,r) ’ 321_33)

Eipr = ¥y —xiB ".?‘;f —FWir.

Maximization of this log-likelihood with respect to (8,0 p,g@,.n \T.w) by conventional
gradient methods is quite feasible. Indeed, this formulation provides a means by which
the likely correlation between v; and w; can be accommodated in the model. Suppose
that w, and v; are bivariate standard normal with correlation p,,,.. We can project w; on
v; and write

12
Wi = pyuty + (1 - Pﬁ..,) I,

where /iy has a standard normal distribution. To allow the correlation, we now simply
substitute this expression for w; in the simulated {or original} log-likelihood and add
2o 10 the list of parameters to be estimated, The simulation is still over independent
normal variates, v; and f1;.

Notwithstanding the preceding derivation, much of the recent attention has focused
on simpler two-step estimators. Building on Ridder and Wansbeek (1990) and Verbeek
and Nijman (1992) [see Vella (1998) for numerous additional references], Vella and
Verbeek (1999) purpose a two-step methodology that involves a random effects frame-
work similar to the one in (24-31). As they note, there is some loss in efficiency by not
using the FIML estimator. But, with the sample sizes typical in contemporary panel
data sets, that efficiency loss may not be large. As they note, their two-step template
encompasses a variety of models including the tobit model examined in the preceding
sections and the mover-stayer model noted earlier.

The Vella and Verbeek model requires some fairly intricate maximum llkehhood
procedures. Wooldridge (1995) proposes an estimator that, with a few plobably———but
not necessarily—innocent assumptions, can be based on straightforward applications
of conventional, everyday methods. We depart from a fixed effects specification,

Vie = i 'i'”r'f_:uB +£_“!’
iy = 6 + i + tir,
(sirs #is) ~ MR[(0,0), (6%, 1, po)].
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f.-l--h

Under the mean uulepmdencc assumption E[s,;Irh,G,,m.,..,lz,-T, Vils -« 2 VTS
dn,....dirl = pllu,lf will follow that = ’

Elvit |Xit0 - Xi7a MO Bile o T Vil o T i1 - ] = i+ X0 B ot

This suggests an approach to estimating the model parameters: however, it requires
computation of u;;. That would require estimation of §;, which cannot be done, at least
not consistently-—and that precludes simple estimation of g;;. To escape the dilemma,
Wooldridge (2002¢) suggests Chamberlain’s approach to the fixed effects model,

b = fot+zufs +aalr 4+ ?_?gj_fr + I
With this substitution,
diy =2+ fo+ b + 2o + - v + b i
=Z &+ fo+ b b + - i fT +
where Wit is independe-nt ofl__;t_,-,,_t =1,.. . T. This now implies that
Elvie |%its oo X0 1 00 211 - T Vit Ui it dir] = X0 B A p O —0)
= (n; — phi) + '?if:ﬁ + PWir.

To complete the estimation procedure, we now compute 7 cross-sectional probit mod-
els (reestimating fo. f1. ... each time) and compute *;; from each one. The resulting
equation,

Vir = G +X, 8.+ Pi_i_: + v,
now forms the basis for estimation of 8 and p by using a conventional fixed effects linear

regression wifh the observed data.

194.5.5.9 mmmEE Attition
The recent literature or sample selection contains numerous analyses of two-period
models, such as Kyriazidou (1997, 2001). They generally focus on non- and semipara-
metric analyses. An early parametric contribution of Hausman and Wise (1979) is also
a two-period model of attrition, which would seem to characterize many of the stud-
ies suggested in the current literature. The model formulation is a two-period random
effects specification:

yin =xXuB+en +u;  (first period regression),-
¥i2 =_x;2,§ + &2+  (second period regression).

Attrition is likely in the second period (to begin the study. the individual must have
been observed in the first period). The authors suggest that the probability that an
observation is made in the second period varies with the value of y;; as well as some
other variables,

=8y +x,o9 + wWhet + v
Attrition occurs if z§, < 0. which produces a probit model,

Ziz=1(zp > 0) (attrition indicator observed in period 2).
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An observation is made in the second period if 77 == 1, which makes this an early version
of the familiar sample selection model. The reduced form of the observation equation is

2y =X +.8) + Wit + 8812 + vy
= XbE AW+ b
=1pY + .

The variables in the probit equation are all those in the second period regression plus
any additional ones dictated by the application. The estimable parameters in this model
are 8. ¥, ol = Var[g;; +.4;]. and two correlation coefficients,

o2 = Cortfegy +ui;, &2 + 4] = Vai[u;]/6°,
and
= Cortl[/i2. 12 + 14}

All disturbances are assumed to be normally distributed. (Readers are referred to the
paper for motivation and details on this specification.)

The authors propose a full information maximum likelihood estimator. Estimation
can be simplified somewhat by using two steps. The parameters of the probit model can
e estimated first by maximum likelihood. Then the remaining parameters ave estimated
by maximum likelihood, conditionally on these first-step estimates. The Murphy and
Tope! adjustment is made after the second step. [See Greene (2007a).]

The Hausman and Wise model covers the case of two periods in which there is
a formal mechanism in the model for retention in the second period. It is unclear
how the procedure could be extended to a multlpleﬂpel iod application such as that in
Contoyannls et al. (2004), which involved a panel data set with eight waves, In addition,
in that study, the variables in the main equations were counts of hospital visits and phys-
ican visits, which compllcates the use of linear regression. A workable solution to the rv| ]
problem of attrition in a muitiperiod panel is the inyerse probability weighted estimator ~
[Wooldridge (2002a, 2006b) and Rotnitzky and Robins (2005).] In the Contoyannis ap-
plication, there are eight waves in the panel. Attrition is taken to be “ignorable” so that
the unobservables in the attrition equation and in the main equation(s) of interest are
uncorrelated. (Note that Hausman and Wise do not make this assumption.) This enables
Contoyannis et al. to fit a “retention” probit equation for each observation present at
wave 1, for waves 218, using characteristics observed at the entry to the panel. (This
defines. then, “selection (retention) on observables.”) Defining &; to be the indicator
for presence (di; = 1) or absence (di; = 0) of observation i in wave ¢, it will follow that
the sequence of observations will begin at 1 and either stay at 1 or change to 0 for the
remaining waves. Let py, denote the predicted probability from the probit estimator at
wave t. Then, their full log-likelihood is constructed as

A T d:
Inl = Z Z it

i1 =1 P
Wooldridge (2002b) presents the underlying theory for the properties of this weighted
maximum likelihood estimator. [Further details on the use of the inverse probability
weighted estimator in the Contoyannis et al. (2004) study appear in Jones, Koolman,

and Rice 006 2 vd Tn Sectiona 1. ‘{CI . ':
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19.6 Evaluating Treatment Effects

The leading recent application of models of selection and endogeneity is the evaluation of

g “treatment effects.” The central focus is on analysis of the effect of participation in a treatment,

_T . on an outcome variable, y = examples include job training programs [Lalonde (1986), o
Business Week (2009, below)] and education [e.g., test scores, Angrist and Lavy (1999), Vander " | |
Klaauw (2002)]. Wooldridge and Imbens (2009, pp. 22 '23) cite a number of labor market !
applications. Recent more narrow examples include Murkin and Trivedi’s (2007) analysis of the
effect of dental insurance and Jones and Rice’s (2010) survey that notes a variety of techniques
and applications in health economics.

Example 19.14 German Labor Market Interventions
“Germany long had the highest ratio of unfilled jobs to unemployed people in Europe. Then,
in 2003, Berlin launched the so-called Hartz reforms, ending generous unemployment
benefits that went on indefinitely. Now payouts for most recipients drop sharply after a year,
spurring people to look for work. From 12.7% in 2005, unemployment fell to 7.1% last
November. Even now, after a year of recession, Germany's jobless rate has risen to just
8. 6%
~“At the same time, lawmakers introduced various programs intended to make it easier for

people to learn new skills. One initiative instructed the Federal Labor Agency, which had
traditionally pushed the long-term unemployed into government-funded make-work positions,
to cooperate more closely with private employers to create jobs. That program last year paid Pl e
Dutch staffing agency Randstad to teach 15,000 Germans information technology, business / ltm (i | |
English, and other skills. And at a Daimler truck factory in Wérth, 55 miles west of Stuttgart, '
several dozen short-term employees at risk of being laid off got government help to continue
working for the company as mechanic trainees.

~Under a second initiative, Berlin pays part of the wages of workers hired from the ranks of
the jobless. Such payments make employers more willing to take on the costs of training new >
workers, That extra training, in turn, helps those workers keep their jobs after the aid expires, Lektin [
a study by the government-funded Instltute for Employment Research found. Café Nenninger '
in the city of Kassel, for instance, used the program to train an unemployed single mother. :
Co-owner Verena Nenninger says she was willing to take a chance on her in part because ngi
the government picked up about a third of her salary the first year. *It was very helpful, |% ¥
because you never know what's going to happen;* Nenninger saysl_” [Business Week ||l Ched 18
(2009) ]l P

Empirical measurement of treatment effects, such as the impact of going to college or
participating in a job training program, presents a large variety of econometric complications.
The natural, ultimate objective of an analysis of a “treatment” or intervention would be the “effect
of treatment on the treated.” For example, what is the effect of a college education on the lifetime
income of someone who goes to college? Measuring this effect econometrically encounters at
least two compelling computations:

Endogeneity of the treatment: The analyst risks attributing to the treatment causal effects
‘fhat should be attributed to factors that motivate both the treatment and the outcome. In our
example, the individual who goes to college might well have succeeded (more) in life than
their counterpart who did not go to college even if they (themselves) did not attend college.

Missing counterfactual: The preceding thought experiment is not actually the effect we
wish to measure. In order to measure the impact of college attendance on lifetime earnings in
a pure sense, we would have to run an individual’s lifetime twice, once with college
attendance and once without. Any individual is observed in only one of the two states, so the
pure measurement is impossible.



) treatment effect, averaged across the entire population, is

i
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Accommodating these #wo problems forms the focal point of this enormous and still
growing literature, Rubin’s ; causal model (1974, 1978) provides a useful framework for the
analysis. Every individual in a population has a potential outcome, y and can be exposed to the

treatment, C. We will denote by C, the indicator whether or not the individual receives the/ 7

treatment. Thus, the potential outcomes are p|(C; = 1) = y; and y(C, =0) = Yio. The average '

ATE = Elyi1 — yul.

The compelling complication is that the individval will exist in only one of the two states, so it is
not possible to estimate ATE without farther assumptions. More specifically, what the researcher
would prefer see is the average treatment effect on the treated; Kl

ATET = Elyn — ylCi = 1]

and note that the second term is the missing counterfactual,

One of the major themes of the recent research is to devise robust methods of estimation
that do not rely heavily on fragile assumptions such as identification by functional form (e.g.,
relying on bivariate normality) and identification by exclusion restrictions (e.g., relying on basic
instrumental variable estimators). This is a challenging exercisé - we have relied heavily on
these assumptions in most of the work in this book up to this point. For purposes of the general
specification, we will denote by x, the exogenous information that will be brought to bear on this
estimation problem. The vector x may (usually will) be a set of variables what will appear in a
regression model, but it is useful to think more generally than that) and eonmder x rather to be an
information set. Certain minimal assumptlons are necessary to make any headway at all. The
following appear at different points in the analysis.

Conditional independence: Receiving the treatment, C;, does not depend on the outcome
variable once the effect of x on the outcome is accounted for. If a551gnment to the treatment
group is compIetely random, then we would omit the effect of X in this assumption. This ;
assumption is extended for regression approaches with the condltlonal mean assumptmn
Elyp|x,C=1] = Elya|x,Ci=0] = Elyn[x]. This states that the outcome in the untreated state does
not affect the participation,

Distribution of potential outcomes: The model that is used for the outcomes is the same for
treated and nontreated Sfix, T—l)'— 1 f¥{x.7=0). In a regression context, this would mean that that
thé the same regression applles in both states and that the disturbance is uncorrelated with T, or
that T'is exogenous. This is a very strong assumption that we will relax below:. For the present, it
removes one of the complications noted above $0 a step in the model bu1Idmg exercise will be to
relax this assumption.

Overlap assumption: For any value of x, 0 < Prob(C; = 1jx) < 1. The strict inequality in this
assumption means that for any x, the populatlon will contain a mix of treated and nontreated
individuals. The usefulness of the overlap assumption is that with if, we can expect to find, for
any treated individual, an individual who looks like them] but is not treated. This assumption will
be useful for regression approaches.
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The followmg will describe three major parts of the research agenda on treatment effects:
regression analysis with control functions i in Section 19.6.1, propensity score matching in Section
19.6.2 and regression dlscontmulty design in Section 19.6. 3 A fourth area, instrumental variable
estlmatlon was developed in Chapter 8. As noted, this is a huge and rapldly growing literature.
For example, Imbens and Wooldrldgc § (2009) survey paper runs to 85 pages, includes nearly 300
references, most of them since 2000. Our purpose here is to provide some of the vocabulary and
a supetficial introduction to methods. The survey papers by Imbens and Wooldridge (2009) and
Jones and Rice (2010) provide greater. detail. The conference volume by Millment, Smith, and
Vytlacil (2008) contains many theoretical contributions and empirical applications.}’ I A Journal
of Business and Economic Statistics symposium [Angrist (2001)] raised many of the important
questions on whether and how it is possible to measure treatment effects.

23 Ti

A The initial essay in the volume, Goldberger (2008) reproduces Goldberger (1972) in which the

author explores the endogeneity issue in detail with specific reference to the Head Start program
of the 1960s.



