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Example C.13 One-Sided Test About a Mean
A sample of 25 from a normal distribution yields x̄ = 1.63 and s = 0.51. Test

H0: μ ≤ 1.5,

H1: μ > 1.5.

Clearly, no observed x̄ less than or equal to 1.5 will lead to rejection of H0. Using the borderline
value of 1.5 for μ, we obtain

Prob

(√
n( x̄ − 1.5)

s
>

5(1.63 − 1.5)
0.51

)
= Prob( t24 > 1.27) .

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, at a
significant level of 0.11, we would not reject the hypothesis.

C.7.3 SPECIFICATION TESTS

The hypothesis testing procedures just described are known as “classical” testing procedures. In
each case, the null hypothesis tested came in the form of a restriction on the alternative. You
can verify that in each application we examined, the parameter space assumed under the null
hypothesis is a subspace of that described by the alternative. For that reason, the models implied
are said to be “nested.” The null hypothesis is contained within the alternative. This approach
suffices for most of the testing situations encountered in practice, but there are common situations
in which two competing models cannot be viewed in these terms. For example, consider a case
in which there are two completely different, competing theories to explain the same observed
data. Many models for censoring and truncation discussed in Chapter 19 rest upon a fragile
assumption of normality, for example. Testing of this nature requires a different approach from the
classical procedures discussed here. These are discussed at various points throughout the book, for
example, in Chapter 19, where we study the difference between fixed and random effects models.

APPENDIX D

Q
LARGE-SAMPLE DISTRIBUTION

THEORY

D.1 INTRODUCTION

Most of this book is about parameter estimation. In studying that subject, we will usually be
interested in determining how best to use the observed data when choosing among competing
estimators. That, in turn, requires us to examine the sampling behavior of estimators. In a few
cases, such as those presented in Appendix C and the least squares estimator considered in
Chapter 4, we can make broad statements about sampling distributions that will apply regardless
of the size of the sample. But, in most situations, it will only be possible to make approximate
statements about estimators, such as whether they improve as the sample size increases and what
can be said about their sampling distributions in large samples as an approximation to the finite
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samples we actually observe. This appendix will collect most of the formal, fundamental theorems
and results needed for this analysis. A few additional results will be developed in the discussion
of time-series analysis later in the book.

D.2 LARGE-SAMPLE DISTRIBUTION THEORY1

In most cases, whether an estimator is exactly unbiased or what its exact sampling variance is in
samples of a given size will be unknown. But we may be able to obtain approximate results about
the behavior of the distribution of an estimator as the sample becomes large. For example, it is
well known that the distribution of the mean of a sample tends to approximate normality as the
sample size grows, regardless of the distribution of the individual observations. Knowledge about
the limiting behavior of the distribution of an estimator can be used to infer an approximate
distribution for the estimator in a finite sample. To describe how this is done, it is necessary, first,
to present some results on convergence of random variables.

D.2.1 CONVERGENCE IN PROBABILITY

Limiting arguments in this discussion will be with respect to the sample size n. Let xn be a sequence
random variable indexed by the sample size.

DEFINITION D.1 Convergence in Probability
The random variable xn converges in probability to a constant c if limn→∞ Prob(|xn −c| >

ε) = 0 for any positive ε.

Convergence in probability implies that the values that the variable may take that are not
close to c become increasingly unlikely as n increases. To consider one example, suppose that the
random variable xn takes two values, zero and n, with probabilities 1 − (1/n) and (1/n), respec-
tively. As n increases, the second point will become ever more remote from any constant but, at the
same time, will become increasingly less probable. In this example, xn converges in probability
to zero. The crux of this form of convergence is that all the mass of the probability distribution
becomes concentrated at points close to c. If xn converges in probability to c, then we write

plim xn = c. (D-1)

We will make frequent use of a special case of convergence in probability, convergence in mean
square or convergence in quadratic mean.

THEOREM D.1 Convergence in Quadratic Mean
If xn has mean μn and variance σ 2

n such that the ordinary limits of μn and σ 2
n are c and 0,

respectively, then xn converges in mean square to c, and

plim xn = c.

1A comprehensive summary of many results in large-sample theory appears in White (2001). The results
discussed here will apply to samples of independent observations. Time-series cases in which observations
are correlated are analyzed in Chapters 20 through 23.
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A proof of Theorem D.1 can be based on another useful theorem.

THEOREM D.2 Chebychev’s Inequality
If xn is a random variable and c and ε are constants, then Prob(|xn − c| > ε) ≤
E[(xn − c)2]/ε2.

To establish the Chebychev inequality, we use another result [see Goldberger (1991, p. 31)].

THEOREM D.3 Markov’s Inequality
If yn is a nonnegative random variable and δ is a positive constant, then
Prob[yn ≥ δ] ≤ E[yn]/δ.
Proof: E[yn] = Prob[yn < δ]E[yn | yn < δ] + Prob[yn ≥ δ]E[yn | yn ≥ δ]. Because yn is non-
negative, both terms must be nonnegative, so E[yn] ≥ Prob[yn ≥ δ]E[yn | yn ≥ δ].
Because E[yn | yn ≥ δ] must be greater than or equal to δ, E[yn] ≥ Prob[yn ≥ δ]δ, which
is the result.

Now, to prove Theorem D.1, let yn be (xn − c)2 and δ be ε2 in Theorem D.3. Then, (xn − c)2 > δ

implies that |xn − c| > ε. Finally, we will use a special case of the Chebychev inequality, where
c = μn, so that we have

Prob(|xn − μn| > ε) ≤ σ 2
n /ε2. (D-2)

Taking the limits of μn and σ 2
n in (D-2), we see that if

lim
n→∞

E[xn] = c, and lim
n→∞

Var[xn] = 0, (D-3)

then

plim xn = c.

We have shown that convergence in mean square implies convergence in probability. Mean-
square convergence implies that the distribution of xn collapses to a spike at plim xn, as shown in
Figure D.1.

Example D.1 Mean Square Convergence of the Sample Minimum
in Exponential Sampling

As noted in Example C.4, in sampling of n observations from an exponential distribution, for
the sample minimum x(1) ,

lim
n→∞

E
[
x(1)

] = lim
n→∞

1
nθ

= 0

and

lim
n→∞

Var
[
x(1)

] = lim
n→∞

1
(nθ ) 2

= 0.

Therefore,

plim x(1) = 0.

Note, in particular, that the variance is divided by n2. Thus, this estimator converges very
rapidly to 0.



Greene-2140242 book December 2, 2010 16:35

1138 PART VI ✦ Appendices

n � 10

n � 100

Estimator

D
en

si
ty

n � 1000

�

FIGURE D.1 Quadratic Convergence to a Constant, θ .

Convergence in probability does not imply convergence in mean square. Consider the simple
example given earlier in which xn equals either zero or n with probabilities 1 − (1/n) and (1/n).
The exact expected value of xn is 1 for all n, which is not the probability limit. Indeed, if we let
Prob(xn = n2) = (1/n) instead, the mean of the distribution explodes, but the probability limit is
still zero. Again, the point xn = n2 becomes ever more extreme but, at the same time, becomes
ever less likely.

The conditions for convergence in mean square are usually easier to verify than those for
the more general form. Fortunately, we shall rarely encounter circumstances in which it will be
necessary to show convergence in probability in which we cannot rely upon convergence in mean
square. Our most frequent use of this concept will be in formulating consistent estimators.

DEFINITION D.2 Consistent Estimator
An estimator θ̂n of a parameter θ is a consistent estimator of θ if and only if

plim θ̂n = θ. (D-4)

THEOREM D.4 Consistency of the Sample Mean
The mean of a random sample from any population with finite mean μ and finite variance
σ 2 is a consistent estimator of μ.
Proof: E[ x̄n] = μ and Var[x̄n] = σ 2/n. Therefore, x̄n converges in mean square to μ, or
plim x̄n = μ.
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Theorem D.4 is broader than it might appear at first.

COROLLARY TO THEOREM D.4 Consistency of a Mean
of Functions

In random sampling, for any function g(x), if E[g(x)] and Var[g(x)] are finite constants,
then

plim
1
n

n∑
i=1

g(xi ) = E[g(x)]. (D-5)

Proof: Define yi = g(xi ) and use Theorem D.4.

Example D.2 Estimating a Function of the Mean
In sampling from a normal distribution with mean μ and variance 1, E [ex ] = eμ+1/2 and
Var[ex ] = e2μ+2 − e2μ+1. (See Section B.4.4 on the lognormal distribution.) Hence,

plim
1
n

n∑
i =1

exi = eμ+1/2.

D.2.2 OTHER FORMS OF CONVERGENCE AND LAWS
OF LARGE NUMBERS

Theorem D.4 and the corollary just given are particularly narrow forms of a set of results known
as laws of large numbers that are fundamental to the theory of parameter estimation. Laws of
large numbers come in two forms depending on the type of convergence considered. The simpler
of these are “weak laws of large numbers” which rely on convergence in probability as we defined
it above. “Strong laws” rely on a broader type of convergence called almost sure convergence.
Overall, the law of large numbers is a statement about the behavior of an average of a large
number of random variables.

THEOREM D.5 Khinchine’s Weak Law of Large Numbers
If xi , i = 1, . . . , n is a random (i.i.d.) sample from a distribution with finite mean E [xi ] = μ,
then

plim x̄n = μ.

Proofs of this and the theorem below are fairly intricate. Rao (1973) provides one.

Notice that this is already broader than Theorem D.4, as it does not require that the variance of
the distribution be finite. On the other hand, it is not broad enough, because most of the situations
we encounter where we will need a result such as this will not involve i.i.d. random sampling. A
broader result is
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THEOREM D.6 Chebychev’s Weak Law of Large Numbers
If xi , i = 1, . . . , n is a sample of observations such that E [xi ] = μi < ∞ and Var[xi ] =
σ 2

i < ∞ such that σ̄ 2
n /n = (1/n2)�iσ

2
i → 0 as n → ∞, then plim(x̄n − μ̄n) = 0.

There is a subtle distinction between these two theorems that you should notice. The Chebychev
theorem does not state that x̄n converges to μ̄n, or even that it converges to a constant at all.
That would require a precise statement about the behavior of μ̄n. The theorem states that as
n increases without bound, these two quantities will be arbitrarily close to each other—that
is, the difference between them converges to a constant, zero. This is an important notion
that enters the derivation when we consider statistics that converge to random variables, in-
stead of to constants. What we do have with these two theorems are extremely broad condi-
tions under which a sample mean will converge in probability to its population counterpart.
The more important difference between the Khinchine and Chebychev theorems is that the
second allows for heterogeneity in the distributions of the random variables that enter
the mean.

In analyzing time-series data, the sequence of outcomes is itself viewed as a random event.
Consider, then, the sample mean, x̄n. The preceding results concern the behavior of this statistic
as n → ∞ for a particular realization of the sequence x̄1, . . . , x̄n. But, if the sequence, itself, is
viewed as a random event, then limit to which x̄n converges may be also. The stronger notion of
almost sure convergence relates to this possibility.

DEFINITION D.3 Almost Sure Convergence
The random variable xn converges almost surely to the constant c if and only if

Prob
(

lim
n→∞

xn = c
)

= 1.

This is denoted xn
a.s.−→c. It states that the probability of observing a sequence that does not

converge to c ultimately vanishes. Intuitively, it states that once the sequence xn becomes close
to c, it stays close to c.

Almost sure convergence is used in a stronger form of the law of large numbers:

THEOREM D.7 Kolmogorov’s Strong Law of Large Numbers
If xi , i = 1, . . . , n is a sequence of independently distributed random variables such that
E [xi ] = μi < ∞ and Var[xi ] = σ 2

i < ∞ such that
∑∞

i=1 σ 2
i / i2 < ∞ as n → ∞ then

x̄n − μ̄n
a.s.−→ 0.
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THEOREM D.8 Markov’s Strong Law of Large Numbers
If {zi } is a sequence of independent random variables with E[zi ] = μi < ∞ and if for some
δ > 0,

∑∞
i=1 E[|zi − μi |1+δ]/ i1+δ < ∞, then z̄n − μ̄n converges almost surely to 0, which

we denote z̄n − μ̄n
a.s.−→ 0.2

The variance condition is satisfied if every variance in the sequence is finite, but this is not strictly
required; it only requires that the variances in the sequence increase at a slow enough rate that
the sequence of variances as defined is bounded. The theorem allows for heterogeneity in the
means and variances. If we return to the conditions of the Khinchine theorem, i.i.d. sampling, we
have a corollary:

COROLLARY TO THEOREM D.8 (Kolmogorov)
If xi , i = 1, . . . , n is a sequence of independent and identically distributed random variables
such that E[xi ] = μ < ∞ and E[|xi |] < ∞, then x̄n − μ

a.s.−→ 0.

Note that the corollary requires identically distributed observations while the theorem only
requires independence. Finally, another form of convergence encountered in the analysis of time-
series data is convergence in r th mean:

DEFINITION D.4 Convergence in rth Mean
If xn is a sequence of random variables such that E[|xn|r ] < ∞ and limn→∞ E[|xn −c|r ] = 0,
then xn converges in rth mean to c. This is denoted xn

r.m.−→c.

Surely the most common application is the one we met earlier, convergence in means square,
which is convergence in the second mean. Some useful results follow from this definition:

THEOREM D.9 Convergence in Lower Powers
If xn converges in rth mean to c, then xn converges in sth mean to c for any s < r . The
proof uses Jensen’s Inequality, Theorem D.13. Write E[|xn − c|s] = E[(|xn − c|r )s/r ] ≤{

E[(|xn − c|r )]}s/r
and the inner term converges to zero so the full function must also.

2The use of the expected absolute deviation differs a bit from the expected squared deviation that we have
used heretofore to characterize the spread of a distribution. Consider two examples. If z ∼ N[0, σ 2], then
E[|z|] = Prob[z < 0]E[−z | z < 0] + Prob[z ≥ 0]E[z | z ≥ 0] = 0.7979σ . (See Theorem 18.2.) So, finite
expected absolute value is the same as finite second moment for the normal distribution. But if z takes values
[0, n] with probabilities [1 − 1/n, 1/n], then the variance of z is (n − 1), but E[|z − μz|] is 2 − 2/n. For
this case, finite expected absolute value occurs without finite expected second moment. These are different
characterizations of the spread of the distribution.
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THEOREM D.10 Generalized Chebychev’s Inequality
If xn is a random variable and c is a constant such that with E[|xn − c|r ] < ∞ and ε is a
positive constant, then Prob(|xn − c| > ε) ≤ E[|xn − c|r ]/εr .

We have considered two cases of this result already, when r = 1 which is the Markov inequality,
Theorem D.3, and when r = 2, which is the Chebychev inequality we looked at first in Theo-
rem D.2.

THEOREM D.11 Convergence in rth mean and Convergence
in Probability

If xn
r.m.−→ c, for some r > 0, then xn

p−→ c. The proof relies on Theorem D.10. By
assumption, limn→∞ E [|xn − c|r ] = 0 so for some n sufficiently large, E [|xn − c|r ] < ∞.
By Theorem D.10, then, Prob(|xn − c| > ε) ≤ E [|xn − c|r ]/εr for any ε > 0. The denomina-
tor of the fraction is a fixed constant and the numerator converges to zero by our initial
assumption, so limn→∞ Prob(|xn − c| > ε) = 0, which completes the proof.

One implication of Theorem D.11 is that although convergence in mean square is a convenient
way to prove convergence in probability, it is actually stronger than necessary, as we get the same
result for any positive r .

Finally, we note that we have now shown that both almost sure convergence and convergence
in r th mean are stronger than convergence in probability; each implies the latter. But they,
themselves, are different notions of convergence, and neither implies the other.

DEFINITION D.5 Convergence of a Random Vector or Matrix
Let xn denote a random vector and Xn a random matrix, and c and C denote a vector
and matrix of constants with the same dimensions as xn and Xn, respectively. All of the
preceding notions of convergence can be extended to (xn, c) and (Xn, C) by applying the
results to the respective corresponding elements.

D.2.3 CONVERGENCE OF FUNCTIONS

A particularly convenient result is the following.

THEOREM D.12 Slutsky Theorem
For a continuous function g(xn) that is not a function of n,

plim g(xn) = g(plim xn). (D-6)

The generalization of Theorem D.12 to a function of several random variables is direct, as
illustrated in the next example.
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Example D.3 Probability Limit of a Function of ¯̄x and s2

In random sampling from a population with mean μ and variance σ 2, the exact expected
value of x̄2

n/s2
n will be difficult, if not impossible, to derive. But, by the Slutsky theorem,

plim
x̄2

n

s2
n

= μ2

σ 2
.

An application that highlights the difference between expectation and probability is suggested
by the following useful relationships.

THEOREM D.13 Inequalities for Expectations
Jensen’s Inequality. If g(xn) is a concave function of xn, then g

(
E [xn]

)≥ E [g(xn)].
Cauchy–Schwarz Inequality. For two random variables,

E [|xy|] ≤ {
E [x2]

}1/2{
E [y2]

}1/2
.

Although the expected value of a function of xn may not equal the function of the expected
value—it exceeds it if the function is concave—the probability limit of the function is equal to
the function of the probability limit.

The Slutsky theorem highlights a comparison between the expectation of a random variable
and its probability limit. Theorem D.12 extends directly in two important directions. First, though
stated in terms of convergence in probability, the same set of results applies to convergence in
r th mean and almost sure convergence. Second, so long as the functions are continuous, the
Slutsky theorem can be extended to vector or matrix valued functions of random scalars, vectors,
or matrices. The following describe some specific applications. Some implications of the Slutsky
theorem are now summarized.

THEOREM D.14 Rules for Probability Limits
If xn and yn are random variables with plim xn = c and plim yn = d, then

plim(xn + yn) = c + d, (sum rule) (D-7)

plim xn yn = cd, (product rule) (D-8)

plim xn/yn = c/d if d �= 0. (ratio rule) (D-9)

If Wn is a matrix whose elements are random variables and if plim Wn = �, then

plim W−1
n = �−1. (matrix inverse rule) (D-10)

If Xn and Yn are random matrices with plim Xn = A and plim Yn = B, then

plim XnYn = AB. (matrix product rule) (D-11)

D.2.4 CONVERGENCE TO A RANDOM VARIABLE

The preceding has dealt with conditions under which a random variable converges to a constant,
for example, the way that a sample mean converges to the population mean. To develop a theory
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for the behavior of estimators, as a prelude to the discussion of limiting distributions, we now
consider cases in which a random variable converges not to a constant, but to another random
variable. These results will actually subsume those in the preceding section, as a constant may
always be viewed as a degenerate random variable, that is one with zero variance.

DEFINITION D.6 Convergence in Probability to a Random
Variable

The random variable xn converges in probability to the random variable x if
limn→∞ Prob(|xn − x| > ε) = 0 for any positive ε.

As before, we write plim xn = x to denote this case. The interpretation (at least the intuition) of
this type of convergence is different when x is a random variable. The notion of closeness defined
here relates not to the concentration of the mass of the probability mechanism generating xn at a
point c, but to the closeness of that probability mechanism to that of x. One can think of this as
a convergence of the CDF of xn to that of x.

DEFINITION D.7 Almost Sure Convergence to a Random Variable
The random variable xn converges almost surely to the random variable x if and only if
limn→∞ Prob(|xi − x| > ε for all i ≥ n) = 0 for all ε > 0.

DEFINITION D.8 Convergence in rth Mean to a Random Variable
The random variable xn converges in rth mean to the random variable x if and only if
limn→∞ E [|xn − x|r ] = 0. This is labeled xn

r.m.−→ x. As before, the case r = 2 is labeled
convergence in mean square.

Once again, we have to revise our understanding of convergence when convergence is to a random
variable.

THEOREM D.15 Convergence of Moments
Suppose xn

r.m.−→ x and E [|x|r ] is finite. Then, limn→∞ E [|xn|r ] = E [|x|r ].

Theorem D.15 raises an interesting question. Suppose we let r grow, and suppose that xn
r.m.−→ x

and, in addition, all moments are finite. If this holds for any r , do we conclude that these random
variables have the same distribution? The answer to this longstanding problem in probability
theory—the problem of the sequence of moments—is no. The sequence of moments does not
uniquely determine the distribution. Although convergence in r th mean and almost surely still
both imply convergence in probability, it remains true, even with convergence to a random variable
instead of a constant, that these are different forms of convergence.
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D.2.5 CONVERGENCE IN DISTRIBUTION:
LIMITING DISTRIBUTIONS

A second form of convergence is convergence in distribution. Let xn be a sequence of random
variables indexed by the sample size, and assume that xn has cdf Fn(xn).

DEFINITION D.9 Convergence in Distribution
xn converges in distribution to a random variable x with CDF F(x) if
limn→∞| Fn(xn) − F(x)| = 0 at all continuity points of F(x).

This statement is about the probability distribution associated with xn; it does not imply that
xn converges at all. To take a trivial example, suppose that the exact distribution of the random
variable xn is

Prob(xn = 1) = 1
2

+ 1
n + 1

, Prob(xn = 2) = 1
2

− 1
n + 1

.

As n increases without bound, the two probabilities converge to 1
2 , but xn does not converge to a

constant.

DEFINITION D.10 Limiting Distribution
If xn converges in distribution to x, where Fn(xn) is the CDF of xn, then F(x) is the limiting
distribution of xn. This is written

xn
d−→ x.

The limiting distribution is often given in terms of the pdf, or simply the parametric family. For
example, “the limiting distribution of xn is standard normal.”

Convergence in distribution can be extended to random vectors and matrices, although not
in the element by element manner that we extended the earlier convergence forms. The reason is
that convergence in distribution is a property of the CDF of the random variable, not the variable
itself. Thus, we can obtain a convergence result analogous to that in Definition D.9 for vectors or
matrices by applying definition to the joint CDF for the elements of the vector or matrices. Thus,
xn

d−→ x if limn→∞ |Fn(xn) − F(x)| = 0 and likewise for a random matrix.

Example D.4 Limiting Distribution of tn−1

Consider a sample of size n from a standard normal distribution. A familiar inference problem
is the test of the hypothesis that the population mean is zero. The test statistic usually used
is the t statistic:

tn−1 = x̄n

sn/
√

n
,

where

s2
n =

∑n
i =1( xi − x̄n) 2

n − 1
.
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The exact distribution of the random variable tn−1 is t with n − 1 degrees of freedom. The
density is different for every n:

f ( tn−1) = �(n/2)
�[(n − 1)/2]

[(n − 1)π ]−1/2

[
1 + t2

n−1

n − 1

]−n/2

, (D-12)

as is the CDF, Fn−1( t) = ∫ t

−∞ fn−1( x) dx. This distribution has mean zero and variance (n−1)/
(n − 3) . As n grows to infinity, tn−1 converges to the standard normal, which is written

tn−1
d−→ N[0, 1].

DEFINITION D.11 Limiting Mean and Variance
The limiting mean and variance of a random variable are the mean and variance of the
limiting distribution, assuming that the limiting distribution and its moments exist.

For the random variable with t[n] distribution, the exact mean and variance are zero and
n/(n − 2), whereas the limiting mean and variance are zero and one. The example might suggest
that the limiting mean and variance are zero and one; that is, that the moments of the limiting
distribution are the ordinary limits of the moments of the finite sample distributions. This situation
is almost always true, but it need not be. It is possible to construct examples in which the exact
moments do not even exist, even though the moments of the limiting distribution are well defined.3

Even in such cases, we can usually derive the mean and variance of the limiting distribution.
Limiting distributions, like probability limits, can greatly simplify the analysis of a problem.

Some results that combine the two concepts are as follows.4

THEOREM D.16 Rules for Limiting Distributions
1. If xn

d−→ x and plim yn = c, then

xn yn
d−→ cx, (D-13)

which means that the limiting distribution of xn yn is the distribution of cx. Also,

xn + yn
d−→ x + c, (D-14)

xn/yn
d−→ x/c, if c �= 0. (D-15)

2. If xn
d−→ x and g(xn) is a continuous function, then

g(xn)
d−→ g(x). (D-16)

This result is analogous to the Slutsky theorem for probability limits. For
an example, consider the tn random variable discussed earlier. The exact distribu-
tion of t2

n is F[1, n]. But as n −→ ∞, tn converges to a standard normal variable.
According to this result, the limiting distribution of t2

n will be that of the square of a
standard normal, which is chi-squared with one

3See, for example, Maddala (1977a, p. 150).
4For proofs and further discussion, see, for example, Greenberg and Webster (1983).
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THEOREM D.16 (Continued)
degree of freedom. We conclude, therefore, that

F[1, n]
d−→ chi-squared[1]. (D-17)

We encountered this result in our earlier discussion of limiting forms of the standard
normal family of distributions.

3. If yn has a limiting distribution and plim (xn − yn) = 0, then xn has the same limiting
distribution as yn.

The third result in Theorem D.16 combines convergence in distribution and in probability. The
second result can be extended to vectors and matrices.

Example D.5 The F Distribution
Suppose that t1,n and t2,n are a K × 1 and an M × 1 random vector of variables whose
components are independent with each distributed as t with n degrees of freedom. Then, as
we saw in the preceding, for any component in either random vector, the limiting distribution
is standard normal, so for the entire vector, t j ,n

d−→ z j , a vector of independent standard

normally distributed variables. The results so far show that (t′
1,nt1,n)/K

(t′
2,nt2,n)/M

d−→ F [K , M].

Finally, a specific case of result 2 in Theorem D.16 produces a tool known as the Cramér–Wold
device.

THEOREM D.17 Cramer–Wold Device
If xn

d−→ x, then c′xn
d−→ c′x for all conformable vectors c with real valued elements.

By allowing c to be a vector with just a one in a particular position and zeros elsewhere, we see
that convergence in distribution of a random vector xn to x does imply that each component does
likewise.

D.2.6 CENTRAL LIMIT THEOREMS

We are ultimately interested in finding a way to describe the statistical properties of estimators
when their exact distributions are unknown. The concepts of consistency and convergence in
probability are important. But the theory of limiting distributions given earlier is not yet adequate.
We rarely deal with estimators that are not consistent for something, though perhaps not always
the parameter we are trying to estimate. As such,

if plim θ̂n = θ, then θ̂n
d−→ θ.

That is, the limiting distribution of θ̂n is a spike. This is not very informative, nor is it at all what
we have in mind when we speak of the statistical properties of an estimator. (To endow our finite
sample estimator θ̂n with the zero sampling variance of the spike at θ would be optimistic in the
extreme.)

As an intermediate step, then, to a more reasonable description of the statistical properties
of an estimator, we use a stabilizing transformation of the random variable to one that does have
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a well-defined limiting distribution. To jump to the most common application, whereas

plim θ̂n = θ,

we often find that

zn = √
n(θ̂n − θ)

d−→ f (z),

where f (z) is a well-defined distribution with a mean and a positive variance. An estimator
which has this property is said to be root-n consistent. The single most important theorem in
econometrics provides an application of this proposition. A basic form of the theorem is as
follows.

THEOREM D.18 Lindeberg–Levy Central Limit Theorem
(Univariate)

If x1, . . . , xn are a random sample from a probability distribution with finite
mean μ and finite variance σ 2 and x̄n = (1/n)

∑n
i=1 xi , then

√
n( x̄n − μ)

d−→ N[0, σ 2],

A proof appears in Rao (1973, p. 127).

The result is quite remarkable as it holds regardless of the form of the parent distribution. For
a striking example, return to Figure C.2. The distribution from which the data were drawn in that
figure does not even remotely resemble a normal distribution. In samples of only four observations
the force of the central limit theorem is clearly visible in the sampling distribution of the means.
The sampling experiment Example D.6 shows the effect in a systematic demonstration of the
result.

The Lindeberg–Levy theorem is one of several forms of this extremely powerful result. For
our purposes, an important extension allows us to relax the assumption of equal variances. The
Lindeberg–Feller form of the central limit theorem is the centerpiece of most of our analysis in
econometrics.

THEOREM D.19 Lindeberg–Feller Central Limit Theorem
(with Unequal Variances)

Suppose that {xi }, i = 1, . . . , n, is a sequence of independent random variables with finite
means μi and finite positive variances σ 2

i . Let

μ̄n = 1
n

(μ1 + μ2 + · · · + μn), and σ̄ 2
n = 1

n

(
σ 2

1 + σ 2
2 + · · · , σ 2

n

)
.

If no single term dominates this average variance, which we could state as limn→∞ max(σi )/

(nσ̄n) = 0, and if the average variance converges to a finite constant, σ̄ 2 = limn→∞ σ̄ 2
n ,

then
√

n(x̄n − μ̄n)
d−→ N[0, σ̄ 2].
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FIGURE D.2 The Exponential Distribution.

In practical terms, the theorem states that sums of random variables, regardless of their form,
will tend to be normally distributed. The result is yet more remarkable in that it does not require
the variables in the sum to come from the same underlying distribution. It requires, essentially, only
that the mean be a mixture of many random variables, none of which is large compared with their
sum. Because nearly all the estimators we construct in econometrics fall under the purview of the
central limit theorem, it is obviously an important result.

Example D.6 The Lindeberg–Levy Central Limit Theorem
We’ll use a sampling experiment to demonstrate the operation of the central limit theorem.
Consider random sampling from the exponential distribution with mean 1.5—this is the setting
used in Example C.4. The density is shown in Figure D.2.

We’ve drawn 1,000 samples of 3, 6, and 20 observations from this population and com-
puted the sample means for each. For each mean, we then computed zin = √

n( x̄in − μ) ,
where i = 1, . . . , 1,000 and n is 3, 6 or 20. The three rows of figures in Figure D.3 show
histograms of the observed samples of sample means and kernel density estimates of the
underlying distributions for the three samples of transformed means.

Proof of the Lindeberg–Feller theorem requires some quite intricate mathematics [see, e.g.,
Loeve (1977)] that are well beyond the scope of our work here. We do note an important consid-
eration in this theorem. The result rests on a condition known as the Lindeberg condition. The
sample mean computed in the theorem is a mixture of random variables from possibly different
distributions. The Lindeberg condition, in words, states that the contribution of the tail areas
of these underlying distributions to the variance of the sum must be negligible in the limit. The
condition formalizes the assumption in Theorem D.19 that the average variance be positive and
not be dominated by any single term. [For an intuitively crafted mathematical discussion of this
condition, see White (2001, pp. 117–118).] The condition is essentially impossible to verify in
practice, so it is useful to have a simpler version of the theorem that encompasses it.
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THEOREM D.20 Liapounov Central Limit Theorem
Suppose that {xi } is a sequence of independent random variables with finite means μi and
finite positive variances σ 2

i such that E[|xi −μi |2+δ] is finite for some δ > 0. If σ̄n is positive
and finite for all n sufficiently large, then

√
n( x̄n − μ̄n)/σ̄n

d−→ N[0, 1].

This version of the central limit theorem requires only that moments slightly larger than two be
finite.

Note the distinction between the laws of large numbers in Theorems D.5 and D.6 and the
central limit theorems. Neither asserts that sample means tend to normality. Sample means (i.e.,
the distributions of them) converge to spikes at the true mean. It is the transformation of the
mean,

√
n( x̄n −μ)/σ, that converges to standard normality. To see this at work, if you have access

to the necessary software, you might try reproducing Example D.6 using the raw means, x̄in. What
do you expect to observe?

For later purposes, we will require multivariate versions of these theorems. Proofs of the
following may be found, for example, in Greenberg and Webster (1983) or Rao (1973) and
references cited there.

THEOREM D.18A Multivariate Lindeberg–Levy Central
Limit Theorem

If x1, . . . , xn are a random sample from a multivariate distribution with finite mean vector
μ and finite positive definite covariance matrix Q, then

√
n( x̄n − μ)

d−→ N[0, Q],

where

x̄n = 1
n

n∑
i=1

xi .

To get from D.18 to D.18A (and D.19 to D.19A) we need to add a step. Theorem D.18
applies to the individual elements of the vector. A vector has a multivariate normal distri-
bution if the individual elements are normally distributed and if every linear combination
is normally distributed. We can use Theorem D.18 (D.19) for the individual terms and
Theorem D.17 to establish that linear combinations behave likewise. This establishes the
extensions.

The extension of the Lindeberg–Feller theorem to unequal covariance matrices requires
some intricate mathematics. The following is an informal statement of the relevant conditions.
Further discussion and references appear in Fomby, Hill, and Johnson (1984) and Greenberg and
Webster (1983).
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THEOREM D.19A Multivariate Lindeberg–Feller Central
Limit Theorem

Suppose that x1, . . . , xn are a sample of random vectors such that E[xi ] = μi ,

Var[xi ] = Qi , and all mixed third moments of the multivariate distribution are finite.
Let

μ̄n = 1
n

n∑
i=1

μi ,

Q̄n = 1
n

n∑
i=1

Qi .

We assume that

lim
n→∞

Q̄n = Q,

where Q is a finite, positive definite matrix, and that for every i ,

lim
n→∞

(nQ̄n)
−1Qi = lim

n→∞

(
n∑

i=1

Qi

)−1

Qi = 0.

We allow the means of the random vectors to differ, although in the cases that we will
analyze, they will generally be identical. The second assumption states that individual
components of the sum must be finite and diminish in significance. There is also an im-
plicit assumption that the sum of matrices is nonsingular. Because the limiting matrix is
nonsingular, the assumption must hold for large enough n, which is all that concerns us
here. With these in place, the result is

√
n( x̄n − μ̄n)

d−→ N[0, Q].

D.2.7 THE DELTA METHOD

At several points in Appendix C, we used a linear Taylor series approximation to analyze the
distribution and moments of a random variable. We are now able to justify this usage. We complete
the development of Theorem D.12 (probability limit of a function of a random variable), Theorem
D.16 (2) (limiting distribution of a function of a random variable), and the central limit theorems,
with a useful result that is known as the delta method. For a single random variable (sample mean
or otherwise), we have the following theorem.

THEOREM D.21 Limiting Normal Distribution of a Function
If

√
n(zn − μ)

d−→ N[0, σ 2] and if g(zn) is a continuous and continuously differentiable
function with g′(μ) not equal to zero and not involving n, then

√
n[g(zn) − g(μ)]

d−→ N[0, {g′(μ)}2σ 2]. (D-18)
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Notice that the mean and variance of the limiting distribution are the mean and variance of
the linear Taylor series approximation:

g(zn) 
 g(μ) + g′(μ)(zn − μ).

The multivariate version of this theorem will be used at many points in the text.

THEOREM D.21A Limiting Normal Distribution of a Set
of Functions

If zn is a K × 1 sequence of vector-valued random variables such that
√

n(zn − μ)
d−→

N[0, �] and if c(zn) is a set of J continuous and continuously differentiable functions of
zn with C(μ) not equal to zero, not involving n, then

√
n[c(zn) − c(μ)]

d−→ N[0, C(μ)�C(μ)′], (D-19)

where C(μ) is the J × K matrix ∂c(μ)/∂μ′. The jth row of C(μ) is the vector of partial
derivatives of the jth function with respect to μ′.

D.3 ASYMPTOTIC DISTRIBUTIONS

The theory of limiting distributions is only a means to an end. We are interested in the behavior of
the estimators themselves. The limiting distributions obtained through the central limit theorem
all involve unknown parameters, generally the ones we are trying to estimate. Moreover, our
samples are always finite. Thus, we depart from the limiting distributions to derive the asymptotic
distributions of the estimators.

DEFINITION D.12 Asymptotic Distribution
An asymptotic distribution is a distribution that is used to approximate the true finite sample
distribution of a random variable.5

By far the most common means of formulating an asymptotic distribution (at least by econo-
metricians) is to construct it from the known limiting distribution of a function of the random
variable. If

√
n[(x̄n − μ)/σ ]

d−→ N[0, 1],

5We depart somewhat from some other treatments [e.g., White (2001), Hayashi (2000, p. 90)] at this point,
because they make no distinction between an asymptotic distribution and the limiting distribution, although
the treatments are largely along the lines discussed here. In the interest of maintaining consistency of the
discussion, we prefer to retain the sharp distinction and derive the asymptotic distribution of an estimator, t
by first obtaining the limiting distribution of

√
n(t − θ). By our construction, the limiting distribution of t is

degenerate, whereas the asymptotic distribution of
√

n(t − θ) is not useful.
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FIGURE D.4 True Versus Asymptotic Distribution.

then approximately, or asymptotically, x̄n ∼ N[μ, σ 2/n], which we write as

x̄
a∼ N[μ, σ 2/n].

The statement “x̄n is asymptotically normally distributed with mean μ and variance σ 2/n” says
only that this normal distribution provides an approximation to the true distribution, not that the
true distribution is exactly normal.

Example D.7 Asymptotic Distribution of the Mean of an
Exponential Sample

In sampling from an exponential distribution with parameter θ , the exact distribution of x̄n
is that of θ/(2n) times a chi-squared variable with 2n degrees of freedom. The asymptotic
distribution is N[θ , θ2/n]. The exact and asymptotic distributions are shown in Figure D.4 for
the case of θ = 1 and n = 16.

Extending the definition, suppose that θ̂n is an estimator of the parameter vector θ . The
asymptotic distribution of the vector θ̂n is obtained from the limiting distribution:

√
n(θ̂n − θ)

d−→ N[0, V] (D-20)

implies that

θ̂n
a∼ N

[
θ ,

1
n

V

]
. (D-21)

This notation is read “θ̂n is asymptotically normally distributed, with mean vector θ and covariance
matrix (1/n)V.” The covariance matrix of the asymptotic distribution is the asymptotic covariance
matrix and is denoted

Asy. Var[θ̂n] = 1
n

V.
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Note, once again, the logic used to reach the result; (D-20) holds exactly as n → ∞. We assume
that it holds approximately for finite n, which leads to (D-21).

DEFINITION D.13 Asymptotic Normality and Asymptotic
Efficiency

An estimator θ̂n is asymptotically normal if (D-20) holds. The estimator is asymptotically ef-
ficient if the covariance matrix of any other consistent, asymptotically normally distributed
estimator exceeds (1/n)V by a nonnegative definite matrix.

For most estimation problems, these are the criteria used to choose an estimator.

Example D.8 Asymptotic Inefficiency of the Median in
Normal Sampling

In sampling from a normal distribution with mean μ and variance σ 2, both the mean x̄n and
the median Mn of the sample are consistent estimators of μ. The limiting distributions of both
estimators are spikes at μ, so they can only be compared on the basis of their asymptotic
properties. The necessary results are

x̄n
a∼ N[μ, σ 2/n], and Mn

a∼ N[μ, (π/2)σ 2/n]. (D-22)

Therefore, the mean is more efficient by a factor of π/2. (But, see Example 15.7 for a finite
sample result.)

D.3.1 ASYMPTOTIC DISTRIBUTION OF A NONLINEAR FUNCTION

Theorems D.12 and D.14 for functions of a random variable have counterparts in asymptotic
distributions.

THEOREM D.22 Asymptotic Distribution of a Nonlinear Function
If

√
n(θ̂n−θ)

d−→ N[0, σ 2] and if g(θ) is a continuous and continuously differentiable func-
tion with g′(θ) not equal to zero and not involving n, then g(θ̂n)

a∼ N[g(θ), (1/n){g′(θ)}2σ 2].
If θ̂n is a vector of parameter estimators such that θ̂n

a∼ N[θ, (1/n)V] and if c(θ) is a set of
J continuous functions not involving n, then c(θ̂n)

a∼ N[c(θ), (1/n)C(θ)VC(θ)′], where
C(θ) = ∂c(θ)/∂θ ′.

Example D.9 Asymptotic Distribution of a Function of Two Estimators
Suppose that bn and tn are estimators of parameters β and θ such that[

bn
tn

]
a∼ N

[(
β
θ

)
,

(
σββ σβθ

σθβ σθθ

)]
.

Find the asymptotic distribution of cn = bn/(1−tn) . Let γ = β/(1−θ ) . By the Slutsky theorem,
cn is consistent for γ . We shall require

∂γ

∂β
= 1

1 − θ
= γβ ,

∂γ

∂θ
= β

(1 − θ ) 2
= γθ .
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Let � be the 2 × 2 asymptotic covariance matrix given previously. Then the asymptotic
variance of cn is

Asy. Var[cn] = (γβ γθ )�

(
γβ

γθ

)
= γ 2

β σββ + γ 2
θ σθθ + 2γβ γθσβθ ,

which is the variance of the linear Taylor series approximation:

γ̂n 
 γ + γβ (bn − β) + γθ ( tn − θ ) .

D.3.2 ASYMPTOTIC EXPECTATIONS

The asymptotic mean and variance of a random variable are usually the mean and variance of
the asymptotic distribution. Thus, for an estimator with the limiting distribution defined in

√
n(θ̂n − θ)

d−→ N[0, V],

the asymptotic expectation is θ and the asymptotic variance is (1/n)V. This statement implies,
among other things, that the estimator is “asymptotically unbiased.”

At the risk of clouding the issue a bit, it is necessary to reconsider one aspect of the previous
description. We have deliberately avoided the use of consistency even though, in most instances,
that is what we have in mind. The description thus far might suggest that consistency and asymp-
totic unbiasedness are the same. Unfortunately (because it is a source of some confusion), they are
not. They are if the estimator is consistent and asymptotically normally distributed, or CAN. They
may differ in other settings, however. There are at least three possible definitions of asymptotic
unbiasedness:

1. The mean of the limiting distribution of
√

n(θ̂n − θ) is 0.
2. limn→∞ E[θ̂n] = θ . (D-23)
3. plim θn = θ .

In most cases encountered in practice, the estimator in hand will have all three properties, so
there is no ambiguity. It is not difficult to construct cases in which the left-hand sides of all
three definitions are different, however.6 There is no general agreement among authors as to the
precise meaning of asymptotic unbiasedness, perhaps because the term is misleading at the outset;
asymptotic refers to an approximation, whereas unbiasedness is an exact result.7 Nonetheless, the
majority view seems to be that (2) is the proper definition of asymptotic unbiasedness.8 Note,
though, that this definition relies on quantities that are generally unknown and that may not exist.

A similar problem arises in the definition of the asymptotic variance of an estimator. One
common definition is9

Asy. Var[θ̂n] = 1
n

lim
n→∞

E
[{√

n
(
θ̂n − lim

n→∞
E [θ̂n]

)}2]
. (D-24)

6See, for example, Maddala (1977a, p. 150).
7See, for example, Theil (1971, p. 377).
8Many studies of estimators analyze the “asymptotic bias” of, say, θ̂n as an estimator of a parameter θ . In
most cases, the quantity of interest is actually plim [θ̂n − θ ]. See, for example, Greene (1980b) and another
example in Johnston (1984, p. 312).
9Kmenta (1986, p.165).
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This result is a leading term approximation, and it will be sufficient for nearly all applications.
Note, however, that like definition 2 of asymptotic unbiasedness, it relies on unknown and possibly
nonexistent quantities.

Example D.10 Asymptotic Moments of the Sample Variance
The exact expected value and variance of the variance estimator

m2 = 1
n

n∑
i =1

( xi − x̄ ) 2 (D-25)

are

E [m2] = (n − 1)σ 2

n
, (D-26)

and

Var [m2] = μ4 − σ 4

n
− 2(μ4 − 2σ 4)

n2
+ μ4 − 3σ 4

n3
, (D-27)

where μ4 = E [( x −μ) 4]. [See Goldberger (1964, pp. 97–99).] The leading term approximation
would be

Asy. Var [m2] = 1
n

(μ4 − σ 4) .

D.4 SEQUENCES AND THE ORDER
OF A SEQUENCE

This section has been concerned with sequences of constants, denoted, for example, cn, and
random variables, such as xn, that are indexed by a sample size, n. An important characteristic of
a sequence is the rate at which it converges (or diverges). For example, as we have seen, the mean
of a random sample of n observations from a distribution with finite mean, μ, and finite variance,
σ 2, is itself a random variable with variance γ 2

n = σ 2/n. We see that as long as σ 2 is a finite
constant, γ 2

n is a sequence of constants that converges to zero. Another example is the random
variable x(1),n, the minimum value in a random sample of n observations from the exponential
distribution with mean 1/θ defined in Example C.4. It turns out that x(1),n has variance 1/(nθ)2.
Clearly, this variance also converges to zero, but, intuition suggests, faster than σ 2/n does. On
the other hand, the sum of the integers from one to n, Sn = n(n + 1)/2, obviously diverges as
n → ∞, albeit faster (one might expect) than the log of the likelihood function for the exponential
distribution in Example C.6, which is ln L(θ) = n(ln θ − θ x̄n). As a final example, consider the
downward bias of the maximum likelihood estimator of the variance of the normal distribution,
cn = (n − 1)/n, which is a constant that converges to one. (See Example C.5.)

We will define the rate at which a sequence converges or diverges in terms of the order of
the sequence.

DEFINITION D.14 Order nδ

A sequence cn is of order nδ , denoted O(nδ), if and only if plim(1/nδ)cn is a finite nonzero
constant.
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DEFINITION D.15 Order less than nδ

A sequence cn, is of order less than nδ , denoted o(nδ), if and only if plim(1/nδ)cn equals
zero.

Thus, in our examples, γ 2
n is O(n−1), Var[x(1),n] is O(n−2) and o(n−1), Sn is O(n2)(δ equals +2 in

this case), ln L(θ) is O(n)(δ equals +1), and cn is O(1)(δ = 0). Important particular cases that we
will encounter repeatedly in our work are sequences for which δ = 1 or −1.

The notion of order of a sequence is often of interest in econometrics in the context of the
variance of an estimator. Thus, we see in Section D.3 that an important element of our strategy for
forming an asymptotic distribution is that the variance of the limiting distribution of

√
n(x̄n−μ)/σ

is O(1). In Example D.10 the variance of m2 is the sum of three terms that are O(n−1), O(n−2),
and O(n−3). The sum is O(n−1), because n Var[m2] converges to μ4 − σ 4, the numerator of the
first, or leading term, whereas the second and third terms converge to zero. This term is also the
dominant term of the sequence. Finally, consider the two divergent examples in the preceding list.
Sn is simply a deterministic function of n that explodes. However, ln L(θ) = n ln θ − θ�i xi is the
sum of a constant that is O(n) and a random variable with variance equal to n/θ . The random
variable “diverges” in the sense that its variance grows without bound as n increases.

APPENDIX E

Q
COMPUTATION AND

OPTIMIZATION

E.1 INTRODUCTION

The computation of empirical estimates by econometricians involves using digital computers
and software written either by the researchers themselves or by others.1 It is also a surprisingly
balanced mix of art and science. It is important for software users to be aware of how results
are obtained, not only to understand routine computations, but also to be able to explain the
occasional strange and contradictory results that do arise. This appendix will describe some of the
basic elements of computing and a number of tools that are used by econometricians.2 Section E.2

1It is one of the interesting aspects of the development of econometric methodology that the adoption of
certain classes of techniques has proceeded in discrete jumps with the development of software. Noteworthy
examples include the appearance, both around 1970, of G. K. Joreskog’s LISREL [Joreskog and Sorbom
(1981)] program, which spawned a still-growing industry in linear structural modeling, and TSP [Hall (1982)],
which was among the first computer programs to accept symbolic representations of econometric models and
which provided a significant advance in econometric practice with its LSQ procedure for systems of equations.
An extensive survey of the evolution of econometric software is given in Renfro (2007).
2This discussion is not intended to teach the reader how to write computer programs. For those who expect
to do so, there are whole libraries of useful sources. Three very useful works are Kennedy and Gentle (1980),
Abramovitz and Stegun (1971), and especially Press et al. (1986). The third of these provides a wealth of
expertly written programs and a large amount of information about how to do computation efficiently and
accurately. A recent survey of many areas of computation is Judd (1998).
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then describes some techniques for computing certain integrals and derivatives that are recurrent
in econometric applications. Section E.3 presents methods of optimization of functions. Some
examples are given in Section E.4.

E.2 COMPUTATION IN ECONOMETRICS

This section will discuss some methods of computing integrals that appear frequently in econo-
metrics.

E.2.1 COMPUTING INTEGRALS

One advantage of computers is their ability rapidly to compute approximations to complex func-
tions such as logs and exponents. The basic functions, such as these, trigonometric functions, and
so forth, are standard parts of the libraries of programs that accompany all scientific computing
installations.3 But one of the very common applications that often requires some high-level cre-
ativity by econometricians is the evaluation of integrals that do not have simple closed forms and
that do not typically exist in “system libraries.” We will consider several of these in this section.
We will not go into detail on the nuts and bolts of how to compute integrals with a computer;
rather, we will turn directly to the most common applications in econometrics.

E.2.2 THE STANDARD NORMAL CUMULATIVE
DISTRIBUTION FUNCTION

The standard normal cumulative distribution function (cdf) is ubiquitous in econometric models.
Yet this most homely of applications must be computed by approximation. There are a number
of ways to do so.4 Recall that what we desire is

�(x) =
∫ x

−∞
φ(t) dt, where φ(t) = 1√

2π
e−t2/2.

One way to proceed is to use a Taylor series:

�(x) ≈
M∑

i=0

1
i!

di�(x0)

dxi
0

(x − x0)
i .

The normal cdf has some advantages for this approach. First, the derivatives are simple and not
integrals. Second, the function is analytic; as M −→ ∞, the approximation converges to the true
value. Third, the derivatives have a simple form; they are the Hermite polynomials and they can
be computed by a simple recursion. The 0th term in the preceding expansion is �(x) evaluated
at the expansion point. The first derivative of the cdf is the pdf, so the terms from 2 onward are
the derivatives of φ(x), once again evaluated at x0. The derivatives of the standard normal pdf
obey the recursion

φi/φ(x) = −xφi−1/φ(x) − (i − 1)φi−2/φ(x),

where φi is diφ(x)/dxi . The zero and one terms in the sequence are one and −x. The next term
is x2 − 1, followed by 3x − x3 and x4 − 6x2 + 3, and so on. The approximation can be made

3Of course, at some level, these must have been programmed as approximations by someone.
4Many system libraries provide a related function, the error function, erf(x) = (2/

√
π)

∫ x

0
e−t2

dt. If this is
available, then the normal cdf can be obtained from �(x) = 1

2 + 1
2 erf(x/

√
2), x ≥ 0 and �(x) = 1−�(−x), x ≤ 0.
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FIGURE E.1 Approximation to Normal cdf.

more accurate by adding terms. Consider using a fifth-order Taylor series approximation around
the point x = 0, where �(0) = 0.5 and φ(0) = 0.3989423. Evaluating the derivatives at zero and
assembling the terms produces the approximation

�(x) ≈ 1
2 + 0.3989423[x − x3/6 + x5/40].

[Some of the terms (every other one, in fact) will conveniently drop out.] Figure E.1 shows the
actual values (F) and approximate values (FA) over the range −2 to 2. The figure shows two
important points. First, the approximation is remarkably good over most of the range. Second, as
is usually true for Taylor series approximations, the quality of the approximation deteriorates as
one gets far from the expansion point.

Unfortunately, it is the tail areas of the standard normal distribution that are usually of
interest, so the preceding is likely to be problematic. An alternative approach that is used much
more often is a polynomial approximation reported by Abramovitz and Stegun (1971, p. 932):

�(−|x|) = φ(x)

5∑
i=1

ai t i + ε(x), where t = 1/[1 + a0|x|].

(The complement is taken if x is positive.) The error of approximation is less than ±7.5 × 10−8

for all x. (Note that the error exceeds the function value at |x| > 5.7, so this is the operational
limit of this approximation.)

E.2.3 THE GAMMA AND RELATED FUNCTIONS

The standard normal cdf is probably the most common application of numerical integration of a
function in econometrics. Another very common application is the class of gamma functions. For
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positive constant P, the gamma function is

�(P) =
∫ ∞

0

t P−1e−t dt.

The gamma function obeys the recursion �(P) = (P − 1)�(P − 1), so for integer values of
P, �(P) = (P−1)! This result suggests that the gamma function can be viewed as a generalization
of the factorial function for noninteger values. Another convenient value is �( 1

2 ) = √
π . By

making a change of variable, it can be shown that for positive constants a, c, and P,∫ ∞

0

t P−1e−atc
dt =

∫ ∞

0

t−(P+1)e−a/tc
dt =

(
1
c

)
a−P/c�

(
P
c

)
. (E-1)

As a generalization of the factorial function, the gamma function will usually overflow for
the sorts of values of P that normally appear in applications. The log of the function should
normally be used instead. The function ln �(P) can be approximated remarkably accurately with
only a handful of terms and is very easy to program. A number of approximations appear in the
literature; they are generally modifications of Stirling’s approximation to the factorial function
P! ≈ (2π P)1/2 PPe−P, so

ln �(P) ≈ (P − 0.5)ln P − P + 0.5 ln(2π) + C + ε(P),

where C is the correction term [see, e.g., Abramovitz and Stegun (1971, p. 257), Press et al. (1986,
p. 157), or Rao (1973, p. 59)] and ε(P) is the approximation error.5

The derivatives of the gamma function are

dr�(P)

dPr
=

∫ ∞

0

(ln t)r t P−1e−t dt.

The first two derivatives of ln �(P) are denoted �(P) = �′/� and � ′(P) = (��′′ − �′2)/�2 and
are known as the digamma and trigamma functions.6 The beta function, denoted β(a, b),

β(a, b) =
∫ 1

0

ta−1(1 − t)b−1 dt = �(a)�(b)

�(a + b)
,

is related.

E.2.4 APPROXIMATING INTEGRALS BY QUADRATURE

The digamma and trigamma functions, and the gamma function for noninteger values of P and
values that are not integers plus 1

2 , do not exist in closed form and must be approximated. Most
other applications will also involve integrals for which no simple computing function exists. The
simplest approach to approximating

F(x) =
∫ U(x)

L(x)

f (t) dt

5For example, one widely used formula is C = z−1/12 − z−3/360 − z−5/1260 + z−7/1680 − q, where z = P
and q = 0 if P > 18, or z = P + J and q = ln[P(P + 1)(P + 2) · · · (P + J − 1)], where J = 18 − INT(P), if
not. Note, in the approximation, we write �(P) = (P!)/P + a correction.
6Tables of specific values for the gamma, digamma, and trigamma functions appear in Abramovitz and Stegun
(1971). Most contemporary econometric programs have built-in functions for these common integrals, so the
tables are not generally needed.
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is likely to be a variant of Simpson’s rule, or the trapezoid rule. For example, one approximation
[see Press et al. (1986, p. 108)] is

F(x) ≈ �
[

1
3 f1 + 4

3 f2 + 2
3 f3 + 4

3 f4 + · · · + 2
3 fN−2 + 4

3 fN−1 + 1
3 fN

]
,

where f j is the function evaluated at N equally spaced points in [L, U] including the endpoints
and � = (L− U)/(N − 1). There are a number of problems with this method, most notably that
it is difficult to obtain satisfactory accuracy with a moderate number of points.

Gaussian quadrature is a popular method of computing integrals. The general approach is
to use an approximation of the form∫ U

L

W(x) f (x) dx ≈
M∑

j=1

w j f (a j ),

where W(x) is viewed as a “weighting” function for integrating f (x), w j is the quadrature weight,
and a j is the quadrature abscissa. Different weights and abscissas have been derived for several
weighting functions. Two weighting functions common in econometrics are

W(x) = xce−x, x ∈ [0, ∞),

for which the computation is called Gauss–Laguerre quadrature, and

W(x) = e−x2
, x ∈ (−∞, ∞),

for which the computation is called Gauss–Hermite quadrature. The theory for deriving weights
and abscissas is given in Press et al. (1986, pp. 121–125). Tables of weights and abscissas for many
values of M are given by Abramovitz and Stegun (1971). Applications of the technique appear
in Chapters 14 and 17.

E.3 OPTIMIZATION

Nonlinear optimization (e.g., maximizing log-likelihood functions) is an intriguing practical prob-
lem. Theory provides few hard and fast rules, and there are relatively few cases in which it is
obvious how to proceed. This section introduces some of the terminology and underlying theory
of nonlinear optimization.7 We begin with a general discussion on how to search for a solution
to a nonlinear optimization problem and describe some specific commonly used methods. We
then consider some practical problems that arise in optimization. An example is given in the final
section.

Consider maximizing the quadratic function

F(θ) = a + b′θ − 1
2 θ ′Cθ ,

where C is a positive definite matrix. The first-order condition for a maximum is

∂ F(θ)

∂θ
= b − Cθ = 0. (E-2)

This set of linear equations has the unique solution

θ = C−1b. (E-3)

7There are numerous excellent references that offer a more complete exposition. Among these are Quandt
(1983), Bazaraa and Shetty (1979), Fletcher (1980), and Judd (1998).
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This is a linear optimization problem. Note that it has a closed-form solution; for any a, b, and C,
the solution can be computed directly.8 In the more typical situation,

∂ F(θ)

∂θ
= 0 (E-4)

is a set of nonlinear equations that cannot be solved explicitly for θ .9 The techniques considered
in this section provide systematic means of searching for a solution.

We now consider the general problem of maximizing a function of several variables:

maximizeθ F(θ), (E-5)

where F(θ) may be a log-likelihood or some other function. Minimization of F(θ) is handled by
maximizing −F(θ). Two special cases are

F(θ) =
n∑

i=1

fi (θ), (E-6)

which is typical for maximum likelihood problems, and the least squares problem,10

fi (θ) = −(yi − f (xi , θ))2. (E-7)

We treated the nonlinear least squares problem in detail in Chapter 7. An obvious way to search
for the θ that maximizes F(θ) is by trial and error. If θ has only a single element and it is known
approximately where the optimum will be found, then a grid search will be a feasible strategy. An
example is a common time-series problem in which a one-dimensional search for a correlation
coefficient is made in the interval (−1, 1). The grid search can proceed in the obvious fashion—
that is, . . . , −0.1, 0, 0.1, 0.2, . . . , then θ̂max−0.1 to θ̂max+0.1 in increments of 0.01, and so on—until
the desired precision is achieved.11 If θ contains more than one parameter, then a grid search
is likely to be extremely costly, particularly if little is known about the parameter vector at the
outset. Nonetheless, relatively efficient methods have been devised. Quandt (1983) and Fletcher
(1980) contain further details.

There are also systematic, derivative-free methods of searching for a function optimum that
resemble in some respects the algorithms that we will examine in the next section. The downhill
simplex (and other simplex) methods12 have been found to be very fast and effective for some
problems. A recent entry in the econometrics literature is the method of simulated annealing.13

These derivative-free methods, particularly the latter, are often very effective in problems with
many variables in the objective function, but they usually require far more function evaluations
than the methods based on derivatives that are considered below. Because the problems typically
analyzed in econometrics involve relatively few parameters but often quite complex functions
involving large numbers of terms in a summation, on balance, the gradient methods are usually
going to be preferable.14

8Notice that the constant a is irrelevant to the solution. Many maximum likelihood problems are presented
with the preface “neglecting an irrelevant constant.” For example, the log-likelihood for the normal linear
regression model contains a term—(n/2) ln(2π)—that can be discarded.
9See, for example, the normal equations for the nonlinear least squares estimators of Chapter 7.
10Least squares is, of course, a minimization problem. The negative of the criterion is used to maintain
consistency with the general formulation.
11There are more efficient methods of carrying out a one-dimensional search, for example, the golden section
method. See Press et al. (1986, Chap. 10).
12See Nelder and Mead (1965) and Press et al. (1986).
13See Goffe, Ferrier, and Rodgers (1994) and Press et al. (1986, pp. 326–334).
14Goffe, Ferrier, and Rodgers (1994) did find that the method of simulated annealing was quite adept at
finding the best among multiple solutions. This problem is common for derivative-based methods, because
they usually have no method of distinguishing between a local optimum and a global one.
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E.3.1 ALGORITHMS

A more effective means of solving most nonlinear maximization problems is by an iterative
algorithm:

Beginning from initial value θ0, at entry to iteration t, if θ t is not the optimal value for
θ , compute direction vector �t , step size λt , then

θ t+1 = θ t + λt�t . (E-8)

Figure E.2 illustrates the structure of an iteration for a hypothetical function of two variables.
The direction vector �t is shown in the figure with θ t . The dashed line is the set of points θ t +
λt�t . Different values of λt lead to different contours; for this θ t and �t , the best value of λt is
about 0.5.

Notice in Figure E.2 that for a given direction vector �t and current parameter vector θ t ,
a secondary optimization is required to find the best λt . Translating from Figure E.2, we obtain
the form of this problem as shown in Figure E.3. This subsidiary search is called a line search, as
we search along the line θ t + λt�t for the optimal value of F(.). The formal solution to the line
search problem would be the λt that satisfies

∂ F(θ t + λt�t )

∂λt
= g(θ t + λt�t )

′�t = 0, (E-9)

FIGURE E.2 Iteration.
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FIGURE E.3 Line Search.

where g is the vector of partial derivatives of F(.) evaluated at θ t +λt�t . In general, this problem
will also be a nonlinear one. In most cases, adding a formal search for λt will be too expensive,
as well as unnecessary. Some approximate or ad hoc method will usually be chosen. It is worth
emphasizing that finding the λt that maximizes F(θ t +λt�t ) at a given iteration does not generally
lead to the overall solution in that iteration. This situation is clear in Figure E.3, where the optimal
value of λt leads to F(.) = 2.0, at which point we reenter the iteration.

E.3.2 COMPUTING DERIVATIVES

For certain functions, the programming of derivatives may be quite difficult. Numeric approx-
imations can be used, although it should be borne in mind that analytic derivatives obtained
by formally differentiating the functions involved are to be preferred. First derivatives can be
approximated by using

∂ F(θ)

∂θi
≈ F(· · · θi + ε · · ·) − F(· · · θi − ε · · ·)

2ε
.

The choice of ε is a remaining problem. Extensive discussion may be found in Quandt (1983).
There are three drawbacks to this means of computing derivatives compared with using

the analytic derivatives. A possible major consideration is that it may substantially increase the
amount of computation needed to obtain a function and its gradient. In particular, K +1 function
evaluations (the criterion and K derivatives) are replaced with 2K + 1 functions. The latter may
be more burdensome than the former, depending on the complexity of the partial derivatives
compared with the function itself. The comparison will depend on the application. But in most
settings, careful programming that avoids superfluous or redundant calculation can make the
advantage of the analytic derivatives substantial. Second, the choice of ε can be problematic. If
it is chosen too large, then the approximation will be inaccurate. If it is chosen too small, then
there may be insufficient variation in the function to produce a good estimate of the derivative.
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A compromise that is likely to be effective is to compute εi separately for each parameter, as in

εi = Max[α|θi |, γ ]

[see Goldfeld and Quandt (1971)]. The values α and γ should be relatively small, such as 10−5.
Third, although numeric derivatives computed in this fashion are likely to be reasonably accurate,
in a sum of a large number of terms, say, several thousand, enough approximation error can accu-
mulate to cause the numerical derivatives to differ significantly from their analytic counterparts.
Second derivatives can also be computed numerically. In addition to the preceding problems,
however, it is generally not possible to ensure negative definiteness of a Hessian computed in
this manner. Unless the choice of ε is made extremely carefully, an indefinite matrix is a possi-
bility. In general, the use of numeric derivatives should be avoided if the analytic derivatives are
available.

E.3.3 GRADIENT METHODS

The most commonly used algorithms are gradient methods, in which

�t = Wt gt , (E-10)

where Wt is a positive definite matrix and gt is the gradient of F(θ t ):

gt = g(θ t ) = ∂ F(θ t )

∂θ t
. (E-11)

These methods are motivated partly by the following. Consider a linear Taylor series approxima-
tion to F(θ t + λt�t ) around λt = 0:

F(θ t + λt�t ) 
 F(θ t ) + λt g(θ t )
′�t . (E-12)

Let F(θ t + λt�t ) equal Ft+1. Then,

Ft+1 − Ft 
 λt g′
t�t .

If �t = Wt gt , then

Ft+1 − Ft 
 λt g′
t Wt gt .

If gt is not 0 and λt is small enough, then Ft+1 − Ft must be positive. Thus, if F(θ) is not already
at its maximum, then we can always find a step size such that a gradient-type iteration will lead
to an increase in the function. (Recall that Wt is assumed to be positive definite.)

In the following, we will omit the iteration index t , except where it is necessary to distinguish
one vector from another. The following are some commonly used algorithms.15

Steepest Ascent The simplest algorithm to employ is the steepest ascent method, which uses

W = I so that � = g. (E-13)

As its name implies, the direction is the one of greatest increase of F(.). Another virtue is that
the line search has a straightforward solution; at least near the maximum, the optimal λ is

λ = −g′g
g′Hg

, (E-14)

15A more extensive catalog may be found in Judge et al. (1985, Appendix B). Those mentioned here are some
of the more commonly used ones and are chosen primarily because they illustrate many of the important
aspects of nonlinear optimization.
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where

H = ∂2 F(θ)

∂θ ∂θ ′ .

Therefore, the steepest ascent iteration is

θ t+1 = θ t − g′
t gt

g′
t Ht gt

gt . (E-15)

Computation of the second derivatives matrix may be extremely burdensome. Also, if Ht is not
negative definite, which is likely if θ t is far from the maximum, the iteration may diverge. A
systematic line search can bypass this problem. This algorithm usually converges very slowly,
however, so other techniques are usually used.

Newton’s Method The template for most gradient methods in common use is Newton’s
method. The basis for Newton’s method is a linear Taylor series approximation. Expanding the
first-order conditions,

∂ F(θ)

∂θ
= 0,

equation by equation, in a linear Taylor series around an arbitrary θ0 yields

∂ F(θ)

∂θ

 g0 + H0(θ − θ 0) = 0, (E-16)

where the superscript indicates that the term is evaluated at θ0. Solving for θ and then equating
θ to θ t+1 and θ0 to θ t , we obtain the iteration

θ t+1 = θ t − H−1
t g t . (E-17)

Thus, for Newton’s method,

W = −H−1, � = −H−1g, λ = 1. (E-18)

Newton’s method will converge very rapidly in many problems. If the function is quadratic, then
this method will reach the optimum in one iteration from any starting point. If the criterion
function is globally concave, as it is in a number of problems that we shall examine in this text,
then it is probably the best algorithm available. This method is very well suited to maximum
likelihood estimation.

Alternatives to Newton’s Method Newton’s method is very effective in some settings, but it
can perform very poorly in others. If the function is not approximately quadratic or if the current
estimate is very far from the maximum, then it can cause wide swings in the estimates and even
fail to converge at all. A number of algorithms have been devised to improve upon Newton’s
method. An obvious one is to include a line search at each iteration rather than use λ = 1. Two
problems remain, however. At points distant from the optimum, the second derivatives matrix
may not be negative definite, and, in any event, the computational burden of computing H may be
excessive.

The quadratic hill-climbing method proposed by Goldfeld, Quandt, and Trotter (1966) deals
directly with the first of these problems. In any iteration, if H is not negative definite, then it is
replaced with

Hα = H − αI, (E-19)
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where α is a positive number chosen large enough to ensure the negative definiteness of Hα .
Another suggestion is that of Greenstadt (1967), which uses, at every iteration,

Hπ = −
n∑

i=1

|πi | ci c′
i , (E-20)

where πi is the ith characteristic root of H and ci is its associated characteristic vector. Other
proposals have been made to ensure the negative definiteness of the required matrix at each
iteration.16

Quasi-Newton Methods: Davidon–Fletcher–Powell A very effective class of algorithms
has been developed that eliminates second derivatives altogether and has excellent convergence
properties, even for ill-behaved problems. These are the quasi-Newton methods, which form

Wt+1 = Wt + Et ,

where Et is a positive definite matrix.17 As long as W0 is positive definite—I is commonly used—
Wt will be positive definite at every iteration. In the Davidon–Fletcher–Powell (DFP) method,
after a sufficient number of iterations, Wt+1 will be an approximation to −H−1. Let

δt = λt�t , and γt = g(θ t+1) − g(θ t ). (E-21)

The DFP variable metric algorithm uses

Wt+1 = Wt + δtδ
′
t

δ′
tγ t

+ Wtγ tγ
′
t Wt

γ ′
t Wtγ t

. (E-22)

Notice that in the DFP algorithm, the change in the first derivative vector is used in W; an estimate
of the inverse of the second derivatives matrix is being accumulated.

The variable metric algorithms are those that update W at each iteration while preserving
its definiteness. For the DFP method, the accumulation of Wt+1 is of the form

Wt+1 = Wt + aa′ + bb′ = Wt + [a b][a b]′.

The two-column matrix [a b] will have rank two; hence, DFP is called a rank two update or
rank two correction. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is a rank three
correction that subtracts vdd′ from the DFP update, where v = (γ ′

t Wtγ t ) and

dt =
(

1
δ′

tγ t

)
δt −

(
1

γ ′
t Wtγ t

)
Wtγ t .

There is some evidence that this method is more efficient than DFP. Other methods, such as
Broyden’s method, involve a rank one correction instead. Any method that is of the form

Wt+1 = Wt + QQ′

will preserve the definiteness of W regardless of the number of columns in Q.
The DFP and BFGS algorithms are extremely effective and are among the most widely used

of the gradient methods. An important practical consideration to keep in mind is that although
Wt accumulates an estimate of the negative inverse of the second derivatives matrix for both
algorithms, in maximum likelihood problems it rarely converges to a very good estimate of the
covariance matrix of the estimator and should generally not be used as one.

16See, for example, Goldfeld and Quandt (1971).
17See Fletcher (1980).
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E.3.4 ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION

Newton’s method is often used for maximum likelihood problems. For solving a maximum like-
lihood problem, the method of scoring replaces H with

H̄ = E[H(θ)], (E-23)

which will be recognized as the asymptotic covariance of the maximum likelihood estimator. There
is some evidence that where it can be used, this method performs better than Newton’s method.
The exact form of the expectation of the Hessian of the log likelihood is rarely known, however.18

Newton’s method, which uses actual instead of expected second derivatives, is generally used
instead.

One-Step Estimation A convenient variant of Newton’s method is the one-step maximum
likelihood estimator. It has been shown that if θ0 is any consistent initial estimator of θ and H∗ is
H, H̄, or any other asymptotically equivalent estimator of Var[g(θ̂MLE)], then

θ 1 = θ0 − (H∗)−1g0 (E-24)

is an estimator of θ that has the same asymptotic properties as the maximum likelihood estima-
tor.19 (Note that it is not the maximum likelihood estimator. As such, for example, it should not
be used as the basis for likelihood ratio tests.)

Covariance Matrix Estimation In computing maximum likelihood estimators, a commonly
used method of estimating H simultaneously simplifies the calculation of W and solves the
occasional problem of indefiniteness of the Hessian. The method of Berndt et al. (1974) replaces
W with

Ŵ =
[

n∑
i=1

gi g′
i

]−1

= (G′G)−1, (E-25)

where

gi = ∂ ln f (yi | xi , θ)

∂θ
. (E-26)

Then, G is the n×K matrix with ith row equal to g′
i . Although Ŵ and other suggested estimators of

(−H)−1 are asymptotically equivalent, Ŵ has the additional virtues that it is always nonnegative
definite, and it is only necessary to differentiate the log-likelihood once to compute it.

The Lagrange Multiplier Statistic The use of Ŵ as an estimator of (−H)−1 brings another
intriguing convenience in maximum likelihood estimation. When testing restrictions on parame-
ters estimated by maximum likelihood, one approach is to use the Lagrange multiplier statistic.
We will examine this test at length at various points in this book, so we need only sketch it briefly
here. The logic of the LM test is as follows. The gradient g(θ) of the log-likelihood function equals
0 at the unrestricted maximum likelihood estimators (that is, at least to within the precision of
the computer program in use). If θ̂ r is an MLE that is computed subject to some restrictions on θ ,
then we know that g(θ̂ r ) �= 0. The LM test is used to test whether, at θ̂ r , gr is significantly different
from 0 or whether the deviation of gr from 0 can be viewed as sampling variation. The covariance
matrix of the gradient of the log-likelihood is −H, so the Wald statistic for testing this hypothesis
is W = g′(−H)−1g. Now, suppose that we use Ŵ to estimate −H−1. Let G be the n × K matrix
with ith row equal to g′

i , and let i denote an n × 1 column of ones. Then the LM statistic can be

18Amemiya (1981) provides a number of examples.
19See, for example, Rao (1973).
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computed as

LM = i′G(G′G)−1G′i.

Because i′i = n,

LM = n[i′G(G′G)−1G′i/n] = nR2
i ,

where R2
i is the uncentered R2 in a regression of a column of ones on the derivatives of the

log-likelihood function.

The Concentrated Log-Likelihood Many problems in maximum likelihood estimation
can be formulated in terms of a partitioning of the parameter vector θ = [θ1, θ2] such that at the
solution to the optimization problem, θ 2,ML, can be written as an explicit function of θ1,ML. When
the solution to the likelihood equation for θ 2 produces

θ 2,ML = t(θ1,ML),

then, if it is convenient, we may “concentrate” the log-likelihood function by writing

F∗(θ1, θ2) = F [θ1, t(θ1)] = Fc(θ 1).

The unrestricted solution to the problem Maxθ1 Fc(θ1) provides the full solution to the optimiza-
tion problem. Once the optimizing value of θ1 is obtained, the optimizing value of θ2 is simply
t(θ̂ 1,ML). Note that F∗(θ1, θ2) is a subset of the set of values of the log-likelihood function, namely
those values at which the second parameter vector satisfies the first-order conditions.20

E.3.5 OPTIMIZATION WITH CONSTRAINTS

Occasionally, some of or all the parameters of a model are constrained, for example, to be positive
in the case of a variance or to be in a certain range, such as a correlation coefficient. Optimization
subject to constraints is often yet another art form. The elaborate literature on the general
problem provides some guidance—see, for example, Appendix B in Judge et al. (1985)—but
applications still, as often as not, require some creativity on the part of the analyst. In this section,
we will examine a few of the most common forms of constrained optimization as they arise in
econometrics.

Parametric constraints typically come in two forms, which may occur simultaneously in a
problem. Equality constraints can be written c(θ) = 0, where c j (θ) is a continuous and dif-
ferentiable function. Typical applications include linear constraints on slope vectors, such as a
requirement that a set of elasticities in a log-linear model add to one; exclusion restrictions, which
are often cast in the form of interesting hypotheses about whether or not a variable should appear
in a model (i.e., whether a coefficient is zero or not); and equality restrictions, such as the sym-
metry restrictions in a translog model, which require that parameters in two different equations
be equal to each other. Inequality constraints, in general, will be of the form a j ≤ c j (θ) ≤ bj ,
where a j and bj are known constants (either of which may be infinite). Once again, the typical
application in econometrics involves a restriction on a single parameter, such as σ > 0 for a
variance parameter, −1 ≤ ρ ≤ 1 for a correlation coefficient, or β j ≥ 0 for a particular slope
coefficient in a model. We will consider the two cases separately.

In the case of equality constraints, for practical purposes of optimization, there are usually
two strategies available. One can use a Lagrangean multiplier approach. The new optimization
problem is

Maxθ ,λL(θ , λ) = F(θ) + λ′c(θ).

20A formal proof that this is a valid way to proceed is given by Amemiya (1985, pp. 125–127).
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The necessary conditions for an optimum are

∂L(θ , λ)

∂θ
= g(θ) + C(θ)′λ = 0,

∂L(θ , λ)

∂λ
= c(θ) = 0,

where g(θ) is the familiar gradient of F(θ) and C(θ) is a J × K matrix of derivatives with jth row
equal to ∂c j/∂θ ′. The joint solution will provide the constrained optimizer, as well as the Lagrange
multipliers, which are often interesting in their own right. The disadvantage of this approach is
that it increases the dimensionality of the optimization problem. An alternative strategy is to
eliminate some of the parameters by either imposing the constraints directly on the function or
by solving out the constraints. For exclusion restrictions, which are usually of the form θ j = 0, this
step usually means dropping a variable from a model. Other restrictions can often be imposed
just by building them into the model. For example, in a function of θ1, θ2, and θ3, if the restriction
is of the form θ3 = θ1θ2, then θ3 can be eliminated from the model by a direct substitution.

Inequality constraints are more difficult. For the general case, one suggestion is to transform
the constrained problem into an unconstrained one by imposing some sort of penalty function
into the optimization criterion that will cause a parameter vector that violates the constraints, or
nearly does so, to be an unattractive choice. For example, to force a parameter θ j to be nonzero,
one might maximize the augmented function F(θ)−|1/θ j |. This approach is feasible, but it has the
disadvantage that because the penalty is a function of the parameters, different penalty functions
will lead to different solutions of the optimization problem. For the most common problems in
econometrics, a simpler approach will usually suffice. One can often reparameterize a function
so that the new parameter is unconstrained. For example, the “method of squaring” is sometimes
used to force a parameter to be positive. If we require θ j to be positive, then we can define θ j = α2

and substitute α2 for θ j wherever it appears in the model. Then an unconstrained solution for α

is obtained. An alternative reparameterization for a parameter that must be positive that is often
used is θ j = exp(α). To force a parameter to be between zero and one, we can use the function
θ j = 1/[1 + exp(α)]. The range of α is now unrestricted. Experience suggests that a third, less
orthodox approach works very well for many problems. When the constrained optimization is
begun, there is a starting value θ0 that begins the iterations. Presumably, θ0 obeys the restrictions.
(If not, and none can be found, then the optimization process must be terminated immediately.)
The next iterate, θ 1, is a step away from θ0, by θ 1 = θ0 + λ0δ

0. Suppose that θ 1 violates the
constraints. By construction, we know that there is some value θ1

∗ between θ0 and θ1 that does not
violate the constraint, where “between” means only that a shorter step is taken. Therefore, the
next value for the iteration can be θ 1

∗. The logic is true at every iteration, so a way to proceed is to
alter the iteration so that the step length is shortened when necessary when a parameter violates
the constraints.

E.3.6 SOME PRACTICAL CONSIDERATIONS

The reasons for the good performance of many algorithms, including DFP, are unknown. More-
over, different algorithms may perform differently in given settings. Indeed, for some problems,
one algorithm may fail to converge whereas another will succeed in finding a solution without
great difficulty. In view of this, computer programs such as GQOPT,21 Gauss, and MatLab that
offer a menu of different preprogrammed algorithms can be particularly useful. It is sometimes
worth the effort to try more than one algorithm on a given problem.

21Goldfeld and Quandt (1972).
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Step Sizes Except for the steepest ascent case, an optimal line search is likely to be infeasible
or to require more effort than it is worth in view of the potentially large number of function
evaluations required. In most cases, the choice of a step size is likely to be rather ad hoc. But
within limits, the most widely used algorithms appear to be robust to inaccurate line searches.
For example, one method employed by the widely used TSP computer program22 is the method
of squeezing, which tries λ = 1, 1

2 , 1
4 , and so on until an improvement in the function results.

Although this approach is obviously a bit unorthodox, it appears to be quite effective when
used with the Gauss–Newton method for nonlinear least squares problems. (See Chapter 7.) A
somewhat more elaborate rule is suggested by Berndt et al. (1974). Choose an ε between 0 and
1
2 , and then find a λ such that

ε <
F(θ + λ�) − F(θ)

λg′�
< 1 − ε. (E-27)

Of course, which value of ε to choose is still open, so the choice of λ remains ad hoc. Moreover,
in neither of these cases is there any optimality to the choice; we merely find a λ that leads to a
function improvement. Other authors have devised relatively efficient means of searching for a
step size without doing the full optimization at each iteration.23

Assessing Convergence Ideally, the iterative procedure should terminate when the gradi-
ent is zero. In practice, this step will not be possible, primarily because of accumulated rounding
error in the computation of the function and its derivatives. Therefore, a number of alternative
convergence criteria are used. Most of them are based on the relative changes in the function
or the parameters. There is considerable variation in those used in different computer programs,
and there are some pitfalls that should be avoided. A critical absolute value for the elements of
the gradient or its norm will be affected by any scaling of the function, such as normalizing it
by the sample size. Similarly, stopping on the basis of small absolute changes in the parameters
can lead to premature convergence when the parameter vector approaches the maximizer. It
is probably best to use several criteria simultaneously, such as the proportional change in both
the function and the parameters. Belsley (1980) discusses a number of possible stopping rules.
One that has proved useful and is immune to the scaling problem is to base convergence on
g′H−1g.

Multiple Solutions It is possible for a function to have several local extrema. It is difficult to
know a priori whether this is true of the one at hand. But if the function is not globally concave,
then it may be a good idea to attempt to maximize it from several starting points to ensure that
the maximum obtained is the global one. Ideally, a starting value near the optimum can facilitate
matters; in some settings, this can be obtained by using a consistent estimate of the parameter
for the starting point. The method of moments, if available, is sometimes a convenient device for
doing so.

No Solution Finally, it should be noted that in a nonlinear setting the iterative algorithm can
break down, even in the absence of constraints, for at least two reasons. The first possibility is
that the problem being solved may be so numerically complex as to defy solution. The second
possibility, which is often neglected, is that the proposed model may simply be inappropriate for
the data. In a linear setting, a low R2 or some other diagnostic test may suggest that the model
and data are mismatched, but as long as the full rank condition is met by the regressor matrix,
a linear regression can always be computed. Nonlinear models are not so forgiving. The failure
of an iterative algorithm to find a maximum of the criterion function may be a warning that the
model is not appropriate for this body of data.

22Hall (1982, p. 147).
23See, for example, Joreskog and Gruvaeus (1970), Powell (1964), Quandt (1983), and Hall (1982).
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E.3.7 THE EM ALGORITHM

The latent class model can be characterized as a missing data model. Consider the mixture model
we used for DocVis in Chapter 14, which we will now generalize to allow more than two classes:

f (yit | xi t , classi = j) = θi t, j (1 − θi t, j )
yit , θi t, j = 1/(1 + λi t, j ), λi t, j = exp(x′

i tβ j ), yit = 0, 1, . . . .

Prob(classi = j | zi ) = exp(z′
iα j )∑ j

j=1 exp(z′
iα j )

, j = 1, 2, . . . , J.

With all parts incorporated, the log-likelihood for this latent class model is

ln LM =
n∑

i=1

ln Li,M

=
n∑

i=1

ln

{
J∑

j=1

exp(z′
iα j )∑J

m=1 exp(z′
iαm)

Ti∏
t=1

(
1

1 + exp(x′
itβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit
}

.

(E-28)

Suppose the actual class memberships were known (i.e., observed). Then, the class probabili-
ties in ln LM would be unnecessary. The appropriate complete data log-likelihood for this case
would be

ln LC =
n∑

i=1

ln Li,C

=
n∑

i=1

ln

{
J∑

j=1

Dij

Ti∏
t=1

(
1

1 + exp(x′
itβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit
}

, (E-29)

where Dij is an observed dummy variable that equals one if individual i is from class j , and zero
otherwise. With this specification, the log-likelihood breaks into J separate log-likelihoods, one
for each (now known) class. The maximum likelihood estimates of β1, . . . , βJ would be obtained
simply by separating the sample into the respective subgroups and estimating the appropriate
model for each group using maximum likelihood. The method we have used to estimate the
parameters of the full model is to replace the Dij variables with their unconditional espectations,
Prob(classi = j |zi ), then maximize the resulting log-likelihood function. This is the essential logic
of the EM (expectation–maximization) algorithm [Dempster et al. (1977)]; however, the method
uses the conditional (posterior) class probabilities instead of the unconditional probabilities. The
iterative steps of the EM algorithm are

(E step) Form the expectation of the missing data log-likelihood, conditional on the pre-
vious parameter estimates and the data in the sample;

(M step) Maximize the expected log-likelihood function. Then either return to the E step
or exit if the estimates have converged.

The EM algorithm can be used in a variety of settings. [See McLachlan and Krishnan (1997).]
It has a particularly appealing form for estimating latent class models. The iterative steps for the
latent class model are as follows:

(E step) Form the conditional (posterior) class probabilities, πij|zi , based on the current
estimates. These are based on the likelihood function.
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(M step) For each class, estimate the class-specific parameters by maximizing a weighted
log-likelihood,

ln LM step, j =
nc∑

i=1

πij ln Li | class = j.

The parameters of the class probability model are also reestimated, as shown
later, when there are variables in zi other than a constant term.

This amounts to a simple weighted estimation. For example, in the latent class linear regression
model, the M step would amount to nothing more than weighted least squares. For nonlinear
models such as the geometric model above, the M step involves maximizing a weighted log-
likelihood function.

For the preceding geometric model, the precise steps are as follows: First, obtain starting
values for β1, . . . ,β J , α1, . . . ,α J . Recall, α J = 0. Then;

1. Form the contributions to the likelihood function using (E-28),

Li =
J∑

j=1

πij

Ti∏
t=1

f (yit | xi t , β j , classi = j)

=
J∑

j=1

Li | class = j. (E-30)

2. Form the conditional probabilities, wij = Li | class = j∑J
m=1 Li | class = m

. (E-31)

3. For each j , now maximize the weighted log likelihood functions (one at a time),

ln Lj,M(β j ) =
n∑

i=1

wijln
Ti∏

t=1

(
1

1 + exp(x′
i tβ j )

)(1−yit)
(

exp(x′
itβ j )

1 + exp(x′
itβ j )

)yit

(E-32)

4. To update the αj parameters, maximize the following log-likelihood function

ln L(α1, . . . ,α J ) =
n∑

i=1

J∑
j=1

wij ln
exp(z′

iα j )∑J
j=1 exp(z′

iα j )
, α J = 0. (E-33)

Step 4 defines a multinomial logit model (with “grouped”) data. If the class probability model
does not contain any variables in zi , other than a constant, then the solutions to this optimization
will be

π̂ j =
∑n

i=1 wij∑n
i=1

∑J
j=1 wij

, then α̂ j = ln
π̂ j

π̂J
. (E-34)

(Note that this preserves the restriction α̂J = 0.) With these in hand, we return to steps 1 and 2
to rebuild the weights, then perform steps 3 and 4. The process is iterated until the estimates of
β1, . . . ,β J converge. Step 1 is constructed in a generic form. For a different model, it is necessary
only to change the density that appears at the end of the expresssion in (E-32). For a cross section
instead of a panel, the product term in step 1 becomes simply the log of the single term.

The EM algorithm has an intuitive appeal in this (and other) settings. In practical terms, it is
often found to be a very slow algorithm. It can take many iterations to converge. (The estimates
in Example 14.17 were computed using a gradient method, not the EM algorithm.) In its favor,
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the EM method is very stable. It has been shown [Dempster, Laird, and Rubin (1977)] that the
algorithm always climbs uphill. The log-likelihood improves with each iteration. Applications
differ widely in the methods used to estimate latent class models. Adding to the variety are the
very many Bayesian applications, none of which use either of the methods discussed here.

E.4 EXAMPLES

To illustrate the use of gradient methods, we consider some simple problems.

E.4.1 FUNCTION OF ONE PARAMETER

First, consider maximizing a function of a single variable, f (θ) = ln(θ) − 0.1θ2. The function is
shown in Figure E.4. The first and second derivatives are

f ′(θ) = 1
θ

− 0.2 θ,

f ′′(θ) = −1
θ2

− 0.2.

Equating f ′ to zero yields the solution θ = √
5 = 2.236. At the solution, f ′′ = −0.4, so this

solution is indeed a maximum. To demonstrate the use of an iterative method, we solve this
problem using Newton’s method. Observe, first, that the second derivative is always negative for
any admissible (positive) θ .24 Therefore, it should not matter where we start the iterations; we
shall eventually find the maximum. For a single parameter, Newton’s method is

θt+1 = θt − [ f ′
t / f ′′

t ].

FIGURE E.4 Function of One Variable Parameter.
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24In this problem, an inequality restriction, θ > 0, is required. As is common, however, for our first attempt
we shall neglect the constraint.
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TABLE E.1 Iterations for Newton’s Method

Iteration θ f f ′ f ′′

0 5.00000 −0.890562 −0.800000 −0.240000
1 1.66667 0.233048 0.266667 −0.560000
2 2.14286 0.302956 0.030952 −0.417778
3 2.23404 0.304718 0.000811 −0.400363
4 2.23607 0.304719 0.0000004 −0.400000

The sequence of values that results when 5 is used as the starting value is given in Table E.1. The
path of the iterations is also shown in the table.

E.4.2 FUNCTION OF TWO PARAMETERS: THE GAMMA
DISTRIBUTION

For random sampling from the gamma distribution,

f (yi , β, ρ) = βρ

�(ρ)
e−βyi yρ−1

i .

The log-likelihood is ln L(β, ρ) = nρ ln β − n ln �(ρ) − β
∑n

i=1 yi + (ρ − 1)
∑n

i=1 ln yi . (See
Section 14.6.4 and Example 13.5.) It is often convenient to scale the log-likelihood by the sample
size. Suppose, as well, that we have a sample with ȳ = 3 and ¯ln y = 1. Then the function to
be maximized is F(β, ρ) = ρ ln β − ln �(ρ) − 3β + ρ − 1. The derivatives are

∂ F
∂β

= ρ

β
− 3,

∂ F
∂ρ

= ln β − �′

�
+ 1 = ln β − �(ρ) + 1,

∂2 F
∂β2

= −ρ

β2
,

∂2 F
∂ρ2

= −(��′′ − �′2)

�2 = −
 ′(ρ),
∂2 F
∂β ∂ρ

= 1
β

.

Finding a good set of starting values is often a difficult problem. Here we choose three starting
points somewhat arbitrarily: (ρ0, β0) = (4, 1), (8, 3), and (2, 7). The solution to the problem is
(5.233, 1.7438). We used Newton’s method and DFP with a line search to maximize this function.25

For Newton’s method, λ = 1. The results are shown in Table E.2. The two methods were essentially
the same when starting from a good starting point (trial 1), but they differed substantially when
starting from a poorer one (trial 2). Note that DFP and Newton approached the solution from
different directions in trial 2. The third starting point shows the value of a line search. At this

TABLE E.2 Iterative Solutions to Max(ρ, β)ρ ln β − ln �(ρ) − 3β + ρ − 1

Trial 1 Trial 2 Trial 3

DFP Newton DFP Newton DFP Newton

Iter. ρ β ρ β ρ β ρ β ρ β ρ β

0 4.000 1.000 4.000 1.000 8.000 3.000 8.000 3.000 2.000 7.000 2.000 7.000
1 3.981 1.345 3.812 1.203 7.117 2.518 2.640 0.615 6.663 2.027 −47.7 −233.
2 4.005 1.324 4.795 1.577 7.144 2.372 3.203 0.931 6.195 2.075 — —
3 5.217 1.743 5.190 1.728 7.045 2.389 4.257 1.357 5.239 1.731 — —
4 5.233 1.744 5.231 1.744 5.114 1.710 5.011 1.656 5.251 1.754 — —
5 — — — — 5.239 1.747 5.219 1.740 5.233 1.744 — —
6 — — — — 5.233 1.744 5.233 1.744 — — — —

25The one used is described in Joreskog and Gruvaeus (1970).
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starting value, the Hessian is extremely large, and the second value for the parameter vector
with Newton’s method is (−47.671, −233.35), at which point F cannot be computed and this
method must be abandoned. Beginning with H = I and using a line search, DFP reaches
the point (6.63, 2.03) at the first iteration, after which convergence occurs routinely in three
more iterations. At the solution, the Hessian is [(−1.72038, 0.191153)′, (0.191153, −0.210579)′].
The diagonal elements of the Hessian are negative and its determinant is 0.32574, so it is negative
definite. (The two characteristic roots are −1.7442 and −0.18675). Therefore, this result is indeed
the maximum of the function.

E.4.3 A CONCENTRATED LOG-LIKELIHOOD FUNCTION

There is another way that the preceding problem might have been solved. The first of the necessary
conditions implies that at the joint solution for (β, ρ), β will equal ρ/3. Suppose that we impose
this requirement on the function we are maximizing. The concentrated (over β) log-likelihood
function is then produced:

Fc(ρ) = ρ ln(ρ/3) − ln �(ρ) − 3(ρ/3) + ρ − 1

= ρ ln(ρ/3) − ln �(ρ) − 1.

This function could be maximized by an iterative search or by a simple one-dimensional grid
search. Figure E.5 shows the behavior of the function. As expected, the maximum occurs at
ρ = 5.233. The value of β is found as 5.23/3 = 1.743.

The concentrated log-likelihood is a useful device in many problems. (See Section 14.9.6.d
for an application.) Note the interpretation of the function plotted in Figure E.5. The original
function of ρ and β is a surface in three dimensions. The curve in Figure E.5 is a projection of
that function; it is a plot of the function values above the line β = ρ/3. By virtue of the first-order
condition, we know that one of these points will be the maximizer of the function. Therefore, we
may restrict our search for the overall maximum of F(β, ρ) to the points on this line.

FIGURE E.5 Concentrated Log-Likelihood.
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