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The Linear regression ModeL

§
2.1 IntroductIon

econometrics is concerned with model building. an intriguing point to begin the inquiry 
is to consider the question, “What is the model?” The statement of a “model” typically 
begins with an observation or a proposition that movement of one variable “is caused 
by” movement of another, or “a variable varies with another,” or some qualitative 
statement about a relationship between a variable and one or more covariates that are 
expected to be related to the interesting variable in question. The model might make a 
broad statement about behavior, such as the suggestion that individuals’ usage of the 
health care system depends on, for example, perceived health status, demographics 
(e.g., income, age, and education), and the amount and type of insurance they have. 
it might come in the form of a verbal proposition, or even a picture (e.g., a flowchart 
or path diagram that suggests directions of influence). The econometric model rarely 
springs forth in full bloom as a set of equations. rather, it begins with an idea of some 
kind of relationship. The natural next step for the econometrician is to translate that 
idea into a set of equations, with a notion that some feature of that set of equations will 
answer interesting questions about the variable of interest. To continue our example, 
a more definite statement of the relationship between insurance and health care 
demanded might be able to answer how does health care system utilization depend 
on insurance coverage? specifically, is the relationship “positive”—all else equal, 
is an insured consumer more likely to demand more health care than an uninsured 
one—or is it “negative”? and, ultimately, one might be interested in a more precise 
statement, “how much more (or less)?” This and the next several chapters will build 
the framework that model builders use to pursue questions such as these using data 
and econometric methods.

From a purely statistical point of view, the researcher might have in mind a variable, y, 
broadly “demand for health care, H,” and a vector of covariates, x (income, I, insurance, T), 
and a joint probability distribution of the three, p(H,I,T). stated in this form, the 
“relationship” is not posed in a particularly interesting fashion—what is the statistical 
process that produces health care demand, income, and insurance coverage? however, 
it is true that p(H,I,T) = p(H � I, T)p(I,T), which decomposes the probability model 
for the joint process into two outcomes, the joint distribution of income and insurance 
coverage in the population, p(I,T), and the distribution of “demand for health care” for a 
specific income and insurance coverage, p(H � I,T). From this perspective, the conditional 
distribution, p(H � I,T), holds some particular interest, while p(I,T), the distribution of 
income and insurance coverage in the population, is perhaps of secondary, or no interest. 
(on the other hand, from the same perspective, the conditional “demand” for insurance 
coverage, given income, p(T � I), might also be interesting.) Continuing this line of thinking, 
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the model builder is often interested not in joint variation of all the variables in the model, 
but in conditional variation of one of the variables related to the others.

The idea of the conditional distribution provides a useful starting point for thinking 
about a relationship between a variable of interest, a “y,” and a set of variables, “x,” that 
we think might bear some relationship to it. There is a question to be considered now that 
returns us to the issue of “What is the model?” What feature of the conditional distribution is 
of interest? The model builder, thinking in terms of features of the conditional distribution, 
often gravitates to the expected value, focusing attention on E[y � x], that is, the regression 
function, which brings us to the subject of this chapter. For the preceding example, this 
might be natural if y were “number of doctor visits” as in an application examined at several 
points in the chapters to follow. if we were studying incomes, I, however, which often have 
a highly skewed distribution, then the mean might not be particularly interesting. rather, 
the conditional median, for given ages, M[I � x], might be a more interesting statistic. still 
considering the distribution of incomes (and still conditioning on age), other quantiles, 
such as the 20th percentile, or a poverty line defined as, say, the 5th percentile, might be 
more interesting yet. Finally, consider a study in finance, in which the variable of interest 
is asset returns. in at least some contexts, means are not interesting at all—it is variances, 
and conditional variances in particular, that are most interesting.

The point is that we begin the discussion of the regression model with an understanding 
of what we mean by “the model.” For the present, we will focus on the conditional mean, 
which is usually the feature of interest. once we establish how to analyze the regression 
function, we will use it as a useful departure point for studying other features, such as 
quantiles and variances. The linear regression model is the single most useful tool in 
the econometrician’s kit. although to an increasing degree in contemporary research 
it is often only the starting point for the full investigation, it remains the device used to 
begin almost all empirical research. and it is the lens through which relationships among 
variables are usually viewed. This chapter will develop the linear regression model in 
detail. here, we will detail the fundamental assumptions of the model. The next several 
chapters will discuss more elaborate specifications and complications that arise in the 
application of techniques that are based on the simple models presented here.

2.2 the LInear regressIon ModeL

The multiple linear regression model is used to study the relationship between a 
dependent variable and one or more independent variables. The generic form of the 
linear regression model is

  y = f(x1,  x2, c, xK) + e 

  = x1b1 + x2b2 + c + xKbK + e,  (2-1)

where y is the dependent or explained variable and x1, c, xK are the independent or 
explanatory variables. (We will return to the meaning of “independent” shortly.) one’s 
theory will specify f(x1, x2, c, xK). This function is commonly called the population 
regression equation of y on x1, c, xK. in this setting, y is the regressand and 
xk, k = 1, c, K are the regressors or covariates. The underlying theory will specify the 
dependent and independent variables in the model. it is not always obvious which is 
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14 PART I  ✦   The Linear Regression Model

appropriately defined as each of these—for example, a demand equation, 
quantity = b1 + price * b2 + income * b3 + e,  and an inverse demand equation, 
price = g1 + quantity * g2 + income * g3 + u  are equally valid representations of 
a market. For modeling purposes, it will often prove useful to think in terms of 
“autonomous variation.” one can conceive of movement of the independent variables 
outside the relationships defined by the model while movement of the dependent 
variable is considered in response to some independent or exogenous stimulus.1

The term e is a random disturbance, so named because it “disturbs” an otherwise 
stable relationship. The disturbance arises for several reasons, primarily because we 
cannot hope to capture every influence on an economic variable in a model, no matter 
how elaborate. The net effect, which can be positive or negative, of these omitted factors 
is captured in the disturbance. There are many other contributors to the disturbance in 
an empirical model. Probably the most significant is errors of measurement. it is easy to 
theorize about the relationships among precisely defined variables; it is quite another 
matter to obtain accurate measures of these variables. For example, the difficulty of 
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet, 
flows of services from capital stocks, is a recurrent theme in the empirical literature. 
at the extreme, there may be no observable counterpart to the theoretical variable. 
The literature on the permanent income model of consumption [e.g., Friedman (1957)] 
provides an interesting example.

We assume that each observation in a sample (yi, xi1, xi2, c, xiK), i = 1, c, n, is 
generated by an underlying process described by

yi = xi1b1 + xi2b2 + c + xiK bK + ei.

The observed value of yi is the sum of two parts, the regression function and the 
disturbance, ei. our objective is to estimate the unknown parameters of the model, use 
the data to study the validity of the theoretical propositions, and perhaps use the model 
to predict the variable y. how we proceed from here depends crucially on what we 
assume about the stochastic process that has led to our observations of the data in hand.

Example 2.1  Keynes’s Consumption Function
Example 1.2 discussed a model of consumption proposed by Keynes in his General Theory 
(1936). The theory that consumption, C, and income, X, are related certainly seems consistent 
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of 
course, the linear function is only approximate. Even ignoring the anomalous wartime years, 
consumption and income cannot be connected by any simple deterministic relationship. 
The linear part of the model, C = a + bX,  is intended only to represent the salient features of 
this part of the economy. It is hopeless to attempt to capture every influence in the relationship. 
The next step is to incorporate the inherent randomness in its real-world counterpart. Thus, 
we write C = f(X, e), where e is a stochastic element. It is important not to view e as a catchall 
for the inadequacies of the model. The model including e appears adequate for the data 
not including the war years, but for 1942–1945, something systematic clearly seems to be 
missing. Consumption in these years could not rise to rates historically consistent with these 
levels of income because of wartime rationing. A model meant to describe consumption in 
this period would have to accommodate this influence.

1 By this definition, it would seem that in our demand relationship, only income would be an independent variable 
while both price and quantity would be dependent. That makes sense—in a market, equilibrium price and quantity 
are determined at the same time, and do change only when something outside the market equilibrium changes.
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It remains to establish how the stochastic element will be incorporated in the equation. 
The most frequent approach is to assume that it is additive. Thus, we recast the equation in 
stochastic terms: C = a + bX + e.  This equation is an empirical counterpart to Keynes’s 
theoretical model. But, what of those anomalous years of rationing? If we were to ignore our 
intuition and attempt to fit a line to all these data—the next chapter will discuss at length 
how we should do that—we might arrive at the solid line in the figure as our best guess. This 
line, however, is obviously being distorted by the rationing. A more appropriate specification 
for these data that accommodates both the stochastic nature of the data and the special 
circumstances of the years 1942–1945 might be one that shifts straight down in the war years, 
C = a + bX + dwaryearsdw + e,  where the new variable, dwaryears, equals one in 1942–1945 
and zero in other years, and dw 6 0. This more detailed model is shown by the parallel dashed 
lines.

one of the most useful aspects of the multiple regression model is its ability to identify 
the separate effects of a set of variables on a dependent variable. example 2.2 describes 
a common application.

Example 2.2  Earnings and Education
Many studies have analyzed the relationship between earnings and education. We would 
expect, on average, higher levels of education to be associated with higher incomes. The 
simple regression model

earnings = b1 + b2 education + e,

however, neglects the fact that most people have higher incomes when they are older than 
when they are young, regardless of their education. Thus, b2 will overstate the marginal impact 
of education. If age and education are positively correlated, then the regression model will 
associate all the observed increases in income with increases in education and none with, 
say, experience. A better specification would account for the effect of age, as in

earnings = g1 + g2 education + g3 age + e.

FIGURE 2.1  Consumption Data, 1940–1950.
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16 PART I  ✦   The Linear Regression Model

It is often observed that income tends to rise less rapidly in the later earning years than in the 
early ones. To accommodate this possibility, we might further extend the model to

earnings = d1 + d2 education + d3 age + d4 age2 + e.

We would expect d3 to be positive and d4 to be negative.
The crucial feature of this model is that it allows us to carry out a conceptual experiment that 

might not be observed in the actual data. In the example, we might like to (and could) compare 
the earnings of two individuals of the same age with different amounts of education even if the 
data set does not actually contain two such individuals. How education should be measured in 
this setting is a difficult problem. The study of the earnings of twins by Ashenfelter and Krueger 
(1994), which uses precisely this specification of the earnings equation, presents an interesting 
approach. [Studies of twins and siblings have provided an interesting thread of research on the 
education and income relationship. Two other studies are Ashenfelter and Zimmerman (1997) 
and Bonjour, Cherkas, Haskel, Hawkes, and Spector (2003).] The experiment embodied in the 
earnings model thus far suggested is a comparison of two otherwise identical individuals who 
have different years of education. Under this interpretation, the impact of education would be 
0E[Earnings �Age, Education]/0Education = b2. But, one might suggest that the experiment the 
analyst really has in mind is the truly unobservable impact of the additional year of education 
on a particular individual. To carry out the experiment, it would be necessary to observe the 
individual twice, once under circumstances that actually occur, Educationi, and a second time 
under the hypothetical (counterfactual) circumstance, Educationi + 1.  It is convenient to 
frame this in a potential outcomes model [Rubin (1974)] for individual i:

Potential Earning = b yi0 if Education = Ei,
yi1 if Education = Ei + 1.

By this construction, all other effects would indeed be held constant, and (yi1 - yi0) could 
reasonably be labeled the causal effect of the additional year of education. If we consider 
Education in this example as a treatment, then the real objective of the experiment is to 
measure the effect of the treatment on the treated. The ability to infer this result from 
nonexperimental data that essentially compares “otherwise similar individuals” will be 
examined in Chapters 8 and19.

A large literature has been devoted to another intriguing question on this subject. Education 
is not truly independent in this setting. Highly motivated individuals will choose to pursue more 
education (e.g., by going to college or graduate school) than others. By the same token, highly 
motivated individuals may do things that, on average, lead them to have higher incomes. If 
so, does a positive b2 that suggests an association between income and education really 
measure the causal effect of education on income, or does it reflect the result of some 
underlying effect on both variables that we have not included in the regression model? We 
will revisit the issue in Chapter 19.2

2.3 assuMptIons of the LInear regressIon ModeL

The linear regression model consists of a set of assumptions about how a data set 
will be produced by an underlying “data-generating process.” The theory will specify 
a relationship between a dependent variable and a set of independent variables. The 

2 This model lays yet another trap for the practitioner. in a cross section, the higher incomes of the older individuals 
in the sample might tell an entirely different, perhaps macroeconomic story (a cohort effect) from the lower incomes 
of younger individuals as time and their incomes evolve. it is not necessarily possible to deduce the characteristics of 
incomes of younger people in the sample if they were older by comparing the older individuals in the sample to the 
younger ones. a parallel problem arises in the analysis of treatment effects that we will examine in Chapter 8.
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 CHAPTER 2  ✦  The Linear Regression Model 17

assumptions that describe the form of the model and relationships among its parts and 
imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1  LInearIty of the regressIon ModeL

Let the column vector xk be the n observations on variable xk, k = 1, c, K, in a 
random sample of n observations, and assemble these data in an n * K data matrix, X.  
in most contexts, the first column of X is assumed to be a column of 1s so that b1 is 

A1. Linearity: We list the assumptions as a description of the joint distribution of y and a set of 
independent variables, (x1, x2, c, xK) = x. The model specifies a linear relationship between y and 
x; y = x1b1 + x2b2 + g + xKbK + e = x′B + e. We will be more specific and assume that this is 
the regression function, E[y �x1, x2, c, xK] = E[y �x] = x′B. The difference between y and E[y �x] 
is the disturbance, e.
A2. Full rank: There is no exact linear relationship among any of the independent variables in the 
model. one way to formulate this is to assume that E[xx′] = Q, a K * K matrix that has full rank K. 
in practical terms, we wish to be sure that for a random sample of n observations drawn from this 
process, (y1,x1′), c,(yi,xi′), c,(yn,xn′), that the n * K matrix X with n rows xi′ always has rank K if 
n Ú K. This assumption will be necessary for estimation of the parameters of the model.
A3. Exogeneity of the independent variables: E[e �x1, x2, c, xK] = E[e �x] = 0. This states that 
the expected value of the disturbance in the regression is not a function of the independent var-
iables observed. This means that the independent variables will not carry useful information for 
prediction of e. The assumption is labeled mean independence. By the Law of iterated expecta-
tions (Theorem B.1), it follows that E[e] = 0. an implication of the exogeneity assumption is that 
E[y �x1, x2, c, xK] = Σk = 1

K xkbk. That is, the linear function in a1 is the conditional mean function, or 
regression of y on x1, c, xK. in the setting of a random sample, we will also begin from an assumption 
that observations on e in the sample are uncorrelated with information in other observations—that is, 
E[ei �x1, c,xn] = 0. This is labeled strict exogeneity. an implication will be, for each observation in 
a sample of observations, E[ei �X] = 0, and for the sample as a whole, e[E �X] = 0.
A4. Homoscedasticity: The disturbance in the regression has conditional variance, Var[e �x] =
Var[e] = s2. (The second equality follows from Theorem B.4.) This assumption limits the generality 
of the model, and we will want to examine how to relax it in the chapters to follow. once again, con-
sidering a random sample, we will assume that the observations ei and ej are uncorrelated for i ≠ j. 
With reference to a times-series setting, this will be labeled nonautocorrelation. The implication will 
be e[eiej �xi,xj]. We will strengthen this to E[eiej �X] = 0 for i ≠ j and E[ee′ �X] = s2I.
A5. Data generation: The data in (x1, x2, c, xK) (that is, the process by which x is generated) may 
be any mixture of constants and random variables. The crucial elements for present purposes are the 
exogeneity assumption, a3, and the variance and covariance assumption, a4. analysis can be done con-
ditionally on the observed X, so whether the elements in X are fixed constants or random draws from a 
stochastic process will not influence the results. in later, more advanced treatments, we will want to be 
more specific about the possible relationship between ei and xj. nothing is lost by assuming that the n 
observations in hand are a random sample of independent, identically distributed draws from a joint dis-
tribution of (y,x). in some treatments to follow, such as panel data, some observations will be correlated 
by construction. it will be necessary to revisit the assumptions at that point, and revise them as necessary.
A6.  Normal distribution: The disturbances are normally distributed. This is a convenience that we will 
dispense with after some analysis of its implications. The normality assumption is useful for defining 
the computations behind statistical inference about the regression, such as confidence intervals and 
hypothesis tests. For practical purposes, it will be useful then to extend those results and in the process 
develop a more flexible approach that does not rely on this specific assumption.

TABLE 2.1  Assumptions of the Linear Regression Model
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18 PART I  ✦   The Linear Regression Model

the constant term in the model. Let y be the n observations, y1, c, yn, and let E be the 
column vector containing the n disturbances. The model in (2-1) as it applies to each of 
and all n observations can now be written

 y = x1b1 + g + xKbK + E, (2-2)

or in the form of assumption a1,

 assumption a1: y = XB + E. (2-3)

A NOTATIONAL CONVENTION
Henceforth, to avoid a possibly confusing and cumbersome notation, we will use 
a boldface x to denote a column or a row of X. Which of these applies will be clear 
from the context. In (2-2), xk is the kth column of X. Subscript k will usually be used to 
denote columns (variables). It will often be convenient to refer to a single observation 
in (2-3), which we would write

 yi = x′i B + ei. (2-4)

Subscripts i, j, and t will generally be used to denote rows (observations) of X. In (2-4), 
x′i  is a row vector that is the ith 1 * K row of X.

our primary interest is in estimation and inference about the parameter vector B. 
note that the simple regression model in example 2.1 is a special case in which X has 
only two columns, the first of which is a column of 1s. The assumption of linearity of the 
regression model includes the additive disturbance. For the regression to be linear in 
the sense described here, it must be of the form in (2-1) either in the original variables 
or after some suitable transformation. For example, the model

y = Axbee

is linear (after taking logs on both sides of the equation), whereas

y = Axb + e

is not. The observed dependent variable is thus the sum of two components, a 
deterministic element a + bx  and a random variable e. it is worth emphasizing that 
neither of the two parts is directly observed because a and b are unknown.

The linearity assumption is not so narrow as it might first appear. in the regression 
context, linearity refers to the manner in which the parameters and the disturbance 
enter the equation, not necessarily to the relationship among the variables. For 
example, the equations y = a + bx + e, y = a + b cos(x) + e, y = a + b/x + e, and 
y = a + b ln x + e are all linear in some function of x by the definition we have used 
here. in the examples, only x has been transformed, but y could have been as well, as in 
y = Axbee, which is a linear relationship in the logs of x and y; ln y = a + b ln x + e. 
The variety of functions is unlimited. This aspect of the model is used in a number of 
commonly used functional forms. For example, the loglinear model is

ln y = b1 + b2 ln x2 + b3 ln x3 + g + bK ln xK + e.
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 CHAPTER 2  ✦  The Linear Regression Model 19

This equation is also known as the constant elasticity form, as in this equation, the 
elasticity of y with respect to changes in xk is 0 ln y/0 ln xk = bk, which does not vary 
with xk. The loglinear form is often used in models of demand and production. different 
values of bk produce widely varying functions.

Example 2.3  The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1953–2004 are given in Table F2.2 in Appendix F. 
We will use these data to obtain, among other things, estimates of the income, own price, 
and cross-price elasticities of demand in this market. These data also present an interesting 
question on the issue of holding “all other things constant,” that was suggested in Example 
2.2. In particular, consider a somewhat abbreviated model of per capita gasoline consumption:

ln(G/pop) = b1 + b2 ln(Income/pop) + b3 ln priceG + b4 ln Pnewcars + b5 ln Pusedcars + e.

This model will provide estimates of the income and price elasticities of demand for gasoline 
and an estimate of the elasticity of demand with respect to the prices of new and used cars. 
What should we expect for the sign of b4? Cars and gasoline are complementary goods, so if 
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If 
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used 
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then 
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise, 
not lower. We can use the multiple regression model and the gasoline data to attempt to 
answer the question.

a semilog model is often used to model growth rates:

ln yt = x′t B + dt + et.

in this model, the autonomous (at least not explained by the model itself) proportional, 
per period growth rate is 0lny/0t = d. other variations of the general form

f(yt) = g(x′tB + et)

will allow a tremendous variety of functional forms, all of which fit into our definition 
of a linear model.

The linear regression model is sometimes interpreted as an approximation to some 
unknown, underlying function. (see section a.8.1 for discussion.) By this interpretation, 
however, the linear model, even with quadratic terms, is fairly limited in that such 
an approximation is likely to be useful only over a small range of variation of the 
independent variables. The translog model discussed in example 2.4, in contrast, has 
proven more effective as an approximating function.

Example 2.4  The Translog Model
Modern studies of demand and production are usually done with a flexible functional form. 
Flexible functional forms are used in econometrics because they allow analysts to model 
complex features of the production function, such as elasticities of substitution, which are 
functions of the second derivatives of production, cost, or utility functions. The linear model 
restricts these to equal zero, whereas the loglinear model (e.g., the Cobb–Douglas model) 
restricts the interesting elasticities to the uninteresting values of -1 or +1.  The most popular 
flexible functional form is the translog model, which is often interpreted as a second-order 
approximation to an unknown functional form. [See Berndt and Christensen (1973).] One 
way to derive it is as follows. We first write y = g(x1, c, xK). Then, ln y = ln g( c) = f( c). 
Since by a trivial transformation xk = exp(ln xk), we interpret the function as a function of the 
logarithms of the x’s. Thus, ln y = f(ln x1, c, ln xK).
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20 PART I  ✦   The Linear Regression Model

Now, expand this function in a second-order Taylor series around the point x =  
[1, 1, c, 1]′ so that at the expansion point, the log of each variable is a convenient zero. Then

ln y = f(0) + a
K

k= 1
[0f( # )/0 ln xk]� ln x= 0 ln xk

+
1
2 a

K

k= 1
a
K

l= 1
[02f( # )/0 ln xk0 ln xl]� ln x= 0 ln xk ln xl + e.

The disturbance in this model is assumed to embody the familiar factors and the error of 
approximation to the unknown function. Because the function and its derivatives evaluated 
at the fixed value 0 are constants, we interpret them as the coefficients and write

ln y = b0 + a
K

k= 1
bk ln xk +

1
2 a

K

k= 1
a
K

l= 1
gkl ln xk ln xl + e.

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature 
when it is used to approximate another function. An interesting feature of this formulation is 
that the loglinear model is a special case, when gkl = 0. Also, there is an interesting test of the 
underlying theory possible because if the underlying function were assumed to be continuous 
and twice continuously differentiable, then by Young’s theorem it must be true that gkl = glk. 
We will see in Chapter 10 how this feature is studied in practice.

despite its great flexibility, the linear model will not accommodate all the situations 
we will encounter in practice. in example 14.13 and Chapter 18, we will examine the 
regression model for doctor visits that was suggested in the introduction to this chapter. 
an appropriate model that describes the number of visits has conditional mean function 
E[y � x] = exp(x′B). it is tempting to linearize this directly by taking logs, because 
ln E[y � x] = x′B. But ln E[y � x] is not equal to E[ln y � x]. in that setting, y can equal zero 
(and does for most of the sample), so x′B (which can be negative) is not an appropriate 
model for lny (which does not exist) or for y which cannot be negative. The methods 
we consider in this chapter are not appropriate for estimating the parameters of such a 
model. relatively straightforward techniques have been developed for nonlinear models 
such as this, however. We shall treat them in detail in Chapter 7.

2.3.2  fuLL rank

assumption a2 is that there are no exact linear relationships among the variables.

 assumption a2: X is an n * K matrix with rank K. (2-5)

hence, X has full column rank; the columns of X are linearly independent and there 
are at least K observations. [see (a-42) and the surrounding text.] This assumption is 
known as an identification condition. To see the need for this assumption, consider an 
example.

Example 2.5  Short Rank
Suppose that a cross-section model specifies that consumption, C, relates to income as 
follows:

C = b1 + b2 nonlabor income + b3 salary + b4 total income + e,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact 
linear relationship among the variables in the model. Now, let
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b′2 = b2 + a,
b′3 = b3 + a,

b′4 = b4 - a,

where a is any number. Then the exact same value appears on the right-hand side of C if 
we substitute b′2, b′3, and b′4 for b2, b3, and b4. Obviously, there is no way to estimate the 
parameters of this model.

if there are fewer than K observations, then X cannot have full rank. hence, we make 
the assumption that n is at least as large as K.

in the simple linear model with a constant term and a single x, the full rank 
assumption means that there must be variation in the regressor, x. if there is no variation 
in x, then all our observations will lie on a vertical line. This situation does not invalidate 
the other assumptions of the model; presumably, it is a flaw in the data set. The possibility 
that this suggests is that we could have drawn a sample in which there was variation in x, 
but in this instance, we did not. Thus, the model still applies, but we cannot learn about 
it from the data set in hand.

Example 2.6  An Inestimable Model
In Example 3.4, we will consider a model for the sale price of Monet paintings. Theorists and 
observers have different models for how prices of paintings at auction are determined. One 
(naïve) student of the subject suggests the model

 ln Price = b1 + b2 ln Size + b3 ln Aspect Ratio + b4 ln Height + e

 = b1 + b2x2 + b3x3 + b4x4 + e,

where Size = Width * Height and Aspect Ratio = Width/Height. By simple arithmetic, 
we can see that this model shares the problem found with the consumption model in  
Example 2.5—in this case, x2 - x4 = x3 + x4.  So, this model is, like the previous one, not 
estimable—it is not identified. It is useful to think of the problem from a different perspective 
here (so to speak). In the linear model, it must be possible for the variables in the model to 
vary linearly independently. But, in this instance, while it is possible for any pair of the three 
covariates to vary independently, the three together cannot. The “model,” that is, the theory, 
is an entirely reasonable model as it stands. Art buyers might very well consider all three of 
these features in their valuation of a Monet painting. However, it is not possible to learn about 
that from the observed data, at least not with this linear regression model.

The full rank assumption is occasionally interpreted to mean that the variables in 
X must be able to vary independently from each other. This is clearly not the case in 
example 2.6, which is a flawed model. But it is also not the case in the linear model

E[y � x,z] = b1 + b2x + b3x
2 + b4z + e.

There is nothing problematic with this model—nor with the model in example 2.2 or the 
translog model in example 2.4. nonetheless, x and x2 cannot vary independently. The 
resolution of this seeming contradiction is to sharpen what we mean by the variables 
in the model varying independently. First, it remains true that X must have full column 
rank to carry out the linear regression. But, independent variation of the variables in the 
model is a different concept. The columns of X are not necessarily the set of variables 
in the model. in the equation above, the “variables” are only x and z. The identification 
problem we consider here would state that it must be possible for z to vary independently 

and
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from x. if z is a deterministic function of x, then it is not possible to identify an effect in 
the model for variable z separately from that for x.

2.3.3  regressIon

The disturbance is assumed to have conditional expected value zero at every observation, 
which we write as

 E[ei �X] = 0. (2-6)

For the full set of observations, we write assumption a3 as

 assumption a3: E[E �X] = DE[e1 �X]
E[e2 �X]

f
E[en �X]

T = 0. (2-7)

There is a subtle point in this discussion that the observant reader might have noted. 
in (2-7), the left-hand side states, in principle, that the mean of each ei conditioned on 
all observations xj is zero. This strict exogeneity assumption states, in words, that no 
observations on x convey information about the expected value of the disturbance. it 
is conceivable—for example, in a time-series setting—that although xi might provide 
no information about E[ei � # ], xj at some other observation, such as in the previous 
time period, might. our assumption at this point is that there is no information about 
E[ei � # ] contained in any observation xj. Later, when we extend the model, we will 
study the implications of dropping this assumption. [see Wooldridge (1995).] We will 
also assume that the disturbances convey no information about each other. That is, 
E[ei � e1, c, ei - 1, ei + 1, c, en] = 0.  in sum, at this point, we have assumed that the 
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, because 
by the Law of Iterated Expectations [Theorem B.1, (B-66)],

E[ei] = Ex[E[ei �X]] = Ex[0] = 0.

For each ei, by Theorem B.2, Cov[E[ei �X], X] = Cov[ei, X], assumption a3 implies 
that Cov [ei, x] = 0 for all i. The converse is not true; E[ei] = 0 does not imply that 
E[ei � xi] = 0. example 2.7 illustrates the difference.

Example 2.7  Nonzero Conditional Mean of the Disturbances
Figure 2.2 illustrates the important difference between E[ei] = 0 and E[ei � xi] = 0. The overall 
mean of the disturbances in the sample is zero, but the mean for specific ranges of x is 
distinctly nonzero. A pattern such as this in observed data would serve as a useful indicator 
that the specification of the linear regression should be questioned. In this particular case, the 
true conditional mean function (which the researcher would not know in advance) is actually 
E[y � x] = 25 + 5x(1 + 2x).  The sample data are suggesting that a linear specification is not 
appropriate for these data. A quadratic specification would seem to be a good candidate. 
This modeling strategy is pursued in an application in Example 6.6.

in most cases, the zero overall mean assumption is not restrictive. Consider a two-
variable model and suppose that the mean of e is m ≠ 0. Then a + bx + e  is the same 
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FIGURE 2.2  Disturbances with Nonzero Conditional Mean and Zero Unconditional Mean.
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as (a + m) + bx + (e - m). Letting a′ = a + m  and e′ = e - m produces the original 
model. For an application, see the discussion of frontier production functions in 
section 19.2.4. But if the original model does not contain a constant term, then assuming 
E[ei] = 0 could be substantive. This suggests that there is a potential problem in models 
without constant terms. as a general rule, regression models should not be specified 
without constant terms unless this is specifically dictated by the underlying theory.3 
arguably, if we have reason to specify that the mean of the disturbance is something 
other than zero, we should build it into the systematic part of the regression, leaving in 
the disturbance only the unknown part of e. assumption a3 also implies that

 E[y �X] = XB. (2-8)

assumptions a1 and a3 comprise the linear regression model. The regression of y 
on X is the conditional mean, E[y �X], so that without assumption a3, XB is not the 
conditional mean function.

The remaining assumptions will more completely specify the characteristics of the 
disturbances in the model and state the conditions under which the sample observations 
on x are obtained.

2.3.4  hoMoscedastIc and nonautocorreLated dIsturbances

The fourth assumption concerns the variances and covariances of the disturbances:

Var[ei �X] = s2,  for all i = 1, c, n,

3 Models that describe first differences of variables might well be specified without constants. Consider yt - yt - 1. 
if there is a constant term a on the right-hand side of the equation, then yt is a function of at, which is an 
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We will 
return to this issue in Chapter 21.
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and

Cov[ei, ej �X] = 0,   for all i ≠ j.

Constant variance is labeled homoscedasticity. Consider a model that describes the 
profits of firms in an industry as a function of, say, size. even accounting for size, 
measured in dollar terms, the profits of large firms will exhibit greater variation than 
those of smaller firms. The homoscedasticity assumption would be inappropriate here. 
survey data on household expenditure patterns often display marked heteroscedasticity, 
even after accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. in 
Figure 2.1, there is some suggestion that the disturbances might not be truly independent 
across observations. although the number of observations is small, it does appear that, on 
average, each disturbance tends to be followed by one with the same sign. This “inertia” 
is precisely what is meant by autocorrelation, and it is assumed away at this point. 
Methods of handling autocorrelation in economic data occupy a large proportion of the 
literature and will be treated at length in Chapter 20. note that nonautocorrelation does 
not imply that observations yi and yj are uncorrelated. The assumption is that deviations 
of observations from their expected values are uncorrelated.

The two assumptions imply that

 E[EE′ �X] = DE[e1e1 �X] E[e1e2 �X] g E[e1en �X]
E[e2e1 �X] E[e2e2 �X] g E[e2en �X]

f f f f
E[ene1 �X] Eene2 �X] g E[enen �X]

T
 = Ds2 0 g 0

0 s2 g 0
f

0 0 g s2

T , 

which we summarize in assumption a4:

 assumption a4:  E[EE′ �X] = s2I. (2-9)

By using the variance decomposition formula in (B-69), we find

Var[E] = E[Var[E �X]] + Var[E[E �X]] = s2I.

once again, we should emphasize that this assumption describes the information 
about the variances and covariances among the disturbances that is provided by the 
independent variables. For the present, we assume that there is none. We will also drop 
this assumption later when we enrich the regression model. We are also assuming that 
the disturbances themselves provide no information about the variances and covariances. 
although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[et � et - 1] = s2 + aet - 1

2 ,  a “garCh” model (see 
Chapter 20), do not violate our conditional variance assumption, but do assume that 
Var[et � et - 1] ≠ Var[et].
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2.3.5  data generatIng process for the regressors

it is common to assume that xi is nonstochastic, as it would be in an experimental 
situation. here the analyst chooses the values of the regressors and then observes yi. This 
process might apply, for example, in an agricultural experiment in which yi is yield and xi 
is fertilizer concentration and water applied. The assumption of nonstochastic regressors 
at this point would be a mathematical convenience. With it, we could use the results of 
elementary statistics to obtain our results by treating the vector xi simply as a known 
constant in the probability distribution of yi. With this simplification, assumptions a3 
and a4 would be made unconditional and the counterparts would now simply state that 
the probability distribution of ei involves none of the constants in X.

social scientists are almost never able to analyze experimental data, and relatively 
few of their models are built around nonrandom regressors. Clearly, for example, in 
any model of the macroeconomy, it would be difficult to defend such an asymmetric 
treatment of aggregate data. realistically, we have to allow the data on xi to be random 
the same as yi. so an alternative formulation is to assume that xi is a random vector and 
our formal assumption concerns the nature of the random process that produces xi. if xi 
is taken to be a random vector, then assumptions a1 through a4 become a statement 
about the joint distribution of yi and xi. The precise nature of the regressor and how we 
view the sampling process will be a major determinant of our derivation of the statistical 
properties of our estimators and test statistics. in the end, the crucial assumption is a3, 
the uncorrelatedness of X and E. now, we do note that this alternative is not completely 
satisfactory either, because X may well contain nonstochastic elements, including a 
constant, a time trend, and dummy variables that mark specific episodes in time. This 
makes for an ambiguous conclusion, but there is a straightforward and economically 
useful way out of it. We will allow X to be any mixture of constants and random variables, 
and the mean and variance of ei are both independent of all elements of X.

 assumption a5:  X may be fixed or random. (2-10)

2.3.6  norMaLIty

it is convenient to assume that the disturbances are normally distributed, with zero mean 
and constant variance. That is, we add normality of the distribution to assumptions a3 
and a4.

 assumption a6:  e �X ∼ N[0, s2I]. (2-11)

in view of our description of the source of e, the conditions of the central limit theorem 
will generally apply, at least approximately, and the normality assumption will be 
reasonable in most settings. a useful implication of assumption a6 is that it implies 
that observations on ei are statistically independent as well as uncorrelated. [see the 
third point in section B.9, (B-97) and (B-99).]

Normality is usually viewed as an unnecessary and possibly inappropriate addition 
to the regression model. except in those cases in which some alternative distribution 
is explicitly assumed, as in the stochastic frontier model discussed in Chapter 19, the 
normality assumption may be quite reasonable. But the assumption is not necessary 
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to obtain most of the results we use in multiple regression analysis. it will prove useful 
as a starting point in constructing confidence intervals and test statistics, as shown in 
section 4.7 and Chapter 5. But it will be possible to discard this assumption and retain 
for practical purposes the important statistical results we need for the investigation.

2.3.7  Independence and exogeneIty

The term independent has been used several ways in this chapter.
in section 2.2, the right-hand-side variables in the model are denoted the independent 

variables. here, the notion of independence refers to the sources of variation. in the 
context of the model, the variation in the independent variables arises from sources that 
are outside of the process being described. Thus, in our health services versus income 
example in the introduction, we have suggested a theory for how variation in demand 
for services is associated with variation in income and, possibly, variation in insurance 
coverage. But, we have not suggested an explanation of the sample variation in income; 
income is assumed to vary for reasons that are outside the scope of the model. nor 
have we suggested a behavioral model for insurance take up. This will be a convenient 
definition to use for exogeneity of a variable x.

The assumption in (2-6), E[ei �X] = 0, is mean independence. its implication is that 
variation in the disturbances in our data is not explained by variation in the independent 
variables. situations in which E[ei �X] ≠ 0 arise frequently, as we will explore in Chapter 
8 and others. When E[e � x] ≠ 0, x is endogenous in the model. The most straightforward 
instance is a left-out variable. Consider the model in example 2.2. in a simple model that 
contains only Education but which has inappropriately omitted Age, it would follow that 
Age implicitly appears in the disturbance:

Income = g1 + g2Education + (g3Age + u) = g1 + g2Education + e.

if Education and (the hidden variable) Age are correlated, then Education 
is endogenous in this equation, which is no longer a regression because 
E[e �Education] = g3E[Age �Education] + E[u �Education] ≠ 0.

We have also assumed in section 2.3.4 that the disturbances are uncorrelated with 
each other (assumption a4 in Table 2.1). This implies that E[ei � ej] = 0 when i ≠ j—the 
disturbances are also mean independent of each other. Conditional normality of the 
disturbances assumed in section 2.3.6 (assumption a6) implies that they are statistically 
independent of each other, which is a stronger result than mean independence and 
stronger than we will need in most applications.

Finally, section 2.3.2 discusses the linear independence of the columns of the data 
matrix, X. The notion of independence here is an algebraic one relating to the column 
rank of X. in this instance, the underlying interpretation is that it must be possible 
for the variables in the model to vary linearly independently of each other. Thus, in  
example 2.6, we find that it is not possible for the logs of surface area, aspect ratio, and 
height of a painting all to vary independently of one another. The modeling implication 
is that, if the variables cannot vary independently of each other, then it is not possible to 
analyze them in a linear regression model that assumes the variables can each vary while 
holding the others constant. There is an ambiguity in this discussion of independence 
of the variables. We have both age and age squared in a model in example 2.2. These 
cannot vary independently, but there is no obstacle to formulating a linear regression 
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FIGURE 2.3  The Normal Linear Regression Model.
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model containing both age and age squared. The resolution is that age and age squared, 
though not functionally independent, are linearly independent in X. That is the crucial 
assumption in the linear regression model.

2.4 suMMary and concLusIons

This chapter has framed the linear regression model, the basic platform for model 
building in econometrics. The assumptions of the classical regression model are 
summarized in Figure 2.3, which shows the two-variable case.
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