- “q Greéne-SOSSS " book June 21, 2007 15:50 ’6 - (

G
1

B BAYESIAN ESTIMATION
AND INFERENCE

-—ﬁiﬁﬁp-—

Y
g‘ed INTRODUGTION

The preceding chapters (and those that follow this one) are focused primarily on para-
metric specifications and classical estimation methods. These elements of the economet-
ric method present a bit of a methodological dilemma for the researcher. They appear
to straightjacket the analyst into a fixed and immutable specification of the model. But
in any analysis, there is uncertainty as to the magnitudes, sometimes the signs and, at
the extreme, even the meaning of parametem It is rare that the presentation of a set
of empirical results has not been preceded by at least some exploratory analysis. Pro-
ponents of the Bayesian methodology argue that the process of “estimation™ is not one
of deducing the values of fixed parameters, but rather, in accordance with the scientific
method, one of continually updating and sharpening our subjective beliefs about the
state of the world. Of course, this adherence to a subjective approach to model building
is not necessarily a virtue. If one holds that “models” and “parameters” represent objec-
tive truths that the analyst seeks to discover, then the subjectivity of Bayesian methods
may be less than perfectly comfortable. '
\ Contemporary applications of Bayesian methods typically advance little of this the-
| N | ological debate. The modern practice of Bayesian econometrics is much more pragmatic.
OF The T g As we will see below in several examples, Bayesian methods have produced some re-
| markably efficient solutions to difficult estimation problems. Researchers often choose
the techniques on practical grounds, rather than in adherence to their philosophical
basis; indeed, for some, the Bayesian estimator is merely an algorithm:t”

Bayesian methods have have been employed by econometricians since well be-
fore Zellner’s classic {1971) presentation of the methodology to economists, but until
fairly recently, were more or less at the margin of the field. With recent advances in
technique (notably the Gibbs sampler) and the advance of computer software and
hardware that has made simulation-based estimation routine, Bayesian methods that
rely heavily on both have become widespread throughout the social sciences. There
are libraries of work on Bayesian econometrics and a rapidly expanding applied

! For cxample, from the home website of MLWin, a widely used program for multilevel (random parameters)
gLt modeling, hitp://iwww.cmm.bris.ac.uk/MLwiN/features/meme.shtml, we find “Markov Chain Monte Catlo
= (MCMC) methods allow Bayesian models to be fitted, where prior distributions for the model parameters
are specified. By default MLwil¥ scts diffuse priors which can be used to approximate maximum likelihood
estimation.” Trair (2001) is an interesting application that compares Bayesian and classical estimators of a

random parameters model.
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b
literaturé.?’ This chapter/will introduce the vocabulary and techniques f,Bayesmn
econometrics. Section
ical application, the. [ineal. regression model, is developed in Sectlon}( Section
continues the methodological development. The fundamental tool of co
Bayesian econometrics. the Gibbs sampler, is presented in Section ¥8). Three a
catjons and several more limited examples are presented in Sections 1876, 87/, and
/é 18.8. Section 8.6 shows how to use the Gibbs sampler to estimate the parameters of
probit model without maximizing the likelihood function. This application also in-
troduces the technique of data augmentation. Bayesian counterpaits to th
random and fixed effects models are presented in Section ¥8.7. A hierarchical Bayesian
treatment of the random parameters model is presented in Section 18:8 with a com-
parison to the classical treatment of the same model. Some conclusions are drawn in
Sectio . The presentation here is nontechnical. A much more extensive entry level
prescntation is given by Lancaster (2004). Intermediate-level presentations appear in
Cameron and Trivedi (2005, Chapter 13}, and Koop (2003). A more challenging treat-
ment is offered in Geweke (2005). The other sources listed in footnote 2 are oriented to
applications.

18.2 BAYES THEOREM AND THE
POSTERIOR DENSITY .
oSS K] )
The centerpiece of the Bayesian methodology is the Bayes theorem: for events A and
B, the conditional probability of event A given that B has occurred is

P(BIAP(A X
P(A|By = DEIATD :,(;)( ) (J6-1)

Paraphrased for our applications here, we would write

P(data | parameters) P{parameters)
_P(data) '

In this setting, the data are viewed as constants whose distributions do not involve the
parameters of interest. For the purpose of the study, we treat the data as only a fixed
set of additional information to be used in updating our beliefs about the parameters.
Note the similarity to (14-1). Thus, we write

_P(parameters | data) =

P{parameters | data) o« P(data [ pal arnetc1 ) P(palametem) L{'gZ)

= leeljlmod functlon X Prmr densltv

The symbol o means “is proportionat to.” In the preceding equation, we have dropped
the marginal density of the data, so what remains is not a proper density until it is scaled
by what will be an inessential proportionality constant. The first term on the right is
the joint distribution of the observed random variables y, given the parameters. As we

ZRecent additions to the dozens of books on the subject include Gelman et al. (2004), Geweke (2005), Gill
(2002), Koop (2003), Lancaster {2004), Congdon {2005), and Rossi etal. {2005). Readers with ar historical bent
will find Zellner (1971} and Leamer (1978) worthwhile reading. There are also many methodological surveys.
Poirier and Tobias (2006) as weli as Poirier (1988, 1995) sharply focus the nature of the methodological
distinctions between the classical (frequentist) and Bayesian approaches.

"t'a-z'_'_:

.2 lays out the essential foundation for the method. The calzlogn-/
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% shall analyze it here, thjs-dfstribution is the normal distribution we have used in our
g previous analysns—sec 14- 1)) The second term is the pnor behei’s of the analyst. The
left-hand side is the posterior density of the parameters, given the current body of data,
or our revised beliefs about the distribution of the parameters after “seeing” the data.
The posterior is a mixture of the priorinformation and the “current information,” that
is, the data. Once obtained, this posterior density is available to be the prior density
function when the next body of data or other usable information becomes available. The
principle involved, which appears nowhere in the classical analysis, is one of continual
accretion of knowledge about the parameters.

Traditional Bayesian estimation is heavily parameterized. The prior density and the
likelihood function are crucial elements of the analysis, and both must be fully specified
for estimation to proceed. The Bayesian “estimator” is the mean of the posterior density
of the parameters, a quantity that is usua]ly obtained either by integration {(when closed
forms exist), approximation of integrais by numerical techniques, or by Monte Carlo
methods, wilgh are discussed in Section @

Example .1 Bayesian Estimation of a Probability
Consider estimation of the probability that a production process will produce a defective
product. In case 1, suppose the sampling design is to choose ¥V = 25 items from the
pfoductlon line and count the number of defectives. [f the probability that any item is defective
is a constant 4 between zero and cne, then the likelihaod for the sample of data is

L(@|data) = 87(1 — §) %2,

where [ is the number of defectives, say, 8. The maximum likelihood estimator of 8 will
be p= D/25 = 0.32, and the asymptotic varianca of the maximum likelihood estimator is
estimated by p(1 — p) /25 = 0.008704.

Now, consider a Bayesian approach to the same analysis. The posterior density is obtained
by the following reasoning:
p(f.data)  p(6.data) _ p(data|e)p(s)

p(data) — f p(o,datajds = pidata}

_ Likelihood(data | 8) x p(6)

B p(data)
where p(6) is the prior density assumed for 6. [We have taken some license with the termi-
nology, since the likelihood function is conventionally defined as L{6 | data).] Inserting the
results of the sample first drawn, we have the posterior density:

82(1 — 6)""P p(6)

J,65(1 —0)"-Cp(6)de’
What follows depends on the assumed prior for 8, Suppose we begin with a “noninforma-
tive" prior that treats all alowable values of # as equally likely. This would imply a uniform
distribution over (0,1). Thus, p{#) = 1,0 < & < 1. The denominator with this assumption is
a beta integral (see Section E2.3) with parametersa = D+ 1andb =N — D 4 1, so the
posterior density is

- ple|data) =

p{6|data) =

#2(1 — g)¥-D _ T{N+2)62(1 —g)#2
MO+ NOIN—D+1)\  TD+1TN-D+1)
(F(D+1 +N~D+1))
This is the density of a random variable with a beta distribution with parameters (¢, 8) =
{D-+1, N— D +1). (See Section B.4.6.) The mean of this random variable is (D 1+ 1} /{(N+2) =

8/27 = 0.3333 (as opposed to 0.32, the MLE). The posterior variance is [( D+ 1) AN—D+1}1/
[N + 3)(N + 2)?] = 0.007936.

p(9|data) =
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There is a looge end in this example. If the uniform prior were noninformative, that would
L mean that the only information we had was in the likelihoed function, Why didn’t the Bayesian
A estimator and the MLE coincide? The reason is that the uniform prior over [0,1] is not really
noninformative. It did introduce the information that ¢ must falt in the unit interval. The prior
mean is 0.5 and the prior variance is 1/12. The posterior mean is an average of the MLE and
the prior mean. Another less than obvious aspect of this result is the smaller variance of the
Bayesian estimator. The principle that lies behind this (aside from the fact that the prior did in
fact introduce some certainty in the estimator) is that the Bayasian estimator Is conditioned
on the specific sample data. The theory behind the classical MLE implies that it averages
over the entire population that generates the data, This will always introduce a greater degree
of “uncertainty” in the classical estimator compared to its Bayesian counterpart.

\

8.3 BAYESIAN ANALYSIS OF THE CLASSICAL
REGRESSION MODEL

The complexity of the algebra involved in Bayesian analysis is often extremely bur-

densome. For the linear regression model, however, many fairly straightforward results

have been obtained. To provide some of the flavor of the techniques, we present the full

derivation only for some simple cases. In the interest of brevity, and to avoid the burden

of excessive algebra, we refer the reader to one of the several sources that present the
= full derivation of the more compiex cases?

7 The classical normal regression model we have analyzed thus far is constructed
around the conditional multivariate normal distribution N[X8, 621]. The interpreta- ( N
tion is different here. In the sampling theory setting, this distribution embodies the :
information about the observed sample data given the assumed distribution and the
fixed, albeit unknown, parameteis of the model. In the Bayestan setting, this function
summarizes the information that a particular realization of the data provides about the
assumed distribution of the model parameters. To underscore that idea, we rename this
joint density the likelihood for 8 and o given the data, so l b

L(B, %1y, X) = [2no?] 2 [A/@oG-XpYG-XAN, @53
[t i 2 For purposes of the|results below, some reformulation is useful. Let d = n — K (the
U] degrees of freedom parameter), and substitute
y-XB=y—Xb-X(B-b)=c—X@B-b
in the exponent. Expanding this produces
1 . ARV 1 AR N
(-5 )0~ X0 -3 = (—302) (35) - 368 - (2XX) 6D

After a bit of manipulation (note that #1/2 = d/2+ K/2), the likelihood may be written

L.(ﬁs ‘72 ]_V; X)
—_ [2“. ]—_a‘/Z[UZ]-—d/le—(zi'/Z}{szloz)[zﬂ]—Kﬂ [02]—K/ze—(llz)(ﬂ“.?)'{QZ(X'X)'I}AW_—M‘

“3These sources include Judge et al. (1982, 1985), Maddata {1977a), Miticlhammer ct al. (2000), and the
canonical reference for econometricians, Zeliner (1971). A remarkable feature of the current literature is the
degree to which the analytical componenis have become ever simpler while the applications have become
progressively mors complex. This will become evident in Sections }81;5—';‘7 .

/b jo l,‘l‘-‘ : }
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This density embodies all that we have tolearn about the parameters from the observed

data. Because the data are taken to be constants in the joint density, we may multiply

this joint density by the (very carefully chosen), inessential (because it does not involve
B or ¢?) constant funetion of the observations,

(4 R
(%)
A= 2—[2::]””’ (XX |2,

d
r{z
(5+1)
For convenience, let v = d/2. Then, multiplying L(8, 0% |y, X) by A gives

29+ E v
L(B, ol y, X) [US ] __l___ e—qsz(llaz)[zn]-xﬂ IO’Z(X’X)_I | ~172
Mw+1) \ o2 ’(7

x e~ (DB XX B-b) (Md)

The likelihood function is pr opomonal to the product of a gamma density for z = ¢
1/0? with parameteis A = vs’ and P = v+ 1 [see (B-39); this is an inverted gamma iy
distribution] and a K-variate normal density for 8 | o 2 with mean vectorb and covariance
matrix o2(X’X)~1. The reason will be clear shortly.

\lp ’I\& 3.1 ANALYSIS WITH A NONINFORMATIVE PRIOR —

The departure point for the Bayesmn analysis of the model is the specification of a prmr
distribution. This distribution glves the analyst’s prior beliefs about the parameters of
the model. One of two approaches is generally taken. If no pr101 information is known
about the parameters, then we can specify a nomnfnrmatwe prior that reflects that, We
do this by specifying a “flat” prior for the parameter in question:*’

g(parameter) « constant.

There are different ways that one might characterize the lack of prior information. The
implication of a flat prior is that within the range of valid values for the parameter, all
_intervals of equal length-_hence, in principle, all values—are equally likely. The second
' possibility, an informative prior, is treated in the next section. The posterior density is
the result of combining the likelihood function with the prior density. Because it pools
the full set of information available to the analyst, once the data have been drawn, the
posterior density would be interpreted the same way the prior density was before the
data were obtained.
To begin, we analyze the case in which ¢ is assumed to be known. This assumption
is obviously unrealistic, and we do so only to establish a point of departure. Using Bayes™=
/Theorem, we construct the posterior density,

_LBle 2 v.X)2(B10%)
f(y)

f8ly.X.0° x L8102y, X)g(B |02,

“Tlmt this “improper” density might not integrate to one is only a minor difficulty. Any constant of integration
would ultimately drop out of the final result. See Zeilner (1971, pp. 41-53) for a discussion of noninformative
priors.
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: assuming that the distribution of X (:gt;/l{ot depend on B or 0. Because (8 |crz) o
L a constant, this density is the one in (18°4). For now, write

18193 X) o o) [2a 7 1o (KX)o /P R, (38-5)

where

2y [.'“'52]'”-H l: 1 ]v —wsl(i/o?) ]
Y hio*) T+ D ¢ . - (18-6)
For the present,fwe treat h(o?) simply as a constant that involves o2, not as a ploba-
bility density: (}8-3) is condmona! on 2. Thus, the posterior density f(ﬁ lo2,y, X) is
proportional to a multivariate normal distribution with mean b and covariance matrix
XXy~
This result is familiar, but it is interpreted differently in this setting. First, we have
combined our prior information about g (in this case, no information) and the sample
information to obtain a posterior distribution. Thus, on the basis of the sample data in
hand, we obtain a distribution for 8 with mean b and covariance matrix o2(X'X)~!. The
result is dominated by the sample information, as it should be if there is no prior infor-
mation. In the absence of any prior information, the mean of the posterior distribution,
which is a type of Bayesian point estimate, is the sampling theory estimator.
To generalize the preceding to an unknown o2, we specify a noninformative prior
distribution for Ino over the entire real lind® By the change of variable for mu!a, if
y i g{lno) is constant, then gl is proportional to 1/02.% Assuming that # and o? are
T, independent, we now have the noninformative joint prior distribution:

1
g{ﬁ. 2) = g5(8)8,2(07) o« =

We can obtam the joint poetenor dlh‘h‘lbutlﬂn for g and 0'2 by using

1
18,071y, X) = LBlo% 3, X)go2(0?) o LB 10”5, X) x —. 0.4))

For the same reason as before, we multiply gc,z(a Vb f l-chosen constant, this time
vsihw+1)/Tw+2) = vszl(n + 1). Multiplying (J&-5) by this constant times 2,2(0?)
and inserting (c'2) gives the joint posterior for 8 and o2, glven yand X:

[v s2]v+2
Tw+2)
* —(1/2)(.3—13)’[02(X'X)‘l}“‘l(ﬂ—-b).

v+l
fi8.0%1y. X) [—15] e WO 2K |2 (XX

To obtain the marginal posterior distribution for 8, it is now necessary to integrate ot
out of the joint distribution (and vice versa to obtain the marginal distribution for o'2).
By collecting the terms, f{(§, ol | ¥, X) can be written as

P-1
[(8,571%, X) o Ax (%) (o,

“#See Zeliner (1971) for justification of this prior distribution.

$Many treatments of thismodel use o rather than o2 as the parameter of interest. The end results are identical.
We have chosen this parameterization because it makes manipulation of the likelihood function with a gamma
prior distribution especially convenient, See Zellner (1971, pp. 44-45) for discussion.
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where
e [ws?]+ —K2 oy -l 1/2
A= T p IR
P=v+2+K2=n—-K)/2+2+K/2=(n+4)/2,
and

h=uvs? + }(B ~ bYX'X(8 — b).
so the marginal posterior distribution for Bis

e o0 P-1
j .f(B,azly,IX)dazocAf (%) e M) 52

2

To do the integration, we have to make a change of variable; d(1/62) = —(1/02)do?,
sode? = —(1/62)~2d(1/5%). Making the substltutmn-mthe sign of the mteglal changes
twice, once for the Jacobian and back again because the integral from o = 0 to oo is
the negative of the integral from (1 /6% = 0 to co—we obtain

it 2 ; 2 ey £=3 ~r{lf0?) 1°
| oty et ca (;5) : _d(;g)

rf-2)

= Ax =

Reinserting the expressicons for A, P, and A produces

2742
- r(l;{i ;:L) B2 52 (X b
= By, X) x : (%:8)
) Ty -byXXe N

This density is pmportlonal toa multwnnatc I dlstrlbutlon"’and is a generalization of
the familiar univariate distribution we have used at various pomts This distribution has
a degrees of freedom parameter, d = n— K, mean b, and covariance matrix (d/(d —2)) x
[s2(X’X)~1]. Each element of the K-element vector 8 has a marginal distribution that
is the univariate ¢ distribution with degrees of freedom s — K, mean by, and variance
equal tothe kth diagonal element of the covariance matrix given earlier. Once again, this
is the same as our sampling theory result. The difference is a matter of interpretation.
In the current context, the estimated distribution is for g and is centered at b.

)(Pﬁ@.3.2 ESTIMATION WITH AN INFORMATIVE PRIOR DENSITY

Once we leave the simple case of noninformative priors, matter {%w quite compli-
cated, both at a practical level and, methodologically, in terme of just where the prior
comes from. The integration of o2 out of the posterior in (}87) is complicated by itself. _
It is made much more so if the prior distributions of g and o2 are at all involved. Partly *

to offset these difficulties, researchers usualty use what is called a conjugate prior, which

‘TSee, for example, Judge et al. (1985) for details. The expression appears in Zellner (1971, p. 67). Note that
the cxponent in the denominator is v 4 K/2 = n/2.
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is one that has the same form as the conditional density and is therefore amenable to
the integration needed to obtain the marginal distributions?

Exampfe\ %.2 EstWﬂ% Conjugate Prior
We continue Example J#:1Eut we now -assume a conjugate prior. For likelihood functions
involving proportions, the beta prior is a common device, for reasons that will emerge shortly.
The beta prier is

T + e=-'{1 - g)f

[{e)1(B)

po) =
Then, the posterior density becomes
p e+ pe*'(1 —-5)%

o2(1 — )

Te)I'(B) o gRret(q — gDt

' o (e + BYo={1 — g)8- =7q - —
B(1 — gyN-2 d Draiy{ _ gN-D+-g
Ae( ) ORT) ? ﬂ‘; (1 - 6L+l

The posterior density is, once again, a beta distribution, with parameters (D +a, N — D + 8).
The posterior mean is

D4
Nita4p’
{Our previous choice of the uniform denslty was equivalent tow = § = 1.) Supposewe choosa
a ptior that conforms to a prior mean of 0.5, but with less mass near zero and one than in the
centar, such as & = g = 2. Then, the posterior mean would be (8 4- 2) /{25 + 3) = 0.33571.
(This is yet larger than the previous estimator. The reason is that the prior variance is now
smaller than 1/12, so the prior mean, still 0.5, receives yet greater weight than it did in the
previous example.)

E[6 | data] =

Suppose that we assume that the prior beliefs about # may be summarized in a
K-variate normal distribution with mean 8, and variance matrix Xp. Once again, it is
illuminating to begin with the case in which o is assumed to be known. Proceeding in
exactly the same fashion as before, we would obtain the following result: The posterior
density of 8 conditioned on o2 and the data will be normal with %

E[B)o2,y, X] = {Z7' + [c2X X[} {2580 + 02X’ X)~'] b} A49)

where
F= {551+ [c2XX) '} 55! o
= {[prior variance] ! + [conditional variance]“l}_l[prior variance] ™. (1#-10)

This vector is a matrix weighted average of the prior and the least squares (sample)
coefficient estimates, where the weights are the inverses of the prior and the conditional

B0ur choice of noninformative prior for In o led to a convenient prior for o2 in our derivation of the posterior
for 8. The idea that the prior can be specified arbitvarily in whatever form is mathematically convenient is
very troubling; it is supposed to represent the accwmulated prior belief about the parameter. On the other
hand, it could be argued that the conjugate prior is the posterior of a previous analysis, which could justify
its form. The issuc of how priors should be specified is one of the focal points of the methodological debate.
“Non-Bayesians™ arguc that ii is disingenuous to claim the methodological high ground and then base the
crucial prior density in a model purely on the basis of mathematical convenience. In a small sample, this
assumed prior is going to dominate the results, whereas in a large onc. the sampling theory estimates will
dominate anyway.
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covariance matrices.? The smaller the variance of the estimator, the larger its weight,
which makes sense. Also, still taking o2 as known, we can write the variance of the
posterior normal distr |butlon as _

11)

vaigly X, o'l = (55" + XX}

Notice that the posterior variance combines the prior and conditional variances on the
basis of their inverses:!® We may interpret the noninformative prior as having infinite
elements in Xq. This assumption would reduce this case to the earlier one.

Once again, it is necessary to account for the unknown o 2. If our prior over o2 is to
be informative as well, then the resulting distribution can be extremely cumbersome.
A conjugate prior for 8 and 2 that can be used is )

% 12)

g(B.0%) = gg2 (B |0%)go2(0?),

where gg,2(8 |2y is normal, with mean ;_3“ and variance a2A and

g1m+1 ; " lb
2y [’-”60] L ~mog (Lje?) A
gotlo) = T+ 1) (02) e™™% . LﬁfB)

This distribution is an inverted gamma distribution It implies that 1 /0‘2 has a gamma
distribution. The prior mean for o2 is of and the prior vau;fmce is o /(m — 1)1 The
product it (#8-12) produces what is called a normal-gamma prlor, which is the natural
con]ugate prior for this form of the model. By integrating out o2, we would obtain the
prior marginal for 8 alone, which would be a multivariate ¢ distribution. > Combining
(¥8-12) with (18-13) produces the joint posterior distribution for 8 and &2. Finally, the

marginal posterior distribution for, 8 is obtained by integrating out o2, Ithas been shown
that this posterior distribution is multivariate ¢ with

E[81y, X = {[FA]" +[FXX) -1} {B2A] 8o+ [F2X’X)~]"'b} )i‘ie 14)

and
Var[8 |y, X] = (} ){[a-zA]—*+[32(x'X)-l] n-, 1’1%-15)

where j is a degrees of freedom parameter and &~ is the Bayesian estimate of a2, The
prior degrees of freedom m is a parameter of the prior distribution for o2 that would
have been determined at the outset. (See the following example.) Once again, it is clear
that as the amount of data increases, the posterior density, and the estimates thereof,
converge to the sampling theory results.

Note that it will not follow that individual elements of the posterior mean vector tie between those of
and b, See Judge et al (1985, pp. 109-110) and Chambetiain and Leamer (1976).

1ePrecisely this estimator was proposed by Theil and Goldberger (1961) as a way of combining a previously
obtained estimate of a parameter and a current body of new data. They called their result a “mixed estimator.”
The term *mixed estimatior” takes an entirely different meaning in the current literature, as we saw in
Chapter 17,

"}1You can show this result by using gamma integrais. Note that the density is a function of 1/¢% = I/x
in the formula of (B-39), so to obtain E [02], we use the analog of E{1/x] = A/(P — 1) and E[(1/x)%] =
A2/{(P ~ 1}( P — 2}]. In the density for {1/0?), the counterparts to A and P are mog and m + 1.

12Pull details of this (lengthy) derivation appear in Judge et al. (1985, pp. 106-110) and Zellner (1971).
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‘ TABLEX(QJ Estimates of the MPC
. Years Estimated MPC Variance of b Degrees af Freedom Estimated o

1940-1950 06848014 - . 0.061878 T 9 24.954
19502000 0.92481 - - 0.000065865 49 92.244

Exampie #.3 Bayesian Estimate of the Marginai Propensity ’Q

to Consume
M In Exampl@n estimate of the marginal propensity to consume is obtainediusing 11 ob-
. servations 1940 to 1950, with the results shown in the top row of Table ¥8.1. A clas-
sical 95 percent confidence interval for g based on these estimates is (0.1221, 1.2475).
f ey (The very wide interval probably results from the obviously poor specification of the model.)
- Based on noninformative priors for g and ¢?, we would estimate the posterior density
for B to be univariate I with 9 degrees of freedom with mean 0.6848014 and variance
| {11/9)0.061878 = 0.075628. An HPD interval for 8 would coincide with the confide
interval. Using the fourth quarter (yearly) values of the 1950-—2000 data used in Examplé 5.3} %
we obtain tha new estimates that appear in the second row of the table.
We take the first estimate and its estimated distribution as our prior for 8 and obtain a
posterior density for § based on an informative prior instead. We assume for this exercise
that 42 may be taken as known at the sample value of 24.954. Then,

1 1 ]“ [ 0.92481 0.6848014

b= | 5oo00eesee T coeieTa| | 0600065885 T 0061878
The weighted average is overwhelmingly dominated by the far more precise sample es-
timate from the larger sample. The posterior variance is the inverse In brackets, which is
0.000065795. This ig close to the variance of the latter estimate. An HPD interval can be
fortmed in the familiar fashion. It will be slightly narrower than the confidence interval, because
the variance of the posterior distribution is slightly smaller than the variance of the sampling
estimator. This reduction is the value of the prior information. (As we see here, the prior is
not particularly informative.)

] = 0.92455

\\n

18.4 BAYESIAN INFERENCE

The posterior density is the Bayesian counterpart to the likelihood function. It embod-
ies the information that is available to make inference about the econometric model.
As we have seen, the mean and variance of the posterior distribution correspond to
the classical (sampling theory) point estimator and asymptotic variance, although they
are interpreted ditfferently. Before we examine more intricate applications of Bayesian
inference, it is useful to formalize some other components of the method, point and
interval estimation and the Bayesian equivalent of testing a hypothesis:t*

e A4.4.1 POINT ESTIMATION

The posterior density function embodies the prior and the likelihood and therefore
contains all the researcher’s information about the parameters. But for purposes of
presenting results, the density is somewhat imprecise, and one normally prefers a point

*}*We do not include prediction in this list. The Bayesian approach would treat the prediction problem as
one of estimation in the same fashion as “parameter” estimation. The value to be forecasted is amonyg the
unknown elements of the mode! that would be characterized by a prior and would enter the posterior density
in a symmetric fashion along with the other parameters.
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or interval estimate. The natural approach would be to use the mean of the posterior -7,
distribution as the estimator. For the noninformative prior, we use b, the sampling -
them-y estimator.

One might ask at this pomt why bother? These Bayesmn pomt estimates are iden-
tical to the sampling theoly estimates. All that has changed is our interpretation of
the resuits. This sifuation is, however, exactly the way it should be. Remember that
we entered the analysis with noninformative priors for 8 and . Therefore, the only
information brought to bear on estimation is the sample data, and it would be peculiar
if anything other than the sampling theory estimates emerged at the end. The results do
change when our prior brings out of sample information into the estimates, as we shall
see below:,

The results will also change if we change our motivation for estimating, 8. The
parameter estimates have been treated thus far as if they were an end in themselves.
But in some settings, parameter estimates.are obtained so as to enable the analyst to
make a decision. Consider then, a luss funchun, H (ﬂ ﬁ) which quantifies the cost of
basing a decision on an estimate ﬂ when the parameter is 8. The expected, or average
loss is /

EsLH, 8] = /B H(B. ) 1181y X)d8, (38-16)

where the weighting function is the marginal posterior density. (The joint density for, g
and o2 would be used if the loss were defined over both.) The Bayesian point estimate is
the parameter vector that minimizes the expected loss. If the loss function is a quadratic
form in (8 — 8). then the mean of the posterior distribution is the “minimum expected
loss™ (MELO) estimator. The proof is simple. For this case,

E[H@. B 1y Xl = E[}(8 - pyWEB -8 |y.X].
To minimize this, we can use the result that
BE[H(B. B)|y. X1/0B = E[3H(B. $)/28 |y, X]
= E[-W(~ By, X].

The minimum is found by equating this derivative to 0, whence, because —W is irrele-
vant, § = E {8 |y, X]. This kind of loss function would state that errors in the positive
and negative direction are equally bad, and large errors are much worse than small
errors. If the loss function were a linear function instead, then the MELO estimator
would be the median of the posterior distribution. These results are the same in the
case of the noninformative prior that we have just examined.

\e
18.4.2 INTERVAL ESTIMATION
The counterpart to a confidence interval in this setting is an interval of the posterior
distribution that contains a specified probability. Clearly, it is desirable to have this
interval be as narrow as possible. For a unimodal density, this corresponds to an interval
within which the density function is higher than any points outside it, which justifies the
term highest posterior density (HPD) interval, For the case we have analyzed, which
involves a symmetric distribution, we would form the HPD interval for, 8 around the
least squares estimate b, with terminal values taken from the standard 7 tables.
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{é 4.3 HYPOTHESIS TESTING

The Bayesian methodology treats the classical approach to hypothesis testing with a
large amount of skepticism. Two issues are especially problematic. First, a close ex-
amination of only the work we have done in Chapter 5 will show that because we are
using consistent estimators, with a large enough sample, we will ultimately reject any
(nested) hypothesis unless we adjust the significance level of the test downward as the
sample size increases. Second, the all-or-nothing approach of either rejecting or not
rejecting a hypothesis provides no method of simply sharpening our beliefs. Even the
most committed of analysts might be reluctant to discard a strongly held prior based on
a single sample of data, yet this is what the sampling methodology ates. (Note, for
example, the uncomfortable dilemma this creates in footnot m Chapter TU. e
Bayesian approach to hypothesis testing is much more appealing in thisTegard. Tndeed,
the approach might be more appropriately called “comparing hypotheses,” because it
essentially involves only making an assessment of which of two hypotheses has a higher
probability of being correct.

The Bayesian approach to hypothesis testing bears large similarity to Bayesian
estimation ¥ We have formulated two hypotheses, a “null,” denoted Hp, and an alter-
native, denoted H;. These need not be complementary, as in Hy: “statement A is true”
versus ;2 “statement A is not true,” since the intent of the procedure is not to reject
one hypothesis in favor of the other. For simplicity, however, we will confine our at-
tention to hypotheses about the parameters in the regression model, which often are
complementary. Assume that before we begm our experimentation (data gathering,
statistical analysis) we are able to assign prior prubablhtlcs P(Hp) and P(Ih) tothe two
hypotheses. The prior ndds ratio is simply the ratio '

P(H, )
OddSprior = FETI%‘ (aé‘w)

For example, one’s uncertainty about the sign of a parameter might be summarized in

a priotr odds over Hy: 8 > 0 versus Hi: 8 < 00f 0.5/0.5=1. After the sample evidence is
gathered, the prior will be modified. so the posterior is, in general,

Oddspos!enor = By x Oddspnor

The value By iscalled the Ba_yes factor for comparing the two hypotheses. It summarizes
the effect of the sample data on the prior odds. The end result, Oddspsserior. is a new
odds ratio that can be carried forward as the prior in a subsequent analysis.

The Bayes factor is computed by assessing the likelihoods of the data observed
under the two hypotheses. We return to our first departure point, the likelihood of the
data, given the parameters: J6

(Y1, 0% X) = 2o eI 0K, ak18)

Based on our priors for the parameters, the expected, or average likelihood, assuming
that hypothesisjis true (f = 0,1),1s

FQIX Hp = Eg ol f(y1 6. 0% X, 1))} = / 2 f fiy18.0% X, H)g(B, 0% dB do’.
ot JB

“MFor extensive discussion, see Zeliner and Siow (1980) and Zeltner (1985, pp. 275-305).

7.

“./‘
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{This conditional density is also the predlctlve dcmlty for y.) Therefare, based on the
observed data. we use Bayes theorem to reassess the probability of Hj: the posterior

probability is
fiyl X, Hj)P( Hp

'P('H,-' 1y, X) =

il

The posterior odds ratio is P(Hply, X)/P(f1 |¥, X), so the Bayes factor is
oy = LK. H)
A fy1X. H)

Example ¥0.4 Posterior Odds for the Classical Regression Model
Zellner (1971) analyzes the setting in which there are two possible explanations for the
variation in a dependent variable y;

Modet 0: y = xi,8, -+ £0

and
l(( \% Model 1.y = x} 8, + ¢

We will égeﬂy sketckﬁs results. We form informative priors for [8,0%;, j = 6, 1, as spec-

ified in §8-12) and {#8-13), that is, multivariate normatl and inverted gamma, respectively.
Zeliner then derives the Bayes factor for the posterior odds ratio. The derivation is lengthy
and complicated, but for large n, with some s:mpllfylng assumptions, a useful formulation
emerges F' rst, assume that the priors for o2 and 52 are the same. Second, assume that
[lAu 1/|Ag +X0Xo[]f[lA1‘1 I/ IJf\;1 + X X1 []—>1. The first of these would be the usual situation,
in which the uncertainty concerns the covatiation between y; and x;, not the amount of resid-
ual variation (lack of fit). The second concerns the relative amounts of information in the prior

_ {A) versus the likelihood (X'X). These matrices are the inverses of the covariance matrices,

» 1 _-orthe precision matrices. [Note how these two matrices form the matrix weights in the

5 computation of the posterior mean in‘%ﬂ-Q) J] Zeliner (p. 310) discusses this assumption at
some length. With these two assumptionsshe shows that as n grows large;'®-~

o~ 2 —(nHm.la: 1 gz remr
L] 312 \b 1“"R12 .

Therefore, the result favors the model that provides the better fit using /2 as the fit measure.
If we stretch Zellner’s analysis a bit by interpreting model 1 as “the model” and model 0 as
“ro model” (that is, the relevant part of 8, =0, so R2 = 0), then the ratio simplifies to

Byt = (1 . Rf)tm}ia-

Thus, the better the fit of the regression, the lower the Bayes factor in favor of modet 0 (no
model), which makes intuitive sense. ﬁ

Zellner and Siow (1980) have continued this analysig'with noninformative priors for g and
of. Specifically, they use the flat prior for Ine fsee (}8-7)] and a multivariate Cauchy prior
{which has infinite variances} for 8, Their main result (3.10) is

k/2
B = Fc (%55) -

This result is very much like the previous one, with some slight differenices due to degrees of
freedom corrections and the several approximations used to reach the first one.

%A ratio of exponentials that appears in Zeliner's result (his equation 10.50) is omitted, To the order
of approximation in the result, this ratio vanishes from the final result. (Personal correspondence from
A. Zellner to the author.)
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\8.4.4 LARGE SAMPLE RESULTS

Although all statistical results for Bayesian estimators are necessarily “finite sample™
(they are conditioned on the sample data), it remains of interest to consider how the
estimators behave in laige saimples.!* Do Bayesian estimators “converge” to something?
To do this exercise, it is useful to envision having a sample that is the entire population.
Then, the posterior distribution would characterize this entire population, not a sample
from it. It stands to reason in this case, at least intuitively, that the posterior distribution
should coincide with the likelihood function. It will (as usual), save for the influence of
the prior. But as the sample size grows, one should expect the likelihood function to
overwhelm the prior. It will, unless the strength of the prior grows with the sample size
(that is, for example, if the prior variance is of order 1/11). An informative prior will still
fade in its influence on the posterior unless it becomes more informative as the sample
size grows,

The preceding suggests that the posterior mean will converge to the maximum like-
lihood estimator. The MLE is the parameter vectop that is at the mode of the likelihood

function. The Bayesian estimator is the posterior mean, not the mode. so a remain- ¢

(16~ 9

ing questlon concerns the relationship between these two features. The Bernstein—von -

Mises “theorem” [See Cameron and Trivedi (2005, p. 433) and Train (2003, Chapter 12)]
states that the posterior mean and the maximum likelihood estimator will coverge to
the same probability limit and have the same limiting normai distribution. A form of

But for remaining philosophical questions, the results suggespthat for large samples,
the choice between Bayesian and frequentist methods cansbe one of computational
efficiency. {This is the thrust of the application in Section J88. Note, as well, footnote 1
at the beginning of this chapter. In an infinite sample, the maintained “uncertainty” of
the Bayesian estimation framework would have to arise from deeper questions about
the model. For example, the mean of the entire population is its mean; there is no
uncertainty about the “parameter.”)

N8.5 POSTERIOR DISTRIBUTIONS AND THE

GIBBS SAMPLER

The preceding analysis has proceeded along a set of steps that includes formulating the
likelihood function (the model), the prior density over the objects of estimation, and
the posterior density. To complete the inference step, we then analytically derived the
characteristics of the posterior density of interest, such as the mean or mode, and the
variance. The complicated element of any of this analysis is determining the moments
of the posterior density, for example, the mean:

) = E[0 | data] = f 6 (0| data)dt. (1519)
)

16The standard preamble in cconametric studies, that the analysis to follow is "exact” as opposed to approxi-
mate or “large sample,” refers to this aspect—the analysis is conditioned on and, by implication, applics only
to the sample data in hand. Any inference putside the sample, for example, {o hypothesized random samples
is, like the sampling theory counterpart, approximate.
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There are relatively few applications for which integrals such as fhis can be derived in
closed form. (This is one motivation for conjugate priors.) The/modesrn approach to
-Bayesian inference takes a different strategy. The result in (18-19) is an expectation.
Suppose it were possible to obtain a random sample, as large as desired. from the

population defined by p(@ | dlata). Then, using the same strategy we used throughout
Chapter 17 Tor simulation-based estimation, we could use that sample’s characteristics,
such as mean, variance, quantiles, and so on, to infer the characteristics of the posterior
distribution. Indeed, with an (essentially) infinite sample, we would be freed from having
to limit our attention to a few simple features such as the mean and variance, we could
view any features of the posterior distribution that we like. The (much less) complicated
part of the analysis is the formulation of the posterior density.

It remains to determine how the sample is to be drawn from the posterior density.
This element of the strategy is provided by a remarkable (and remarkably useful) result
known as the Gibbs sampler. {See Casella and George (1992).] The central result of the
Gibbs sampler is as follows: We wish to draw a random sample from the joint populatlon
(x, ¥). The joint distribution of x and y is either unknown or intractable and it is not
possible to sample from the joint distribution. However, assume that the conditional
distributions f(x | ¥)and_f(v|x)are known and simple enough that it is possible to draw
univariate random samples from both of them. The following iteration will produce a
bivariate random sample from the joint distribution:

Gibbs, §ampler:'

1. Begih the cycle with a value of xq that is in the right range of x| y,
2. Draw an observation y | xo.

3. Draw an observation x, | ¥,_;

4, Draw an observation ¥, | x,.

Iteration of steps 3 and 4 for several thousand cycles will eventually produce a random
sample from the joint distribution. (The first several thousand draws are discarded to
avoid the influence of the initial conditions,—this is called the burn in.) [Some technical
details on the procedure appear in Cameron and Trivedi (Chapter Section 13.5).]
Example \ 8.5 Gibbs Sampling from the Normal Distribution

To illustrate the mechanical aspects of the Gibbs sampler, consider random sampling from

the joint normal distribution. We consider the bivariate normal distribution first. Suppose we
wished to draw a random sample from the population

() =4()-C 2l

As we have seen in Ghapter) 1%, a direct approach is to use the fact that linear functions of
normally distributed variables are normally distributed. [See {B-80).] Thus, we might trans-
form a series of independent normal draws {uy, Us})’ by the Cholesky decomposition of the

covariance matrix
X 1 0 u
1 - 2 =.Luh
X/, |6 6|\u2/) "

16-15
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where 6, =p and & = 4/1 — p2. The Gibbs sampler would take advantage of the result

X 1 X2 ~ Nlpxo, (1 - .02)_].
and ! ‘
X2 |x1 ~ Noxy, (1 - p9)].
To sample from a trivariate, or multivariate population, we can expand the Gibbs sequence

in the natural fashion. For example, to sample from a trivariate population, we would use the
Gibbs sequence

X4 | X2, X3 ~ N[B12Xo + f1.9%3, 21 2,3,
Xz | X1, Xa ~ N[Bp 1 X1 + BoaXa, X2 1.2l
X3 X1, Xz ~ Nifs 1 + Basko, api2,

where the conditional means and variances are given in Theorem B.7. This defines a three-
step cycle.

The availability of the Gibbs sampler frees the researcher from the necessity of de-
riving the analytical properties of the full, joint posterior distribution. Because the for-
mulation of conditional priors is straightforward, and the derivation of the conditional
posteriors is oniy slightly less so, this tool has facilitated a vast range of applications that
previously were intractable, For an example, consider, once again, the classical normal
regression modelW), the joint posterior for {8, 62) is

[qs2]v+2

Py +2)
= x exp(—(1/2(8 —~ bY[o2X'X) "' 18 —b).

If we w1shed to use a simulation approach to characterizing the posterior distribution,

we would need to draw a K + 1 variate sample of observations from this intractable
distribution. However, with the assumed priors, we found the conditional posterior for

v+
pB.a’ 1y, X) « ["“EJ exp(—us? /o[ 2x | K12 | 62 (X!X) ! | 12

piBlot. v, X) = Nib, A(XX)'].

From (l( 6), we can deduce that the conditional postellol for 2|8, v, X is an inverted

gamma distribution with parameters mog = vé6? and 1 = v in (18- 13):
2 v+l ¥ ’ 2
2 _ ] 1 a2 a2 =t —XiB8)
Pty X)= Fo+ 1) {GZJ exp(—véi/o®), & it

This sets up a Gibbs sampler for sampling from the joint posterior of 8 and o?. We
would cycle between landom draws from the multivariate normal for 8 and the inverted
gamma distribution for o2 to obtain a K + 1 variate sample on (8, o2). [Of course, for
this application, we do know the marginal posterior distribution for ﬂ,—_spe -8).

The Gibbssampleris not truly arandom sampler: it is a Markov chain-_each “draw”
from the distribution is a function of the draw that precedes it. The random input at
each cycle provides the randonmess, which leads to the popular name for this strategy,
Markov—Cham Mmtte Carlo or MCMC or MC? (pick one) estimation. In its simplest

‘ ‘_' 6

/6
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form, it provides a remarkably efficient tool for studying the posterior distributions in
very complicated models. The example in the next section shows a striking example of
~how to locate the MLE for a probit model without computing the likelihood function
or its derivatives. In Se_cﬁon 8. we will examine an extension and refinement of the
strategy, the Metropolis—Hastifg algorithm.
In the pext several sections, We will present some applications of Bayesian inference.
InSection QQ we will return to sgme generalissues in classical and Bayesian estimation

and inference.
2 \e

\b
‘\B/.B APPLICATION: BINOMIAL PROBIT MODEL

Consider inference about the binjgjal probit model for a dependent variable that is

generated as follows (see Sections 2—%‘ 4): /7 } b

17 vt =X +&. & ~N[0,1], (18220)
vi = 1if ¥* > 0, otherwise y; = 0. ¥+ (3621)

{Theoretical moivation for the mode] appears in Section,23.3.) The data consist of
(_Iy, X)=0nx)hi=1,... » . The random variable y; has a Bernoulli distribution with
probabilities

Probly =1|x] = ®(x;8),

Probly; = 0|x;] =1 - ®8).
The likelihood funetion for the observed data is

I E
Lyi X, p) = [[lex [l - e pT=>
- j=l
(Once again, we cheat a bit on the notation—the likelihood function is actually the
joint density for the data, given X and 8.) Classical maximum likelihood estimation of
B is developed in Section 23.4. To obtain the posterior mean (Bayesian estimator), we
assume a noninformative/flat (improper) prior for 8,

/ p(B) o 1,

The posterior density would be
[T lexpri — exipl )
[ IL1ewmei - supr-»cds

and the estimator would be tﬁe posterior mean,
R 1y,
fﬂ-ﬂ [I_lexpri - exip)=dp ng

prLl[‘l’(x;ﬁ)]-"’ [1 - e p) i '

Evaluation of the integrals in (§§-22) is hopelessly complicated, but a solution using
the Gibbs sampler and a techniqud known as data angmentation, pioncered by Albert

‘ﬂ}b

PBly.X)=

B=EBly.X]=
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3
and Chib (1993a) is surprisingly simple. We begin by treating the unobserved v's as
unknowns to be estimated, along with g. Thus, the (K + #) x 1 parameter vector is

A = (8,¥"). We now constluct a Gibbs sampler. Congider, first, p(8 |y*. y, X). If ¥ is
known, then y; is known [see “21)]. Tt follows that

76 2@y 0=y % r\b

This posterior defines a linear regression model with normally/istributed disturbances
and known o2 = 1. It is precisely the model we saw in Section'$§.3.1, and the posterior
we need is in (}Q—S), with 62 = 1. So, based on our earlier results, it follows that

\b _PBIY 3. X) = N[p*, (XX)™'], (1¥23)
where
b* = (X'X)~'X’y*.
For ¥!. ignoring y; for the moment, it would follow immediately from (T‘Q—ZO) that
4} 18 X) =N[x8,1]. Io

However. y; is informative about ). If y; equals one, we know that ' > 0 and if y;
equals zero, then y! < 0. The implication is that conditioned on 8, X, and Y, ¥ has the

truncaged (above or below zero) normal distribution that is developed in Sectlons)ﬁ‘z_l’_l 9
and%?. 2. The standard notation for this is }

/& PO =1.8,%) =N¥[xi8,1], {)(324
B 24)

P 1y =0, 8,%) =N7[x;8,1}.
Results (16-23) and (1,8’24) set up the components for a Gibbs sampler that we can

use to estimate the posterior means £[8 ]y, X} and Ely*ly, X] The following is our
algorithm: -

Gibbs Sampler for the Binomial Probit Model
1. Compute X'X once at the outset and obtain L such that LL' = (X’ X)L,
2. Start 8 at any value such as 0.
Wult—l) shows how to transform a draw from U[0, 1] to a draw from the

truncated normal with underlying mean p and standard deviation ¢. For this
/ / application. the draw is

vhe) =x8,_, + @71 - (1 - D)o, D]ty =1,
V0 =X,y + ¢‘1[U(I>(-x§ﬁ, D1if % = 0.
This step is used to draw the 1 observations on y7, (7).
4. Section}7:2.4 shows how to draw an observation from the multivariate normal
populatlon For this application, we use the results at step 3 to compute
/_{ = (X"’X)~!X'y*(r). We obtain a vector, ¥, of K draws from the N[0, 1]
populatlon then 8(r) = b* -+ Lv.

The iteration cycles between steps 3 and 4. This should be repeated several thousand
times, discarding the burn-in draws, then the estimator of g is the sample mean of the
retained draws. The posterior variance is computed with the variance of the retained
draws. Posterior estimates of y} would typicaily not be useful.
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TABLE %2 Probit Estimates for Grade Equation

B . Maximum Likelihood Posterior Means and Std. Devs
Variable Estimate . Standard Error Posterior Mean Posterior 5.1,
Constant —7.4523 2.5425 —B8.6286 2.7995
GPA 1.6258 0.6939 1.8754 0.7668
TUCE 0.05173 0.08389 0.06277 0.08695
PSl 1.4263 0.5950 1.6072 . 06257

4 ty

Example 18 ibbsSampler for a Probit Model
P In Examples(16.14 nd e examined Spector and Mazzeo’s (1980) widely traveled
data on a binafy choice Blttome. (The example used the data for a different model.) The
binary probit model studied in the paper was jl/ )

@ . I+
Prob(GRADE; =11 8,%) ={®(B1+ $2GPA, ft- B TUCE, + 8,PSH).

o 0 The variables are defined in Example(}6.14,) Theipprobit medel is studied in Example 23.3.
L Verhs The sample contains 32 observations. Table 482 presents the maximum likelihood estimates
) and the posterior means and standard deviations for the probit model. For the Gibbs sampler,
we used 5,000 draws, and discarded the first 1,000.
/ é The resuffs in Table 8.2 suggest the similarity of the posterior mean estimated with the
Gibbs sampler to the maximum likelffhood estimate. However, the sample is quite small, and
the differences between the coefficients are still fairly substantial. For a striking example of
the behavior of thig-precedurs,ue niow revisit the German healih care data examined in
o Examples (8P Jand nd saveral other examples throughout the book. The
probit modelfo be estimated s :ft (

Prob{Doctor visits: > 0) = S{p1 + 2 Agey + ps Education: + s Incomen
f& + P Kidsi + ps Mairied;; + B; Female,;).

The sample contains datacn 7,293&amilies and atotal of 27,326 observations. We are pooling
the data for this application. Table 18,3 prasents the probit results for this model using the
same procedure as before. (We used only 500 draws, and discarded the first 100.)

The similarity is what one would expect given the large sample size. We note before
proceeding to other applications, notwithstanding the siriking similarity of the Gibbs sampler
to the MLE, that this is not an efficient method of estimating the parameters of a probit
model. The estimator requires generation of thousands of samples of potentially thousands
of observations. We used only 500 replications to produce Tabl 3. The computations
took about five minutes. Using Newton’s method to maximize the/log-likelihood directly took
less than five seconds. Unless one is wedded to the Bayesian paradigm, on strictly practical
grounds, the MLE would be the preferred estimator. J éa

TABLE 723 Probit Estimates for Doctor Visits Equation

Maximum Likelihood Posterior Means and Std, Devs
Variable Estimate Standard Error Posterior Mean Posterior S.DD.
Constant —0.12433 0.058146 ~0.12628 0.05475%
Age 0.011892 0.00079568 0.011979 0.00080073
Education —0.014966 0.0035747 —0.015142 0.0036246
Income —0.13242 (.046552 —0.12669 0.047979
Kids -0.15212 0.018327 —0.15149 0.018400
Married 0.073522 0.020644 0.071977 0.020852

Female 0.35591 0.016017 0.35582 0.015913
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This application of the Gibbs sampler demonstrates in an uncomplicated case how
the algorithm can provide ap alternative to actually maximizing the log-likelikood. We
do note that the similarity of the method to the EM algorithm in Section E.3.7 is not
coincidental. Both procedures use an estimate of the unobserved, censored data, and
both estimate 8 by using OLS using the predicted data.

14.7 PANEL DATA APPLICATION: INDIVIDUAL
EFFECTS MODELS

We consider a panel data model with common individual effects,
¥ir = +-.X?J_3 + & it ~N [0, 0,2]-

In the Bayesian framework, there is no need to distinguish between fixed and random
effects. The classical distinction resulis from an asymmetric treatment of the data and
the parameters. So, we will leave that unspecified for the moment. The implications will
emerge later when we specify the prior densities over the model parameters.

The likelihood function for the sample under normality of &y 18

n i . _x, 2'
p{ylei, .., a0 .0l X H ( 2—"—’—%2—’1—@—>
[

=11 =1 %

The remaining analysis hinges on the specification of the prior distributions. We will
consider three cases. Each illustrates an aspect of the methodology.

First, group the full set of location (regression) parameters in one (12 + K) x 1
slope vector, y. Then, with the disturbance variance, 8 = (¢, 8, 03) ={(y. af). Define a
conformable data matrix, Z = (DD, X), where D contains the n dummy variables so that
we may write the model, '

Y=2y g I
in the familiar fashion for our common effects linear regression. (See Chapter,@./) We

now assume the uniforni-inverse gamma prior that we used in our earlier treatment of
the linear model,

Py al) <1/,

The resuiting (marginal) posterior density for y is precisely that in (}8-8) {where now |
the slope vector includes the elements of @). The density is an (n 4+ K) variate ¢ with A

mean equal to the OLS estimator and covariance matrix [(Z; 5 ~ o — K)/(Z; T - n— | 11X
K —2))s%Z’'Z)". Because OLS in this model as stated means the within estimatoy, the | « .
implication is that with this noninformative prior over («, 8), the model is equivalent |
to the fixed effects model. Note, again, this is not a consequence of any assumption
about correlation between effects and included variables. That has remained unstated;
though, by implication, we would allow correlation between D and X. /1

Some observers are uncomfortable with the idea of a uniforin prior over the entire

real line. [See, e.g., Koop (2003, pp. 22223).] Others, e.g- Zellner (1971, p. 20), are ',
less concerned. Cameron and Hivedi (2005 pp. 425-427) suggest a middle ground.] =

Formally, our assumption of a uniform prior over the entire real line is an improper( "' |

[ |
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gran

“prior, because it cannot have a positive density and integrate to one over the entire real
Tline. As such, the posterior appears to be ilt defined. However, note that the “improper”

uniform prior will, in fact, fall out of the posterior, because it appears in both numerator
and denominator. [Zeliner (1971, p. 20) offers some more methodological commentary.]
The practical solution for location paiameters, such as a vector of regression slopes, is
to assume a nearly flat, “almost uninformative™ prior. The usual choice is a conjugate

~ normal prior with an arbitrarily large variance. (It should be noted, of course, that as

long as that variance is finite, even if it is large, the prior is informative. We return to
this point in Section @]/ /&
Consuie} then, the conventional normal-gamma priorover (¥, o.2) where the condi-
tional (on o2) prior normal density for the slope parameters has mean yq and covariance
matrix O'ZA where the (7 + K) x (# + K) matrix, A, is yet to be spec;ﬁed [See the dis-
cussion after -13).] The marginal posterior mean and variance for y for this set of
assumptions are given in _()'3 14) and (18-15). We reach a point that plesents two rather

serious dilemmas for the researcher. The posterior was simple with our uniform, non-
informative prior, Now, it is necessary actually to specify A, which is potentially large.
{In one of our main applications in this text, we are analyzing models with # = 7,293
constant terms and about K = 7 regressors.) It is hopelessly optimistic to expect to be
able to specify all the variances and covariances in a matrix this large, unless we actually
have the results of an earlier study (in which case we would also have a prior estimate
of,y). A practical solution that is frequently chosen is to specify A to be a diagonal
matrix with extremely large diagonal elements, thus emulating a uniform prior without

having fo commit to one. The second practical issue then becomes dealing with tl_______.--‘)[a

actual computation of the order (# + K} inverse matrix in (K14) and (J8-15). Under
the strategy chosen, to make A a multiple of the identity matrix, however, there are
forms of partitioned inverse matrices that will allow solution to the actual computation.

Thus far, we have assumed that each o; is generated by a different normal distribu-
tion, —y, arid A, however specified, have (potentially) different means and variances
for the elements of a. The third specification we consider is one in which all o;s in the
model are assumed to be draws from the same population. To produce this specification,
we use a hierarchical prior for the individual effects. The full model wilt be

Vir = o + X0, 8 + £3r, £ ~ N[0, 02],
p(B|o?) =N[Bo.o?A].

p(o}) = Gamma(s?, m),

p(ai) = N[‘lﬂs 13]7

plpta) = N[_("1_Q]-.

p(r2) = Gamma(rg, v).
We will not be able to derive the posterior density (joint or marginal} for the parame-
ters of this model. However, it is possible to set up a Gibbs sampler that can be used
to infer the characteristics of the posterior densities statistically. The sampler will be
driven by conditional normal posten'ols for the location parameters, [ | &. 62, itq,,72].

[a; | B, 92, ttar.x2] and [uaiﬁ,a 02,12] and conclltmnalgamma densities f01 the scale
(vauance) parameters, {67 )&, B, tto,72] and [z2 @, 8,02, o). [The procedure is

D
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developed at length by Koop (2003, pp. 1521153).] The assumption of a common distri-
bution for the individual effects and an independent prior for B produces a Bayesian
counterpart to the random effects model.

)
V8.8 HIERARCHICAL BAYES ESTIMATION
OF A RANDOM PARAMETERS MODEL

oy We now consider a Bayesian approach to estimation of the random parameters model.l>
For an individual i. the conditional density for the dependent variable in period ¢ is
S | %6, B;) where 8, is the individual specific K x 1 parameter vector and_;, is
individual specific data that enter the probability density.!¥ For the sequence of 7 ob-
servations, assuming conditional (on 8;) independence. person /s contribution to the
likelihood for the sample is

(6

T
£y ) Xio 85 =TT f s 1 xin, B0)- ($6-25)
) t=1 .
where y; = (¥, ..., vr) and X; =[x, .. .. X;7]. We will suppose that 8, is distributed
normally with mean 8 and covariance matrix X. (This is the “hierarchical” aspect of
the model.) The unconditional density would be the expected value over the possible
values of §;;

g .

£0511X0, 8. B) = / ] ol g00xlB 18, EL g (H26)

l‘_

where ¢x[8.| 8, Z] denotes the K variate normal prior density for 8; given 8 and ¥.
Maximum likelihood estimation of this modei, which entails estimation of the “deep”
parameters, 3, X, then estimation of the individual specific parameters, 8; is considered

_/_i\nFEEEEOJ,W 5. We now consider the Bayesian approach to estimation of the parameters
/ { ol this model.

To approach this from a Bayesian viewpoint, we will assign noninformative prior
densities to 8 and X. As is conventional, we assign a flat (noninformative) prior to
B. The variance parameters are more involved. If it is assumed that the elements of
B; are conditionally independent, then cach element of the (now) diagonal matrix _§_I__ﬂ_____ /)é_\ _
may be assigned the inverted gamma prior that we used in (J8=T3]. A full mafrix T is '
handled by assigning to I an inverted Wisllart prior density with parameters scalar K
and matrix K x I. [The Wishart densrty is a multivariate counterpart to the chi-squared

¥"Note that. there is occasional confusion as to what is meant by “random parameters” in a random param-
eters (RP) model. In the Bayesian framework we discuss in this chapter, the “randomness” of the random
parameters in the model arises from the “uncertainty” of the analyst. As developed at several points in this
book (and in the literature), the randomness of the parameters in the RP medel is a characterization of the
heterogencity of parameters across individuals. Consider, for example, in the Bayesian framework of this
scction, in the RP model, each vector, 8, is a random vector with a distribution (defined hierarchicaily). In
the classical framework, each ﬂ, represents a single draw from a parent population.

18To gvoid a layer of complication, we will embed the time-invariant effect A in x,B. A full treatment in

the same fashion as the latent class model would be substantially more complicated in this setting (although
it is quite straightforward in the maximum simulated likelihood approach discussed in Section 7.5.1).

5~
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distribution. Discussion may be found in Zellner (1971, pp. 389-394).] This produces
the joint posterior density,

. (ar
A(By. ..., B B, T |all data) = {HH Fe | X, B0k I_ﬁ.f‘_-?]} x p(B. ).
i:] I=l
- E -27)

This gives the joint density of alf the unknown parameters conditioned on the observed
data, Our Bayesian estiinators of the parameters will be the posterior means for these Y7
(n+ 1)K + K(K + 1)/2 parameteys. In principle, this requires integration of (}8’273/
with respect to the components. As one might guess at this point, that integration is
hopelessly complex and not remotely feasible.

However, the techniques of Markov Chain Monte Carto (MCMC) simulation esti-
mation (the Gibbs sampler) and the Metmpohs—Hastmgﬁ algorlthm enable usto sample
from the (hopelessly complex) joint density A(ﬁ,, vvvy Bus B, | all data) in a remark-
ably simple fashion. Train (2001 and 2002, Chapter 12) describe how to use these results
for this random parameters model.’® The usefulness of this result for our current prob-
lem is that it is, indeed, possible to partition the joint distribution, and we can easily
sample from the conditional distributions. We begin by partitioning the parameters
intoy = (8, X)and § = (#,,..., 8,). Train proposes the following strategy: To obtain
. adraw from y | 8, we will use the Gibbs sampler to obtain a draw from the distribution
i of (BIE, _8)',_thei1 one from the distribution of (X | #, 3). We will lay out this first, then

| turn to sampling from § | 8, X.

Conditioned on 5 and Z, 8 has a K-variate normal distribution with mean ﬂ =
(A/miZf, 8; and covariance matrix (1 /n)Z To sample from this distribution we will
first obtain the Cholesky factorization of £ = LL' where L is a lower triangular matrix.
[See Section-A.6.11.] Let y be a vector of K draws from the standard normal distribution.
Then, 8 + Ly has mean vector 8 + L x 0 = 8 and covariance matrix LIL’ = ¥, which
is exactly what we need. So, this shows how to sample a draw from the conditional
distribution 8.

To obtain a random draw from the distribution of X | 8, §, we will require a random
draw from the inverted Wishart distribution. The marginal posterior distribution of
X | B. 8 is inverted Wishart with parameters scalar K + n and matrix W, = (K1 + 1Y),
where V = (1 /MY (B — B)B; — BY. Train (2001) suggests the following strategy
for sampling a matrix from this distribution: Let M be the lower triangular Cholesky
factor of W-1, so MM’ = W-1. Obtain X +nr draws of ¥; = K standard normal variates.
Then,obtain$ = M( KA vov, )M, Then, 5/ = S~ isa draw from the inverted Wishart
distribution. [This s fairly straightforward, as it involves only random sampling from the
standard normal distribaution. For a diagonal X matrix, that is, uncorrelated parameters
in 8;, it snnphﬁes a bit further, A dlaw for the nonzero kth diagonal element can be

obtained using (1 +nV)/ f_"}" V-]

y

Y¥Train describes use of this method for “mixed (random parameters) multinomial logit™ models, By writing

the densities in generic form, we have extended his result to any general setting that involves a parameter

vector in the fashion described above. The classical version of this appears in Section AY.5.1 for the binomial
/‘ probit model and in Section 28.11.6 for the mixed logit model. /

¥
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The difficult step is sampling 8;. For this step, we use the Metropolis Hastings
(M-H) algorithm suggested by Chib and Greenberg (1995, 1996) and Gelman et al.
(2004). The procedure involves the following steps:

1. Given 8 and ¥ and “tuning constant” r (to be described below), compute
A = tLv where L is the Cholesky factorization of ¥, and v is a vector of K
independent standard normal draws. A
Create a trial value, 8,1 = 8,4 4 4 where 8,9 is the previons value.
. The posterior distribution for B; is the likelihood that appears in (,16/26) times the
joint normal prior density, ¢-K[,8, | 8. Z]. Evaluate this posterior density at the trial
value 8;; and the previous value 8. Let

ot f(yi I.-xi'a lgr'])‘-bK(.'ﬁ_il lﬁ» z).
i1 X, Bi)Px(Bin] B, %)

. Draw one observation, «, from the standard uniform distribution, U[G, 11.
. If 1 < Ry, then accept the trial (new) draw. Otherwise, reuse the old one.

w9

=Y

[3

This M-H iteration converges to a sequence of draws from the desired density, Overall,
then, the algorithm uses the Gibbs sampler and the Metropolis.Hastings algorithm
to produce the sequence of draws for all the parameters in the model. The sequence
is repeated a large number of times to produce each draw from the joint posterior
distribution. The entire sequence must then be repeated /N times to produce the sample
of N draws, which can then be analyzed, for example, by computing the posterior mean.
Some practical details remain. The tuning constant, r is used to control the iteration.

A smaller 7 increases the acceptance rate. But at the same time, a smaller r makes new
draws look more like old draws so this slows down the process. Gelman et al. (2004)
suggest 7 = 0.4 for K = 1 and stnaller values down to about .23 for higher dimensions,
as will be typical. Each multivariate draw takes many runs of the MCMC sampler. The
process must be started somewhere, though it does not matter much where. Nonetheless,
a “burn-in” period is required to eliminate the influence of the starting value. Typical
applications use several draws for this burn in period for each run of the sampler. How
many sample observations are needed for accurate estimation is not certain, though
several hundred would be a minimum. This means that there is a huge amount of com-
putation done by this estimator. However. the computations are fairly simple. The only
complicated step is computation of the acceptance criterion at step 3 of the M:H itera-
tion. Depending on the model. this may, like the rest of the calculations, be quite simple.

\o

2.9 SUMMARY AND CONCLUSIONS

This chapter has introduced the major elements of the Bayesian approach to estimation
and inference. The contrast between Bayesian and classical, or frequentist, approaches
to the analysis has been the subject of a decades-long dialogue among practitioners and
philosophers. As the frequency of applications of Bayesian methods have grown dra-
matically in the modern literature, however, the approach to the body of techniques has
typica]ly become more pragmatic. The Gibbs sampler and related techniques includ-
ing the Metropolis-Hastings algorithm have enabled some remarkable simplifications
of heretofore intractable problems. For example, recent developments in commercial
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software have produced a wide choice of “mixed” estimators which are various im-
plementations of the maximum likelihood procedures and hierarchical Bayes proce-
dures (such as the Sawtooth and MLWin programs). Unless one is dealing with a smail
sample, the choice between these can be based on canvenience. There is little method-
ological difference. This returns us to the practical point noted earlier. The choice
between the Bayesian approach and the sampling theory method in this application
would not be based on a fundamental methodological criterion. but on purely practical
considerations—the end result is the same.

This chapte1 concludes our survey of estimation and inference methods in econo-

metrics. We will now turn to two major areas of applications, time series and (broadly)

macroeconometrics, and microeconometrics which is primarily oriented to cr: 0SS, sectlo
and panel data applications.

Key Terms and Concepts |
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« Bayes factor s Informative prior e Posterior mean |l ===
* Bayes theorem » Inverted gamma distribution 1/ Posterior odds | 11 <
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« Improper prior ¢ Posterior density
Exercise
1. Suppose the distribution of y; { A is Poisson,

exp(—A)A¥ _ exp(—i)aM
w! SO+’

We will obtain a sample of observations, y;, ..., v,. Suppose our prior for 4 is the
inverted gamma, which will imply

F(yi|3) =

=01, 2A>0

1
_p(A)ocI.

a. Construct the likelihood function, p(y, ..., ¥ |A).
b. Construct the posterior density

Py Ve A pLA)
]0 P¥L . e | A)p ()R

Py L) =

c. Prove that the Bayesian estimator of A is the posterior mean, £[A |y, ..., v,] =T
d. Prave that the posterior variance is Varfily, ..., v} =¥%/n.

2¢
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(Hint: You will make heavy use of gamma integrals in solving this problem, Also, you
will find it convenient to use L;y; = #y.)

' Application A i B -

1. Consider a model for the mix of male and female children in families, Let K
denote the family size (number of children), K; == 1, ... . Let F; denote the number
of female children, £; = 0,..., K;. Suppose the density for the number of female
children in a family with K; children is binomial with constant success probability &:

pUFi|K:,0) = ( ff' ) 85 (1 — gk,
We are interested in analyzing the “probability,” 8. Suppose the (conjugate) prior
over & is a beta distribution with parameters 4 and b:

T{a +b)
" T@r®
Youwr sample of 25 observations is given here:

p® ge=t(1 — gyb-1.
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a. Compute the classical maximum likelihood estimate of 4.

b. Form the posterior density for @ given (K, Fj),i =1, ..., 25 conditioned on @

and b. ,

Using your sample of data, compute the posterior mean assuminga = b = 1.

Using your sample of data, compute the posterior mean assuming a = b = 2,

e. Using your sample of data, compute the posterior mean assuming 4 = 1 and
b=2

o



