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APPENDIX A

Q
MATRIX ALGEBRA

A.1 TERMINOLOGY

A matrix is a rectangular array of numbers, denoted

A = [aik] = [A]ik =

⎡
⎢⎣

a11 a12 · · · a1K

a21 a22 · · · a2K

· · ·
an1 an2 · · · anK

⎤
⎥⎦ . (A-1)

The typical element is used to denote the matrix. A subscripted element of a matrix is always
read as arow,column. An example is given in Table A.1. In these data, the rows are identified with
years and the columns with particular variables.

A vector is an ordered set of numbers arranged either in a row or a column. In view of the
preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one
column. Thus, in Table A.1, the five variables observed for 1972 (including the date) constitute a
row vector, whereas the time series of nine values for consumption is a column vector.

A matrix can also be viewed as a set of column vectors or as a set of row vectors.1 The
dimensions of a matrix are the numbers of rows and columns it contains. “A is an n × K matrix”
(read “n by K”) will always mean that A has n rows and K columns. If n equals K, then A is a
square matrix. Several particular types of square matrices occur frequently in econometrics.

• A symmetric matrix is one in which aik = aki for all i and k.
• A diagonal matrix is a square matrix whose only nonzero elements appear on the main

diagonal, that is, moving from upper left to lower right.
• A scalar matrix is a diagonal matrix with the same value in all diagonal elements.
• An identity matrix is a scalar matrix with ones on the diagonal. This matrix is always

denoted I. A subscript is sometimes included to indicate its size, or order. For example,
I4 indicates a 4 × 4 identity matrix.

• A triangular matrix is one that has only zeros either above or below the main diagonal. If
the zeros are above the diagonal, the matrix is lower triangular.

A.2 ALGEBRAIC MANIPULATION OF MATRICES

A.2.1 EQUALITY OF MATRICES

Matrices (or vectors) A and B are equal if and only if they have the same dimensions and each
element of A equals the corresponding element of B. That is,

A = B if and only if aik = bik for all i and k. (A-2)

1Henceforth, we shall denote a matrix by a boldfaced capital letter, as is A in (A-1), and a vector as a boldfaced
lowercase letter, as in a. Unless otherwise noted, a vector will always be assumed to be a column vector.
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TABLE A.1 Matrix of Macroeconomic Data

Column

2 3 5
1 Consumption GNP 4 Discount Rate

Row Year (billions of dollars) (billions of dollars) GNP Deflator (N.Y Fed., avg.)

1 1972 737.1 1185.9 1.0000 4.50
2 1973 812.0 1326.4 1.0575 6.44
3 1974 808.1 1434.2 1.1508 7.83
4 1975 976.4 1549.2 1.2579 6.25
5 1976 1084.3 1718.0 1.3234 5.50
6 1977 1204.4 1918.3 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 1507.2 2417.8 1.6342 10.28
9 1980 1667.2 2633.1 1.7864 11.77

Source: Data from the Economic Report of the President (Washington, D.C.: U.S. Government Printing
Office, 1983).

A.2.2 TRANSPOSITION

The transpose of a matrix A, denoted A′, is obtained by creating the matrix whose kth row is
the kth column of the original matrix. Thus, if B = A′, then each column of A will appear as the
corresponding row of B. If A is n × K, then A′ is K × n.

An equivalent definition of the transpose of a matrix is

B = A′ ⇔ bik = aki for all i and k. (A-3)

The definition of a symmetric matrix implies that

if (and only if) A is symmetric, then A = A′. (A-4)

It also follows from the definition that for any A,

(A′)′ = A. (A-5)

Finally, the transpose of a column vector, a, is a row vector:

a′ = [a1 a2 · · · an].

A.2.3 MATRIX ADDITION

The operations of addition and subtraction are extended to matrices by defining

C = A + B = [aik + bik]. (A-6)

A − B = [aik − bik]. (A-7)

Matrices cannot be added unless they have the same dimensions, in which case they are said to be
conformable for addition. A zero matrix or null matrix is one whose elements are all zero. In the
addition of matrices, the zero matrix plays the same role as the scalar 0 in scalar addition; that is,

A + 0 = A. (A-8)

It follows from (A-6) that matrix addition is commutative,

A + B = B + A. (A-9)
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and associative,

(A + B) + C = A + (B + C), (A-10)

and that

(A + B)′ = A′ + B′. (A-11)

A.2.4 VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. The inner product, or dot product, of two
vectors, a and b, is a scalar and is written

a′b = a1b1 + a2b2 + · · · + anbn. (A-12)

Note that the inner product is written as the transpose of vector a times vector b, a row vector
times a column vector. In (A-12), each term a j bj equals bj a j ; hence

a′b = b′a. (A-13)

A.2.5 A NOTATION FOR ROWS AND COLUMNS OF A MATRIX

We need a notation for the ith row of a matrix. Throughout this book, an untransposed vector
will always be a column vector. However, we will often require a notation for the column vector
that is the transpose of a row of a matrix. This has the potential to create some ambiguity, but the
following convention based on the subscripts will suffice for our work throughout this text:

• ak, or al or am will denote column k, l, or m of the matrix A,
• ai , or a j or at or as will denote the column vector formed by the transpose of row

i, j, t , or s of matrix A. Thus, a′
i is row i of A.

(A-14)

For example, from the data in Table A.1 it might be convenient to speak of xi , where i = 1972
as the 5 × 1 vector containing the five variables measured for the year 1972, that is, the transpose
of the 1972 row of the matrix. In our applications, the common association of subscripts “i” and
“ j” with individual i or j , and “t” and “s” with time periods t and s will be natural.

A.2.6 MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n × K matrix A and a K × M matrix B, the product matrix, C = AB, is an n × M matrix
whose ikth element is the inner product of row i of A and column k of B. Thus, the product matrix
C is

C = AB ⇒ cik = a′
i bk. (A-15)

[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in the first
must be the same as the number of rows in the second, in which case they are conformable for
multiplication.2 Multiplication of matrices is generally not commutative. In some cases, AB may
exist, but BA may be undefined or, if it does exist, may have different dimensions. In general,
however, even if AB and BA do have the same dimensions, they will not be equal. In view of
this, we define premultiplication and postmultiplication of matrices. In the product AB, B is
premultiplied by A, whereas A is postmultiplied by B.

2A simple way to check the conformability of two matrices for multiplication is to write down the dimensions
of the operation, for example, (n × K) times (K × M). The inner dimensions must be equal; the result has
dimensions equal to the outer values.
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Scalar multiplication of a matrix is the operation of multiplying every element of the matrix
by a given scalar. For scalar c and matrix A,

cA = [caik]. (A-16)

The product of a matrix and a vector is written

c = Ab.

The number of elements in b must equal the number of columns in A; the result is a vector with
number of elements equal to the number of rows in A. For example,⎡

⎣5
4
1

⎤
⎦ =

⎡
⎣4 2 1

2 6 1
1 1 0

⎤
⎦

⎡
⎣a

b
c

⎤
⎦ .

We can interpret this in two ways. First, it is a compact way of writing the three equations

5 = 4a + 2b + 1c,

4 = 2a + 6b + 1c,

1 = 1a + 1b + 0c.

Second, by writing the set of equations as⎡
⎣5

4
1

⎤
⎦ = a

⎡
⎣4

2
1

⎤
⎦ + b

⎡
⎣2

6
1

⎤
⎦ + c

⎡
⎣1

1
0

⎤
⎦ ,

we see that the right-hand side is a linear combination of the columns of the matrix where the
coefficients are the elements of the vector. For the general case,

c = Ab = b1a1 + b2a2 + · · · + bKaK. (A-17)

In the calculation of a matrix product C = AB, each column of C is a linear combination of the
columns of A, where the coefficients are the elements in the corresponding column of B. That is,

C = AB ⇔ ck = Abk. (A-18)

Let ek be a column vector that has zeros everywhere except for a one in the kth position.
Then Aek is a linear combination of the columns of A in which the coefficient on every column
but the kth is zero, whereas that on the kth is one. The result is

ak = Aek. (A-19)

Combining this result with (A-17) produces

(a1 a2 · · · an) = A(e1 e2 · · · en) = AI = A. (A-20)

In matrix multiplication, the identity matrix is analogous to the scalar 1. For any matrix or vector
A, AI = A. In addition, IA = A, although if A is not a square matrix, the two identity matrices
are of different orders.

A conformable matrix of zeros produces the expected result: A0 = 0.

Some general rules for matrix multiplication are as follows:

• Associative law: (AB)C = A(BC). (A-21)
• Distributive law: A(B + C) = AB + AC. (A-22)
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• Transpose of a product: (AB)′ = B′A′. (A-23)
• Transpose of an extended product: (ABC)′ = C′B′A′. (A-24)

A.2.7 SUMS OF VALUES

Denote by i a vector that contains a column of ones. Then,
n∑

i=1

xi = x1 + x2 + · · · + xn = i′x. (A-25)

If all elements in x are equal to the same constant a, then x = ai and
n∑

i=1

xi = i′(ai) = a(i′i) = na. (A-26)

For any constant a and vector x,
n∑

i=1

axi = a
n∑

i=1

xi = ai′x. (A-27)

If a = 1/n, then we obtain the arithmetic mean,

x̄ = 1
n

n∑
i=1

xi = 1
n

i′x, (A-28)

from which it follows that
n∑

i=1

xi = i′x = nx̄.

The sum of squares of the elements in a vector x is
n∑

i=1

x2
i = x′x; (A-29)

while the sum of the products of the n elements in vectors x and y is
n∑

i=1

xi yi = x′y. (A-30)

By the definition of matrix multiplication,

[X′X]kl = [x′
kxl ] (A-31)

is the inner product of the kth and lth columns of X. For example, for the data set given in
Table A.1, if we define X as the 9 × 3 matrix containing (year, consumption, GNP), then

[X′X]23 =
1980∑

t=1972

consumptiont GNPt = 737.1(1185.9) + · · · + 1667.2(2633.1)

= 19,743,711.34.

If X is n × K, then [again using (A-14)]

X′X =
n∑

i=1

xi x′
i .
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This form shows that the K × K matrix X′X is the sum of n K × K matrices, each formed from
a single row (year) of X. For the example given earlier, this sum is of nine 3 × 3 matrices, each
formed from one row (year) of the original data matrix.

A.2.8 A USEFUL IDEMPOTENT MATRIX

A fundamental matrix in statistics is the “centering matrix” that is used to transform data to
deviations from their mean. First,

i x̄ = i
1
n

i′x =

⎡
⎢⎢⎣

x̄
x̄
...

x̄

⎤
⎥⎥⎦ = 1

n
ii′x. (A-32)

The matrix (1/n)ii′ is an n × n matrix with every element equal to 1/n. The set of values in
deviations form is ⎡

⎢⎣
x1 − x̄
x2 − x̄

· · ·
xn − x̄

⎤
⎥⎦ = [x − ix̄] =

[
x − 1

n
ii′x

]
. (A-33)

Because x = Ix, [
x − 1

n
ii′x

]
=

[
Ix − 1

n
ii′x

]
=

[
I − 1

n
ii′

]
x = M0x. (A-34)

Henceforth, the symbol M0 will be used only for this matrix. Its diagonal elements are all
(1 − 1/n), and its off-diagonal elements are −1/n. The matrix M0 is primarily useful in com-
puting sums of squared deviations. Some computations are simplified by the result

M0i =
[

I − 1
n

ii′
]

i = i − 1
n

i(i′i) = 0,

which implies that i′M0 = 0′. The sum of deviations about the mean is then

n∑
i=1

(xi − x̄ ) = i′[M0x] = 0′x = 0. (A-35)

For a single variable x, the sum of squared deviations about the mean is

n∑
i=1

(xi − x̄ )2 =
(

n∑
i=1

x2
i

)
− nx̄2. (A-36)

In matrix terms,

n∑
i=1

(xi − x̄ )2 = (x − x̄ i)′(x − x̄ i) = (M0x)′(M0x) = x′M0′M0x.

Two properties of M0 are useful at this point. First, because all off-diagonal elements of M0

equal −1/n, M0 is symmetric. Second, as can easily be verified by multiplication, M0 is equal to
its square; M0M0 = M0.
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DEFINITION A.1 Idempotent Matrix
An idempotent matrix, M, is one that is equal to its square, that is, M2 = MM = M. If M
is a symmetric idempotent matrix (all of the idempotent matrices we shall encounter are
symmetric), then M′M = M.

Thus, M0 is a symmetric idempotent matrix. Combining results, we obtain

n∑
i=1

(xi − x̄ )2 = x′M0x. (A-37)

Consider constructing a matrix of sums of squares and cross products in deviations from the
column means. For two vectors x and y,

n∑
i=1

(xi − x̄ )(yi − ȳ) = (M0x)′(M0y), (A-38)

so ⎡
⎢⎢⎢⎣

n∑
i=1

(xi − x̄ )2
n∑

i=1

(xi − x̄ )(yi − ȳ)

n∑
i=1

(yi − ȳ)(xi − x̄ )

n∑
i=1

(yi − ȳ)2

⎤
⎥⎥⎥⎦ =

[
x′M0x x′M0y

y′M0x y′M0y

]
. (A-39)

If we put the two column vectors x and y in an n × 2 matrix Z = [x, y], then M0Z is the n × 2
matrix in which the two columns of data are in mean deviation form. Then

(M0Z)′(M0Z) = Z′M0M0Z = Z′M0Z.

A.3 GEOMETRY OF MATRICES

A.3.1 VECTOR SPACES

The K elements of a column vector

a =

⎡
⎢⎣

a1

a2

· · ·
aK

⎤
⎥⎦

can be viewed as the coordinates of a point in a K-dimensional space, as shown in Figure A.1
for two dimensions, or as the definition of the line segment connecting the origin and the point
defined by a.

Two basic arithmetic operations are defined for vectors, scalar multiplication and addition. A
scalar multiple of a vector, a, is another vector, say a∗, whose coordinates are the scalar multiple
of a’s coordinates. Thus, in Figure A.1,

a =
[

1
2

]
, a∗ = 2a =

[
2
4

]
, a∗∗ = −1

2
a =

[
− 1

2

−1

]
.
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FIGURE A.1 Vector Space.

The set of all possible scalar multiples of a is the line through the origin, 0 and a. Any scalar
multiple of a is a segment of this line. The sum of two vectors a and b is a third vector whose
coordinates are the sums of the corresponding coordinates of a and b. For example,

c = a + b =
[

1
2

]
+

[
2
1

]
=

[
3
3

]
.

Geometrically, c is obtained by moving in the distance and direction defined by b from the tip of a
or, because addition is commutative, from the tip of b in the distance and direction of a. Note that
scalar multiplication and addition of vectors are special cases of (A-16) and (A-6) for matrices.

The two-dimensional plane is the set of all vectors with two real-valued coordinates. We label
this set R

2 (“R two,” not “R squared”). It has two important properties.

• R
2 is closed under scalar multiplication; every scalar multiple of a vector in R

2 is also
in R

2.
• R

2 is closed under addition; the sum of any two vectors in the plane is always a vector
in R

2.

DEFINITION A.2 Vector Space
A vector space is any set of vectors that is closed under scalar multiplication and
addition.

Another example is the set of all real numbers, that is, R
1, that is, the set of vectors with one real

element. In general, that set of K-element vectors all of whose elements are real numbers is a
K-dimensional vector space, denoted R

K. The preceding examples are drawn in R
2.
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FIGURE A.2 Linear Combinations of Vectors.

A.3.2 LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

In Figure A.2, c = a + b and d = a∗ + b. But since a∗ = 2a, d = 2a + b. Also, e = a + 2b and
f = b + (−a) = b − a. As this exercise suggests, any vector in R

2 could be obtained as a linear
combination of a and b.

DEFINITION A.3 Basis Vectors
A set of vectors in a vector space is a basis for that vector space if they are linearly inde-
pendent and any vector in the vector space can be written as a linear combination of that
set of vectors.

As is suggested by Figure A.2, any pair of two-element vectors, including a and b, that point
in different directions will form a basis for R

2. Consider an arbitrary set of vectors in R
2, a, b, and

c. If a and b are a basis, then we can find numbers α1 and α2 such that c = α1a + α2b. Let

a =
[

a1

a2

]
, b =

[
b1

b2

]
, c =

[
c1

c2

]
.

Then

c1 = α1a1 + α2b1,

c2 = α1a2 + α2b2.
(A-40)
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The solutions to this pair of equations are

α1 = b2c1 − b1c2

a1b2 − b1a2
, α2 = a1c2 − a2c1

a1b2 − b1a2
. (A-41)

This result gives a unique solution unless (a1b2 − b1a2) = 0. If (a1b2 − b1a2) = 0, then
a1/a2 = b1/b2, which means that b is just a multiple of a. This returns us to our original condition,
that a and b must point in different directions. The implication is that if a and b are any pair of
vectors for which the denominator in (A-41) is not zero, then any other vector c can be formed
as a unique linear combination of a and b. The basis of a vector space is not unique, since any
set of vectors that satisfies the definition will do. But for any particular basis, only one linear
combination of them will produce another particular vector in the vector space.

A.3.3 LINEAR DEPENDENCE

As the preceding should suggest, K vectors are required to form a basis for R
K. Although the

basis for a vector space is not unique, not every set of K vectors will suffice. In Figure A.2, a and
b form a basis for R

2, but a and a∗ do not. The difference between these two pairs is that a and b
are linearly independent, whereas a and a∗ are linearly dependent.

DEFINITION A.4 Linear Dependence
A set of k ≥ 2 vectors is linearly dependent if at least one of the vectors in the set can be
written as a linear combination of the others.

Because a∗ is a multiple of a, a and a∗ are linearly dependent. For another example, if

a =
[

1
2

]
, b =

[
3
3

]
, and c =

[
10
14

]
,

then

2a + b − 1
2

c = 0,

so a, b, and c are linearly dependent. Any of the three possible pairs of them, however, are
linearly independent.

DEFINITION A.5 Linear Independence
A set of vectors is linearly independent if and only if the only solution to

α1a1 + α2a2 + · · · + αKaK = 0

is

α1 = α2 = · · · = αK = 0.

The preceding implies the following equivalent definition of a basis.
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DEFINITION A.6 Basis for a Vector Space
A basis for a vector space of K dimensions is any set of K linearly independent vectors in
that vector space.

Because any (K + 1)st vector can be written as a linear combination of the K basis vectors, it
follows that any set of more than K vectors in R

K must be linearly dependent.

A.3.4 SUBSPACES

DEFINITION A.7 Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is spanned by
those vectors.

For example, by definition, the space spanned by a basis for R
K is R

K. An implication of this
is that if a and b are a basis for R

2 and c is another vector in R
2, the space spanned by [a, b, c] is,

again, R
2. Of course, c is superfluous. Nonetheless, any vector in R

2 can be expressed as a linear
combination of a, b, and c. (The linear combination will not be unique. Suppose, for example,
that a and c are also a basis for R

2.)
Consider the set of three coordinate vectors whose third element is zero. In particular,

a′ = [a1 a2 0] and b′ = [b1 b2 0].

Vectors a and b do not span the three-dimensional space R
3. Every linear combination of a and

b has a third coordinate equal to zero; thus, for instance, c′ = [1 2 3] could not be written as a
linear combination of a and b. If (a1b2 − a2b1) is not equal to zero [see (A-41)]; however, then
any vector whose third element is zero can be expressed as a linear combination of a and b. So,
although a and b do not span R

3, they do span something, the set of vectors in R
3 whose third

element is zero. This area is a plane (the “floor” of the box in a three-dimensional figure). This
plane in R

3 is a subspace, in this instance, a two-dimensional subspace. Note that it is not R
2; it

is the set of vectors in R
3 whose third coordinate is 0. Any plane in R

3, that contains the origin,
(0, 0, 0), regardless of how it is oriented, forms a two-dimensional subspace. Any two independent
vectors that lie in that subspace will span it. But without a third vector that points in some other
direction, we cannot span any more of R

3 than this two-dimensional part of it. By the same logic,
any line in R

3 that passes through the origin is a one-dimensional subspace, in this case, the set
of all vectors in R

3 whose coordinates are multiples of those of the vector that define the line.
A subspace is a vector space in all the respects in which we have defined it. We emphasize
that it is not a vector space of lower dimension. For example, R

2 is not a subspace of R
3. The

essential difference is the number of dimensions in the vectors. The vectors in R
3 that form a

two-dimensional subspace are still three-element vectors; they all just happen to lie in the same
plane.

The space spanned by a set of vectors in R
K has at most K dimensions. If this space has fewer

than K dimensions, it is a subspace, or hyperplane. But the important point in the preceding
discussion is that every set of vectors spans some space; it may be the entire space in which the
vectors reside, or it may be some subspace of it.

Bill
Sticky Note
delete comma
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A.3.5 RANK OF A MATRIX

We view a matrix as a set of column vectors. The number of columns in the matrix equals the
number of vectors in the set, and the number of rows equals the number of coordinates in each
column vector.

DEFINITION A.8 Column Space
The column space of a matrix is the vector space that is spanned by its column
vectors.

If the matrix contains K rows, its column space might have K dimensions. But, as we have seen,
it might have fewer dimensions; the column vectors might be linearly dependent, or there might
be fewer than K of them. Consider the matrix

A =

⎡
⎣1 5 6

2 6 8
7 1 8

⎤
⎦ .

It contains three vectors from R
3, but the third is the sum of the first two, so the column space of

this matrix cannot have three dimensions. Nor does it have only one, because the three columns
are not all scalar multiples of one another. Hence, it has two, and the column space of this matrix
is a two-dimensional subspace of R

3.

DEFINITION A.9 Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned by its
column vectors.

It follows that the column rank of a matrix is equal to the largest number of linearly inde-
pendent column vectors it contains. The column rank of A is 2. For another specific example,
consider

B =

⎡
⎢⎢⎣

1 2 3
5 1 5
6 4 5
3 1 4

⎤
⎥⎥⎦ .

It can be shown (we shall see how later) that this matrix has a column rank equal to 3. Each
column of B is a vector in R

4, so the column space of B is a three-dimensional subspace of R
4.

Consider, instead, the set of vectors obtained by using the rows of B instead of the columns.
The new matrix would be

C =

⎡
⎣1 5 6 3

2 1 4 1
3 5 5 4

⎤
⎦ .

This matrix is composed of four column vectors from R
3. (Note that C is B′.) The column space of

C is at most R
3, since four vectors in R

3 must be linearly dependent. In fact, the column space of
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C is R
3. Although this is not the same as the column space of B, it does have the same dimension.

Thus, the column rank of C and the column rank of B are the same. But the columns of C are
the rows of B. Thus, the column rank of C equals the row rank of B. That the column and row
ranks of B are the same is not a coincidence. The general results (which are equivalent) are as
follows.

THEOREM A.1 Equality of Row and Column Rank
The column rank and row rank of a matrix are equal. By the definition of row rank and
its counterpart for column rank, we obtain the corollary,

the row space and column space of a matrix have the same dimension. (A-42)

Theorem A.1 holds regardless of the actual row and column rank. If the column rank of a
matrix happens to equal the number of columns it contains, then the matrix is said to have full
column rank. Full row rank is defined likewise. Because the row and column ranks of a matrix
are always equal, we can speak unambiguously of the rank of a matrix. For either the row rank
or the column rank (and, at this point, we shall drop the distinction),

rank(A) = rank(A′) ≤ min(number of rows, number of columns). (A-43)

In most contexts, we shall be interested in the columns of the matrices we manipulate. We shall
use the term full rank to describe a matrix whose rank is equal to the number of columns it
contains.

Of particular interest will be the distinction between full rank and short rank matrices. The
distinction turns on the solutions to Ax = 0. If a nonzero x for which Ax = 0 exists, then A does not
have full rank. Equivalently, if the nonzero x exists, then the columns of A are linearly dependent
and at least one of them can be expressed as a linear combination of the others. For example, a
nonzero set of solutions to

[
1 3 10
2 3 14

]⎡
⎣x1

x2

x3

⎤
⎦ =

[
0
0

]

is any multiple of x′ = (2, 1, − 1
2 ).

In a product matrix C = AB, every column of C is a linear combination of the columns of
A, so each column of C is in the column space of A. It is possible that the set of columns in C
could span this space, but it is not possible for them to span a higher-dimensional space. At best,
they could be a full set of linearly independent vectors in A’s column space. We conclude that the
column rank of C could not be greater than that of A. Now, apply the same logic to the rows of
C, which are all linear combinations of the rows of B. For the same reason that the column rank
of C cannot exceed the column rank of A, the row rank of C cannot exceed the row rank of B.
Row and column ranks are always equal, so we can conclude that

rank(AB) ≤ min(rank(A), rank(B)). (A-44)

A useful corollary to (A-44) is

If A is M × n and B is a square matrix of rank n, then rank(AB) = rank(A). (A-45)
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Another application that plays a central role in the development of regression analysis is,
for any matrix A,

rank(A) = rank(A′A) = rank(AA′
). (A-46)

A.3.6 DETERMINANT OF A MATRIX

The determinant of a square matrix—determinants are not defined for nonsquare matrices—is
a function of the elements of the matrix. There are various definitions, most of which are not
useful for our work. Determinants figure into our results in several ways, however, that we can
enumerate before we need formally to define the computations.

PROPOSITION
The determinant of a matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their determinants
are nonzero. There are some settings in which the value of the determinant is also of interest, so
we now consider some algebraic results.

It is most convenient to begin with a diagonal matrix

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦ .

The column vectors of D define a “box” in R
K whose sides are all at right angles to one another.3

Its “volume,” or determinant, is simply the product of the lengths of the sides, which we denote

|D| = d1d2 . . . dK =
K∏

k=1

dk. (A-47)

A special case is the identity matrix, which has, regardless of K, |IK| = 1. Multiplying D by a
scalar c is equivalent to multiplying the length of each side of the box by c, which would multiply
its volume by cK. Thus,

|cD| = cK|D|. (A-48)

Continuing with this admittedly special case, we suppose that only one column of D is multiplied
by c. In two dimensions, this would make the box wider but not higher, or vice versa. Hence,
the “volume” (area) would also be multiplied by c. Now, suppose that each side of the box were
multiplied by a different c, the first by c1, the second by c2, and so on. The volume would, by an
obvious extension, now be c1c2 . . . cK|D|. The matrix with columns defined by [c1d1 c2d2 . . .] is
just DC, where C is a diagonal matrix with ci as its ith diagonal element. The computation just
described is, therefore,

|DC| = |D| · |C|. (A-49)

(The determinant of C is the product of the ci ’s since C, like D, is a diagonal matrix.) In particular,
note what happens to the whole thing if one of the ci ’s is zero.

3Each column vector defines a segment on one of the axes.
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For 2 × 2 matrices, the computation of the determinant is∣∣∣∣a c
b d

∣∣∣∣ = ad − bc. (A-50)

Notice that it is a function of all the elements of the matrix. This statement will be true, in
general. For more than two dimensions, the determinant can be obtained by using an expansion
by cofactors. Using any row, say, i , we obtain

|A| =
K∑

k=1

aik(−1)i+k|Aik|, k = 1, . . . , K, (A-51)

where Aik is the matrix obtained from A by deleting row i and column k. The determinant of
Aik is called a minor of A.4 When the correct sign, (−1)i+k, is added, it becomes a cofactor. This
operation can be done using any column as well. For example, a 4 × 4 determinant becomes a
sum of four 3 × 3s, whereas a 5 × 5 is a sum of five 4 × 4s, each of which is a sum of four 3 × 3s,
and so on. Obviously, it is a good idea to base (A-51) on a row or column with many zeros in
it, if possible. In practice, this rapidly becomes a heavy burden. It is unlikely, though, that you
will ever calculate any determinants over 3 × 3 without a computer. A 3 × 3, however, might be
computed on occasion; if so, the following shortcut due to P. Sarrus will prove useful:∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13 − a21a12a33 − a11a23a32.

Although (A-48) and (A-49) were given for diagonal matrices, they hold for general matrices
C and D. One special case of (A-48) to note is that of c = −1. Multiplying a matrix by −1 does
not necessarily change the sign of its determinant. It does so only if the order of the matrix is odd.
By using the expansion by cofactors formula, an additional result can be shown:

|A| = |A′| (A-52)

A.3.7 A LEAST SQUARES PROBLEM

Given a vector y and a matrix X, we are interested in expressing y as a linear combination of the
columns of X. There are two possibilities. If y lies in the column space of X, then we shall be able
to find a vector b such that

y = Xb. (A-53)

Figure A.3 illustrates such a case for three dimensions in which the two columns of X both have
a third coordinate equal to zero. Only y’s whose third coordinate is zero, such as y0 in the figure,
can be expressed as Xb for some b. For the general case, assuming that y is, indeed, in the column
space of X, we can find the coefficients b by solving the set of equations in (A-53). The solution
is discussed in the next section.

Suppose, however, that y is not in the column space of X. In the context of this example,
suppose that y’s third component is not zero. Then there is no b such that (A-53) holds. We can,
however, write

y = Xb + e, (A-54)

where e is the difference between y and Xb. By this construction, we find an Xb that is in the
column space of X, and e is the difference, or “residual.” Figure A.3 shows two examples, y and y∗.

4If i equals k, then the determinant is a principal minor.
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Third coordinate

First coordinate

Second coordinate

x1

x2

y

e

y*
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�

(Xb)

(Xb)*

FIGURE A.3 Least Squares Projections.

For the present, we consider only y. We are interested in finding the b such that y is as close as
possible to Xb in the sense that e is as short as possible.

DEFINITION A.10 Length of a Vector
The length, or norm, of a vector e is given by the Pythagorean theorem:

‖e‖ =
√

e′e. (A-55)

The problem is to find the b for which

‖e‖ = ‖y − Xb‖
is as small as possible. The solution is that b that makes e perpendicular, or orthogonal, to Xb.

DEFINITION A.11 Orthogonal Vectors
Two nonzero vectors a and b are orthogonal, written a ⊥ b, if and only if

a′b = b′a = 0.

Returning once again to our fitting problem, we find that the b we seek is that for which

e ⊥ Xb.

Expanding this set of equations gives the requirement

(Xb)′e = 0

= b′X′y − b′X′Xb

= b′[X′y − X′Xb],
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or, assuming b is not 0, the set of equations

X′y = X′Xb.

The means of solving such a set of equations is the subject of Section A.5.
In Figure A.3, the linear combination Xb is called the projection of y into the column space

of X. The figure is drawn so that, although y and y∗ are different, they are similar in that the
projection of y lies on top of that of y∗. The question we wish to pursue here is, Which vector, y
or y∗, is closer to its projection in the column space of X? Superficially, it would appear that y is
closer, because e is shorter than e∗. Yet y∗ is much more nearly parallel to its projection than y, so
the only reason that its residual vector is longer is that y∗ is longer compared with y. A measure
of comparison that would be unaffected by the length of the vectors is the angle between the
vector and its projection (assuming that angle is not zero). By this measure, θ∗ is smaller than θ ,
which would reverse the earlier conclusion.

THEOREM A.2 The Cosine Law
The angle θ between two vectors a and b satisfies

cos θ = a′b
‖a‖ · ‖b‖ .

The two vectors in the calculation would be y or y∗ and Xb or (Xb)∗. A zero cosine implies
that the vectors are orthogonal. If the cosine is one, then the angle is zero, which means that the
vectors are the same. (They would be if y were in the column space of X.) By dividing by the
lengths, we automatically compensate for the length of y. By this measure, we find in Figure A.3
that y∗ is closer to its projection, (Xb)∗ than y is to its projection, Xb.

A.4 SOLUTION OF A SYSTEM OF LINEAR
EQUATIONS

Consider the set of n linear equations

Ax = b, (A-56)

in which the K elements of x constitute the unknowns. A is a known matrix of coefficients, and b
is a specified vector of values. We are interested in knowing whether a solution exists; if so, then
how to obtain it; and finally, if it does exist, then whether it is unique.

A.4.1 SYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, those in
which A is a square matrix. In what follows, therefore, we take n to equal K. Because the number
of rows in A is the number of equations, whereas the number of columns in A is the number of
variables, this case is the familiar one of “n equations in n unknowns.”

There are two types of systems of equations.
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DEFINITION A.12 Homogeneous Equation System
A homogeneous system is of the form Ax = 0.

By definition, a nonzero solution to such a system will exist if and only if A does not have full
rank. If so, then for at least one column of A, we can write the preceding as

ak = −
∑
m�=k

xm

xk
am.

This means, as we know, that the columns of A are linearly dependent and that |A| = 0.

DEFINITION A.13 Nonhomogeneous Equation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a nonzero
vector.

The vector b is chosen arbitrarily and is to be expressed as a linear combination of the columns
of A. Because b has K elements, this solution will exist only if the columns of A span the entire
K-dimensional space, R

K.5 Equivalently, we shall require that the columns of A be linearly
independent or that |A| not be equal to zero.

A.4.2 INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed. Suppose that
we could find a square matrix B such that BA = I. If the equation system is premultiplied by this
B, then the following would be obtained:

BAx = Ix = x = Bb. (A-57)

If the matrix B exists, then it is the inverse of A, denoted

B = A−1.

From the definition,

A−1A = I.

In addition, by premultiplying by A, postmultiplying by A−1, and then canceling terms, we find

AA−1 = I

as well.
If the inverse exists, then it must be unique. Suppose that it is not and that C is a different

inverse of A. Then CAB = CAB, but (CA)B = IB = B and C(AB) = C, which would be a

5If A does not have full rank, then the nonhomogeneous system will have solutions for some vectors b, namely,
any b in the column space of A. But we are interested in the case in which there are solutions for all nonzero
vectors b, which requires A to have full rank.
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contradiction if C did not equal B. Because, by (A-57), the solution is x = A−1b, the solution to
the equation system is unique as well.

We now consider the calculation of the inverse matrix. For a 2 × 2 matrix, AB = I implies
that

[
a11 a12

a21 a22

][
b11 b12

b21 b22

]
=

[
1 0
0 1

]
or

⎡
⎢⎢⎣

a11b11 + a12b21 = 1

a11b12 + a12b22 = 0

a21b11 + a22b21 = 0

a21b12 + a22b22 = 1

⎤
⎥⎥⎦ .

The solutions are[
b11 b12

b21 b22

]
= 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
= 1

|A|

[
a22 −a12

−a21 a11

]
. (A-58)

Notice the presence of the reciprocal of |A| in A−1. This result is not specific to the 2 × 2 case.
We infer from it that if the determinant is zero, then the inverse does not exist.

DEFINITION A.14 Nonsingular Matrix
A matrix is nonsingular if and only if its inverse exists.

The simplest inverse matrix to compute is that of a diagonal matrix. If

D =

⎡
⎢⎣

d1 0 0 · · · 0

0 d2 0 · · · 0
· · ·

0 0 0 · · · dK

⎤
⎥⎦, then D−1 =

⎡
⎢⎣

1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
· · ·

0 0 0 · · · 1/dK

⎤
⎥⎦,

which shows, incidentally, that I−1 = I.
We shall use aik to indicate the ikth element of A−1. The general formula for computing an

inverse matrix is

aik = |Cki |
|A| , (A-59)

where |Cki | is the kith cofactor of A. [See (A-51).] It follows, therefore, that for A to be non-
singular, |A| must be nonzero. Notice the reversal of the subscripts

Some computational results involving inverses are

|A−1| = 1
|A| , (A-60)

(A−1)−1 = A, (A-61)

(A−1)′ = (A′)−1. (A-62)

If A is symmetric, then A−1 is symmetric. (A-63)

When both inverse matrices exist,

(AB)−1 = B−1A−1. (A-64)
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Note the condition preceding (A-64). It may be that AB is a square, nonsingular matrix when
neither A nor B is even square. (Consider, e.g., A′A.) Extending (A-64), we have

(ABC)−1 = C−1(AB)−1 = C−1B−1A−1. (A-65)

Recall that for a data matrix X, X′X is the sum of the outer products of the rows X. Suppose
that we have already computed S = (X′X)−1 for a number of years of data, such as those given in
Table A.1. The following result, which is called an updating formula, shows how to compute the
new S that would result when a new row is added to X: For symmetric, nonsingular matrix A,

[A ± bb′]−1 = A−1 ∓
[

1
1 ± b′A−1b

]
A−1bb′A−1. (A-66)

Note the reversal of the sign in the inverse. Two more general forms of (A-66) that are occasionally
useful are

[A ± bc′]−1 = A−1 ∓
[

1
1 ± c′A−1b

]
A−1bc′A−1. (A-66a)

[A ± BCB′]−1 = A−1 ∓ A−1B[C−1 ± B′A−1B]−1B′A−1. (A-66b)

A.4.3 NONHOMOGENEOUS SYSTEMS OF EQUATIONS

For the nonhomogeneous system

Ax = b,

if A is nonsingular, then the unique solution is

x = A−1b.

A.4.4 SOLVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section A3.7. We found
the solution vector, b to be the solution to the nonhomogenous system X′y = X′Xb. Let a equal
the vector X′y and let A equal the square matrix X′X. The equation system is then

Ab = a.

By the preceding results, if A is nonsingular, then

b = A−1a = (X′X)−1(X′y)

assuming that the matrix to be inverted is nonsingular. We have reached the irreducible minimum.
If the columns of X are linearly independent, that is, if X has full rank, then this is the solution
to the least squares problem. If the columns of X are linearly dependent, then this system has no
unique solution.

A.5 PARTITIONED MATRICES

In formulating the elements of a matrix, it is sometimes useful to group some of the elements in
submatrices. Let

A =

⎡
⎣1 4 5

2 9 3

8 9 6

⎤
⎦ =

[
A11 A12

A21 A22

]
.
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A is a partitioned matrix. The subscripts of the submatrices are defined in the same fashion as
those for the elements of a matrix. A common special case is the block-diagonal matrix:

A =
[

A11 0

0 A22

]
,

where A11 and A22 are square matrices.

A.5.1 ADDITION AND MULTIPLICATION
OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

A + B =
[

A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
, (A-67)

and

AB =
[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
. (A-68)

In all these, the matrices must be conformable for the operations involved. For addition, the
dimensions of Aik and Bik must be the same. For multiplication, the number of columns in Ai j

must equal the number of rows in B jl for all pairs i and j . That is, all the necessary matrix products
of the submatrices must be defined. Two cases frequently encountered are of the form[

A1

A2

]′[
A1

A2

]
= [A′

1 A′
2]

[
A1

A2

]
= [A′

1A1 + A′
2A2], (A-69)

and [
A11 0

0 A22

]′[
A11 0

0 A22

]
=

[
A′

11A11 0

0 A′
22A22

]
. (A-70)

A.5.2 DETERMINANTS OF PARTITIONED MATRICES

The determinant of a block-diagonal matrix is obtained analogously to that of a diagonal matrix:∣∣∣∣A11 0

0 A22

∣∣∣∣ = |A11| · |A22| . (A-71)

The determinant of a general 2 × 2 partitioned matrix is∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = |A22| ·
∣∣A11 − A12A−1

22 A21

∣∣ = |A11| ·
∣∣A22 − A21A−1

11 A12

∣∣. (A-72)

A.5.3 INVERSES OF PARTITIONED MATRICES

The inverse of a block-diagonal matrix is[
A11 0

0 A22

]−1

=
[

A−1
11 0

0 A−1
22

]
, (A-73)

which can be verified by direct multiplication.
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For the general 2 × 2 partitioned matrix, one form of the partitioned inverse is[
A11 A12

A21 A22

]−1

=
[

A−1
11

(
I + A12F2A21A−1

11

) −A−1
11 A12F2

−F2A21A−1
11 F2

]
, (A-74)

where

F2 = (
A22 − A21A−1

11 A12

)−1
.

The upper left block could also be written as

F1 = (
A11 − A12A−1

22 A21

)−1
.

A.5.4 DEVIATIONS FROM MEANS

Suppose that we begin with a column vector of n values x and let

A =

⎡
⎢⎢⎢⎢⎣

n
n∑

i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎤
⎥⎥⎥⎥⎦ =

[
i′i i′x
x′i x′x

]
.

We are interested in the lower-right-hand element of A−1. Upon using the definition of F2 in
(A-74), this is

F2 = [x′x − (x′i)(i′i)−1(i′x)]−1 =
{

x′
[

Ix − i

(
1
n

)
i′x

]}−1

=
{

x′
[

I −
(

1
n

)
ii′

]
x

}−1

= (x′M0x)−1.

Therefore, the lower-right-hand value in the inverse matrix is

(x′M0x)−1 = 1∑n
i=1 (xi − x̄ )2

= a22.

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-right
block of (Z′Z)−1, where Z = [i, X]. The analogous result is

(Z′Z)22 = [X′X − X′i(i′i)−1i′X]−1 = (X′M0X)−1,

which implies that the K × K matrix in the lower-right corner of (Z′Z)−1 is the inverse of the
K × K matrix whose jkth element is

∑n
i=1(xi j − x̄ j )(xik − x̄k). Thus, when a data matrix contains a

column of ones, the elements of the inverse of the matrix of sums of squares and cross products will
be computed from the original data in the form of deviations from the respective column means.

A.5.5 KRONECKER PRODUCTS

A calculation that helps to condense the notation when dealing with sets of regression models
(see Chapter 10) is the Kronecker product. For general matrices A and B,

A ⊗ B =

⎡
⎢⎢⎣

a11B a12B · · · a1KB
a21B a22B · · · a2KB

· · ·
an1B an2B · · · anKB

⎤
⎥⎥⎦ . (A-75)
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Notice that there is no requirement for conformability in this operation. The Kronecker product
can be computed for any pair of matrices. If A is K × Land B is m×n, then A⊗B is (Km)× (Ln).

For the Kronecker product,

(A ⊗ B)−1 = (A−1 ⊗ B−1), (A-76)

If A is M × M and B is n × n, then

|A ⊗ B| = |A|n|B|M,

(A ⊗ B)′ = A′ ⊗ B′,

trace(A ⊗ B) = tr(A)tr(B).

For A, B, C, and D such that the products are defined is

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

A.6 CHARACTERISTIC ROOTS AND VECTORS

A useful set of results for analyzing a square matrix A arises from the solutions to the set of
equations

Ac = λc. (A-77)

The pairs of solutions are the characteristic vectors c and characteristic roots λ. If c is any nonzero
solution vector, then kc is also for any value of k. To remove the indeterminancy, c is normalized
so that c′c = 1.

The solution then consists of λ and the n − 1 unknown elements in c.

A.6.1 THE CHARACTERISTIC EQUATION

Solving (A-77) can, in principle, proceed as follows. First, (A-77) implies that

Ac = λIc,

or that

(A − λI)c = 0.

This equation is a homogeneous system that has a nonzero solution only if the matrix (A − λI) is
singular or has a zero determinant. Therefore, if λ is a solution, then

|A − λI | = 0. (A-78)

This polynomial in λ is the characteristic equation of A. For example, if

A =
[

5 1
2 4

]
,

then

|A − λI| =
∣∣∣∣5 − λ 1

2 4 − λ

∣∣∣∣= (5 − λ)(4 − λ) − 2(1) = λ2 − 9λ + 18.

The two solutions are λ = 6 and λ = 3.
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In solving the characteristic equation, there is no guarantee that the characteristic roots will
be real. In the preceding example, if the 2 in the lower-left-hand corner of the matrix were −2
instead, then the solution would be a pair of complex values. The same result can emerge in the
general n × n case. The characteristic roots of a symmetric matrix such as X′X are real, however.6

This result will be convenient because most of our applications will involve the characteristic
roots and vectors of symmetric matrices.

For an n × n matrix, the characteristic equation is an nth-order polynomial in λ. Its solutions
may be n distinct values, as in the preceding example, or may contain repeated values of λ, and
may contain some zeros as well.

A.6.2 CHARACTERISTIC VECTORS

With λ in hand, the characteristic vectors are derived from the original problem,

Ac = λc,

or

(A − λI)c = 0. (A-79)

Neither pair determines the values of c1 and c2. But this result was to be expected; it was the
reason c′c = 1 was specified at the outset. The additional equation c′c = 1, however, produces
complete solutions for the vectors.

A.6.3 GENERAL RESULTS FOR CHARACTERISTIC
ROOTS AND VECTORS

A K × K symmetric matrix has K distinct characteristic vectors, c1, c2, . . . cK. The corresponding
characteristic roots, λ1, λ2, . . . , λK, although real, need not be distinct. The characteristic vectors of
a symmetric matrix are orthogonal,7 which implies that for every i 
= j, c′

i c j = 0.8 It is convenient
to collect the K-characteristic vectors in a K × K matrix whose ith column is the ci corresponding
to λi ,

C = [c1 c2 · · · cK],

and the K-characteristic roots in the same order, in a diagonal matrix,

� =

⎡
⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

· · ·
0 0 · · · λK

⎤
⎥⎦ .

Then, the full set of equations

Ack = λkck

is contained in

AC = C�. (A-80)

6A proof may be found in Theil (1971).
7For proofs of these propositions, see Strang (1988).
8This statement is not true if the matrix is not symmetric. For instance, it does not hold for the characteristic
vectors computed in the first example. For nonsymmetric matrices, there is also a distinction between “right”
characteristic vectors, Ac = λc, and “left” characteristic vectors, d′A = λd′, which may not be equal.
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Because the vectors are orthogonal and c′
i ci = 1, we have

C′C =

⎡
⎢⎢⎢⎣

c′
1c1 c′

1c2 · · · c′
1cK

c′
2c1 c′

2c2 · · · c′
2cK

...

c′
Kc1 c′

Kc2 · · · c′
KcK

⎤
⎥⎥⎥⎦ = I. (A-81)

Result (A-81) implies that

C′ = C−1. (A-82)

Consequently,

CC′ = CC−1 = I (A-83)

as well, so the rows as well as the columns of C are orthogonal.

A.6.4 DIAGONALIZATION AND SPECTRAL DECOMPOSITION
OF A MATRIX

By premultiplying (A-80) by C′ and using (A-81), we can extract the characteristic roots of A.

DEFINITION A.15 Diagonalization of a Matrix
The diagonalization of a matrix A is

C′AC = C′C� = I� = �. (A-84)

Alternatively, by postmultiplying (A-80) by C′ and using (A-83), we obtain a useful representation
of A.

DEFINITION A.16 Spectral Decomposition of a Matrix
The spectral decomposition of A is

A = C�C′ =
K∑

k=1

λkckc′
k. (A-85)

In this representation, the K × K matrix A is written as a sum of K rank one matrices. This sum
is also called the eigenvalue (or, “own” value) decomposition of A. In this connection, the term
signature of the matrix is sometimes used to describe the characteristic roots and vectors. Yet
another pair of terms for the parts of this decomposition are the latent roots and latent vectors
of A.

A.6.5 RANK OF A MATRIX

The diagonalization result enables us to obtain the rank of a matrix very easily. To do so, we can
use the following result.
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THEOREM A.3 Rank of a Product
For any matrix A and nonsingular matrices B and C, the rank of BAC is equal to the rank
of A.

Proof: By (A-45), rank(BAC) = rank[(BA)C] = rank(BA). By (A-43), rank(BA) =
rank(A′B′), and applying (A-45) again, rank(A′B′) = rank(A′) because B′ is nonsingular
if B is nonsingular [once again, by (A-43)]. Finally, applying (A-43) again to obtain
rank(A′) = rank(A) gives the result.

Because C and C′ are nonsingular, we can use them to apply this result to (A-84). By an obvious
substitution,

rank(A) = rank(�). (A-86)

Finding the rank of � is trivial. Because � is a diagonal matrix, its rank is just the number of
nonzero values on its diagonal. By extending this result, we can prove the following theorems.
(Proofs are brief and are left for the reader.)

THEOREM A.4 Rank of a Symmetric Matrix
The rank of a symmetric matrix is the number of nonzero characteristic roots it
contains.

Note how this result enters the spectral decomposition given earlier. If any of the character-
istic roots are zero, then the number of rank one matrices in the sum is reduced correspondingly.
It would appear that this simple rule will not be useful if A is not square. But recall that

rank(A) = rank(A′A). (A-87)

Because A′A is always square, we can use it instead of A. Indeed, we can use it even if A is square,
which leads to a fully general result.

THEOREM A.5 Rank of a Matrix
The rank of any matrix A equals the number of nonzero characteristic roots in A′A.

The row rank and column rank of a matrix are equal, so we should be able to apply
Theorem A.5 to AA′ as well. This process, however, requires an additional result.

THEOREM A.6 Roots of an Outer Product Matrix
The nonzero characteristic roots of AA′ are the same as those of A′A.
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The proof is left as an exercise. A useful special case the reader can examine is the characteristic
roots of aa′ and a′a, where a is an n × 1 vector.

If a characteristic root of a matrix is zero, then we have Ac = 0. Thus, if the matrix has a zero
root, it must be singular. Otherwise, no nonzero c would exist. In general, therefore, a matrix is
singular; that is, it does not have full rank if and only if it has at least one zero root.

A.6.6 CONDITION NUMBER OF A MATRIX

As the preceding might suggest, there is a discrete difference between full rank and short rank
matrices. In analyzing data matrices such as the one in Section A.2, however, we shall often
encounter cases in which a matrix is not quite short ranked, because it has all nonzero roots, but
it is close. That is, by some measure, we can come very close to being able to write one column
as a linear combination of the others. This case is important; we shall examine it at length in our
discussion of multicollinearity in Section 4.7.1. Our definitions of rank and determinant will fail
to indicate this possibility, but an alternative measure, the condition number, is designed for that
purpose. Formally, the condition number for a square matrix A is

γ =
[

maximum root
minimum root

]1/2

. (A-88)

For nonsquare matrices X, such as the data matrix in the example, we use A = X′X. As a further
refinement, because the characteristic roots are affected by the scaling of the columns of X, we
scale the columns to have length 1 by dividing each column by its norm [see (A-55)]. For the
X in Section A.2, the largest characteristic root of A is 4.9255 and the smallest is 0.0001543.
Therefore, the condition number is 178.67, which is extremely large. (Values greater than 20 are
large.) That the smallest root is close to zero compared with the largest means that this matrix is
nearly singular. Matrices with large condition numbers are difficult to invert accurately.

A.6.7 TRACE OF A MATRIX

The trace of a square K × K matrix is the sum of its diagonal elements:

tr(A) =
K∑

k=1

akk.

Some easily proven results are

tr(cA) = c(tr(A)), (A-89)

tr(A′) = tr(A), (A-90)

tr(A + B) = tr(A) + tr(B), (A-91)

tr(IK) = K. (A-92)

tr(AB) = tr(BA). (A-93)

a′a = tr(a′a) = tr(aa′)

tr(A′A) =
K∑

k=1

a′
kak =

K∑
i=1

K∑
k=1

a2
ik.

The permutation rule can be extended to any cyclic permutation in a product:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC). (A-94)
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By using (A-84), we obtain

tr(C′AC) = tr(ACC′
) = tr(AI) = tr(A) = tr(�). (A-95)

Because � is diagonal with the roots of A on its diagonal, the general result is the following.

THEOREM A.7 Trace of a Matrix
The trace of a matrix equals the sum of its characteristic roots. (A-96)

A.6.8 DETERMINANT OF A MATRIX

Recalling how tedious the calculation of a determinant promised to be, we find that the following
is particularly useful. Because

C′AC = �,

|C′AC| = |�|.
(A-97)

Using a number of earlier results, we have, for orthogonal matrix C,

|C′AC| = |C′| · |A| · |C| = |C′| · |C| · |A| = |C′C| · |A| = |I| · |A| = 1 · |A|
= |A|
= |�|.

(A-98)

Because |�| is just the product of its diagonal elements, the following is implied.

THEOREM A.8 Determinant of a Matrix
The determinant of a matrix equals the product of its characteristic roots.

(A-99)

Notice that we get the expected result if any of these roots is zero. The determinant is the
product of the roots, so it follows that a matrix is singular if and only if its determinant is zero
and, in turn, if and only if it has at least one zero characteristic root.

A.6.9 POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = A2. For positive integer
powers, these expressions can be computed by repeated multiplication. But this does not show
how to handle a problem such as finding a B such that B2 = A, that is, the square root of a matrix.
The characteristic roots and vectors provide a solution. Consider first

AA = A2 = (C�C′)(C�C′) = C�C′C�C′ = C�I�C′ = C��C′

= C�2C′.
(A-100)

Two results follow. Because �2 is a diagonal matrix whose nonzero elements are the squares of
those in �, the following is implied.

For any symmetric matrix, the characteristic roots of A2 are the squares of those of A,

and the characteristic vectors are the same. (A-101)
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The proof is obtained by observing that the second line in (A-100) is the spectral decomposi-
tion of the matrix B = AA. Because A3 = AA2 and so on, (A-101) extends to any positive integer.
By convention, for any A, A0 = I. Thus, for any symmetric matrix A, AK = C�KC′, K = 0, 1, . . . .
Hence, the characteristic roots of AK are λK, whereas the characteristic vectors are the same as
those of A. If A is nonsingular, so that all its roots λi are nonzero, then this proof can be extended
to negative powers as well.

If A−1 exists, then

A−1 = (C�C′)−1 = (C′)−1�−1C−1 = C�−1C′, (A-102)

where we have used the earlier result, C′ = C−1. This gives an important result that is useful for
analyzing inverse matrices.

THEOREM A.9 Characteristic Roots of an Inverse Matrix
If A−1 exists, then the characteristic roots of A−1 are the reciprocals of those of A, and the
characteristic vectors are the same.

By extending the notion of repeated multiplication, we now have a more general result.

THEOREM A.10 Characteristic Roots of a Matrix Power
For any nonsingular symmetric matrix A = C�C′, AK = C�KC′, K = . . . , −2,

−1, 0, 1, 2, . . . .

We now turn to the general problem of how to compute the square root of a matrix. In the
scalar case, the value would have to be nonnegative. The matrix analog to this requirement is that
all the characteristic roots are nonnegative. Consider, then, the candidate

A1/2 = C�1/2C′ = C

⎡
⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

· · ·
0 0 · · · √

λn

⎤
⎥⎦ C′. (A-103)

This equation satisfies the requirement for a square root, because

A1/2A1/2 = C�1/2C′C�1/2C′ = C�C′ = A. (A-104)

If we continue in this fashion, we can define the powers of a matrix more generally, still assuming
that all the characteristic roots are nonnegative. For example, A1/3 = C�1/3C′. If all the roots are
strictly positive, we can go one step further and extend the result to any real power. For reasons
that will be made clear in the next section, we say that a matrix with positive characteristic roots
is positive definite. It is the matrix analog to a positive number.

DEFINITION A.17 Real Powers of a Positive Definite Matrix

For a positive definite matrix A, Ar = C�r C′, for any real number, r . (A-105)
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The characteristic roots of Ar are the r th power of those of A, and the characteristic vectors
are the same.

If A is only nonnegative definite—that is, has roots that are either zero or positive—then
(A-105) holds only for nonnegative r .

A.6.10 IDEMPOTENT MATRICES

Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their importance
in econometrics, we collect a few results related to idempotent matrices at this point. First, (A-101)
implies that if λ is a characteristic root of an idempotent matrix, then λ = λK for all nonnegative
integers K. As such, if A is a symmetric idempotent matrix, then all its roots are one or zero.
Assume that all the roots of A are one. Then � = I, and A = C�C′ = CIC′ = CC′ = I. If the
roots are not all one, then one or more are zero. Consequently, we have the following results for
symmetric idempotent matrices:9

• The only full rank, symmetric idempotent matrix is the identity matrix I. (A-106)• All symmetric idempotent matrices except the identity matrix are singular. (A-107)

The final result on idempotent matrices is obtained by observing that the count of the nonzero
roots of A is also equal to their sum. By combining Theorems A.5 and A.7 with the result that
for an idempotent matrix, the roots are all zero or one, we obtain this result:

• The rank of a symmetric idempotent matrix is equal to its trace. (A-108)

A.6.11 FACTORING A MATRIX

In some applications, we shall require a matrix P such that

P′P = A−1.

One choice is

P = �−1/2C′,

so that

P′P = (C′)′(�−1/2)′�−1/2C′ = C�−1C′,

as desired.10 Thus, the spectral decomposition of A, A = C�C′ is a useful result for this kind of
computation.

The Cholesky factorization of a symmetric positive definite matrix is an alternative represen-
tation that is useful in regression analysis. Any symmetric positive definite matrix A may be written
as the product of a lower triangular matrix L and its transpose (which is an upper triangular matrix)
L′ = U. Thus, A = LU. This result is the Cholesky decomposition of A. The square roots of the
diagonal elements of L, di , are the Cholesky values of A. By arraying these in a diagonal matrix D,
we may also write A = LD−1D2D−1U = L∗D2U∗, which is similar to the spectral decomposition in
(A-85). The usefulness of this formulation arises when the inverse of A is required. Once L is

9Not all idempotent matrices are symmetric. We shall not encounter any asymmetric ones in our work,
however.
10We say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are
other candidates. The reader can easily verify that C�−1/2C′ = A−1/2 works as well.
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computed, finding A−1 = U−1L−1 is also straightforward as well as extremely fast and accurate.
Most recently developed econometric software packages use this technique for inverting positive
definite matrices.

A third type of decomposition of a matrix is useful for numerical analysis when the inverse
is difficult to obtain because the columns of A are “nearly” collinear. Any n × K matrix A for
which n ≥ K can be written in the form A = UWV′, where U is an orthogonal n× K matrix—that
is, U′U = IK—W is a K × K diagonal matrix such that wi ≥ 0, and V is a K × K matrix such
that V′V = IK. This result is called the singular value decomposition (SVD) of A, and wi are the
singular values of A.11 (Note that if A is square, then the spectral decomposition is a singular
value decomposition.) As with the Cholesky decomposition, the usefulness of the SVD arises in
inversion, in this case, of A′A. By multiplying it out, we obtain that (A′A)−1 is simply VW−2V′.
Once the SVD of A is computed, the inversion is trivial. The other advantage of this format is its
numerical stability, which is discussed at length in Press et al. (1986).

Press et al. (1986) recommend the SVD approach as the method of choice for solv-
ing least squares problems because of its accuracy and numerical stability. A commonly used
alternative method similar to the SVD approach is the QR decomposition. Any n × K matrix,
X, with n ≥ K can be written in the form X = QR in which the columns of Q are orthonormal
(Q′Q = I) and R is an upper triangular matrix. Decomposing X in this fashion allows an ex-
tremely accurate solution to the least squares problem that does not involve inversion or direct
solution of the normal equations. Press et al. suggest that this method may have problems with
rounding errors in problems when X is nearly of short rank, but based on other published results,
this concern seems relatively minor.12

A.6.12 THE GENERALIZED INVERSE OF A MATRIX

Inverse matrices are fundamental in econometrics. Although we shall not require them much
in our treatment in this book, there are more general forms of inverse matrices than we have
considered thus far. A generalized inverse of a matrix A is another matrix A+ that satisfies the
following requirements:

1. AA+A = A.

2. A+AA+ = A+.

3. A+A is symmetric.
4. AA+ is symmetric.

A unique A+ can be found for any matrix, whether A is singular or not, or even if A is not
square.13 The unique matrix that satisfies all four requirements is called the Moore–Penrose
inverse or pseudoinverse of A. If A happens to be square and nonsingular, then the generalized
inverse will be the familiar ordinary inverse. But if A−1 does not exist, then A+ can still be
computed.

An important special case is the overdetermined system of equations

Ab = y,

11Discussion of the singular value decomposition (and listings of computer programs for the computations)
may be found in Press et al. (1986).
12The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems
that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these prob-
lems, which include some extremely difficult, ill-conditioned data sets, we found that the QR method would
reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR method should
be satisfactory for all but the worst problems.
13A proof of uniqueness, with several other results, may be found in Theil (1983).
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where A has n rows, K < n columns, and column rank equal to R ≤ K. Suppose that R equals
K, so that (A′A)−1 exists. Then the Moore–Penrose inverse of A is

A+ = (A′A)−1A′,

which can be verified by multiplication. A “solution” to the system of equations can be
written

b = A+y.

This is the vector that minimizes the length of Ab − y. Recall this was the solution to the least
squares problem obtained in Section A.4.4. If y lies in the column space of A, this vector will be
zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be computed. An
alternative solution can be obtained, however. We continue to use the matrix A′A. In the spectral
decomposition of Section A.6.4, if A has rank R, then there are R terms in the summation in
(A-85). In (A-102), the spectral decomposition using the reciprocals of the characteristic roots is
used to compute the inverse. To compute the Moore–Penrose inverse, we apply this calculation to
A′A, using only the nonzero roots, then postmultiply the result by A′. Let C1 be the Rcharacteristic
vectors corresponding to the nonzero roots, which we array in the diagonal matrix, �1. Then the
Moore–Penrose inverse is

A+ = C1�
−1
1 C′

1A′,

which is very similar to the previous result.
If A is a symmetric matrix with rank R ≤ K, the Moore–Penrose inverse is computed

precisely as in the preceding equation without postmultiplying by A′. Thus, for a symmetric
matrix A,

A+ = C1�
−1
1 C′

1,

where �−1
1 is a diagonal matrix containing the reciprocals of the nonzero roots of A.

A.7 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

q =
n∑

i=1

n∑
j=1

xi xj ai j . (A-109)

This quadratic form can be written

q = x′Ax,

where A is a symmetric matrix. In general, q may be positive, negative, or zero; it depends on A
and x. There are some matrices, however, for which q will be positive regardless of x, and others
for which q will always be negative (or nonnegative or nonpositive). For a given matrix A,

1. If x′Ax > (<) 0 for all nonzero x, then A is positive (negative) definite.
2. If x′Ax ≥ (≤) 0 for all nonzero x, then A is nonnegative definite or positive semidefinite

(nonpositive definite).

It might seem that it would be impossible to check a matrix for definiteness, since x can be
chosen arbitrarily. But we have already used the set of results necessary to do so. Recall that a
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symmetric matrix can be decomposed into

A = C�C′.

Therefore, the quadratic form can be written as

x′Ax = x′C�C′x.

Let y = C′x. Then

x′Ax = y′�y =
n∑

i=1

λi y2
i . (A-110)

If λi is positive for all i , then regardless of y—that is, regardless of x—q will be positive. This case
was identified earlier as a positive definite matrix. Continuing this line of reasoning, we obtain
the following theorem.

THEOREM A.11 Definite Matrices
Let A be a symmetric matrix. If all the characteristic roots of A are positive (negative),
then A is positive definite (negative definite). If some of the roots are zero, then A is
nonnegative (nonpositive) definite if the remainder are positive (negative). If A has both
negative and positive roots, then A is indefinite.

The preceding statements give, in each case, the “if” parts of the theorem. To establish
the “only if” parts, assume that the condition on the roots does not hold. This must lead to a
contradiction. For example, if some λ can be negative, then y′�y could be negative for some y,
so A cannot be positive definite.

A.7.1 NONNEGATIVE DEFINITE MATRICES

A case of particular interest is that of nonnegative definite matrices. Theorem A.11 implies a
number of related results.

• If A is nonnegative definite, then |A| ≥ 0. (A-111)

Proof: The determinant is the product of the roots, which are nonnegative.

The converse, however, is not true. For example, a 2 × 2 matrix with two negative roots is
clearly not positive definite, but it does have a positive determinant.

• If A is positive definite, so is A−1. (A-112)

Proof: The roots are the reciprocals of those of A, which are, therefore positive.

• The identity matrix I is positive definite. (A-113)

Proof: x′Ix = x′x > 0 if x 
= 0.

A very important result for regression analysis is

• If A is n × K with full column rank and n > K, then A′A is positive definite and AA′ is
nonnegative definite. (A-114)

Proof: By assumption, Ax 
= 0. So x′A′Ax = (Ax)′(Ax) = y′y = ∑
j y2

j > 0.
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A similar proof establishes the nonnegative definiteness of AA′. The difference in the latter case is
that because A has more rows than columns there is an x such that A′x = 0. Thus, in the proof, we
only have y′y ≥ 0. The case in which A does not have full column rank is the same as that of AA′.

• If A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.
(A-115)

Proof: x′B′ABx = y′Ay > 0, where y = Bx. But y cannot be 0 because B is nonsingular.

Finally, note that for A to be negative definite, all A’s characteristic roots must be negative. But,
in this case, |A| is positive if A is of even order and negative if A is of odd order.

A.7.2 IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the distributions of many test
statistics. As such, we shall encounter them fairly often. Two central results are of interest.

• Every symmetric idempotent matrix is nonnegative definite. (A-116)

Proof: All roots are one or zero; hence, the matrix is nonnegative definite by definition.

Combining this with some earlier results yields a result used in determining the sampling distri-
bution of most of the standard test statistics.

• If A is symmetric and idempotent, n × n with rank J , then every quadratic form in A can be
written x′Ax = ∑J

j=1 y2
j (A-117)

Proof: This result is (A-110) with λ = one or zero.

A.7.3 COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger” than another. We now
consider how to make such a comparison. As a starting point, the two matrices must have the
same dimensions. A useful comparison is based on

d = x′Ax − x′Bx = x′(A − B)x.

If d is always positive for any nonzero vector, x, then by this criterion, we can say that A is larger
than B. The reverse would apply if d is always negative. It follows from the definition that

if d > 0 for all nonzero x, then A − B is positive definite. (A-118)

If d is only greater than or equal to zero, then A − B is nonnegative definite. The ordering is not
complete. For some pairs of matrices, d could have either sign, depending on x. In this case, there
is no simple comparison.

A particular case of the general result which we will encounter frequently is.

If A is positive definite and B is nonnegative definite,
then A + B ≥ A. (A-119)

Consider, for example, the “updating formula” introduced in (A-66). This uses a matrix

A = B′B + bb′ ≥ B′B.

Finally, in comparing matrices, it may be more convenient to compare their inverses. The result
analogous to a familiar result for scalars is:

If A > B, then B−1 > A−1. (A-120)
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To establish this intuitive result, we would make use of the following, which is proved in Gold-
berger (1964, Chapter 2):

THEOREM A.12 Ordering for Positive Definite Matrices
If A and B are two positive definite matrices with the same dimensions and if every char-
acteristic root of A is larger than (at least as large as) the corresponding characteristic root
of B when both sets of roots are ordered from largest to smallest, then A − B is positive
(nonnegative) definite.

The roots of the inverse are the reciprocals of the roots of the original matrix, so the theorem can
be applied to the inverse matrices.

A.8 CALCULUS AND MATRIX ALGEBRA14

A.8.1 DIFFERENTIATION AND THE TAYLOR SERIES

A variable y is a function of another variable x written

y = f (x), y = g(x), y = y(x),

and so on, if each value of x is associated with a single value of y. In this relationship, y and x are
sometimes labeled the dependent variable and the independent variable, respectively. Assuming
that the function f (x) is continuous and differentiable, we obtain the following derivatives:

f ′(x) = dy
dx

, f ′′(x) = d2 y
dx2

,

and so on.
A frequent use of the derivatives of f (x) is in the Taylor series approximation. A Taylor

series is a polynomial approximation to f (x). Letting x0 be an arbitrarily chosen expansion point

f (x) ≈ f (x0) +
P∑

i=1

1
i!

di f (x0)

d(x0)i
(x − x0)i . (A-121)

The choice of the number of terms is arbitrary; the more that are used, the more accurate the
approximation will be. The approximation used most frequently in econometrics is the linear
approximation,

f (x) ≈ α + βx, (A-122)

where, by collecting terms in (A-121), α = [ f (x0) − f ′(x0)x0] and β = f ′(x0). The superscript
“0” indicates that the function is evaluated at x0. The quadratic approximation is

f (x) ≈ α + βx + γ x2, (A-123)

where α = [ f 0 − f ′0x0 + 1
2 f ′′0(x0)2], β = [ f ′0 − f ′′0x0] and γ = 1

2 f ′′0.

14For a complete exposition, see Magnus and Neudecker (1988).
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We can regard a function y = f (x1, x2, . . . , xn) as a scalar-valued function of a vector; that
is, y = f (x). The vector of partial derivatives, or gradient vector, or simply gradient, is

∂ f (x)

∂x
=

⎡
⎢⎣

∂y/∂x1

∂y/∂x2

· · ·
∂y/∂xn

⎤
⎥⎦ =

⎡
⎢⎣

f1

f2

· · ·
fn

⎤
⎥⎦ . (A-124)

The vector g(x) or g is used to represent the gradient. Notice that it is a column vector. The shape
of the derivative is determined by the denominator of the derivative.

A second derivatives matrix or Hessian is computed as

H =

⎡
⎢⎣

∂2 y/∂x1∂x1 ∂2 y/∂x1∂x2 · · · ∂2 y/∂x1∂xn

∂2 y/∂x2∂x1 ∂2 y/∂x2∂x2 · · · ∂2 y/∂x2∂xn

· · · · · · · · · · · ·
∂2 y/∂xn∂x1 ∂2 y/∂xn∂x2 · · · ∂2 y/∂xn∂xn

⎤
⎥⎦ = [ fi j ]. (A-125)

In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous and
continuously differentiable functions from Young’s theorem.) Each column of H is the derivative
of g with respect to the corresponding variable in x′. Therefore,

H =
[

∂(∂y/∂x)

∂x1

∂(∂y/∂x)

∂x2
· · · ∂(∂y/∂x)

∂xn

]
= ∂(∂y/∂x)

∂(x1 x2 · · · xn)
= ∂(∂y/∂x)

∂x′ = ∂2 y
∂x∂x′ .

The first-order, or linear Taylor series approximation is

y ≈ f (x0) +
n∑

i=1

fi (x0)
(

xi − x0
i

)
. (A-126)

The right-hand side is

f (x0) +
[

∂ f (x0)

∂x0

]′
(x − x0) = [ f (x0) − g(x0)′x0] + g(x0)′x = [ f 0 − g0′x0] + g0′x.

This produces the linear approximation,

y ≈ α + β ′x.

The second-order, or quadratic, approximation adds the second-order terms in the expansion,

1
2

n∑
i=1

n∑
j=1

f 0
i j

(
xi − x0

i

)(
xj − x0

j

) = 1
2
(x − x0)′H0(x − x0),

to the preceding one. Collecting terms in the same manner as in (A-126), we have

y ≈ α + β ′x + 1
2

x′�x, (A-127)

where

α = f 0 − g0′x0 + 1
2

x0′H0x0, β = g0 − H0x0 and � = H0.

A linear function can be written

y = a′x = x′a =
n∑

i=1

ai xi ,
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so

∂(a′x)

∂x
= a. (A-128)

Note, in particular, that ∂(a′x)/∂x = a, not a′. In a set of linear functions

y = Ax,

each element yi of y is

yi = a′
i x,

where a′
i is the ith row of A [see (A-14)]. Therefore,

∂yi

∂x
= ai = transpose of ith row of A,

and ⎡
⎢⎢⎣

∂y1/∂x′

∂y2/∂x′

· · ·
∂yn/∂x′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a′
1

a′
2

· · ·
a′

n

⎤
⎥⎥⎦ .

Collecting all terms, we find that ∂Ax/∂x′ = A, whereas the more familiar form will be

∂Ax
∂x

= A′. (A-129)

A quadratic form is written

x′Ax =
n∑

i=1

n∑
j=1

xi xj ai j . (A-130)

For example,

A =
[

1 3
3 4

]
,

so that

x′Ax = 1x2
1 + 4x2

2 + 6x1x2.

Then

∂x′Ax
∂x

=
[

2x1 + 6x2

6x1 + 8x2

]
=

[
2 6
6 8

][
x1

x2

]
= 2Ax, (A-131)

which is the general result when A is a symmetric matrix. If A is not symmetric, then

∂(x′Ax)

∂x
= (A + A′)x. (A-132)

Referring to the preceding double summation, we find that for each term, the coefficient on ai j

is xi xj . Therefore,

∂(x′Ax)

∂ai j
= xi xj .
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The square matrix whose i jth element is xi xj is xx′, so

∂(x′Ax)

∂A
= xx′. (A-133)

Derivatives involving determinants appear in maximum likelihood estimation. From the
cofactor expansion in (A-51),

∂|A|
∂ai j

= (−1)i+ j |Ai j | = ci j

where |C j i | is the j ith cofactor in A. The inverse of A can be computed using

A−1
i j = |C j i |

|A|
(note the reversal of the subscripts), which implies that

∂ ln|A|
∂ai j

= (−1)i+ j |Ai j |
|A| ,

or, collecting terms,

∂ ln|A|
∂A

= A−1′.

Because the matrices for which we shall make use of this calculation will be symmetric in our
applications, the transposition will be unnecessary.

A.8.2 OPTIMIZATION

Consider finding the x where f (x) is maximized or minimized. Because f ′(x) is the slope of
f (x), either optimum must occur where f ′(x) = 0. Otherwise, the function will be increasing
or decreasing at x. This result implies the first-order or necessary condition for an optimum
(maximum or minimum):

dy
dx

= 0. (A-134)

For a maximum, the function must be concave; for a minimum, it must be convex. The sufficient
condition for an optimum is.

For a maximum,
d2 y
dx2

< 0;

for a minimum,
d2 y
dx2

> 0.

(A-135)

Some functions, such as the sine and cosine functions, have many local optima, that is, many
minima and maxima. A function such as (cos x)/(1 + x2), which is a damped cosine wave, does
as well but differs in that although it has many local maxima, it has one, at x = 0, at which f (x)

is greater than it is at any other point. Thus, x = 0 is the global maximum, whereas the other
maxima are only local maxima. Certain functions, such as a quadratic, have only a single optimum.
These functions are globally concave if the optimum is a maximum and globally convex if it is a
minimum.

For maximizing or minimizing a function of several variables, the first-order conditions are

∂ f (x)

∂x
= 0. (A-136)
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This result is interpreted in the same manner as the necessary condition in the univariate case.
At the optimum, it must be true that no small change in any variable leads to an improvement
in the function value. In the single-variable case, d2 y/dx2 must be positive for a minimum and
negative for a maximum. The second-order condition for an optimum in the multivariate case is
that, at the optimizing value,

H = ∂2 f (x)

∂x ∂x′ (A-137)

must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order condition can usually be verified by inspection.

This situation will not generally be true in the multivariate case. As discussed earlier, checking the
definiteness of a matrix is, in general, a difficult problem. For most of the problems encountered
in econometrics, however, the second-order condition will be implied by the structure of the
problem. That is, the matrix H will usually be of such a form that it is always definite.

For an example of the preceding, consider the problem

maximizex R = a′x − x′Ax,

where

a′ = (5 4 2),

and

A =
[

2 1 3
1 3 2
3 2 5

]
.

Using some now familiar results, we obtain

∂ R
∂x

= a − 2Ax =
[

5
4
2

]
−

[
4 2 6
2 6 4
6 4 10

][
x1

x2

x3

]
= 0. (A-138)

The solutions are [
x1

x2

x3

]
=

[
4 2 6
2 6 4
6 4 10

]−1 [
5
4
2

]
=

[
11.25

1.75
−7.25

]
.

The sufficient condition is that

∂2 R(x)

∂x ∂x′ = −2A =
[−4 −2 −6
−2 −6 −4
−6 −4 −10

]
(A-139)

must be negative definite. The three characteristic roots of this matrix are −15.746, −4, and
−0.25403. Because all three roots are negative, the matrix is negative definite, as required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian to verify
the sufficient condition. For a general matrix of order larger than 2, this will normally require a
computer. Suppose, however, that A is of the form

A = B′B,

where B is some known matrix. Then, as shown earlier, we know that A will always be positive
definite (assuming that B has full rank). In this case, it is not necessary to calculate the characteristic
roots of A to verify the sufficient conditions.
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A.8.3 CONSTRAINED OPTIMIZATION

It is often necessary to solve an optimization problem subject to some constraints on the solution.
One method is merely to “solve out” the constraints. For example, in the maximization problem
considered earlier, suppose that the constraint x1 = x2 −x3 is imposed on the solution. For a single
constraint such as this one, it is possible merely to substitute the right-hand side of this equation
for x1 in the objective function and solve the resulting problem as a function of the remaining two
variables. For more general constraints, however, or when there is more than one constraint, the
method of Lagrange multipliers provides a more straightforward method of solving the problem.
We

maximizex f (x) subject to c1(x) = 0,

c2(x) = 0,

· · ·
cJ (x) = 0.

(A-140)

The Lagrangean approach to this problem is to find the stationary points—that is, the points at
which the derivatives are zero—of

L∗(x, λ) = f (x) +
J∑

j=1

λ j c j (x) = f (x) + λ′c(x). (A-141)

The solutions satisfy the equations

∂L∗

∂x
= ∂ f (x)

∂x
+ ∂λ′c(x)

∂x
= 0 (n × 1),

∂L∗

∂λ
= c(x) = 0 (J × 1).

(A-142)

The second term in ∂L∗/∂x is

∂λ′c(x)

∂x
= ∂c(x)′λ

∂x
=

[
∂c(x)′

∂x

]
λ = C′λ, (A-143)

where C is the matrix of derivatives of the constraints with respect to x. The jth row of the J × n
matrix C is the vector of derivatives of the jth constraint, c j (x), with respect to x′. Upon collecting
terms, the first-order conditions are

∂L∗

∂x
= ∂ f (x)

∂x
+ C′λ = 0,

∂L∗

∂λ
= c(x) = 0.

(A-144)

There is one very important aspect of the constrained solution to consider. In the unconstrained
solution, we have ∂ f (x)/∂x = 0. From (A-144), we obtain, for a constrained solution,

∂ f (x)

∂x
= −C′λ, (A-145)

which will not equal 0 unless λ = 0. This result has two important implications:

• The constrained solution cannot be superior to the unconstrained solution. This is implied
by the nonzero gradient at the constrained solution. (That is, unless C = 0 which could
happen if the constraints were nonlinear. But, even if so, the solution is still no better than
the unconstrained optimum.)

• If the Lagrange multipliers are zero, then the constrained solution will equal the uncon-
strained solution.
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To continue the example begun earlier, suppose that we add the following conditions:

x1 − x2 + x3 = 0,

x1 + x2 + x3 = 0.

To put this in the format of the general problem, write the constraints as c(x) = Cx = 0, where

C =
[

1 −1 1
1 1 1

]
.

The Lagrangean function is

R∗(x, λ) = a′x − x′Ax + λ′Cx.

Note the dimensions and arrangement of the various parts. In particular, C is a 2 × 3 matrix, with
one row for each constraint and one column for each variable in the objective function. The vector
of Lagrange multipliers thus has two elements, one for each constraint. The necessary conditions
are

a − 2Ax + C′λ = 0 (three equations), (A-146)

and

Cx = 0 (two equations).

These may be combined in the single equation[
−2A C′

C 0

][
x
λ

]
=

[
−a
0

]
.

Using the partitioned inverse of (A-74) produces the solutions

λ = −[CA−1C′]−1CA−1a (A-147)

and

x = 1
2

A−1[I − C′(CA−1C′)−1CA−1]a. (A-148)

The two results, (A-147) and (A-148), yield analytic solutions for λ and x. For the specific matrices
and vectors of the example, these are λ = [−0.5 −7.5]′, and the constrained solution vector,
x∗ = [1.5 0 −1.5]′. Note that in computing the solution to this sort of problem, it is not necessary
to use the rather cumbersome form of (A-148). Once λ is obtained from (A-147), the solution
can be inserted in (A-146) for a much simpler computation. The solution

x = 1
2

A−1a + 1
2

A−1C′λ

suggests a useful result for the constrained optimum:

constrained solution = unconstrained solution + [2A]−1C′λ. (A-149)

Finally, by inserting the two solutions in the original function, we find that R = 24.375 and
R∗ = 2.25, which illustrates again that the constrained solution (in this maximization problem)
is inferior to the unconstrained solution.
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A.8.4 TRANSFORMATIONS

If a function is strictly monotonic, then it is a one-to-one function. Each y is associated with
exactly one value of x, and vice versa. In this case, an inverse function exists, which expresses x
as a function of y, written

y = f (x)

and

x = f −1(y).

An example is the inverse relationship between the log and the exponential functions.
The slope of the inverse function,

J = dx
dy

= df −1(y)

dy
= f −1′(y),

is the Jacobian of the transformation from y to x. For example, if

y = a + bx,

then

x = −a
b

+
[

1
b

]
y

is the inverse transformation and

J = dx
dy

= 1
b
.

Looking ahead to the statistical application of this concept, we observe that if y = f (x) were
vertical, then this would no longer be a functional relationship. The same x would be associated
with more than one value of y. In this case, at this value of x, we would find that J = 0, indicating
a singularity in the function.

If y is a column vector of functions, y = f(x), then

J = ∂x
∂y′ =

⎡
⎢⎢⎢⎣

∂x1/∂y1 ∂x1/∂y2 · · · ∂x1/∂yn

∂x2/∂y1 ∂x2/∂y2 · · · ∂x2/∂yn

...

∂xn/∂y1 ∂xn/∂y2 · · · ∂xn/∂yn

⎤
⎥⎥⎥⎦ .

Consider the set of linear functions y = Ax = f(x). The inverse transformation is x = f−1(y),
which will be

x = A−1y,

if A is nonsingular. If A is singular, then there is no inverse transformation. Let J be the matrix
of partial derivatives of the inverse functions:

J =
[

∂xi

∂yj

]
.

The absolute value of the determinant of J,

abs(|J|) = abs

(
det

([
∂x
∂y′

]))
,

is the Jacobian determinant of the transformation from y to x. In the nonsingular case,

abs(|J|) = abs(|A−1|) = 1
abs(|A|) .
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In the singular case, the matrix of partial derivatives will be singular and the determinant of
the Jacobian will be zero. In this instance, the singular Jacobian implies that A is singular or,
equivalently, that the transformations from x to y are functionally dependent. The singular case
is analogous to the single-variable case.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x can be
deduced from y is another question. Evidently, it depends on the Jacobian. If the Jacobian is
not zero, then the inverse transformations exist, and we can obtain x. If not, then we cannot
obtain x.

APPENDIX B

Q
PROBABILITY AND

DISTRIBUTION THEORY

B.1 INTRODUCTION

This appendix reviews the distribution theory used later in the book. A previous course in statistics
is assumed, so most of the results will be stated without proof. The more advanced results in the
later sections will be developed in greater detail.

B.2 RANDOM VARIABLES

We view our observation on some aspect of the economy as the outcome of a random process
that is almost never under our (the analyst’s) control. In the current literature, the descriptive
(and perspective laden) term data generating process, or DGP is often used for this underlying
mechanism. The observed (measured) outcomes of the process are assigned unique numeric
values. The assignment is one to one; each outcome gets one value, and no two distinct outcomes
receive the same value. This outcome variable, X, is a random variable because, until the data
are actually observed, it is uncertain what value X will take. Probabilities are associated with
outcomes to quantify this uncertainty. We usually use capital letters for the “name” of a random
variable and lowercase letters for the values it takes. Thus, the probability that X takes a particular
value x might be denoted Prob(X = x).

A random variable is discrete if the set of outcomes is either finite in number or countably
infinite. The random variable is continuous if the set of outcomes is infinitely divisible and, hence,
not countable. These definitions will correspond to the types of data we observe in practice. Counts
of occurrences will provide observations on discrete random variables, whereas measurements
such as time or income will give observations on continuous random variables.

B.2.1 PROBABILITY DISTRIBUTIONS

A listing of the values x taken by a random variable X and their associated probabilities is a
probability distribution, f (x). For a discrete random variable,

f (x) = Prob(X = x). (B-1)
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The axioms of probability require that

1. 0 ≤ Prob(X = x) ≤ 1. (B-2)
2.

∑
x f (x) = 1. (B-3)

For the continuous case, the probability associated with any particular point is zero, and
we can only assign positive probabilities to intervals in the range of x. The probability density
function (pdf) is defined so that f (x) ≥ 0 and

1. Prob(a ≤ x ≤ b) =
∫ b

a

f (x) dx ≥ 0. (B-4)

This result is the area under f (x) in the range from a to b. For a continuous variable,

2.
∫ +∞

−∞
f (x) dx = 1. (B-5)

If the range of x is not infinite, then it is understood that f (x) = 0 any where outside the
appropriate range. Because the probability associated with any individual point is 0,

Prob(a ≤ x ≤ b) = Prob(a ≤ x < b)

= Prob(a < x ≤ b)

= Prob(a < x < b).

B.2.2 CUMULATIVE DISTRIBUTION FUNCTION

For any random variable X, the probability that X is less than or equal to a is denoted F(a). F(x)

is the cumulative distribution function (cdf). For a discrete random variable,

F(x) =
∑
X≤x

f (X ) = Prob(X ≤ x). (B-6)

In view of the definition of f (x),

f (xi ) = F(xi ) − F(xi−1). (B-7)

For a continuous random variable,

F(x) =
∫ x

−∞
f (t) dt, (B-8)

and

f (x) = dF(x)

dx
. (B-9)

In both the continuous and discrete cases, F(x) must satisfy the following properties:

1. 0 ≤ F(x) ≤ 1.
2. If x > y, then F(x) ≥ F(y).
3. F(+∞) = 1.
4. F(−∞) = 0.

From the definition of the cdf,

Prob(a < x ≤ b) = F(b) − F(a). (B-10)

Any valid pdf will imply a valid cdf, so there is no need to verify these conditions separately.
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B.3 EXPECTATIONS OF A RANDOM VARIABLE

DEFINITION B.1 Mean of a Random Variable
The mean, or expected value, of a random variable is

E[x] =

⎧⎪⎪⎨
⎪⎪⎩

∑
x

x f (x) if x is discrete,

∫
x

x f (x) dx if x is continuous.

(B-11)

The notation
∑

x or
∫

x
, used henceforth, means the sum or integral over the entire range

of values of x. The mean is usually denoted μ. It is a weighted average of the values taken by x,
where the weights are the respective probabilities. It is not necessarily a value actually taken by
the random variable. For example, the expected number of heads in one toss of a fair coin is 1

2 .
Other measures of central tendency are the median, which is the value m such that

Prob(X ≤ m) ≥ 1
2 and Prob(X ≥ m) ≥ 1

2 , and the mode, which is the value of x at which f (x)

takes its maximum. The first of these measures is more frequently used than the second. Loosely
speaking, the median corresponds more closely than the mean to the middle of a distribution. It is
unaffected by extreme values. In the discrete case, the modal value of x has the highest probability
of occurring.

Let g(x) be a function of x. The function that gives the expected value of g(x) is denoted

E[g(x)] =

⎧⎪⎪⎨
⎪⎪⎩

∑
x

g(x) Prob(X = x) if X is discrete,

∫
x

g(x) f (x) dx if X is continuous.

(B-12)

If g(x) = a + bx for constants a and b, then

E[a + bx] = a + bE[x].

An important case is the expected value of a constant a, which is just a.

DEFINITION B.2 Variance of a Random Variable
The variance of a random variable is

Var[x] = E[(x − μ)2]

=

⎧⎪⎪⎨
⎪⎪⎩

∑
x

(x − μ)2 f (x) if x is discrete,

∫
x

(x − μ)2 f (x) dx if x is continuous.

(B-13)

Var[x], which must be positive, is usually denoted σ 2. This function is a measure of the
dispersion of a distribution. Computation of the variance is simplified by using the following
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important result:

Var[x] = E[x2] − μ2. (B-14)

A convenient corollary to (B-14) is

E[x2] = σ 2 + μ2. (B-15)

By inserting y = a + bx in (B-13) and expanding, we find that

Var[a + bx] = b2 Var[x], (B-16)

which implies, for any constant a, that

Var[a] = 0. (B-17)

To describe a distribution, we usually use σ , the positive square root, which is the standard
deviation of x. The standard deviation can be interpreted as having the same units of measurement
as x and μ. For any random variable x and any positive constant k, the Chebychev inequality states
that

Prob(μ − kσ ≤ x ≤ μ + kσ) ≥ 1 − 1
k2

. (B-18)

Two other measures often used to describe a probability distribution are

skewness = E[(x − μ)3],

and

kurtosis = E[(x − μ)4].

Skewness is a measure of the asymmetry of a distribution. For symmetric distributions,

f (μ − x) = f (μ + x),

and

skewness = 0.

For asymmetric distributions, the skewness will be positive if the “long tail” is in the positive
direction. Kurtosis is a measure of the thickness of the tails of the distribution. A shorthand
expression for other central moments is

μr = E[(x − μ)r ].

Because μr tends to explode as r grows, the normalized measure, μr/σ
r , is often used for descrip-

tion. Two common measures are

skewness coefficient = μ3

σ 3
,

and

degree of excess = μ4

σ 4
− 3.

The second is based on the normal distribution, which has excess of zero.
For any two functions g1(x) and g2(x),

E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)]. (B-19)

For the general case of a possibly nonlinear g(x),

E[g(x)] =
∫

x

g(x) f (x) dx, (B-20)
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and

Var[g(x)] =
∫

x

(
g(x) − E [g(x)]

)2
f (x) dx. (B-21)

(For convenience, we shall omit the equivalent definitions for discrete variables in the fol-
lowing discussion and use the integral to mean either integration or summation, whichever is
appropriate.)

A device used to approximate E[g(x)] and Var[g(x)] is the linear Taylor series approxi-
mation:

g(x) ≈ [g(x0) − g′(x0)x0] + g′(x0)x = β1 + β2x = g∗(x). (B-22)

If the approximation is reasonably accurate, then the mean and variance of g∗(x) will be ap-
proximately equal to the mean and variance of g(x). A natural choice for the expansion point is
x0 = μ = E(x). Inserting this value in (B-22) gives

g(x) ≈ [g(μ) − g′(μ)μ] + g′(μ)x, (B-23)

so that

E[g(x)] ≈ g(μ), (B-24)

and

Var[g(x)] ≈ [g′(μ)]2 Var[x]. (B-25)

A point to note in view of (B-22) to (B-24) is that E[g(x)] will generally not equal g(E[x]).
For the special case in which g(x) is concave—that is, where g′′(x) < 0—we know from Jensen’s
inequality that E[g(x)] ≤ g(E[x]). For example, E[log(x)] ≤ log(E[x]).

B.4 SOME SPECIFIC PROBABILITY
DISTRIBUTIONS

Certain experimental situations naturally give rise to specific probability distributions. In the
majority of cases in economics, however, the distributions used are merely models of the observed
phenomena. Although the normal distribution, which we shall discuss at length, is the mainstay
of econometric research, economists have used a wide variety of other distributions. A few are
discussed here.1

B.4.1 THE NORMAL DISTRIBUTION

The general form of the normal distribution with mean μ and standard deviation σ is

f (x | μ, σ 2) = 1

σ
√

2π
e−1/2[(x−μ)2/σ 2]. (B-26)

This result is usually denoted x ∼ N [μ, σ 2]. The standard notation x ∼ f (x) is used to state that
“x has probability distribution f (x).” Among the most useful properties of the normal distribution

1A much more complete listing appears in Maddala (1977a, Chapters 3 and 18) and in most mathematical
statistics textbooks. See also Poirier (1995) and Stuart and Ord (1989). Another useful reference is Evans,
Hastings, and Peacock (1993). Johnson et al. (1974, 1993, 1994, 1995, 1997) is an encyclopedic reference on
the subject of statistical distributions.



Greene-2140242 book December 1, 2010 8:39

APPENDIX B ✦ Probability and Distribution Theory 1089

is its preservation under linear transformation.

If x ∼ N [μ, σ 2], then (a + bx) ∼ N [a + bμ, b2σ 2]. (B-27)

One particularly convenient transformation is a = −μ/σ and b= 1/σ . The resulting variable
z= (x − μ)/σ has the standard normal distribution, denoted N [0, 1], with density

φ(z) = 1√
2π

e−z2/2. (B-28)

The specific notation φ(z) is often used for this distribution and �(z) for its cdf. It follows from
the definitions above that if x ∼ N [μ, σ 2], then

f (x) = 1
σ

φ

[ x − μ

σ

]
.

Figure B.1 shows the densities of the standard normal distribution and the normal distribution
with mean 0.5, which shifts the distribution to the right, and standard deviation 1.3, which, it can
be seen, scales the density so that it is shorter but wider. (The graph is a bit deceiving unless you
look closely; both densities are symmetric.)

Tables of the standard normal cdf appear in most statistics and econometrics textbooks.
Because the form of the distribution does not change under a linear transformation, it is not
necessary to tabulate the distribution for other values of μ and σ . For any normally distributed
variable,

Prob(a ≤ x ≤ b) = Prob

(
a − μ

σ
≤ x − μ

σ
≤ b − μ

σ

)
, (B-29)

which can always be read from a table of the standard normal distribution. In addition, because
the distribution is symmetric, �(−z) = 1 − �(z). Hence, it is not necessary to tabulate both the
negative and positive halves of the distribution.

FIGURE B.1 The Normal Distribution.
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B.4.2 THE CHI-SQUARED, t, AND F DISTRIBUTIONS

The chi-squared, t, and F distributions are derived from the normal distribution. They arise in
econometrics as sums of n or n1 and n2 other variables. These three distributions have associated
with them one or two “degrees of freedom” parameters, which for our purposes will be the
number of variables in the relevant sum.

The first of the essential results is

• If z ∼ N [0, 1], then x = z2 ∼ chi-squared[1]—that is, chi-squared with one degree of
freedom—denoted

z2 ∼ χ2[1]. (B-30)

This distribution is a skewed distribution with mean 1 and variance 2. The second result is

• If x1, . . . , xn are n independent chi-squared[1] variables, then
n∑

i=1

xi ∼ chi-squared[n]. (B-31)

The mean and variance of a chi-squared variable with n degrees of freedom are n and 2n, respec-
tively. A number of useful corollaries can be derived using (B-30) and (B-31).

• If zi , i = 1, . . . , n, are independent N [0, 1] variables, then
n∑

i=1

z2
i ∼ χ2[n]. (B-32)

• If zi , i = 1, . . . , n, are independent N [0, σ 2] variables, then
n∑

i=1

(zi/σ)2 ∼ χ2[n]. (B-33)

• If x1 and x2 are independent chi-squared variables with n1 and n2 degrees of freedom, re-
spectively, then

x1 + x2 ∼ χ2[n1 + n2]. (B-34)

This result can be generalized to the sum of an arbitrary number of independent chi-squared
variables.

Figure B.2 shows the chi-squared density for three degrees of freedom. The amount of
skewness declines as the number of degrees of freedom rises. Unlike the normal distribution, a
separate table is required for the chi-squared distribution for each value of n. Typically, only a
few percentage points of the distribution are tabulated for each n. Table G.3 in Appendix G of
this book gives lower (left) tail areas for a number of values.

• If x1 and x2 are two independent chi-squared variables with degrees of freedom parameters
n1 and n2, respectively, then the ratio

F [n1, n2] = x1/n1

x2/n2
(B-35)

has the F distribution with n1 and n2 degrees of freedom.

The two degrees of freedom parameters n1 and n2 are the numerator and denominator degrees
of freedom, respectively. Tables of the F distribution must be computed for each pair of values
of (n1, n2). As such, only one or two specific values, such as the 95 percent and 99 percent upper
tail values, are tabulated in most cases.
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FIGURE B.2 The Chi-Squared [3] Distribution.

• If z is an N [0, 1] variable and x is χ2[n] and is independent of z, then the ratio

t[n] = z√
x/n

(B-36)

has the t distribution with n degrees of freedom.

The t distribution has the same shape as the normal distribution but has thicker tails. Figure B.3
illustrates the t distributions with 3 and 10 degrees of freedom with the standard normal distribu-
tion. Two effects that can be seen in the figure are how the distribution changes as the degrees of
freedom increases, and, overall, the similarity of the t distribution to the standard normal. This
distribution is tabulated in the same manner as the chi-squared distribution, with several specific
cutoff points corresponding to specified tail areas for various values of the degrees of freedom
parameter.

Comparing (B-35) with n1 = 1 and (B-36), we see the useful relationship between the t and
F distributions:

• If t ∼ t[n], then t2 ∼ F[1, n].

If the numerator in (B-36) has a nonzero mean, then the random variable in (B-36) has a non-
central t distribution and its square has a noncentral F distribution. These distributions arise in
the F tests of linear restrictions [see (5-6)] when the restrictions do not hold as follows:

1. Noncentral chi-squared distribution. If z has a normal distribution with mean μ and standard
deviation 1, then the distribution of z2 is noncentral chi-squared with parameters 1 and μ2/2.
a. If z ∼ N [μ, �] with J elements, then z′�−1z has a noncentral chi-squared distribution

with J degrees of freedom and noncentrality parameter μ′�−1μ/2, which we denote
χ 2

∗[J, μ′�−1μ/2].
b. If z ∼ N [μ, I] and M is an idempotent matrix with rank J, then z′Mz ∼ χ2

∗[J, μ′Mμ/2].
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FIGURE B.3 The Standard Normal, t[3], and t[10] Distributions.

2. Noncentral F distribution. If X1 has a noncentral chi-squared distribution with noncentrality
parameter λ and degrees of freedom n1 and X2 has a central chi-squared distribution with
degrees of freedom n2 and is independent of X1, then

F∗ = X1/n1

X2/n2

has a noncentral F distribution with parameters n1, n2, and λ.2 Note that in each of these
cases, the statistic and the distribution are the familiar ones, except that the effect of the
nonzero mean, which induces the noncentrality, is to push the distribution to the right.

B.4.3 DISTRIBUTIONS WITH LARGE DEGREES OF FREEDOM

The chi-squared, t, and F distributions usually arise in connection with sums of sample observa-
tions. The degrees of freedom parameter in each case grows with the number of observations.
We often deal with larger degrees of freedom than are shown in the tables. Thus, the standard
tables are often inadequate. In all cases, however, there are limiting distributions that we can use
when the degrees of freedom parameter grows large. The simplest case is the t distribution. The
t distribution with infinite degrees of freedom is equivalent to the standard normal distribution.
Beyond about 100 degrees of freedom, they are almost indistinguishable.

For degrees of freedom greater than 30, a reasonably good approximation for the distribution
of the chi-squared variable x is

z = (2x)1/2 − (2n − 1)1/2, (B-37)

which is approximately standard normally distributed. Thus,

Prob(χ 2[n] ≤ a) ≈ �[(2a)1/2 − (2n − 1)1/2].

2The denominator chi-squared could also be noncentral, but we shall not use any statistics with doubly
noncentral distributions.
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As used in econometrics, the F distribution with a large-denominator degrees of freedom is
common. As n2 becomes infinite, the denominator of F converges identically to one, so we can
treat the variable

x = n1 F (B-38)

as a chi-squared variable with n1 degrees of freedom. The numerator degree of freedom will
typically be small, so this approximation will suffice for the types of applications we are likely to
encounter.3 If not, then the approximation given earlier for the chi-squared distribution can be
applied to n1 F .

B.4.4 SIZE DISTRIBUTIONS: THE LOGNORMAL DISTRIBUTION

In modeling size distributions, such as the distribution of firm sizes in an industry or the distribution
of income in a country, the lognormal distribution, denoted LN[μ, σ 2], has been particularly
useful.4

f (x) = 1√
2π σ x

e−1/2[(ln x−μ)/σ ]2
, x > 0.

A lognormal variable x has

E[x] = eμ+σ 2/2,

and

Var[x] = e2μ+σ 2(
eσ 2 − 1

)
.

The relation between the normal and lognormal distributions is

If y ∼ LN[μ, σ 2], ln y ∼ N [μ, σ 2].

A useful result for transformations is given as follows:

If x has a lognormal distribution with mean θ and variance λ2, then

ln x ∼ N(μ, σ 2), where μ = ln θ2 − 1
2 ln(θ2 + λ2) and σ 2 = ln(1 + λ2/θ2).

Because the normal distribution is preserved under linear transformation,

if y ∼ LN[μ, σ 2], then ln yr ∼ N [rμ, r 2σ 2].

If y1 and y2 are independent lognormal variables with y1 ∼ LN[μ1, σ
2
1 ] and y2 ∼ LN[μ2, σ

2
2 ],

then

y1 y2 ∼ LN
[
μ1 + μ2, σ

2
1 + σ 2

2

]
.

B.4.5 THE GAMMA AND EXPONENTIAL DISTRIBUTIONS

The gamma distribution has been used in a variety of settings, including the study of income
distribution5 and production functions.6 The general form of the distribution is

f (x) = λP


(P)
e−λx xP−1, x ≥ 0, λ > 0, P > 0. (B-39)

Many familiar distributions are special cases, including the exponential distribution (P = 1) and
chi-squared (λ = 1

2 , P = n
2 ). The Erlang distribution results if P is a positive integer. The mean is

P/λ, and the variance is P/λ2. The inverse gamma distribution is the distribution of 1/x, where x

3See Johnson, Kotz, and Balakrishnan (1994) for other approximations.
4A study of applications of the lognormal distribution appears in Aitchison and Brown (1969).
5Salem and Mount (1974).
6Greene (1980a).
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has the gamma distribution. Using the change of variable, y = 1/x, the Jacobian is |dx/dy| = 1/y2.
Making the substitution and the change of variable, we find

f (y) = λP


(P)
e−λ/y y−(P+1), y ≥ 0, λ > 0, P > 0.

The density is defined for positive P. However, the mean is λ/(P − 1) which is defined only if
P > 1 and the variance is λ2/[(P − 1)2(P − 2)] which is defined only for P > 2.

B.4.6 THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the random
variable is constrained to vary. The lognormal distribution, for example, is sometimes used to
model a variable that is always nonnegative. For a variable constrained between 0 and c > 0, the
beta distribution has proved useful. Its density is

f (x) = 
(α + β)


(α)
(β)

(
x
c

)α−1(
1 − x

c

)β−1
1
c
. (B-40)

This functional form is extremely flexible in the shapes it will accommodate. It is symmetric if
α = β, asymmetric otherwise, and can be hump-shaped or U-shaped. The mean is cα/(α + β),
and the variance is c2αβ/[(α +β +1)(α +β)2]. The beta distribution has been applied in the study
of labor force participation rates.7

B.4.7 THE LOGISTIC DISTRIBUTION

The normal distribution is ubiquitous in econometrics. But researchers have found that for some
microeconomic applications, there does not appear to be enough mass in the tails of the normal
distribution; observations that a model based on normality would classify as “unusual” seem not
to be very unusual at all. One approach has been to use thicker-tailed symmetric distributions.
The logistic distribution is one candidate; the cdf for a logistic random variable is denoted

F(x) = �(x) = 1
1 + e−x

.

The density is f (x) = �(x)[1 − �(x)]. The mean and variance of this random variable are zero
and π2/3.

B.4.8 THE WISHART DISTRIBUTION

The Wishart distribution describes the distribution of a random matrix obtained as

W =
n∑

i=1

(xi − μ)(xi − μ)′,

where xi is the ith of n K element random vectors from the multivariate normal distribution with
mean vector, μ, and covariance matrix, �. This is a multivariate counterpart to the chi-squared
distribution. The density of the Wishart random matrix is

f (W) =
exp

[
−1

2
trace

(
�−1W

)] |W|− 1
2 (n−K−1)

2nK/2|�|K/2 π K(K−1)/4
∏K

j=1


(
n + 1 − j

2

) .

The mean matrix is n�. For the individual pairs of elements in W,

Cov[wij, wrs] = n(σirσ js + σisσ jr ).

7Heckman and Willis (1976).
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FIGURE B.4 The Poisson [3] Distribution.

B.4.9 DISCRETE RANDOM VARIABLES

Modeling in economics frequently involves random variables that take integer values. In these
cases, the distributions listed thus far only provide approximations that are sometimes quite
inappropriate. We can build up a class of models for discrete random variables from the Bernoulli
distribution for a single binomial outcome (trial)

Prob(x = 1) = α,

Prob(x = 0) = 1 − α,

where 0 ≤ α ≤ 1. The modeling aspect of this specification would be the assumptions that the suc-
cess probability α is constant from one trial to the next and that successive trials are independent.
If so, then the distribution for x successes in n trials is the binomial distribution,

Prob(X = x) =
(

n
x

)
αx(1 − α)n−x, x = 0, 1, . . . , n.

The mean and variance of x are nα and nα(1 − α), respectively. If the number of trials becomes
large at the same time that the success probability becomes small so that the mean nα is stable,
then, the limiting form of the binomial distribution is the Poisson distribution,

Prob(X = x) = e−λλx

x!
.

The Poisson distribution has seen wide use in econometrics in, for example, modeling patents,
crime, recreation demand, and demand for health services. (See Chapter 18.) An example is
shown in Figure B.4.

B.5 THE DISTRIBUTION OF A FUNCTION
OF A RANDOM VARIABLE

We considered finding the expected value of a function of a random variable. It is fairly common
to analyze the random variable itself, which results when we compute a function of some random
variable. There are three types of transformation to consider. One discrete random variable may
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be transformed into another, a continuous variable may be transformed into a discrete one, and
one continuous variable may be transformed into another.

The simplest case is the first one. The probabilities associated with the new variable are
computed according to the laws of probability. If y is derived from x and the function is one to
one, then the probability that Y = y(x) equals the probability that X = x. If several values of x
yield the same value of y, then Prob(Y = y) is the sum of the corresponding probabilities for x.

The second type of transformation is illustrated by the way individual data on income are typ-
ically obtained in a survey. Income in the population can be expected to be distributed according
to some skewed, continuous distribution such as the one shown in Figure B.5.

Data are often reported categorically, as shown in the lower part of the figure. Thus, the
random variable corresponding to observed income is a discrete transformation of the actual
underlying continuous random variable. Suppose, for example, that the transformed variable y is
the mean income in the respective interval. Then

Prob(Y = μ1) = P(−∞ < X ≤ a),

Prob(Y = μ2) = P(a < X ≤ b),

Prob(Y = μ3) = P(b < X ≤ c),

and so on, which illustrates the general procedure.
If x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous monotonic

function of x, then the density of y is obtained by using the change of variable technique to find

FIGURE B.5 Censored Distribution.
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the cdf of y:

Prob(y ≤ b) =
∫ b

−∞
fx(g−1(y))|g−1′(y)| dy.

This equation can now be written as

Prob(y ≤ b) =
∫ b

−∞
fy(y) dy.

Hence,

fy(y) = fx(g−1(y))|g−1′(y)|. (B-41)

To avoid the possibility of a negative pdf if g(x) is decreasing, we use the absolute value of the
derivative in the previous expression. The term |g−1′(y)| must be nonzero for the density of y to be
nonzero. In words, the probabilities associated with intervals in the range of y must be associated
with intervals in the range of x. If the derivative is zero, the correspondence y = g(x) is vertical,
and hence all values of y in the given range are associated with the same value of x. This single
point must have probability zero.

One of the most useful applications of the preceding result is the linear transformation of a
normally distributed variable. If x ∼ N [μ, σ 2], then the distribution of

y = x − μ

σ

is found using the preceding result. First, the derivative is obtained from the inverse transformation

y = x
σ

− μ

σ
⇒ x = σ y + μ ⇒ f −1′(y) = dx

dy
= σ.

Therefore,

fy(y) = 1√
2πσ

e−[(σ y+μ)−μ]2/(2σ 2)|σ | = 1√
2π

e−y2/2.

This is the density of a normally distributed variable with mean zero and unit standard deviation
one. This is the result which makes it unnecessary to have separate tables for the different normal
distributions which result from different means and variances.

B.6 REPRESENTATIONS OF A PROBABILITY
DISTRIBUTION

The probability density function (pdf) is a natural and familiar way to formulate the distribution
of a random variable. But, there are many other functions that are used to identify or characterize
a random variable, depending on the setting. In each of these cases, we can identify some other
function of the random variable that has a one-to-one relationship with the density. We have
already used one of these quite heavily in the preceding discussion. For a random variable which
has density function f (x), the distribution function, F(x), is an equally informative function that
identifies the distribution; the relationship between f (x) and F(x) is defined in (B-6) for a discrete
random variable and (B-8) for a continuous one. We now consider several other related functions.

For a continuous random variable, the survival function is S(x) = 1 − F(x) = Prob[X ≥ x].
This function is widely used in epidemiology, where x is time until some transition, such as recovery
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from a disease. The hazard function for a random variable is

h(x) = f (x)

S(x)
= f (x)

1 − F(x)
.

The hazard function is a conditional probability;

h(x) = limt↓0 Prob(X ≤ x ≤ X + t | X ≥ x).

Hazard functions have been used in econometrics in studying the duration of spells, or conditions,
such as unemployment, strikes, time until business failures, and so on. The connection between
the hazard and the other functions is h(x) = −d ln S(x)/dx. As an exercise, you might want to
verify the interesting special case of h(x) = 1/λ, a constant—the only distribution which has this
characteristic is the exponential distribution noted in Section B.4.5.

For the random variable X, with probability density function f (x), if the function

M(t) = E[etx]

exists, then it is the moment generating function. Assuming the function exists, it can be shown
that

dr M(t)/dtr |t=0 = E[xr ].

The moment generating function, like the survival and the hazard functions, is a unique charac-
terization of a probability distribution. When it exists, the moment generating function (MGF)
has a one-to-one correspondence with the distribution. Thus, for example, if we begin with some
random variable and find that a transformation of it has a particular MGF, then we may infer that
the function of the random variable has the distribution associated with that MGF. A convenient
application of this result is the MGF for the normal distribution. The MGF for the standard
normal distribution is Mz(t) = et2/2.

A useful feature of MGFs is the following:

If x and y are independent, then the MGF of x + y is Mx(t)My(t).

This result has been used to establish the contagion property of some distributions, that is, the
property that sums of random variables with a given distribution have that same distribution.
The normal distribution is a familiar example. This is usually not the case. It is for Poisson and
chi-squared random variables.

One qualification of all of the preceding is that in order for these results to hold, the
MGF must exist. It will for the distributions that we will encounter in our work, but in at
least one important case, we cannot be sure of this. When computing sums of random vari-
ables which may have different distributions and whose specific distributions need not be so
well behaved, it is likely that the MGF of the sum does not exist. However, the characteristic
function,

φ(t) = E[eitx], i2 = −1,

will always exist, at least for relatively small t. The characteristic function is the device used to
prove that certain sums of random variables converge to a normally distributed variable—that
is, the characteristic function is a fundamental tool in proofs of the central limit theorem.



Greene-2140242 book December 1, 2010 8:39

APPENDIX B ✦ Probability and Distribution Theory 1099

B.7 JOINT DISTRIBUTIONS

The joint density function for two random variables X and Y denoted f (x, y) is defined so that

Prob(a ≤ x ≤ b, c ≤ y ≤ d) =

⎧⎪⎪⎨
⎪⎪⎩

∑
a≤x≤b

∑
c≤y≤d

f (x, y) if x and y are discrete,

∫ b

a

∫ d

c

f (x, y) dy dx if x and y are continuous.

(B-42)

The counterparts of the requirements for a univariate probability density are

f (x, y) ≥ 0,∑
x

∑
y

f (x, y) = 1 if x and y are discrete,

∫
x

∫
y

f (x, y) dy dx = 1 if x and y are continuous.

(B-43)

The cumulative probability is likewise the probability of a joint event:

F(x, y) = Prob(X ≤ x, Y ≤ y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
X≤x

∑
Y≤y

f (x, y) in the discrete case

∫ x

−∞

∫ y

−∞
f (t, s) ds dt in the continuous case.

(B-44)

B.7.1 MARGINAL DISTRIBUTIONS

A marginal probability density or marginal probability distribution is defined with respect to an
individual variable. To obtain the marginal distributions from the joint density, it is necessary to
sum or integrate out the other variable:

fx(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
y

f (x, y) in the discrete case

∫
y

f (x, s) ds in the continuous case,

(B-45)

and similarly for fy(y).
Two random variables are statistically independent if and only if their joint density is the

product of the marginal densities:

f (x, y) = fx(x) fy(y) ⇔ x and y are independent. (B-46)

If (and only if) x and y are independent, then the cdf factors as well as the pdf:

F(x, y) = Fx(x)Fy(y), (B-47)

or

Prob(X ≤ x, Y ≤ y) = Prob(X ≤ x)Prob(Y ≤ y).
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B.7.2 EXPECTATIONS IN A JOINT DISTRIBUTION

The means, variances, and higher moments of the variables in a joint distribution are defined with
respect to the marginal distributions. For the mean of x in a discrete distribution,

E[x] =
∑

x

x fx(x)

=
∑

x

x

[∑
y

f (x, y)

]

=
∑

x

∑
y

x f (x, y).

(B-48)

The means of the variables in a continuous distribution are defined likewise, using integration
instead of summation:

E[x] =
∫

x

x fx(x) dx

=
∫

x

∫
y

x f (x, y) dy dx.

(B-49)

Variances are computed in the same manner:

Var[x] =
∑

x

(
x − E[x]

)2
fx(x)

=
∑

x

∑
y

(
x − E[x]

)2
f (x, y).

(B-50)

B.7.3 COVARIANCE AND CORRELATION

For any function g(x, y),

E[g(x, y)] =

⎧⎪⎪⎨
⎪⎪⎩

∑
x

∑
y

g(x, y) f (x, y) in the discrete case

∫
x

∫
y

g(x, y) f (x, y) dy dx in the continuous case.
(B-51)

The covariance of x and y is a special case:

Cov[x, y] = E[(x − μx)(y − μy)]

= E[xy] − μxμy (B-52)

= σxy.

If x and y are independent, then f (x, y) = fx(x) fy(y) and

σxy =
∑

x

∑
y

fx(x) fy(y)(x − μx)(y − μy)

=
∑

x

(x − μx) fx(x)
∑

y

(y − μy) fy(y)

= E[x − μx]E[y − μy]

= 0.
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The sign of the covariance will indicate the direction of covariation of X and Y. Its magnitude
depends on the scales of measurement, however. In view of this fact, a preferable measure is the
correlation coefficient:

r [x, y] = ρxy = σxy

σxσy
, (B-53)

where σx and σy are the standard deviations of x and y, respectively. The correlation coefficient
has the same sign as the covariance but is always between −1 and 1 and is thus unaffected by any
scaling of the variables.

Variables that are uncorrelated are not necessarily independent. For example, in the dis-
crete distribution f (−1, 1) = f (0, 0) = f (1, 1) = 1

3 , the correlation is zero, but f (1, 1) does not
equal fx(1) fy(1) = ( 1

3 )( 2
3 ). An important exception is the joint normal distribution discussed sub-

sequently, in which lack of correlation does imply independence.
Some general results regarding expectations in a joint distribution, which can be verified by

applying the appropriate definitions, are

E[ax + by + c] = aE[x] + bE[y] + c, (B-54)

Var[ax + by + c] = a2Var[x] + b2Var[y] + 2ab Cov[x, y]

= Var[ax + by],
(B-55)

and

Cov[ax + by, cx + dy] = ac Var[x] + bd Var[y] + (ad + bc)Cov[x, y]. (B-56)

If X and Y are uncorrelated, then

Var[x + y] = Var[x − y]

= Var[x] + Var[y].
(B-57)

For any two functions g1(x) and g2(y), if x and y are independent, then

E[g1(x)g2(y)] = E[g1(x)]E[g2(y)]. (B-58)

B.7.4 DISTRIBUTION OF A FUNCTION OF BIVARIATE
RANDOM VARIABLES

The result for a function of a random variable in (B-41) must be modified for a joint distribution.
Suppose that x1 and x2 have a joint distribution fx(x1, x2) and that y1 and y2 are two monotonic
functions of x1 and x2:

y1 = y1(x1, x2),

y2 = y2(x1, x2).

Because the functions are monotonic, the inverse transformations,

x1 = x1(y1, y2),

x2 = x2(y1, y2),



Greene-2140242 book December 1, 2010 8:39

1102 PART VI ✦ Appendices

exist. The Jacobian of the transformations is the matrix of partial derivatives,

J =
[
∂x1/∂y1 ∂x1/∂y2

∂x2/∂y1 ∂x2/∂y2

]
=

[
∂x
∂y′

]
.

The joint distribution of y1 and y2 is

fy(y1, y2) = fx[x1(y1, y2), x2(y1, y2)]abs(|J |).

The determinant of the Jacobian must be nonzero for the transformation to exist. A zero deter-
minant implies that the two transformations are functionally dependent.

Certainly the most common application of the preceding in econometrics is the linear trans-
formation of a set of random variables. Suppose that x1 and x2 are independently distributed
N [0, 1], and the transformations are

y1 = α1 + β11x1 + β12x2,

y2 = α2 + β21x1 + β22x2.

To obtain the joint distribution of y1 and y2, we first write the transformations as

y = a + Bx.

The inverse transformation is

x = B−1(y − a),

so the absolute value of the determinant of the Jacobian is

abs|J | = abs|B−1| = 1
abs|B| .

The joint distribution of x is the product of the marginal distributions since they are independent.
Thus,

fx(x) = (2π)−1e−(x2
1
+x2

2 )/2 = (2π)−1e−x′x/2.

Inserting the results for x(y) and J into fy(y1, y2) gives

fy(y) = (2π)−1 1
abs|B| e−(y−a)′(BB′)−1(y−a)/2.

This bivariate normal distribution is the subject of Section B.9. Note that by formulating it as we
did earlier, we can generalize easily to the multivariate case, that is, with an arbitrary number of
variables.

Perhaps the more common situation is that in which it is necessary to find the distribution
of one function of two (or more) random variables. A strategy that often works in this case is
to form the joint distribution of the transformed variable and one of the original variables, then
integrate (or sum) the latter out of the joint distribution to obtain the marginal distribution. Thus,
to find the distribution of y1(x1, x2), we might formulate

y1 = y1(x1, x2)

y2 = x2.
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The absolute value of the determinant of the Jacobian would then be

J = abs

∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

0 1

∣∣∣∣∣∣ = abs

∣∣∣∣
(

∂x1

∂y1

)∣∣∣∣.
The density of y1 would then be

fy1(y1) =
∫

y2

fx[x1(y1, y2), y2] abs|J | dy2.

B.8 CONDITIONING IN A BIVARIATE DISTRIBUTION

Conditioning and the use of conditional distributions play a pivotal role in econometric modeling.
We consider some general results for a bivariate distribution. (All these results can be extended
directly to the multivariate case.)

In a bivariate distribution, there is a conditional distribution over y for each value of x. The
conditional densities are

f (y | x) = f (x, y)

fx(x)
, (B-59)

and

f (x | y) = f (x, y)

fy(y)
.

It follows from (B-46) that.

If x and y are independent, then f (y | x) = fy(y) and f (x | y) = fx(x). (B-60)

The interpretation is that if the variables are independent, the probabilities of events relating
to one variable are unrelated to the other. The definition of conditional densities implies the
important result

f (x, y) = f (y | x) fx(x)

= f (x | y) fy(y).
(B-61)

B.8.1 REGRESSION: THE CONDITIONAL MEAN

A conditional mean is the mean of the conditional distribution and is defined by

E[y | x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
y

yf (y | x) dy if y is continuous

∑
y

yf (y | x) if y is discrete.
(B-62)

The conditional mean function E[y | x] is called the regression of y on x.
A random variable may always be written as

y = E[y | x] + (
y − E[y | x]

)
= E[y | x] + ε.
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B.8.2 CONDITIONAL VARIANCE

A conditional variance is the variance of the conditional distribution:

Var[y | x] = E
[(

y − E[y | x]
)2 ∣∣ x

]
=

∫
y

(
y − E[y | x]

)2
f (y | x) dy, if y is continuous,

(B-63)

or

Var[y | x] =
∑

y

(
y − E[y | x]

)2
f (y | x), if y is discrete. (B-64)

The computation can be simplified by using

Var[y | x] = E[y2 | x] − (
E[y | x]

)2
. (B-65)

The conditional variance is called the scedastic function and, like the regression, is generally
a function of x. Unlike the conditional mean function, however, it is common for the conditional
variance not to vary with x. We shall examine a particular case. This case does not imply, however,
that Var[y | x] equals Var[y], which will usually not be true. It implies only that the conditional
variance is a constant. The case in which the conditional variance does not vary with x is called
homoscedasticity (same variance).

B.8.3 RELATIONSHIPS AMONG MARGINAL
AND CONDITIONAL MOMENTS

Some useful results for the moments of a conditional distribution are given in the following
theorems.

THEOREM B.1 Law of Iterated Expectations

E[y] = Ex[E[y | x]]. (B-66)

The notation Ex[.] indicates the expectation over the values of x. Note that E[y | x] is a
function of x.

THEOREM B.2 Covariance
In any bivariate distribution,

Cov[x, y] = Covx[x, E[y | x]] =
∫

x

(
x − E[x]

)
E[y | x] fx(x) dx. (B-67)

(Note that this is the covariance of x and a function of x.)
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The preceding results provide an additional, extremely useful result for the special case in
which the conditional mean function is linear in x.

THEOREM B.3 Moments in a Linear Regression
If E[y | x] = α + βx, then

α = E[y] − βE[x]

and

β = Cov[x, y]
Var[x]

. (B-68)

The proof follows from (B-66).

The preceding theorems relate to the conditional mean in a bivariate distribution. The follow-
ing theorems, which also appear in various forms in regression analysis, describe the conditional
variance.

THEOREM B.4 Decomposition of Variance
In a joint distribution,

Var[y] = Varx[E[y | x]] + Ex[Var[y | x]]. (B-69)

The notation Varx[.] indicates the variance over the distribution of x. This equation states
that in a bivariate distribution, the variance of y decomposes into the variance of the conditional
mean function plus the expected variance around the conditional mean.

THEOREM B.5 Residual Variance in a Regression
In any bivariate distribution,

Ex[Var[y | x]] = Var[y] − Varx[E[y | x]]. (B-70)

On average, conditioning reduces the variance of the variable subject to the conditioning. For
example, if y is homoscedastic, then we have the unambiguous result that the variance of the
conditional distribution(s) is less than or equal to the unconditional variance of y. Going a
step further, we have the result that appears prominently in the bivariate normal distribution
(Section B.9).
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THEOREM B.6 Linear Regression and Homoscedasticity
In a bivariate distribution, if E[y | x] = α + βx and if Var[y | x] is a constant, then

Var[y | x] = Var[y]
(

1 − Corr2[y, x]
) = σ 2

y

(
1 − ρ2

xy

)
. (B-71)

The proof is straightforward using Theorems B.2 to B.4.

B.8.4 THE ANALYSIS OF VARIANCE

The variance decomposition result implies that in a bivariate distribution, variation in y arises
from two sources:

1. Variation because E[y | x] varies with x:

regression variance = Varx[E[y | x]]. (B-72)

2. Variation because, in each conditional distribution, y varies around the conditional mean:

residual variance = Ex[Var[y | x]]. (B-73)

Thus,

Var[y] = regression variance + residual variance. (B-74)

In analyzing a regression, we shall usually be interested in which of the two parts of the total
variance, Var[y], is the larger one. A natural measure is the ratio

coefficient of determination = regression variance
total variance

. (B-75)

In the setting of a linear regression, (B-75) arises from another relationship that emphasizes the
interpretation of the correlation coefficient.

If E[y | x] = α + βx, then the coefficient of determination = COD = ρ2, (B-76)

where ρ2 is the squared correlation between x and y. We conclude that the correlation coefficient
(squared) is a measure of the proportion of the variance of y accounted for by variation in the
mean of y given x. It is in this sense that correlation can be interpreted as a measure of linear
association between two variables.

B.9 THE BIVARIATE NORMAL DISTRIBUTION

A bivariate distribution that embodies many of the features described earlier is the bivariate
normal, which is the joint distribution of two normally distributed variables. The density is

f (x, y) = 1

2πσxσy

√
1 − ρ2

e−1/2[(ε2
x+ε2

y−2ρεxεy)/(1−ρ2)],

εx = x − μx

σx
, εy = y − μy

σy
.

(B-77)
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The parameters μx, σx, μy, and σy are the means and standard deviations of the marginal distri-
butions of x and y, respectively. The additional parameter ρ is the correlation between x and y.
The covariance is

σxy = ρσxσy. (B-78)

The density is defined only if ρ is not 1 or −1, which in turn requires that the two variables not
be linearly related. If x and y have a bivariate normal distribution, denoted

(x, y) ∼ N2

[
μx, μy, σ

2
x , σ 2

y , ρ
]
,

then

• The marginal distributions are normal:

fx(x) = N
[
μx, σ

2
x

]
,

fy(y) = N
[
μy, σ

2
y

]
.

(B-79)

• The conditional distributions are normal:

f (y | x) = N
[
α + βx, σ 2

y (1 − ρ2)
]
,

α = μy − βμx, β = σxy

σ 2
x

,
(B-80)

and likewise for f (x | y).
• x and y are independent if and only if ρ = 0. The density factors into the product of the two

marginal normal distributions if ρ = 0.

Two things to note about the conditional distributions beyond their normality are their linear
regression functions and their constant conditional variances. The conditional variance is less than
the unconditional variance, which is consistent with the results of the previous section.

B.10 MULTIVARIATE DISTRIBUTIONS

The extension of the results for bivariate distributions to more than two variables is direct. It is
made much more convenient by using matrices and vectors. The term random vector applies to
a vector whose elements are random variables. The joint density is f (x), whereas the cdf is

F(x) =
∫ xn

−∞

∫ xn−1

−∞
· · ·

∫ x1

−∞
f (t) dt1 · · · dtn−1 dtn. (B-81)

Note that the cdf is an n-fold integral. The marginal distribution of any one (or more) of the n
variables is obtained by integrating or summing over the other variables.

B.10.1 MOMENTS

The expected value of a vector or matrix is the vector or matrix of expected values. A mean vector
is defined as

μ =

⎡
⎢⎢⎣

μ1

μ2

...

μn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E[x1]
E[x2]

...

E[xn]

⎤
⎥⎥⎦ = E[x]. (B-82)
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Define the matrix

(x − μ)(x − μ)′ =

⎡
⎢⎢⎢⎣

(x1 − μ1)(x1 − μ1) (x1 − μ1)(x2 − μ2) · · · (x1 − μ1)(xn − μn)

(x2 − μ2)(x1 − μ1) (x2 − μ2)(x2 − μ2) · · · (x2 − μ2)(xn − μn)

...
...

(xn − μn)(x1 − μ1) (xn − μn)(x2 − μ2) · · · (xn − μn)(xn − μn)

⎤
⎥⎥⎥⎦.

The expected value of each element in the matrix is the covariance of the two variables in the
product. (The covariance of a variable with itself is its variance.) Thus,

E[(x − μ)(x − μ)′] =

⎡
⎢⎢⎢⎣

σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

σn1 σn2 · · · σnn

⎤
⎥⎥⎥⎦ = E [xx′] − μμ′, (B-83)

which is the covariance matrix of the random vector x. Henceforth, we shall denote the covariance
matrix of a random vector in boldface, as in

Var[x] = �.

By dividing σij by σiσ j , we obtain the correlation matrix:

R =

⎡
⎢⎢⎢⎣

1 ρ12 ρ13 · · · ρ1n

ρ21 1 ρ23 · · · ρ2n

...
...

...
...

ρn1 ρn2 ρn3 · · · 1

⎤
⎥⎥⎥⎦ .

B.10.2 SETS OF LINEAR FUNCTIONS

Our earlier results for the mean and variance of a linear function can be extended to the multi-
variate case. For the mean,

E[a1x1 + a2x2 + · · · + anxn] = E[a′x]

= a1 E[x1] + a2 E[x2] + · · · + an E[xn]

= a1μ1 + a2μ2 + · · · + anμn

= a′μ.

(B-84)

For the variance,

Var[a′x] = E
[(

a′x − E[a′x]
)2]

= E
[{

a′(x − E[x]
)}2]

= E[a′(x − μ)(x − μ)′a]

as E[x] = μ and a′(x − μ) = (x − μ)′a. Because a is a vector of constants,

Var[a′x] = a′ E[(x − μ)(x − μ)′]a = a′�a =
n∑

i=1

n∑
j=1

ai a jσij. (B-85)
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It is the expected value of a square, so we know that a variance cannot be negative. As such,
the preceding quadratic form is nonnegative, and the symmetric matrix � must be nonnegative
definite.

In the set of linear functions y = Ax, the ith element of y is yi = ai x, where ai is the ith row
of A [see result (A-14)]. Therefore,

E[yi ] = aiμ.

Collecting the results in a vector, we have

E[Ax] = Aμ. (B-86)

For two row vectors ai and a j ,

Cov[ai x, a j x] = ai�a′
j .

Because ai�a′
j is the ijth element of A�A′,

Var[Ax] = A�A′. (B-87)

This matrix will be either nonnegative definite or positive definite, depending on the column rank
of A.

B.10.3 NONLINEAR FUNCTIONS

Consider a set of possibly nonlinear functions of x, y = g(x). Each element of y can be approxi-
mated with a linear Taylor series. Let ji be the row vector of partial derivatives of the ith function
with respect to the n elements of x:

ji (x) = ∂gi (x)

∂x′ = ∂yi

∂x′ . (B-88)

Then, proceeding in the now familiar way, we use μ, the mean vector of x, as the expansion point,
so that ji (μ) is the row vector of partial derivatives evaluated at μ. Then

gi (x) ≈ gi (μ) + ji (μ)(x − μ). (B-89)

From this we obtain

E[gi (x)] ≈ gi (μ), (B-90)

Var[gi (x)] ≈ ji (μ)�ji (μ)′, (B-91)

and

Cov[gi (x), g j (x)] ≈ ji (μ)�j j (μ)′. (B-92)

These results can be collected in a convenient form by arranging the row vectors ji (μ) in a matrix
J(μ). Then, corresponding to the preceding equations, we have

E[g(x)]  g(μ), (B-93)

Var[g(x)]  J(μ)�J(μ)′. (B-94)

The matrix J(μ) in the last preceding line is ∂y/∂x′ evaluated at x = μ.
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B.11 THE MULTIVARIATE NORMAL DISTRIBUTION

The foundation of most multivariate analysis in econometrics is the multivariate normal distri-
bution. Let the vector (x1, x2, . . . , xn)

′ = x be the set of n random variables, μ their mean vector,
and � their covariance matrix. The general form of the joint density is

f (x) = (2π)−n/2|�|−1/2e(−1/2)(x−μ)′�−1(x−μ). (B-95)

If R is the correlation matrix of the variables and Rij = σij/(σiσ j ), then

f (x) = (2π)−n/2(σ1σ2 · · · σn)
−1|R|−1/2e(−1/2)εR−1ε, (B-96)

where εi = (xi − μi )/σi .8

Two special cases are of interest. If all the variables are uncorrelated, then ρij = 0 for i �= j .
Thus, R = I, and the density becomes

f (x) = (2π)−n/2(σ1σ2 · · · σn)
−1e−ε′ε/2

= f (x1) f (x2) · · · f (xn) =
n∏

i=1

f (xi ).
(B-97)

As in the bivariate case, if normally distributed variables are uncorrelated, then they are inde-
pendent. If σi = σ and μ = 0, then xi ∼ N [0, σ 2] and εi = xi/σ , and the density becomes

f (x) = (2π)−n/2(σ 2)−n/2e−x′x/(2σ 2). (B-98)

Finally, if σ = 1,

f (x) = (2π)−n/2e−x′x/2. (B-99)

This distribution is the multivariate standard normal, or spherical normal distribution.

B.11.1 MARGINAL AND CONDITIONAL NORMAL DISTRIBUTIONS

Let x1 be any subset of the variables, including a single variable, and let x2 be the remaining
variables. Partition μ and � likewise so that

μ =
[
μ1

μ2

]
and � =

[
�11 �12

�21 �22

]
.

Then the marginal distributions are also normal. In particular, we have the following theorem.

THEOREM B.7 Marginal and Conditional Normal Distributions
If [x1, x2] have a joint multivariate normal distribution, then the marginal distributions are

x1 ∼ N(μ1, �11), (B-100)

8This result is obtained by constructing �, the diagonal matrix with σi as its ith diagonal element. Then,
R = �−1��−1, which implies that �−1 = �−1R−1�−1. Inserting this in (B-95) yields (B-96). Note that the
ith element of �−1(x − μ) is (xi − μi )/σi .
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THEOREM B.7 (Continued)
and

x2 ∼ N(μ2, �22). (B-101)

The conditional distribution of x1 given x2 is normal as well:

x1 | x2 ∼ N(μ1.2, �11.2), (B-102)

where

μ1.2 = μ1 + �12�
−1
22 (x2 − μ2), (B-102a)

�11.2 = �11 − �12�
−1
22 �21. (B-102b)

Proof: We partition μ and � as shown earlier and insert the parts in (B-95). To construct
the density, we use (A-72) to partition the determinant,

|�| = |�22|
∣∣�11 − �12�

−1
22 �21

∣∣,
and (A-74) to partition the inverse,[

�11 �12

�21 �22

]−1

=
[

�−1
11.2 −�−1

11.2B

−B′�−1
11.2 �−1

22 + B′�−1
11.2B

]
.

For simplicity, we let

B = �12�
−1
22 .

Inserting these in (B-95) and collecting terms produces the joint density as a product of
two terms:

f (x1, x2) = f1.2(x1 | x2) f2(x2).

The first of these is a normal distribution with mean μ1.2 and variance �11.2, whereas the
second is the marginal distribution of x2.

The conditional mean vector in the multivariate normal distribution is a linear function of the
unconditional mean and the conditioning variables, and the conditional covariance matrix is
constant and is smaller (in the sense discussed in Section A.7.3) than the unconditional covariance
matrix. Notice that the conditional covariance matrix is the inverse of the upper left block of �−1;
that is, this matrix is of the form shown in (A-74) for the partitioned inverse of a matrix.

B.11.2 THE CLASSICAL NORMAL LINEAR REGRESSION MODEL

An important special case of the preceding is that in which x1 is a single variable, y, and x2 is
K variables, x. Then the conditional distribution is a multivariate version of that in (B-80) with
β = �−1

xx σxy, where σxy is the vector of covariances of y with x2. Recall that any random variable,
y, can be written as its mean plus the deviation from the mean. If we apply this tautology to the
multivariate normal, we obtain

y = E[y | x] + (
y − E[y | x]

) = α + β ′x + ε,
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where β is given earlier, α = μy − β ′μx, and ε has a normal distribution. We thus have, in this
multivariate normal distribution, the classical normal linear regression model.

B.11.3 LINEAR FUNCTIONS OF A NORMAL VECTOR

Any linear function of a vector of joint normally distributed variables is also normally distributed.
The mean vector and covariance matrix of Ax, where x is normally distributed, follow the general
pattern given earlier. Thus,

If x ∼ N [μ, �], then Ax + b ∼ N [Aμ + b, A�A′]. (B-103)

If A does not have full rank, then A�A′ is singular and the density does not exist in the full
dimensional space of x although it does exist in the subspace of dimension equal to the rank of
�. Nonetheless, the individual elements of Ax + b will still be normally distributed, and the joint
distribution of the full vector is still a multivariate normal.

B.11.4 QUADRATIC FORMS IN A STANDARD NORMAL VECTOR

The earlier discussion of the chi-squared distribution gives the distribution of x′x if x has a standard
normal distribution. It follows from (A-36) that

x′x =
n∑

i=1

x2
i =

n∑
i=1

(xi − x̄ )2 + nx̄2. (B-104)

We know from (B-32) that x′x has a chi-squared distribution. It seems natural, therefore, to invoke
(B-34) for the two parts on the right-hand side of (B-104). It is not yet obvious, however, that
either of the two terms has a chi-squared distribution or that the two terms are independent,
as required. To show these conditions, it is necessary to derive the distributions of idempotent
quadratic forms and to show when they are independent.

To begin, the second term is the square of
√

n x̄, which can easily be shown to have a standard
normal distribution. Thus, the second term is the square of a standard normal variable and has chi-
squared distribution with one degree of freedom. But the first term is the sum of n nonindependent
variables, and it remains to be shown that the two terms are independent.

DEFINITION B.3 Orthonormal Quadratic Form
A particular case of (B-103) is the following:

If x ∼ N [0, I] and C is a square matrix such that C′C = I, then C′x ∼ N [0, I].

Consider, then, a quadratic form in a standard normal vector x with symmetric matrix A:

q = x′Ax. (B-105)

Let the characteristic roots and vectors of A be arranged in a diagonal matrix � and an orthogonal
matrix C, as in Section A.6.3. Then

q = x′C�C′x. (B-106)
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By definition, C satisfies the requirement that C′C = I. Thus, the vector y = C′x has a standard
normal distribution. Consequently,

q = y′�y =
n∑

i=1

λi y2
i . (B-107)

If λi is always one or zero, then

q =
J∑

j=1

y2
j , (B-108)

which has a chi-squared distribution. The sum is taken over the j = 1, . . . , J elements associated
with the roots that are equal to one. A matrix whose characteristic roots are all zero or one is
idempotent. Therefore, we have proved the next theorem.

THEOREM B.8 Distribution of an Idempotent Quadratic Form in
a Standard Normal Vector

If x ∼ N [0, I] and A is idempotent, then x′Ax has a chi-squared distribution with degrees
of freedom equal to the number of unit roots of A, which is equal to the rank of A.

The rank of a matrix is equal to the number of nonzero characteristic roots it has. Therefore,
the degrees of freedom in the preceding chi-squared distribution equals J , the rank of A.

We can apply this result to the earlier sum of squares. The first term is

n∑
i=1

(xi − x̄ )2 = x′M0x,

where M0 was defined in (A-34) as the matrix that transforms data to mean deviation form:

M0 = I − 1
n

ii′.

Because M0 is idempotent, the sum of squared deviations from the mean has a chi-squared
distribution. The degrees of freedom equals the rank M0, which is not obvious except for the
useful result in (A-108), that

• The rank of an idempotent matrix is equal to its trace. (B-109)

Each diagonal element of M0 is 1 − (1/n); hence, the trace is n[1 − (1/n)] = n − 1. Therefore, we
have an application of Theorem B.8.

• If x ∼ N(0, I),
∑n

i=1(xi − x̄ )2 ∼ χ2[n − 1]. (B-110)

We have already shown that the second term in (B-104) has a chi-squared distribution with one
degree of freedom. It is instructive to set this up as a quadratic form as well:

nx̄2 = x′
[

1
n

ii′
]

x = x′[jj′]x, where j =
(

1√
n

)
i. (B-111)

The matrix in brackets is the outer product of a nonzero vector, which always has rank one. You
can verify that it is idempotent by multiplication. Thus, x′x is the sum of two chi-squared variables,
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one with n − 1 degrees of freedom and the other with one. It is now necessary to show that the
two terms are independent. To do so, we will use the next theorem.

THEOREM B.9 Independence of Idempotent Quadratic Forms
If x ∼ N [0, I] and x′Ax and x′Bx are two idempotent quadratic forms in x, then x′Ax and
x′Bx are independent if AB = 0. (B-112)

As before, we show the result for the general case and then specialize it for the example.
Because both A and B are symmetric and idempotent, A = A′A and B = B′B. The quadratic
forms are therefore

x′Ax = x′A′Ax = x′
1x1, where x1 = Ax, and x′Bx = x′

2x2, where x2 = Bx. (B-113)

Both vectors have zero mean vectors, so the covariance matrix of x1 and x2 is

E(x1x′
2) = AIB′ = AB = 0.

Because Ax and Bx are linear functions of a normally distributed random vector, they are, in turn,
normally distributed. Their zero covariance matrix implies that they are statistically independent,9

which establishes the independence of the two quadratic forms. For the case of x′x, the two
matrices are M0 and [I − M0]. You can show that M0[I − M0] = 0 just by multiplying it out.

B.11.5 THE F DISTRIBUTION

The normal family of distributions (chi-squared, F , and t) can all be derived as functions of
idempotent quadratic forms in a standard normal vector. The F distribution is the ratio of two
independent chi-squared variables, each divided by its respective degrees of freedom. Let A and
B be two idempotent matrices with ranks ra and rb, and let AB = 0. Then

x′Ax/ra

x′Bx/rb
∼ F [ra, rb]. (B-114)

If Var[x] = σ 2I instead, then this is modified to

(x′Ax/σ 2)/ra

(x′Bx/σ 2)/rb
∼ F [ra, rb]. (B-115)

B.11.6 A FULL RANK QUADRATIC FORM

Finally, consider the general case,

x ∼ N [μ, �].

We are interested in the distribution of

q = (x − μ)′�−1(x − μ). (B-116)

9Note that both x1 = Ax and x2 = Bx have singular covariance matrices. Nonetheless, every element of x1 is
independent of every element x2, so the vectors are independent.
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First, the vector can be written as z = x − μ, and � is the covariance matrix of z as well as of x.
Therefore, we seek the distribution of

q = z′�−1z = z′(Var[z]
)−1

z, (B-117)

where z is normally distributed with mean 0. This equation is a quadratic form, but not necessarily
in an idempotent matrix.10 Because� is positive definite, it has a square root. Define the symmetric
matrix �1/2 so that �1/2�1/2 = �. Then

�−1 = �−1/2�−1/2,

and

z′�−1z = z′�−1/2′�−1/2z

= (�−1/2z)′(�−1/2z)

= w′w.

Now w = Az, so

E(w) = AE[z] = 0,

and

Var[w] = A�A′ = �−1/2��−1/2 = �0 = I.

This provides the following important result:

THEOREM B.10 Distribution of a Standardized Normal Vector
If x ∼ N [μ, �], then �−1/2(x − μ) ∼ N [0, I].

The simplest special case is that in which x has only one variable, so that the transformation
is just (x − μ)/σ . Combining this case with (B-32) concerning the sum of squares of standard
normals, we have the following theorem.

THEOREM B.11 Distribution of x′�−1x When x Is Normal
If x ∼ N [μ, �], then (x − μ)′�−1(x − μ) ∼ χ2[n].

B.11.7 INDEPENDENCE OF A LINEAR AND A QUADRATIC FORM

The t distribution is used in many forms of hypothesis tests. In some situations, it arises as the
ratio of a linear to a quadratic form in a normal vector. To establish the distribution of these
statistics, we use the following result.

10It will be idempotent only in the special case of � = I.
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THEOREM B.12 Independence of a Linear and a Quadratic Form
A linear function Lx and a symmetric idempotent quadratic form x′Ax in a standard normal
vector are statistically independent if LA = 0.

The proof follows the same logic as that for two quadratic forms. Write x′Ax as x′A′Ax =
(Ax)′(Ax). The covariance matrix of the variables Lx and Ax is LA = 0, which establishes the
independence of these two random vectors. The independence of the linear function and the
quadratic form follows because functions of independent random vectors are also independent.

The t distribution is defined as the ratio of a standard normal variable to the square root of
a chi-squared variable divided by its degrees of freedom:

t[J ] = N [0, 1]{
χ 2[J ]/J

}1/2 .

A particular case is

t[n − 1] =
√

n x̄{
1

n−1

∑n
i=1(xi − x̄ )2

}1/2 =
√

n x̄
s

,

where s is the standard deviation of the values of x. The distribution of the two variables in t[n−1]
was shown earlier; we need only show that they are independent. But

√
n x̄ = 1√

n
i′x = j′x,

and

s2 = x′M0x
n − 1

.

It suffices to show that M0j = 0, which follows from

M0i = [I − i(i′i)−1i′]i = i − i(i′i)−1(i′i) = 0.

APPENDIX C

Q
ESTIMATION AND INFERENCE

C.1 INTRODUCTION

The probability distributions discussed in Appendix B serve as models for the underlying data
generating processes that produce our observed data. The goal of statistical inference in econo-
metrics is to use the principles of mathematical statistics to combine these theoretical distributions
and the observed data into an empirical model of the economy. This analysis takes place in
one of two frameworks, classical or Bayesian. The overwhelming majority of empirical study in
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econometrics has been done in the classical framework. Our focus, therefore, will be on classical
methods of inference. Bayesian methods are discussed in Chapter 18.1

C.2 SAMPLES AND RANDOM SAMPLING

The classical theory of statistical inference centers on rules for using the sampled data effectively.
These rules, in turn, are based on the properties of samples and sampling distributions.

A sample of n observations on one or more variables, denoted x1, x2, . . . , xn is a random
sample if the n observations are drawn independently from the same population, or probability
distribution, f (xi , θ). The sample may be univariate if xi is a single random variable or multi-
variate if each observation contains several variables. A random sample of observations, denoted
[x1, x2, . . . , xn] or {xi }i=1,...,n, is said to be independent, identically distributed, which we denote
i.i.d. The vector θ contains one or more unknown parameters. Data are generally drawn in one
of two settings. A cross section is a sample of a number of observational units all drawn at the
same point in time. A time series is a set of observations drawn on the same observational unit
at a number of (usually evenly spaced) points in time. Many recent studies have been based
on time-series cross sections, which generally consist of the same cross-sectional units observed
at several points in time. Because the typical data set of this sort consists of a large number of
cross-sectional units observed at a few points in time, the common term panel data set is usually
more fitting for this sort of study.

C.3 DESCRIPTIVE STATISTICS

Before attempting to estimate parameters of a population or fit models to data, we normally
examine the data themselves. In raw form, the sample data are a disorganized mass of information,
so we will need some organizing principles to distill the information into something meaningful.
Consider, first, examining the data on a single variable. In most cases, and particularly if the
number of observations in the sample is large, we shall use some summary statistics to describe
the sample data. Of most interest are measures of location—that is, the center of the data—and
scale, or the dispersion of the data. A few measures of central tendency are as follows:

mean: x̄ = 1
n

n∑
i=1

xi ,

median: M = middle ranked observation, (C-1)

sample midrange: midrange = maximum + minimum
2

.

The dispersion of the sample observations is usually measured by the

standard deviation: sx =
[∑n

i=1 (xi − x̄ )2

n − 1

]1/2

. (C-2)

Other measures, such as the average absolute deviation from the sample mean, are also used,
although less frequently than the standard deviation. The shape of the distribution of values is
often of interest as well. Samples of income or expenditure data, for example, tend to be highly

1An excellent reference is Leamer (1978). A summary of the results as they apply to econometrics is contained
in Zellner (1971) and in Judge et al. (1985). See, as well, Poirier (1991, 1995). Recent textbooks on Bayesian
econometrics include Koop (2003), Lancaster (2004) and Geweke (2005).

Bill
Sticky Note
change 18 to 16
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skewed while financial data such as asset returns and exchange rate movements are relatively
more symmetrically distributed but are also more widely dispersed than other variables that might
be observed. Two measures used to quantify these effects are the

skewness =
[∑n

i=1 (xi − x̄ )3

s3
x (n − 1)

]
, and kurtosis =

[∑n
i=1 (xi − x̄ )4

s4
x (n − 1)

]
.

(Benchmark values for these two measures are zero for a symmetric distribution, and three for
one which is “normally” dispersed.) The skewness coefficient has a bit less of the intuitive appeal
of the mean and standard deviation, and the kurtosis measure has very little at all. The box and
whisker plot is a graphical device which is often used to capture a large amount of information
about the sample in a simple visual display. This plot shows in a figure the median, the range of
values contained in the 25th and 75th percentile, some limits that show the normal range of values
expected, such as the median plus and minus two standard deviations, and in isolation values that
could be viewed as outliers. A box and whisker plot is shown in Figure C.1 for the income variable
in Example C.1.

If the sample contains data on more than one variable, we will also be interested in measures
of association among the variables. A scatter diagram is useful in a bivariate sample if the sample
contains a reasonable number of observations. Figure C.1 shows an example for a small data set.
If the sample is a multivariate one, then the degree of linear association among the variables can
be measured by the pairwise measures

covariance: sxy =
∑n

i=1 (xi − x̄ )(yi − ȳ)

n − 1
, (C-3)

correlation: rxy = sxy

sxsy
.

If the sample contains data on several variables, then it is sometimes convenient to arrange the
covariances or correlations in a

covariance matrix: S = [sij], (C-4)

or

correlation matrix: R = [rij].

Some useful algebraic results for any two variables (xi , yi ), i = 1, . . . , n, and constants a and
b are

s2
x =

(∑n
i=1 x2

i

) − nx̄2

n − 1
, (C-5)

sxy =
(∑n

i=1 xi yi

) − nx̄ ȳ

n − 1
, (C-6)

−1 ≤ rxy ≤ 1,

rax,by = ab
|ab|rxy, a, b �= 0, (C-7)

sax = |a|sx,
(C-8)

sax,by = (ab)sxy.
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Note that these algebraic results parallel the theoretical results for bivariate probability distri-
butions. [We note in passing, while the formulas in (C-2) and (C-5) are algebraically the same,
(C-2) will generally be more accurate in practice, especially when the values in the sample are
very widely dispersed.]

Example C.1 Descriptive Statistics for a Random Sample
Appendix Table FC.1 contains a (hypothetical) sample of observations on income and educa-
tion (The observations all appear in the calculations of the means below.) A scatter diagram
appears in Figure C.1. It suggests a weak positive association between income and educa-
tion in these data. The box and whisker plot for income at the left of the scatter plot shows
the distribution of the income data as well.

Means: Ī = 1
20

⎡
⎣20.5 + 31.5 + 47.7 + 26.2 + 44.0 + 8.28 + 30.8 +

17.2 + 19.9 + 9.96 + 55.8 + 25.2 + 29.0 + 85.5 +
15.1 + 28.5 + 21.4 + 17.7 + 6.42 + 84.9

⎤
⎦ = 31.278,

Ē = 1
20

[
12 + 16 + 18 + 16 + 12 + 12 + 16 + 12 + 10 + 12 +
16 + 20 + 12 + 16 + 10 + 18 + 16 + 20 + 12 + 16

]
= 14.600.

Standard deviations:

sI =
√

1
19 [(20.5 − 31.278)2 + · · · + (84.9 − 31.278)2] = 22.376,

sE =
√

1
19 [(12 − 14.6)2 + · · · + (16 − 14.6)2] = 3.119.

FIGURE C.1 Box and Whisker Plot for Income and Scatter
Diagram for Income and Education.
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Covariance: sI E = 1
19 [20.5(12) + · · · + 84.9(16) − 20(31.28) (14.6) ] = 23.597,

Correlation: r I E = 23.597
(22.376) (3.119)

= 0.3382.

The positive correlation is consistent with our observation in the scatter diagram.

The statistics just described will provide the analyst with a more concise description of
the data than a raw tabulation. However, we have not, as yet, suggested that these measures
correspond to some underlying characteristic of the process that generated the data. We do
assume that there is an underlying mechanism, the data generating process, that produces the
data in hand. Thus, these serve to do more than describe the data; they characterize that process,
or population. Because we have assumed that there is an underlying probability distribution, it
might be useful to produce a statistic that gives a broader view of the DGP. The histogram is a
simple graphical device that produces this result—see Examples C.3 and C.4 for applications. For
small samples or widely dispersed data, however, histograms tend to be rough and difficult to
make informative. A burgeoning literature [see, e.g., Pagan and Ullah (1999) and Li and Racine
(2007)] has demonstrated the usefulness of the kernel density estimator as a substitute for the
histogram as a descriptive tool for the underlying distribution that produced a sample of data.
The underlying theory of the kernel density estimator is fairly complicated, but the computations
are surprisingly simple. The estimator is computed using

f̂ (x∗) = 1
nh

n∑
i=1

K

[
xi − x∗

h

]
,

where x1, . . . , xn are the n observations in the sample, f̂ (x∗) denotes the estimated density func-
tion, x∗ is the value at which we wish to evaluate the density, and h and K[·] are the “bandwidth”
and “kernel function” that we now consider. The density estimator is rather like a histogram,
in which the bandwidth is the width of the intervals. The kernel function is a weight function
which is generally chosen so that it takes large values when x∗ is close to xi and tapers off to
zero in as they diverge in either direction. The weighting function used in the following exam-
ple is the logistic density discussed in Section B.4.7. The bandwidth is chosen to be a function
of 1/n so that the intervals can become narrower as the sample becomes larger (and richer).
The one used for Figure C.2 is h = 0.9Min(s, range/3)/n.2. (We will revisit this method of es-
timation in Chapter 12.) Example C.2 illustrates the computation for the income data used in
Example C.1.

Example C.2 Kernel Density Estimator for the Income Data
Figure C.2 suggests the large skew in the income data that is also suggested by the box and
whisker plot (and the scatter plot) in Example C.1.

C.4 STATISTICS AS ESTIMATORS—SAMPLING
DISTRIBUTIONS

The measures described in the preceding section summarize the data in a random sample. Each
measure has a counterpart in the population, that is, the distribution from which the data were
drawn. Sample quantities such as the means and the correlation coefficient correspond to popu-
lation expectations, whereas the kernel density estimator and the values in Table C.1 parallel the
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FIGURE C.2 Kernel Density Estimate for Income.

TABLE C.1 Income Distribution

Range Relative Frequency Cumulative Frequency

<$10,000 0.15 0.15
10,000–25,000 0.30 0.45
25,000–50,000 0.40 0.85
>50,000 0.15 1.00

population pdf and cdf. In the setting of a random sample, we expect these quantities to mimic
the population, although not perfectly. The precise manner in which these quantities reflect the
population values defines the sampling distribution of a sample statistic.

DEFINITION C.1 Statistic
A statistic is any function computed from the data in a sample.

If another sample were drawn under identical conditions, different values would be obtained
for the observations, as each one is a random variable. Any statistic is a function of these random
values, so it is also a random variable with a probability distribution called a sampling distribution.
For example, the following shows an exact result for the sampling behavior of a widely used
statistic.
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THEOREM C.1 Sampling Distribution of the Sample Mean
If x1, . . . , xn are a random sample from a population with mean μ and variance σ 2, then
x̄ is a random variable with mean μ and variance σ 2/n.
Proof: x̄ = (1/n)�i xi . E [x̄] = (1/n)�iμ = μ. The observations are independent, so
Var[x̄] = (1/n)2 Var[�i xi ] = (1/n2)�iσ

2 = σ 2/n.

Example C.3 illustrates the behavior of the sample mean in samples of four observations
drawn from a chi-squared population with one degree of freedom. The crucial concepts illus-
trated in this example are, first, the mean and variance results in Theorem C.1 and, second, the
phenomenon of sampling variability.

Notice that the fundamental result in Theorem C.1 does not assume a distribution for xi .
Indeed, looking back at Section C.3, nothing we have done so far has required any assumption
about a particular distribution.

Example C.3 Sampling Distribution of a Sample Mean
Figure C.3 shows a frequency plot of the means of 1,000 random samples of four observations
drawn from a chi-squared distribution with one degree of freedom, which has mean 1 and
variance 2.

We are often interested in how a statistic behaves as the sample size increases. Example C.4
illustrates one such case. Figure C.4 shows two sampling distributions, one based on samples of
three and a second, of the same statistic, but based on samples of six. The effect of increasing
sample size in this figure is unmistakable. It is easy to visualize the behavior of this statistic if we
extrapolate the experiment in Example C.4 to samples of, say, 100.

Example C.4 Sampling Distribution of the Sample Minimum
If x1, . . . , xn are a random sample from an exponential distribution with f ( x) = θe−θx , then the
sampling distribution of the sample minimum in a sample of n observations, denoted x(1) , is

f
(
x(1)

) = (nθ )e−(nθ ) x(1) .

Because E [x] = 1/θ and Var[x] = 1/θ2, by analogy E [x(1) ] = 1/(nθ ) and Var[x(1) ] = 1/(nθ ) 2.
Thus, in increasingly larger samples, the minimum will be arbitrarily close to 0. [The
Chebychev inequality in Theorem D.2 can be used to prove this intuitively appealing result.]

Figure C.4 shows the results of a simple sampling experiment you can do to demon-
strate this effect. It requires software that will allow you to produce pseudorandom num-
bers uniformly distributed in the range zero to one and that will let you plot a histogram
and control the axes. (We used NLOGIT. This can be done with Stata, Excel, or several
other packages.) The experiment consists of drawing 1,000 sets of nine random values,
Uij, i = 1, . . . 1,000, j = 1, . . . , 9. To transform these uniform draws to exponential with pa-
rameter θ—we used θ = 1.5, use the inverse probability transform—see Section E.2.3. For
an exponentially distributed variable, the transformation is zij = −(1/θ ) log(1 − Uij) . We then
created z(1) | 3 from the first three draws and z(1) | 6 from the other six. The two histograms
show clearly the effect on the sampling distribution of increasing sample size from just
3 to 6.

Sampling distributions are used to make inferences about the population. To consider a
perhaps obvious example, because the sampling distribution of the mean of a set of normally
distributed observations has mean μ, the sample mean is a natural candidate for an estimate of
μ. The observation that the sample “mimics” the population is a statement about the sampling
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FIGURE C.3 Sampling Distribution of Means of 1,000 Samples of Size 4 from
Chi-Squared [1].
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FIGURE C.4 Histograms of the Sample Minimum of 3 and 6 Observations.

distributions of the sample statistics. Consider, for example, the sample data collected in Fig-
ure C.3. The sample mean of four observations clearly has a sampling distribution, which appears
to have a mean roughly equal to the population mean. Our theory of parameter estimation departs
from this point.

C.5 POINT ESTIMATION OF PARAMETERS

Our objective is to use the sample data to infer the value of a parameter or set of parameters,
which we denote θ . A point estimate is a statistic computed from a sample that gives a single value
for θ . The standard error of the estimate is the standard deviation of the sampling distribution
of the statistic; the square of this quantity is the sampling variance. An interval estimate is a
range of values that will contain the true parameter with a preassigned probability. There will be
a connection between the two types of estimates; generally, if θ̂ is the point estimate, then the
interval estimate will be θ̂± a measure of sampling error.

An estimator is a rule or strategy for using the data to estimate the parameter. It is defined
before the data are drawn. Obviously, some estimators are better than others. To take a simple ex-
ample, your intuition should convince you that the sample mean would be a better estimator of the
population mean than the sample minimum; the minimum is almost certain to underestimate the
mean. Nonetheless, the minimum is not entirely without virtue; it is easy to compute, which is oc-
casionally a relevant criterion. The search for good estimators constitutes much of econometrics.
Estimators are compared on the basis of a variety of attributes. Finite sample properties of estima-
tors are those attributes that can be compared regardless of the sample size. Some estimation prob-
lems involve characteristics that are not known in finite samples. In these instances, estimators are
compared on the basis on their large sample, or asymptotic properties. We consider these in turn.

C.5.1 ESTIMATION IN A FINITE SAMPLE

The following are some finite sample estimation criteria for estimating a single parameter. The ex-
tensions to the multiparameter case are direct. We shall consider them in passing where necessary.
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DEFINITION C.2 Unbiased Estimator
An estimator of a parameter θ is unbiased if the mean of its sampling distribution is θ .
Formally,

E [θ̂ ] = θ

or

E [θ̂ − θ ] = Bias[θ̂ | θ ] = 0

implies that θ̂ is unbiased. Note that this implies that the expected sampling error is zero.
If θ is a vector of parameters, then the estimator is unbiased if the expected value of every
element of θ̂ equals the corresponding element of θ .

If samples of size n are drawn repeatedly and θ̂ is computed for each one, then the average
value of these estimates will tend to equal θ . For example, the average of the 1,000 sample means
underlying Figure C.2 is 0.9038, which is reasonably close to the population mean of one. The
sample minimum is clearly a biased estimator of the mean; it will almost always underestimate
the mean, so it will do so on average as well.

Unbiasedness is a desirable attribute, but it is rarely used by itself as an estimation criterion.
One reason is that there are many unbiased estimators that are poor uses of the data. For example,
in a sample of size n, the first observation drawn is an unbiased estimator of the mean that clearly
wastes a great deal of information. A second criterion used to choose among unbiased estimators
is efficiency.

DEFINITION C.3 Efficient Unbiased Estimator
An unbiased estimator θ̂1 is more efficient than another unbiased estimator θ̂2 if the sam-
pling variance of θ̂ 1 is less than that of θ̂2. That is,

Var[θ̂ 1] < Var[θ̂ 2].

In the multiparameter case, the comparison is based on the covariance matrices of the two
estimators; θ̂ 1 is more efficient than θ̂2 if Var[θ̂2] − Var[θ̂ 1] is a positive definite matrix.

By this criterion, the sample mean is obviously to be preferred to the first observation as an
estimator of the population mean. If σ 2 is the population variance, then

Var[x1] = σ 2 > Var[x̄] = σ 2

n
.

In discussing efficiency, we have restricted the discussion to unbiased estimators. Clearly,
there are biased estimators that have smaller variances than the unbiased ones we have consid-
ered. Any constant has a variance of zero. Of course, using a constant as an estimator is not likely
to be an effective use of the sample data. Focusing on unbiasedness may still preclude a tolerably
biased estimator with a much smaller variance, however. A criterion that recognizes this possible
tradeoff is the mean squared error.
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DEFINITION C.4 Mean Squared Error
The mean squared error of an estimator is

MSE[θ̂ | θ ] = E [(θ̂ − θ)2]

= Var[θ̂ ] + (
Bias[θ̂ | θ ]

)2
if θ is a scalar,

MSE[θ̂ | θ ] = Var[θ̂ ] + Bias[θ̂ | θ ]Bias[θ̂ | θ ]′ if θ is a vector.

(C-9)

Figure C.5 illustrates the effect. In this example, on average, the biased estimator will be
closer to the true parameter than will the unbiased estimator.

Which of these criteria should be used in a given situation depends on the particulars of that
setting and our objectives in the study. Unfortunately, the MSE criterion is rarely operational;
minimum mean squared error estimators, when they exist at all, usually depend on unknown
parameters. Thus, we are usually less demanding. A commonly used criterion is minimum variance
unbiasedness.

Example C.5 Mean Squared Error of the Sample Variance
In sampling from a normal distribution, the most frequently used estimator for σ 2 is

s2 =
∑n

i =1( xi − x̄ ) 2

n − 1
.

It is straightforward to show that s2 is unbiased, so

Var[s2] = 2σ 4

n − 1
= MSE[s2 | σ 2].

FIGURE C.5 Sampling Distributions.
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[A proof is based on the distribution of the idempotent quadratic form (x − iμ) ′M0(x − iμ) ,
which we discussed in Section B11.4.] A less frequently used estimator is

σ̂ 2 = 1
n

n∑
i =1

( xi − x̄ ) 2 = [(n − 1)/n]s2.

This estimator is slightly biased downward:

E [σ̂ 2] = (n − 1) E (s2)
n

= (n − 1)σ 2

n
,

so its bias is

E [σ̂ 2 − σ 2] = Bias[σ̂ 2 | σ 2] = −1
n

σ 2.

But it has a smaller variance than s2:

Var[σ̂ 2] =
[

n − 1
n

]2 [
2σ 4

n − 1

]
< Var[s2].

To compare the two estimators, we can use the difference in their mean squared errors:

MSE[σ̂ 2 | σ 2] − MSE[s2 | σ 2] = σ 4

[
2n − 1

n2
− 2

n − 1

]
< 0.

The biased estimator is a bit more precise. The difference will be negligible in a large sample,
but, for example, it is about 1.2 percent in a sample of 16.

C.5.2 EFFICIENT UNBIASED ESTIMATION

In a random sample of n observations, the density of each observation is f (xi , θ). Because the n
observations are independent, their joint density is

f (x1, x2, . . . , xn, θ) = f (x1, θ) f (x2, θ) · · · f (xn, θ)

=
n∏

i=1

f (xi , θ) = L(θ | x1, x2, . . . , xn).
(C-10)

This function, denoted L(θ | X), is called the likelihood function for θ given the data X. It is
frequently abbreviated to L(θ). Where no ambiguity can arise, we shall abbreviate it further
to L.

Example C.6 Likelihood Functions for Exponential
and Normal Distributions

If x1, . . . , xn are a sample of n observations from an exponential distribution with parameter
θ , then

L (θ ) =
n∏

i =1

θe−θxi = θne−θ
∑n

i =1
xi .

If x1, . . . , xn are a sample of n observations from a normal distribution with mean μ and
standard deviation σ , then

L (μ, σ ) =
n∏

i =1

(2πσ 2)−1/2e−[1/(2σ2) ]( xi −μ) 2

= (2πσ 2)−n/2e−[1/(2σ2) ]�i ( xi −μ) 2
.

(C-11)
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The likelihood function is the cornerstone for most of our theory of parameter estimation. An
important result for efficient estimation is the following.

THEOREM C.2 Cramér–Rao Lower Bound
Assuming that the density of x satisfies certain regularity conditions, the variance of an
unbiased estimator of a parameter θ will always be at least as large as

[I(θ)]−1 =
(

−E

[
∂2 ln L(θ)

∂θ 2

])−1

=
(

E

[(
∂ ln L(θ)

∂θ

)2
])−1

. (C-12)

The quantity I(θ) is the information number for the sample. We will prove the result that the
negative of the expected second derivative equals the expected square of the first derivative in
Chapter 14. Proof of the main result of the theorem is quite involved. See, for example,
Stuart and Ord (1989).

The regularity conditions are technical in nature. (See Section 14.4.1.) Loosely, they are
conditions imposed on the density of the random variable that appears in the likelihood function;
these conditions will ensure that the Lindeberg–Levy central limit theorem will apply to moments
of the sample of observations on the random vector y = ∂ ln f (xi | θ)/∂θ, i = 1, . . . , n. Among
the conditions are finite moments of x up to order 3. An additional condition normally included
in the set is that the range of the random variable be independent of the parameters.

In some cases, the second derivative of the log likelihood is a constant, so the Cramér–
Rao bound is simple to obtain. For instance, in sampling from an exponential distribution, from
Example C.6,

ln L = n ln θ − θ

n∑
i=1

xi ,

∂ ln L
∂θ

= n
θ

−
n∑

i=1

xi ,

so ∂2 ln L/∂θ2 = −n/θ2 and the variance bound is [I(θ)]−1 = θ2/n. In many situations, the second
derivative is a random variable with a distribution of its own. The following examples show two
such cases.

Example C.7 Variance Bound for the Poisson Distribution
For the Poisson distribution,

f ( x) = e−θ θ x

x!
,

ln L = −nθ +
(

n∑
i =1

xi

)
ln θ −

n∑
i =1

ln( xi !) ,

∂ ln L
∂θ

= −n +
∑n

i =1 xi

θ
,

∂2 ln L
∂θ2

= −∑n
i =1 xi

θ2
.
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The sum of n identical Poisson variables has a Poisson distribution with parameter equal
to n times the parameter of the individual variables. Therefore, the actual distribution of the
first derivative will be that of a linear function of a Poisson distributed variable. Because
E [

∑n
i =1 xi ] = nE [xi ] = nθ , the variance bound for the Poisson distribution is [I (θ ) ]−1 = θ/n.

(Note also that the same result implies that E [∂ ln L/∂θ ] = 0, which is a result we will use in
Chapter 14. The same result holds for the exponential distribution.)

Consider, finally, a multivariate case. If θ is a vector of parameters, then I(θ) is the information
matrix. The Cramér–Rao theorem states that the difference between the covariance matrix of
any unbiased estimator and the inverse of the information matrix,

[I(θ)]−1 =
(

−E

[
∂2 ln L(θ)

∂θ∂θ ′

])−1

=
{

E

[(
∂ ln L(θ)

∂θ

)(
∂ ln L(θ)

∂θ ′

)]}−1

, (C-13)

will be a nonnegative definite matrix.
In many settings, numerous estimators are available for the parameters of a distribution.

The usefulness of the Cramér–Rao bound is that if one of these is known to attain the variance
bound, then there is no need to consider any other to seek a more efficient estimator. Regarding
the use of the variance bound, we emphasize that if an unbiased estimator attains it, then that
estimator is efficient. If a given estimator does not attain the variance bound, however, then we
do not know, except in a few special cases, whether this estimator is efficient or not. It may be
that no unbiased estimator can attain the Cramér–Rao bound, which can leave the question of
whether a given unbiased estimator is efficient or not unanswered.

We note, finally, that in some cases we further restrict the set of estimators to linear functions
of the data.

DEFINITION C.5 Minimum Variance Linear Unbiased
Estimator (MVLUE)

An estimator is the minimum variance linear unbiased estimator or best linear unbiased
estimator (BLUE) if it is a linear function of the data and has minimum variance among
linear unbiased estimators.

In a few instances, such as the normal mean, there will be an efficient linear unbiased estima-
tor; x̄ is efficient among all unbiased estimators, both linear and nonlinear. In other cases, such
as the normal variance, there is no linear unbiased estimator. This criterion is useful because we
can sometimes find an MVLUE without having to specify the distribution at all. Thus, by limiting
ourselves to a somewhat restricted class of estimators, we free ourselves from having to assume
a particular distribution.

C.6 INTERVAL ESTIMATION

Regardless of the properties of an estimator, the estimate obtained will vary from sample to
sample, and there is some probability that it will be quite erroneous. A point estimate will not
provide any information on the likely range of error. The logic behind an interval estimate is
that we use the sample data to construct an interval, [lower (X), upper (X)], such that we can
expect this interval to contain the true parameter in some specified proportion of samples, or
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equivalently, with some desired level of confidence. Clearly, the wider the interval, the more
confident we can be that it will, in any given sample, contain the parameter being estimated.

The theory of interval estimation is based on a pivotal quantity, which is a function of both the
parameter and a point estimate that has a known distribution. Consider the following examples.

Example C.8 Confidence Intervals for the Normal Mean
In sampling from a normal distribution with mean μ and standard deviation σ ,

z =
√

n( x̄ − μ)
s

∼ t[n − 1],

and

c = (n − 1)s2

σ 2
∼ χ2[n − 1].

Given the pivotal quantity, we can make probability statements about events involving the
parameter and the estimate. Let p(g, θ ) be the constructed random variable, for example, z
or c. Given a prespecified confidence level, 1 − α, we can state that

Prob( lower ≤ p(g, θ ) ≤ upper) = 1 − α, (C-14)

where lower and upper are obtained from the appropriate table. This statement is then ma-
nipulated to make equivalent statements about the endpoints of the intervals. For example,
the following statements are equivalent:

Prob

(
−z ≤

√
n( x̄ − μ)

s
≤ z

)
= 1 − α,

Prob

(
x̄ − zs√

n
≤ μ ≤ x̄ + zs√

n

)
= 1 − α.

The second of these is a statement about the interval, not the parameter; that is, it is the
interval that is random, not the parameter. We attach a probability, or 100(1 − α) percent
confidence level, to the interval itself; in repeated sampling, an interval constructed in this
fashion will contain the true parameter 100(1 − α) percent of the time.

In general, the interval constructed by this method will be of the form

lower(X) = θ̂ − e1,

upper(X) = θ̂ + e2,

where X is the sample data, e1 and e2 are sampling errors, and θ̂ is a point estimate of θ . It is clear
from the preceding example that if the sampling distribution of the pivotal quantity is either t or
standard normal, which will be true in the vast majority of cases we encounter in practice, then
the confidence interval will be

θ̂ ± C1−α/2[se(θ̂)], (C-15)

where se(.) is the (known or estimated) standard error of the parameter estimate and C1−α/2 is
the value from the t or standard normal distribution that is exceeded with probability 1 − α/2.
The usual values for α are 0.10, 0.05, or 0.01. The theory does not prescribe exactly how to
choose the endpoints for the confidence interval. An obvious criterion is to minimize the width
of the interval. If the sampling distribution is symmetric, then the symmetric interval is the
best one. If the sampling distribution is not symmetric, however, then this procedure will not be
optimal.
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Example C.9 Estimated Confidence Intervals for a Normal Mean
and Variance

In a sample of 25, x̄ = 1.63 and s = 0.51. Construct a 95 percent confidence interval for μ.
Assuming that the sample of 25 is from a normal distribution,

Prob

(
−2.064 ≤ 5( x̄ − μ)

s
≤ 2.064

)
= 0.95,

where 2.064 is the critical value from a t distribution with 24 degrees of freedom. Thus, the
confidence interval is 1.63 ± [2.064(0.51)/5] or [1.4195, 1.8405].

Remark: Had the parent distribution not been specified, it would have been natural to use the
standard normal distribution instead, perhaps relying on the central limit theorem. But a sam-
ple size of 25 is small enough that the more conservative t distribution might still be preferable.

The chi-squared distribution is used to construct a confidence interval for the variance
of a normal distribution. Using the data from Example C.9, we find that the usual procedure
would use

Prob

(
12.4 ≤ 24s2

σ 2
≤ 39.4

)
= 0.95,

where 12.4 and 39.4 are the 0.025 and 0.975 cutoff points from the chi-squared (24) distribu-
tion. This procedure leads to the 95 percent confidence interval [0.1581, 0.5032]. By making
use of the asymmetry of the distribution, a narrower interval can be constructed. Allocating
4 percent to the left-hand tail and 1 percent to the right instead of 2.5 percent to each, the two
cutoff points are 13.4 and 42.9, and the resulting 95 percent confidence interval is [0.1455,
0.4659].

Finally, the confidence interval can be manipulated to obtain a confidence interval for
a function of a parameter. For example, based on the preceding, a 95 percent confidence
interval for σ would be [

√
0.1581,

√
0.5032] = [0.3976, 0.7094].

C.7 HYPOTHESIS TESTING

The second major group of statistical inference procedures is hypothesis tests. The classical testing
procedures are based on constructing a statistic from a random sample that will enable the
analyst to decide, with reasonable confidence, whether or not the data in the sample would
have been generated by a hypothesized population. The formal procedure involves a statement
of the hypothesis, usually in terms of a “null” or maintained hypothesis and an “alternative,”
conventionally denoted H0 and H1, respectively. The procedure itself is a rule, stated in terms
of the data, that dictates whether the null hypothesis should be rejected or not. For example,
the hypothesis might state a parameter is equal to a specified value. The decision rule might
state that the hypothesis should be rejected if a sample estimate of that parameter is too far
away from that value (where “far” remains to be defined). The classical, or Neyman–Pearson,
methodology involves partitioning the sample space into two regions. If the observed data (i.e.,
the test statistic) fall in the rejection region (sometimes called the critical region), then the null
hypothesis is rejected; if they fall in the acceptance region, then it is not.

C.7.1 CLASSICAL TESTING PROCEDURES

Since the sample is random, the test statistic, however defined, is also random. The same test
procedure can lead to different conclusions in different samples. As such, there are two ways
such a procedure can be in error:

1. Type I error. The procedure may lead to rejection of the null hypothesis when it is true.
2. Type II error. The procedure may fail to reject the null hypothesis when it is false.
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To continue the previous example, there is some probability that the estimate of the parameter
will be quite far from the hypothesized value, even if the hypothesis is true. This outcome might
cause a type I error.

DEFINITION C.6 Size of a Test
The probability of a type I error is the size of the test. This is conventionally denoted α and
is also called the significance level.

The size of the test is under the control of the analyst. It can be changed just by changing
the decision rule. Indeed, the type I error could be eliminated altogether just by making the
rejection region very small, but this would come at a cost. By eliminating the probability of a
type I error—that is, by making it unlikely that the hypothesis is rejected—we must increase the
probability of a type II error. Ideally, we would like both probabilities to be as small as possible.
It is clear, however, that there is a tradeoff between the two. The best we can hope for is that for
a given probability of type I error, the procedure we choose will have as small a probability of
type II error as possible.

DEFINITION C.7 Power of a Test
The power of a test is the probability that it will correctly lead to rejection of a false null
hypothesis:

power = 1 − β = 1 − Prob(type II error). (C-16)

For a given significance level α, we would like β to be as small as possible. Because β is
defined in terms of the alternative hypothesis, it depends on the value of the parameter.

Example C.10 Testing a Hypothesis About a Mean
For testing H0: μ = μ0 in a normal distribution with known variance σ 2, the decision rule is
to reject the hypothesis if the absolute value of the z statistic,

√
n( x̄ − μ0)/σ, exceeds the

predetermined critical value. For a test at the 5 percent significance level, we set the critical
value at 1.96. The power of the test, therefore, is the probability that the absolute value of
the test statistic will exceed 1.96 given that the true value of μ is, in fact, not μ0. This value
depends on the alternative value of μ, as shown in Figure C.6. Notice that for this test the
power is equal to the size at the point where μ equals μ0. As might be expected, the test
becomes more powerful the farther the true mean is from the hypothesized value.

Testing procedures, like estimators, can be compared using a number of criteria.

DEFINITION C.8 Most Powerful Test
A test is most powerful if it has greater power than any other test of the same size.
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FIGURE C.6 Power Function for a Test.

This requirement is very strong. Because the power depends on the alternative hypothesis, we
might require that the test be uniformly most powerful (UMP), that is, have greater power than
any other test of the same size for all admissible values of the parameter. There are few situations in
which a UMP test is available. We usually must be less stringent in our requirements. Nonetheless,
the criteria for comparing hypothesis testing procedures are generally based on their respective
power functions. A common and very modest requirement is that the test be unbiased.

DEFINITION C.9 Unbiased Test
A test is unbiased if its power (1 − β) is greater than or equal to its size α for all values of
the parameter.

If a test is biased, then, for some values of the parameter, we are more likely to accept the
null hypothesis when it is false than when it is true.

The use of the term unbiased here is unrelated to the concept of an unbiased estimator.
Fortunately, there is little chance of confusion. Tests and estimators are clearly connected, how-
ever. The following criterion derives, in general, from the corresponding attribute of a parameter
estimate.

DEFINITION C.10 Consistent Test
A test is consistent if its power goes to one as the sample size grows to infinity.
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Example C.11 Consistent Test About a Mean
A confidence interval for the mean of a normal distribution is x̄ ± t1−α/2(s/

√
n ) , where x̄ and

s are the usual consistent estimators for μ and σ (see Section D.2.1), n is the sample size,
and t1−α/2 is the correct critical value from the t distribution with n − 1 degrees of freedom.
For testing H0: μ = μ0 versus H1: μ �= μ0, let the procedure be to reject H0 if the confidence
interval does not contain μ0. Because x̄ is consistent for μ, one can discern if H0 is false as
n → ∞, with probability 1, because x̄ will be arbitrarily close to the true μ. Therefore, this
test is consistent.

As a general rule, a test will be consistent if it is based on a consistent estimator of the
parameter.

C.7.2 TESTS BASED ON CONFIDENCE INTERVALS

There is an obvious link between interval estimation and the sorts of hypothesis tests we have
been discussing here. The confidence interval gives a range of plausible values for the parameter.
Therefore, it stands to reason that if a hypothesized value of the parameter does not fall in this
range of plausible values, then the data are not consistent with the hypothesis, and it should be
rejected. Consider, then, testing

H0: θ = θ0,

H1: θ �= θ0.

We form a confidence interval based on θ̂ as described earlier:

θ̂ − C1−α/2[se(θ̂)] < θ < θ̂ + C1−α/2[se(θ̂)].

H0 is rejected if θ0 exceeds the upper limit or is less than the lower limit. Equivalently, H0 is
rejected if ∣∣∣∣ θ̂ − θ0

se(θ̂)

∣∣∣∣ > C1−α/2.

In words, the hypothesis is rejected if the estimate is too far from θ0, where the distance is measured
in standard error units. The critical value is taken from the t or standard normal distribution,
whichever is appropriate.

Example C.12 Testing a Hypothesis About a Mean with
a Confidence Interval

For the results in Example C.8, test H0: μ = 1.98 versus H1: μ �= 1.98, assuming sampling
from a normal distribution:

t =
∣∣∣∣ x̄ − 1.98

s/
√

n

∣∣∣∣ =
∣∣∣∣1.63 − 1.98

0.102

∣∣∣∣ = 3.43.

The 95 percent critical value for t (24) is 2.064. Therefore, reject H0. If the critical value for
the standard normal table of 1.96 is used instead, then the same result is obtained.

If the test is one-sided, as in

H0: θ ≥ θ0,

H1: θ < θ0,

then the critical region must be adjusted. Thus, for this test, H0 will be rejected if a point estimate
of θ falls sufficiently below θ0. (Tests can usually be set up by departing from the decision criterion,
“What sample results are inconsistent with the hypothesis?”)
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Example C.13 One-Sided Test About a Mean
A sample of 25 from a normal distribution yields x̄ = 1.63 and s = 0.51. Test

H0: μ ≤ 1.5,

H1: μ > 1.5.

Clearly, no observed x̄ less than or equal to 1.5 will lead to rejection of H0. Using the borderline
value of 1.5 for μ, we obtain

Prob

(√
n( x̄ − 1.5)

s
>

5(1.63 − 1.5)
0.51

)
= Prob( t24 > 1.27) .

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a
significant level of 0.11, we would not reject the hypothesis.

C.7.3 SPECIFICATION TESTS

The hypothesis testing procedures just described are known as “classical” testing procedures. In
each case, the null hypothesis tested came in the form of a restriction on the alternative. You
can verify that in each application we examined, the parameter space assumed under the null
hypothesis is a subspace of that described by the alternative. For that reason, the models implied
are said to be “nested.” The null hypothesis is contained within the alternative. This approach
suffices for most of the testing situations encountered in practice, but there are common situations
in which two competing models cannot be viewed in these terms. For example, consider a case
in which there are two completely different, competing theories to explain the same observed
data. Many models for censoring and truncation discussed in Chapter 19 rest upon a fragile
assumption of normality, for example. Testing of this nature requires a different approach from the
classical procedures discussed here. These are discussed at various points throughout the book, for
example, in Chapter 19, where we study the difference between fixed and random effects models.

APPENDIX D

Q
LARGE-SAMPLE DISTRIBUTION

THEORY

D.1 INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usually be
interested in determining how best to use the observed data when choosing among competing
estimators. That, in turn, requires us to examine the sampling behavior of estimators. In a few
cases, such as those presented in Appendix C and the least squares estimator considered in
Chapter 4, we can make broad statements about sampling distributions that will apply regardless
of the size of the sample. But, in most situations, it will only be possible to make approximate
statements about estimators, such as whether they improve as the sample size increases and what
can be said about their sampling distributions in large samples as an approximation to the finite
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