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TIME-SERIES MODELS
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21.1 INTRODUCTION

For forecasting purposes, a simple mode! that describes the behavior of a variable (or

a set of variables) in terms of past values, without the benefit of a well-developed

theory, may well prove quite satisfactory. Researchers have observed that the large

simultaneous equations macroeconomic models constructed in the 1960s frequently

have poorer forecasting performance than fairly simple, univariate time-series models

based on just a few parameters and compact specifications. It is just this observation

| that has raised to prominence the univariate time-series forecasting models pioneered
v by Box and Jenkins (1984). 20 2.1

-~ In this chapter, we introduce/Some of the tools emplayed in the analysis of time-

AR o) series datad Section,21.2 describe statioffary stochastic processes. We encountered this

F ki ™ “body of theory in Chapter “where we discovered that certain assumptions

s were required to ascribe familiar properties to a time series of data. We continue that

discussion by defining several characteristics of a stationary time series. The recent

literature in macroeconometrics has seen an explosion of studies of nonstationary time

series. Nonstationarity mandates a revision of the standard inference tools we have

used thus far, Chapter 22 introduces some extensions of the results of this chapter to
Z fiohstationary time series. 20

Some of the concepts to be discussed here were introduced in Section }4.2. Sec-

tion 1973 also contains a cursory introduction to the nature of time-series processes. It

22 =il be useful to review that material before proceeding with the rest of this chapter.

V/ #_( 1  Finally, Sectiens 13.6 on estimation and 13.9.2 and 2814.3 on stability of dynamic models
= will be especially usefut for the latter sections of fhis chapter.

Zl

“'Each topic discussed here is the subject of a vast literature with articles and book-length treatments at all
v levels. For example, two survey papers on the subject of unit roots in economic time-series data, Dicbold
and Nerlove (1990) and Campbell and Perron (1991), cite between them more than 200 basic sources on
the subject. The literature on unit roots and cointegration is almost surely the most rapidly moving target in
econometrics. Stock’s (1994) survey adds hundreds of references to those in the aforementioned surveys and
o brings the literature up to date as of then. Useful basic references on the subjects of this chapter are Box and
i Jenkins (1984); Judge et al. (1985); Mills (1990); Granger and Newbold (1996); Granger and Watson (1984);
Hendry, Pagan, and Sargan (1984); Geweke (1984); and especially Harvey (1989, 1990); Enders {2004); Tsay
v (2005); Hamilton (1994); and Patterson (2000). There are also many survey style and pedagogical articles
Ll on theso subjects, The aforementioned paper by Diebold and Nerlove is a useful tour guide through some
of the literature. We recommend Dickey, Bell, and Miller (1986) and Dickey, Jansen, and Thorton (1991) as
well. The latter is an especially clear introduction at a very basic level of the fundamental tools for empirical

researchers

F15
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1

v .2 STATIONARY STOCHASTIC PROCESSES G,
(K

The essential building block for the models to be discussed in this chaptel is the wlnte

LN -
1) noise time-series process, -

i

{6:}.1. = —00, +00,

where each element in the sequence has E[g,] = 0, £[¢2] = o2, and Covlg;, 5] =0
for all s s t. Each element in the series is a random draw from a population with zero
mean and constant variance. It is occasionally assumed that the draws are independent
or normally distributed, although for most of our analysis, neither assumption will be
essential. A

A umvarmtn fime-series model describes the behavior of a variable in terms of its
own past values. Consider, for example, the autoregressive disturbance models intro-
duced in Chapter ]ﬁ\

(45
2 My = Plip.-t + £ @t-1)

Autoregressive disturbances are generally the residual variation in a regression model
built up from what may be an elaborate underlying theory, ¥ = x,8 + 4,. The theory
usually stops short of stating what enters the disturbance. But the presumption that
some time-series process generates x, should extend equally to ;. There are two ways
to inteipret this simple series. As stated, i, equals the previous value of #, plus an
“innovation,” &. Alternatively, by manipulating the series, we showed that «, could be
interpreted as an agpregation of the entire hlst01y of the &’s.
Occasionally, statistical evidence is convincing that a more intricate process is at

-

work in the disturbance. Perhaps a second-order gl}t_ppeg;e__sg_jqng_' T 7

4y = Pyt + paits2 + 81, @-2)

better explains the movement of the disturbances in the regression. The model may not

arise naturally from an underlying behavioral theory. But in the face of certain kinds

of statistical evidence, one might conclude that the more elaborate model would be
v N preferable? This section will describe several alternatives to the AR(1) model that we
LA have relied on in most of the preceding applications.

21.21 AUTOREGRESSIVE MOVING-AVERAGE PROCESSES
The variable y, in the model
o, I~L+J’Vr1+€r m3)

# A
f Irl
|

is said to be autoregresswc (or self-g'egtcs&vc) because under certain assumptions,
Elyeival=pn+yn-1.
A more general pth-order autoregression or AR(p) process would be written 22

Ye=p+ -1t yvey2t - vplp & d/l"‘)

ZFor example, the estimates of &, computed after a correction for first-order autocorrelation may fail tests of
randomness such as the LM (Section 1£.7.1) test.

]0
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The analogy to the classical regression is clear. Now consider the first-order moving

I_.z’il l average, or MA(1) specification® : 7T
AN ' Yo =g+ & — 08y, ¢A-5)

By writing T -

=j+ (1 -8Ds,
or

Y M

T-eL=T—8 T

we find that

U
=187 AT —92.3’:—2 et g

Once again, the effect is to represent y as a function of its own past values. ( / e
An extremely general model that encompasses (21 -4) and (21 5) is the autorcgreq-
[/ K| | “sive moying average, or ARMA( P, ¢), model: 7L

=p+Ay-1tya-2+ -+t vphpt 5; — 6151 — - — 8 1Ei—g- (M-6)

Note the convention that the ARMA( ».q) pr acess has p autoregressive (lagged
dependent-variable) terms and g lagged 1 mnvmgaveragc terms. Researchers have found
that models of this sort with relatively small values of pand g have proved quite effective
as forecasting models. 5

The disturbances g, are labeled the mn,avgthus in the model. The term is fitting
because the only new information that enters the processes in period  is this innovation.
Consider, then, the AR(1} process x>

Y=o ¥yt + 6 1-7)
Either by successive substitution or by using the lag operator, we obtain

A—-yDw=pn+s,

or
AT b 4 ZL
(w) S R D DA 48)
e I-y 3
The observed series is a particular type of aggregation of the history of the innovations.
The moving average, MA(g) model, 122
Ve= Rt & — 0181 — o~ Ogty g = p+ D(D)er, 9

is yet another, particularly simple form of aggregation in that only information from the
q most recent periods is retained. The general result is that many time-series processes
can be viewed either as regressions on lagged values with additive disturbances or as
aggregations of a history of innovations. They differ from ore to the next in the form
of that aggregation.

+*The lag operator is discussed in Section 20.2.2, Because u is a constant, (1 -H__L)"p, =utop4eiut... =
#/{1 — 8} The lag operator may be set equal to one when it operates on a constant,

'#8ce Section 2{{.3 for discussion of models with infinite lag structures.

'»\l
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More involved processes can be similarly represented in either an autoregressive or
moving-average form. (We will turn to the mathematical requirements later.) Consider,
for example, the ARMA(2, 1) process,

=+ VY-t +¥2¥-2 + &~ 98y,
which we can write as ‘
(-8l =3 —tt = Y1Y%-1 = VaYi-2-
If 18] < 1.then we can divide both sides of the equation by (1 — 8 L) and obtain

oo
g =Y 8 (Y — p — VLYool — V2Jimi2)-
i=0 ‘

After some tedious manipulation, this equation produces the autoregressive form,

o0
Ye=1T0 59 + Zm_}’r—i + &,
i=1

where ' I
m=y-6 and m =0l —petl -0, j=2,3,.... @10
Alternatively, by similar (yet more tedious) manipulation, we can write
o
“ [ 1-9L ] L
+ &e n-11
TR ey ey 1] 1—-r1 ,E{} bt f_ )

i A |
In each case, the weights, 7; in the autoregresswc form and §; in the movmg-avcl:rage
form, are complicated functions of the original par: ameters. But nonetheless, each is just
an alternative representation of the same time-series process that produces the current
value of y. This result is a fundamental property of certain time series. We will return
to the issue after we formally define the assumption that we have used at the preceding
several steps that allows these transformations.

21.2.2 STATIONARITY AND INVERTIBILITY P e

KT Y
At several points in the preceding, we have alluded to the notion of statlonarlty, either @
directly or indirectly by making certain assumptions about the parametersin the model. -
In Section ],fB 2, we characterized an AR(1) disturbance process

s TR 0
10 \ (Ut [evm

My = plp—y + £

as stationary if |p| < 1 and & is white noise. Then | i! v .

E[u,]=0 forallt, e se b

o2 'L’L M) -

V i =-—e oy I 2 :.-'I

arli] 1—p% A12) | sp AT T

1 1
lt=5152 |\ e O AYE
COV[ur,_M_;] = 'jl—':p—;-. | B

If {p} = 1, then the variance and covariances are undefined.
In the following, we use &, to denote the white noise innovations in the process. The
ARMA(p, q) process will be denoted as in (,2(—6).

A
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s
DEFINITION 21.1 Covariance Stationarity (/']

. A stochastic process y, is weqkly sfanonary or co varmﬂce stauonary ifit satisfies
1= R the following requirements: 5 -

5/ 1. Elw]is independent of L
2. Var[w]is a finite, positive constani, independent of 1.
3. Covlw, vlis afinite funciion of It — s\, but not of t or s.

The third requirement is that the covariance between observations in the series is a
function only of how far apart they are in time, not the time at which they occur. These
properties clearly hold for the AR(1) process shown earlier. Whether they apply for
the other models we have exammed remains to be seen.

We define the autdcmarlanus at lag k as

A-k = COV{.\»‘, .-VI—_.’(]'
Note that
A_g = Covln, ,“'H_-k] = Ar.

Statignarity implies that autocovariances are a function of k, bui not of 1, For example,
in (21-12), we see that the autocovariances of the AR(1) process v, = pt+yy..1 +&; are

b Covly, vl = %, k=0,1.... (2«1;13)
If || <1, then this process is stationary. For any MA(q) series.
w=pte 65 14— — ?q?_r-:g;
Elnl=p+Ela]-6E[aa] -0 El 4] =1

(A-14)
21

Vary] = (146 +--- +6}) o]
Covly yi—tl = (=61 + 618, + 882 + -+ + 8,18, o;
and so on until
Coviyr, Yi—ig-n] = [~85-1 + 6184] a2,

Cov| Yoo Yr_g} = w-qurf,

and, for lags greater than ¢, the autocovariances are zero. It follows, therefore, that
finite moving-average processes are stationary regardless of the values of the parame-
ters. The MA(l) plocess Y =g — 6g_1 is an important special case that has Var| v | =
(l+9) ——Ba,and)«.k_ﬁfm k| = 1.

For the AR(I) process, the stationarity requirement is that |y < 1, which in
turn, implies that the variance of the moving average representation in {21-8) is finite.

“SStrong stationarity requires that the joint distribution of all sets of observations (¥ ¥%—1....) be invariant
to when the observations are made. For practical purposes in econometrics, this statement is a theoretical
fine point. Although weak stationary suffices for our applications, we would not normally analyze weakly
stationary time series that were not strongly stationary as well. Indeed, we often go even beyond this step
and assume joint normality.
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Consider the AR{2) process
_ M =pt+ V-1t 22+ &
Write this equation as . = .
C Cyy = ten

where

CLy=1-pnL—mi
Then, if it is possible, we invert this result to produce

o= [CUN e+ ).

Whether the inversion of the polynomial in the lag operator leads to a convergent
series depends on the values of 4 and y2. If so. then the moving-average representation

will be
=4
Yo=Y &+ ),
1=
so that
o0
Vatriw] = E 5;-203.
il

Whether this result is finite or not depends on whether the series of §;s is exploding
or converging. For the AR(2) case, the series converges if |y <1, + y2 <1, and

./IL AR 21—y <18
} For the more general case, the autoregressive process is stationary if the roots of

' the characteristic equation, .:\_ )
CR=1—pnz—yT— - —yp2f=0,
CRLl o )
l,’/." Wi have modulus greater than one, or “lie outside the unit circle. ¥'Tt foltows that if a
[ "y | stochastic process is stationary, it has an infinite moving-average representation (and, if
NG =" not, it does not). The AR(1)} process is the simplest case. The characteristic equation is

C@=1-yz=0,

and its single root is 1/y. This root lies outside the unit circle if |y] < 1, which we

saw earlier. 7 7.1~
Finally, consider the inversion of the moving-average process in (3-9). Whether
this inversion is possible depends on the coefficients in [X L) in the same fashion that
. stationarity hinges on the coefficients in C(L). This counterpart to stationarity of an
{ I© Ly autoregressive process is called invertibility. For it to be possible to invert a moving-
L] average process to produce an auloregressive representation, the roots of D(L) = 0
must be ountside the unit circle. Notice, for exampile, that in %5), the inversion of the

"5 This requirement restricts {py, y2) to within a triangle with points at (2, -1}, (-2, —1}, and (0, 1).
FThe roots may be complex. (See Sectio .4.3.) They are of the form a £ bi..where § = +/—1.
The unit circle refers to the two-dimensionat set offralues of 2 and b defined by o2 + b*'= 1, which defines a
circke centered at the origin with radius 1. = €

2\
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moving-average process is possible only if [#] < 1. Because the characteristic equation
for the MA(1) process is 1 — 8L, == 0, the root is 1/8. which must be larger than one.

If the roots of the characteristic equation of a moving-average process all lie outside
the unit circle. then the series is said to be invertible. Note that invertibility has no bearing
on the stationarity of a process. All moving-average processes with finite coefficients
are stationary. Whether an ARMA process is stationary or not depends only onthe AR
part of the model.

%%64.2.3 AUTOCORRELATIONS OF A STATIONARY STOCHASTIC
PROCESS

The functicn
e A = Cov[yr, M4 ee
- _1s called the autmovanam:e function of the process ». The autﬂcorrclatlon functmn, or
et IACF is obtained by dmdmg by the variance, o, to abtain

For a stationary process, the ACF will be a function of £ and the parameters of the
pracess. The ACF is a useful device for describing a time-series process in much the same
way that the moments are used to describe the distribution of a random variable. One
of the characteristics of a stationary stochastic process is an autocorrelation function
that either abruptly drops to zero at some finite lag or eventually tapers off to zero. The
AR(1) process provides the simplest example, because

o= v

-

which is a geometric series that either declines monotonically from pp = 1 if y is positive
or with a damped sawtooth pattern if y is negative. Note as well that for the process

=y.¥f—1 +£!n
Pr=yPr-1. k=1,

which bears a noteworthy resemblance to the process itself.

. For higher-order autoregressive series, the autocorrelations may decline monoton-
FENN ically or may progress in the fashion of a damped sine wavedConsider, for example, the
L ¥ second-order autoregression, where we assume without loss of generality that . = 0
; (because we are examining second moments in deviations from the mean):

=y i-1t Y22t &

If the process is stationary, then Var]y,] = Varfy,_] for alls. Also, Var[v,] = Cov{y, »].
and Cov{e, ¥r—s] = 0if 5 > 0. These relationships imply that

X0 = yiri + yako + o2

r————

“FThe behawor is a function of the roots of the characteristic equation. This aspect is discussed in Section 135

2143,
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Now. using additional lags, we find that

: = y1ho -+ y2i1, 1L

and . - A-15)
. A2 =viAg + ke

These three equations provide the solution:
2[(1 = y2) /(1 + )]
fd-wmPE-yi
The variance isunchanging, so we can divide throughout by i to obtain the relationships
for the autocorrelations,

Ap =

21 = Yipo + 2.

Because pg=1, p; = y1 /(1 — y2). Using the same procedure for additional lags, we find
that

P2 =ri/+y2
s0 o2 = y£/(1 — ¥2) + y2. Generally, then, for lags of two or more,

Pk = V1P4-1 + ¥20k-2.

Once again, the autocorrelations follow the same difference equation as the series itself.
The behavior of this function depends on 4, ¥4, and £, although not in an obvious way.
The inherent behavior of the autocorrelation function can be deduced from the charac-.
teristic equation:* For the second-order process we are examining, the autocorrelations
are of the form

px = P11/ + g1/ 20,

-

where the two roots aré'®”
lz=d[nEVyl+4n].

If the two roots are real, then we know that their reciprocals will be less than one in
absolute value, so that gy will be the sum of two terms that are decaying to zero. If the
two roots are complex then Pr will be the sum of two terms that are oscillating in the
form of a damped sine wave.

Applications that involve autoregressions of order greater than two are relatively
unusual. Nonetheless, higher-order models can be handled in the same fashion. For the
AR(p) process '

=Vt traVi2+ -t vplpt &
the autocovariances w1l| obey the Yule—Wa]ker equations 1)
o= ikt yaha+ oo+ Yphp + 62,
M=yt y2r + -+ Vphp-ts

(Al

———

¥The set of results that we would use to derive this result are exactly those we used in Section }d4.3 to

analyze the stability of a dynamic equation, which makes sense, of course, because the equation linking the
autocorrelations is a simple difference equation.

+1%We used the device in Section hQ:l 3 to find the characteristic roots. For a second-order equation, the

quadratic is casy to manipulate. 2\

-8
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and so on. The autocorrelations will once again follow the same difference equation as
the original series, -
Pk =VIPket + V202 F 0 VpPh-p-
The ACF for a moving-average process is very simple to obtain. For the first-order

process, )

_.Vf - 5:_[ _H 98{-—]9

X = (1469,

Al = —90’3,

then Ay = 0 for k > 1. Higher-order processes appear similarly. For the MA(2) process,
by multiplying out the terms and taking expectations, we find that

Ao = (1+ 67 +8§)a?.
X = (-8 +818)0?,

Ay = ——920'5.2,
)q._,q— =0, k>2.
The pattern for the general MA(q) process y; = & = 18,1 — 0262 — +++ — g1y 18

analogous. The signature of a moving-average process is an autocorrelation function
that abruptly drops to zero at one lag past the order of the process. As we will explore
later, this sharp distinction provides a statistical tool that will help us distinguish between
these two types of processes empirically.

The mixed process, ARMA(p, ¢), is more complicated because it is a mixture of
the two forms. For the ARMAC(L, 1) process

- Ye=¥y_1+& —06_1,

the Yuler_T'Walker equations are
ro = E[n(yy1 +& — 080 =yi + 02 — a6y — 67),
A1 = yAp — 0052,
and
Ap=yhi1, k>1

The general characteristic of ARMA processes is that when the moving-average
component is of order g, then in the series of autocorrelations there will be an ini-
tial g terms that are complicated functions of both the AR and MA parameters, but
after ¢ periods,

Pk=V1Pk-1 +V2P-2+  + VpPr-p. K> 4.

=1.2.4 PARTIAL AUTOCORRELATIONS OF A STATIONARY
STOCHASTIC PROCESES

The autocoirelation function ACF(k) gives the gross correlation between 3 and y;_.
But as we saw in our analysis of the classical regression model in Section 3.4, a gross
correlation such as this one can mask a completely different underlying relationship. In



: Greene-50358 book June 26, 2007 11:52

Z Z 2 —__Io

724 PART V 4+ Time Series and Macroeconometrics

this setting, we observe, for example, that a correlation between y; and y,_2 could arise
primarily because both variables are correlated with v._,. Consider the AR(1) process
Yo = ¥Ye—1 t+ &. Where E[s,] 0so E{w] = Elw] /(1 — y) = 0. The second gross
autocorrelation is oy = ¥2. But in the same spirit, we might ask what is the correlation
between v, and v;_p het of the. m!c’rvemng effect of vi_1? In this model, if we remove the
effect of v_4 from Vi, then only & remains, and this disturbance is uncorrelated with
¥ _2. We would conclude that the partial autocorrelatmn between ¥ and vz in this
model is zevo.

20
DEFINITION 21.2 Partial Autocorrelation Cocfficient
The partial correlation between v, and v,_y is the simple correlation between y,_y
and v, minus that part explained linearly by the imervening lags. That is,

px = Corrfy, — E*(% |y—1. .., Veeter1)s Yit)s

where E*(v |yi-1, .. . Ye—t1) is the minimum mean-squared error predicior of
Y b}’ h._l, e Yr—feb 1o

The function £*(.) might be the linear regression if the conditional mean happened
to be linear, but it might not. The optimal lincar predictor is the linear regression,
however, so what we have is

Py = Cort{y — B1yi-1= Bove—2 = =+ — B Ve—s41, Yi—k)s

where 8 = A1, B2, ..., Bei} = { Varly_1, w2, ..., y_r—lg+l]}_l x Covy, (Bt =20+
vi—is1)]- This equation will be recognized as a vector of regression coefficients. As such,
what we are computing here (of course) is the correlation between a vector of residuals
and v_i. There are various ways to formalize this computation [see, e.g., Enders (2004)].
One intuitively appealing approach is suggested by the equivalent definition (which is
also a prescription for computing it), as follows.

i
DEFINITION Z4.3 Partial Autocorrclation Coefficient
The partial correlation between y, and v,y is the last coefficient in the linear

projeciion of y on [ye—1, ¥i-2, ..., Ve-k},
[ A1 ] -1
% Ao A e Ak el At
- M Ao e Aez Ag Az
e e ‘
N Agl Ax=2 o0 AL ko Ak
L Pr : ’
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As before, there are some distinctive patterns for particular tlme—selles processes.
Consider first the autoxeglesswe processes,

Yo =YY +yey2+-typli—p ta

We are interestedinthe !astcoefﬁment in the projection of ¥, on ¥,_1.thenon [v_i1, v—2],
and so on. The first of these is the simple regression coefficient of y, on y,_y, so

_ Covlm, yi—1] M
= alnad M
The first partial autocorrelation coefficient for any process equals the first autocorrela-
tion coefficient.

Without doing the messy algebra, we also observe that for the AR(p) process. p}
is a mixture of all the y coefficients. Of course, if p equals 1, then p} = py = y. For the
higher-order processes, the autocorrefations are likewise mixtures of the autoregressive
coefficients until we reach p3. In view of the formof the AR(p)model. the last coefficient
in the linear projection on p lagged values is y,. Also, we can see the signature pattern
of the AR(p) process, any additional partial autocorrelations must be zero, because
they will be simply p7 = Cort[e;, Ye— ¢] =0if k> p.

Combining results thus far, we have the characteristic pattern for an autoregressive
process. The ACF, pg, will gradually decay to zero, either monotonically if the charac-
teristic roots are real or in a sinusoidal pattern if they are complex. The PACF, pf, will
be jrregular out to lag p, when they abluptlv drop to zero and remain there.

The moving-average process has the mirror lrmge of this pattern. We have aiready
examined the ACF for the MA(q) process; it has g irregular spikes, then it falls to zero
and stays there. For the PACF, write the model as

=1 =8 L—6L~ -~ M.
If the series is invertible, which we will assume throughout, then we have
. Vi \
1—-6,L—...—¢gla" "

or
=my-tt+mya2+ - +&

o0
=Y " miyi + e
i=l

The autoregressive form of the MA(g) process has an infinite number of terms, which
means that the PACF will not fall off to zero the way that the PACF of the AR process
does. Rather, the PACF of an MA process will resemble the ACF of an AR process. For
example, for the MA(1) process y; = & — 8¢, the AR representation is

¥, = 0¥ _4 +92),-r_2 e ?c?

which is the familiar form of an AR(1) process. Thas, the PACF of an MA(1) process is
identical to the ACF of an AR(1) process, pf = 6%,

The ARMA(p, q) is a mixture of the two types of processes, so its ACF and PACF
are likewise mixtures of the two forms discussed above. Generalities are difficult to
draw, but normaily, the ACF of an ARMA process will have a few distinctive spikes in
the carly lags corresponding to the number of MA terms, followed by the characteristic

/22 5 n |
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smooth pattern of the AR part of the model. High-order MA processes are relatively
uncommon in general, and high-order AR processes (greater than two) seem primarily
to arise in the form of the nonstationary processes described in the next section. For
a stationary process, the workhorses of the applied Titerature are the (2, 0) and (1, 1)
processes. For the ARMA(1; 1) process, both the ACF and the PACF will display a
distinctive spike at lag 1 followed by an exponentiaily decaying pattern thereafter.

'\:",{( .2.5 MODELING UNIVARIATE TIME SERIES

The preceding discussion is largely descriptive. There is no underlying economic theory
that states why a compact ARMA(p, ¢) representation should adequately describe the
movement of a given economic time series. Nonetheless, as a methodology for building
forecasting modlels, this set of tools and its empirical counterpart have proved as good as
and even superior to much more elaborate specifications {(perhaps to the consternation
of the builders of large macroeconomic models):!"Box and Jenkins (1984) pioneered a
forecasting framework based on the preceding that has been used in a great many fields
and that has, certainly in terms of numbers of applications, largely supplanted the use
of large integrated econometric models.

Box and Jenkins's approach to modeling a stochastic process can be motivated by
the following.

THEOREMJZ4.1 Wold’s Decomposition Theorem
Every zero-mean covariance stationary stochastic process can be represented in

the form

oo
¥ = E*{w i_v_l,_‘?.’,__z, R E ki,
=0 T

where s, is white noise, my = 1, and the weights are .s;qqgre_s_’u}_n_ﬁ_t_abl_eﬁ!hm is,

o
S <00
je=l

—E*[ vl vo1s Yee2e - oo Yo p) 5 the optimal linear predictor of .y, based on its
lagged values, and the predictor EY is uncorrelated with g,_;.

Thus, the theorem decomposes the process generating y, into, - Ty
e 2
Er=EY S | Vet Y2, oo -’i‘f—_i}] = the l_ifl{(_:__&;\l'_l)r‘_ deterministic component
and F
T
o0 '._ iy ]
Z m;&_; = the lincarly indeterministic component.
£ ? gl o

“WThis observation can be averstated. Even the most committed advocate of the Box_-;-Jenkins methods would

concede that an ARMA model of, for sxample, housing starts will do little to reveal the link between the
interest rate policies of the Federal Reserve and their variable of interest, That is. the covariation of economic
variables remains as interesting as ever.

(72-12
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The theorem states that for any stationary stochastic process. f01 a given choice of p,
there is a Wold 1eplesentatlon of the stationary series

yf zyr M—i +Zm€r-.

: ] i=0
Note that for a specific ARMA(P, Q) process, if p > P, thenm; = O fori > (). For
practical purposes, the problem with the Wold representation is that we cannot estimate
the infinite number of parameters needed to pr oduce the full right-hand side, and, of
course, P and () are unknown. The compromise, then. is to base an estimate of the
representation on a model with a finite number of moving-average terms. We can seek
the one that best fits the data in hand.

It is important to note that neither the ARMA representation of a process nor the

Wold representation is unique. In general terms, suppose that the process generating
Y is

1_'(_1‘)}’: = (L)

We assutne that I'( L) is finite, but ©( L) need not be. Let ®{L) be some other polynomial
in the lag operator with roots that are outside the unit circte. Then

d)(f) d)(LJ

or
S(L)y, = TI(L)s;-

The new representation is fully equivalent to the old one, but it might have a different
number of autoregressive parameters, which is exactly the point of the Wold decompo-
sition. The Implication is that part of the model-building process will be to determine
the lag structures. Further discussion on the methodology is given by Box and Jenkins
(1984).

The Box—]enkms approach to modeling stochastic processes consists of the follow-
ing steps:

1. Satisfactorily transform the data so as to obtain a stationary series. This step will
usually mean taking first differences, logs, or both to obtain a series whose
autocorrelation function eventually displays the characteristic exponential decay
of a stationary series.

2. Estimate the parameters of the resulting ARMA model, generally by nonlinear
least squares.

3. Generate the set of residuals from the estimated model and verify that they
satisfactorily resemble a white noise series. If not, respecify the model and return
to step 2.

4. The model can now be used for forecasting purposes.

Space limitations prevent us from giving a fuil presentation of the set of techniques.
Because this methodology has spawned a mini-industry of its own, however, there is no
shortage of book length analyses and prescriptions to which the reader may refer. Five
to consider are the canonical source, Box and Jenkins (1984}, Granger and Newbold

22-1%
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(1996), Mills (1993), Enders (2004), and Patterson (2000). Some of the aspects of the
estimation and analysis steps do have broader relevance for our work here, so we will
continue {o examine them in some detail.

rlJ,?4.2.6 ESTIMATIbN OF THE PARAMETERS OF A UNIVARIATE
TIME SERIES

The broad problem of regression estimation with time-series data, which carries through
to all the discussions of this chapter, is that the consistency and asymptotic normality
results that we derived based on random sampling will no longer apply. For example,
for a stationary series. we have assumed that Var[y] = Aq regardless of . But we have
yet to establish that an estimated variance,

1 ZT )
€= 55— (,"r P ..ﬁ) 1] 0

will converge to Ag. or anything else for that matter. It is necessary tofassume that
the process is ergodic. (We first encountered this assumption in Section }9.4.1—see
Definition #9.3.) Ergodicity is a crucial element of our theory of estimation. When a

20 time series has this property (with stationarity). then we can consider estimation of

parameters in a meaningful sense. If the process is stationary and ergodic, then, by
the Ergodic theorem (Theorems 1.1 and49.2). moments such as ¥ and ¢p converge
to their population counterparts i and Ao!'¥ The essential component of the condition
is one that we have met at many points in this discussion, that autocovariances must
decline sufficiently rapidly as the separation in time increases. It is possible to construct
theoretical examples of processes that are stationary but not ergodic, but for practical
purposes, a stationarity assumption will be sufficient for us to proceed with estimation.
For example, in our models of stationary processes, if we assume that &~ N[0, o2},
which is common, then the stationary processes are ergodic as well.
Estimation of the parameters of a time-series process must begin with a determi-
- nation of the type of process that we have in hand, (Box and Jenkins label this the

1Y identification step. But identification is a term of art in econometrics, so we will steer |

around that z?flmittedly standard name.) For this purpose, the empirical estimates of the
autocorrelation and partial autocorrelation functions are useful tools.
The sample counterpart to the ACF is the correlogeam, -2/ )
_ Z,I__m Vv —PVs—¥
Z:T=t (v =97
A plot of ry against k provides a description of a process and can be used to help discern

what type of process is generating the data, The sample PACF is the counterpart to the
ACF, but net of the intervening lags: that is,

T s
D i 1Y Vg
T PERVE
2f=k+] (Vi)

Tk

ryi =

2 The formal conditions for ergodicity are quite involved: see Davidson and MacKinnon (1993) or Hamiiton
(1994, Chapter 7).
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where v and ¥}, are residuals from the regressions of y; and v, on [T, %1, ¥r2s s

Vi—k+1)- We have seen this at many points before. s is simply the last linear least squares

regression coefficientin the regression of y, on {1, Y1, ¥-2, - - -4 Vi3 Vi—t]. Plots of

the ACF and PACF of a series are usually presented together. Because the sample esti-

mates of the autocorrelations and partial autocorrelations are not likely to be identically

2 zero even when the population values aie, we use diagnostic tests to discern whether a

NN time series appeals to be nonautocorrelated'!? Individual sample autocorrelations will

| o be approximately distributed with mean zero and variance 1/ 7 under the hypothesis
h that the series is white noise. The BoxiPierce (1970) statistic

)
Q=T> 1
: k=1

is commonly used to test whether a series is white noise. Under the null hypothesis
that the series is white noise, { has a limiting chi-squared distribution with p degrees
of freedom. A refinement that appears to have better finite-sample properties is the
Ljung;':_?ox (1979) statistic,

P )

¥
Q' =TT+2)) .
' _k:] Z _"'k

The limiting distribution of Q' is the same as that of (.

The process of finding the appropriate specification is essentially trial and error. An
initial specification based on the sample ACF and PACF can be found. The parameters
of the model can then be estimated by least squares. For pure AR(p) processes. the
estimation step is simple. The parameters can be estimated by linear least squares.
If there are moving-average termns, then linear least squares is inconsistent, but the
parameters of the model can be fit by nonlinear least squares. Once the model has been
estimated. a set of residuals is computed to assess the adequacy of the specification. In
an AR model, the residuals are just the deviations from the regression line.

The adequacy of the specification can be examined by applying the foregoing tech-
niques to the estimated residuals. If they appear satisfactorily to mimic a white noise
process, then analysis can proceed to the forecasting step. If not, a new specification
should be considered. F22. I

’];1/ Exampie B&1.1 LAGF and PACF for a Series of Bond Yields
Appendix Tabla 2 sts five years of monthly averages of the yield on a Moody’s Aaa-rated
— corporate bond. (Note: In previous editions of this text, the second observation in the data
RGN file was incorrectly recorded as 9.72. The correct value is 9.22. Computations to follow are 7 Z
|'l w1y based on the corrected value.) The series is plotted in Figure 2171, From the figure, it would =
WL appear that stationarity may not be a reasonable assumption. We will retum to this question

T below. The ACF and PACF for the original series are shown in Table &{.1, with the diagnostic
Sy statistics discussed earlier. Z .

{ adst) Based on the two spikes in the PACF, the results appear to be consistent with an AR(2)
M — process, although the ACF at longer lags seems a bit more persistent than might have been
expected. Once again, this condition may indicate that the series is not stationary. Maintain-
ing that assumption for the present, we computed the residuals from an AR(2) model and

“13The LM test discussed in Section %.’7.1 is one of these.

20
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subjected them to the same test as the original gefies. To compute the regression, we first
subtracted the overall mean from all 60 obserations. We then fit the AR(2) without the first
two observations. The coefficients of the AR(2) process are 1.4970 and —0.49886, which also
satisfy the restrictions for stationarity given in Secti .2.2, Daspite the earlier suggestions,
the residuals do appear to resemble a stationaryfprocess. (See Table ?’.2.)

3

(4 ¥
_.5i553

2 | -
TABLE 21.1  ACF and PACF for Bond Yields

‘Time-series identification for YIELD

Box-Pierce slatistic=2326.0507 Boxl%Ljun 2 statistic = 364.6475

Degrees of freedom =14

Deglees of freedom = 14

Significance level = 0.0000

Significance level =0.0000

* = |coefficient| > 2/sqrt(N) or > 95% significant.
PACF is computed using, YuleﬁjWaIker equations,

Lag Awutocorrelation Function Box/Pre Partial Antocorrelations X
1 0.973* etttk Aok 56.81# 0,975 Aeseafded ko oo 3R
2 0.922% S 107.76% ~QATTE | FEEEEE
3 0.863% oAkl ke 152473 0.057 *

4 0.806% ok 191.43% 0.021 *
3 0.745% kA 224.71% —0.186 Aok
6 0.679%* e e ok 252.39% —0.046 ®
7 0.606% Aok ke ok 274.44% —0.174 A%
8 0.529¢% A 291.22% —0.039 ®
9 0.450% et 303.37% -0.049 *
10 0.379# sk 311.98% 0.146 i
11 0.316% Wkt 317.95% -0.023 ®
12 0.259% whF 321.97% —-0.001 *
13 0.205 R 324.49% —0.018 *
14 0.161 s 326.05% 0.185 dk i

Note, *s in first column and bars in the right-hand panel have changed from earlior cdition.
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TABLE 274.2 ACF and PACF for Residuals

Timt_e series identification for

* = Icoe cient| > 7/sqrt(N}-01 > 95% significant.

Significance leve

731

PACF j¢ computed using Yule-Walker equations.
Lag/ Auntocorrelation Function Box/Pre Partial Autocorreldvipns X
Ty I 0.084 5 0.41 0.084 *
—0.120 o 125 -0.138 e \
<{/ ‘/ 3 —0241 i 461 —0242 -
| 0.095 * 5.12 0.137 -
< [ 0.137 ok 6.22 0.104 -
¢ [ 6 0.121 x 7.06 0.102 *
WO [ 7 —0.084 # 7.46 —0.048
Y4 |8 0.049 * 7.60 0.184 s
X 9 1169 o 9.26 —0.327%
\Dﬂ O\)ﬁ/ 10 0.022 ~—_| * 9.30 0,025 .
o’ / 1 —0.005 s 9.30 /gn;s—'f/ »
Q / 12 0.003 —b—] 930 ——T"20.100 s
- b 13 —0.137 W 10.39 —0203 s
AT 14 —0.081 * 10.77 ~0.167 e
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Time series identification for U

Boxlf;Pierce Statistic = 10.6480 Boxl_—;Ljung Statistic = 12.3380
Degrees of freedom = 14 Degrees of freedom = 14
Significance level = L7134 Significance level = .D5792

* =» |coefficient]| > 2/sqrt(}i} or > 95% significant.
PACF is computed using Yuleﬁ'—Walker equations.

o e o ot et At e e e e e o o S St e o o e o ot e ot 2 ok e e e e et a8 o e e o

Lag | Autocorrelation Function |Box/Prc| Partial Autocorrelations X
11 .063 | | * | 23 | .083 | | * X
2 |-.119 | * | j-1.06 [-.133 | * X
3 |-.235 | Frx I 4.27 |-.241 | i X
4 | .108 | | * | 4.95 | .142 | | ** X
5 .,142 | | ** | &.11 | .113 | | * X
6 | 117 | | * | 6.91 | .108 | | * X
7 [~.091 | * | | 7.39 |-.047 * X
8 | .058 | | * | 7.58 | .189 | j** X
9 |-.167 | k| | 9.19 }1-,321%*] krkk | X
10 | .034 | | * I 9.25 021 | | * X
11 |-.00C4 | *| b 9.25 1 .043 | | * X
12 | .013 | | * i 9.26 |-.072 | * X
13 |-.134 | *| | 10.31 [=.179 | LA X
14 |-.076 | * | 10.65 |-.114 | * X
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e FFT is programmed i
atlab. [See Press et al.

AR
: 3'2’; 4 SUMMARY AND CONCLUSIONS

This chapter has developed the standard tools for analyzing a stationary time series.
The analysis takes place in one of two frameworks, the time domain or the frequency
domain. The analysis in the time domain focuses on the different representations of the
series in terms of autoregressive and moving-average components. This interpretation
of the time series is c!osely related to the concept of regression—though in this case
itis 'auto, or sclf-regression, that is. on past values of the random variable itself. The
autocorrelations and partial autocorrelations are the central tools for characterizing
a time sevies in this framework. Constructing a time series in this fashion allows the
analyst to construct forecasting equations that exploit the internal structure of the time
series. {We have left for additional courses and the many references on ihe subjeci the
embellishments of these models in terms of seasonal patterns, differences, and so on,

e 1naIySIS in this chapter, of modeln economic time-series analysis, is a plelude
to the analysis of nonstationary series in the next chapter. Nonstationarity is, in large
measure, the norm in recent time-series modeling. ="

Hy
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