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ESTIMATING THE REGRESSION MODEL 
BY LEAST SQUARES

§
4.1 INTRODUCTION

In this chapter, we will examine least squares in detail as an estimator of the parameters 
of the linear regression model (defined in Table 4.1). There are other candidates for 
estimating B. For example, we might use the coefficients that minimize the sum of 
absolute values of the residuals. We begin in Section 4.2 by considering the question 
“Why should we use least squares?” We will then analyze the estimator in detail. The 
question of which estimator to choose is based on the statistical properties of the 
candidates, such as unbiasedness, consistency, efficiency, and their sampling distributions. 
Section 4.3 considers finite-sample properties such as unbiasedness. The linear model is 
one of few settings in which the exact finite-sample properties of an estimator are known. 
In most cases, the only known properties are those that apply to large samples. We can 
approximate finite-sample behavior by using what we know about large-sample 
properties. In Section 4.4, we will examine the large-sample or asymptotic properties of 
the least squares estimator of the regression model.1 Section 4.5 considers robust 
inference. The problem considered here is how to carry out inference when (real) data 
may not satisfy the assumptions of the basic linear model. Section 4.6 develops a method 
for inference based on functions of model parameters, rather than the estimates 
themselves.

Discussions of the properties of an estimator are largely concerned with point 
estimation—that is, in how to use the sample information as effectively as possible to 
produce the best single estimate of the model parameters. Interval estimation, considered 
in Section 4.7, is concerned with computing estimates that make explicit the uncertainty 
inherent in using randomly sampled data to estimate population quantities. We will 
consider some applications of interval estimation of parameters and some functions of 
parameters in Section 4.7. One of the most familiar applications of interval estimation is 
using the model to predict the dependent variable and to provide a plausible range of 
uncertainty for that prediction. Section 4.8 considers prediction and forecasting using 
the estimated regression model.

The analysis assumes that the data in hand correspond to the assumptions of the 
model. In Section 4.9, we consider several practical problems that arise in analyzing 
nonexperimental data. Assumption A2, full rank of X, is taken as a given. As we noted 
in Section 2.3.2, when this assumption is not met, the model is not estimable, regardless 
of the sample size. Multicollinearity, the near failure of this assumption in real-world 

1This discussion will use results on asymptotic distributions. It may be helpful to review Appendix D before 
proceeding to Section 4.4.
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data, is examined in Sections 4.9.1 and 4.9.2. Missing data have the potential to derail 
the entire analysis. The benign case in which missing values are simply unexplainable 
random gaps in the data set is considered in Section 4.9.3. The more complicated case 
of nonrandomly missing data is discussed in Chapter 19. Finally, the problems of badly 
measured and outlying observations are examined in Section 4.9.4 and 4.9.5.

This chapter describes the properties of estimators. The assumptions in Table 4.1 will 
provide the framework for the analysis. (The assumptions are discussed in greater detail 
in Chapter 3.) For the present, it is useful to assume that the data are a cross section of 
independent, identically distributed random draws from the joint distribution of (yi,xi) 
with A1–A3 which defines E[yi ∙ xi]. Later in the text (and in Section 4.5), we will consider 
more general cases. The leading exceptions, which all bear some similarity, are stratified 
samples, cluster samples, panel data, and spatially correlated data. In these cases, groups 
of related individual observations constitute the observational units. The time-series 
case in Chapters 20 and 21 will deal with data sets in which potentially all observations 
are correlated. These cases will be treated later when they are developed in more detail. 
Under random (cross-section) sampling, with little loss of generality, we can easily obtain 
very general statistical results such as consistency and asymptotic normality. Later, such 
as in Chapter 11, we will be able to accommodate the more general cases fairly easily.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that is occasionally offered to motivate least squares. 
But, with modern software, ease of computation is a minor (usually trivial) virtue. There are 
several theoretical justifications for this technique. First, least squares is a natural approach 
to estimation which makes explicit use of the structure of the model as laid out in the 
assumptions. Second, even if the true model is not a linear regression, the equation fit by 
least squares is an optimal linear predictor for the explained variable. Thus, it enjoys a sort of 
robustness that other estimators do not. Finally, under the specific assumptions of the classical 
model, by one reasonable criterion, least squares will be the most efficient use of the data.

4.2.1  POPULATION ORTHOGONALITY CONDITIONS

Let x denote the vector of independent variables in the population regression 
model. Assumption A3 states that E[e ∙ x] = 0. Three useful results follow from this. 
First, by iterated expectations (Theorem B.1), ExE[e ∙ x]] = Ex[0] = E[e] = 0; e has 

A1. Linearity: yi = xi1b1 + xi2b2 + g + xiKbK + ei = xi
=B + ei. For the sample, y = XB + E.

A2. Full rank: The n * K sample data matrix, X, has full column rank for every n Ú K.
A3.  Exogeneity of the independent variables: E[ei ∙ xj1, xj2, c, xjK] = 0, i, j = 1, c, n. There is no 

correlation between the disturbances and the independent variables. E[E ∙ X] = 0.
A4.  Homoscedasticity and nonautocorrelation: Each disturbance, ei, has the same finite variance; 

E[ei
2 ∙ X] = s2. Every disturbance ei is uncorrelated with every other disturbance, ej, conditioned 

on X; E[eiej ∙ X] = 0,  i ∙ j. E[EE′ ∙ X] = s2I.
A5. Stochastic or nonstochastic data: (xi1, xi2, c, xiK), i = 1, c, n.

A6. Normal distribution: The disturbances, ei, are normally distributed. E ∙ X ∙ N[0,s2I].

TABLE 4.1 Assumptions of the Classical Linear Regression Model
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56 PART I  ✦   The Linear Regression Model

zero mean, conditionally and unconditionally. Second, by Theorem B.2, Cov[x,e] =
Cov[x,E[e ∙ x]] = Cov[x,0] = 0 so x and e are uncorrelated. Finally, combining the 
earlier results, E[xe] = Cov[x,e] + E[e]E[x] = 0. We write the third of these as E[xe] =
E[x(y - x′b)] = 0 or

 E[xy] = E[xx′]B. (4-1)

Now, recall the least squares normal equations (3-5) based on the sample of n 
observations, X′y = X′Xb. Divide this by n and write it as a summation to obtain

 a 1
n a

n

i= 1
xiyib = a 1

n a
n

i= 1
xixi

=bb. (4-2)

Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming 
the conditions underlying the laws of large numbers presented in Appendix D are met, 
the means in (4-2) are estimators of their counterparts in (4-1). Thus, by using least 
squares, we are mimicking in the sample the relationship that holds in the population.

4.2.2  MINIMUM MEAN SQUARED ERROR PREDICTOR

Consider the problem of finding an optimal linear predictor for y. Once again, ignore 
Assumption A6 and, in addition, drop Assumption A1. The conditional mean function, 
E[y ∙ x], might be nonlinear. For the criterion, we will use the mean squared error rule, so 
we seek the minimum mean squared error linear predictor of y, which we’ll denote x′G. 
(The minimum mean squared error predictor would be the conditional mean function 
in all cases. Here, we consider only a linear predictor.) The expected squared error of 
the linear predictor is

MSE = E[y - x′G]2.

This can be written as

MSE = E{y - E[y ∙ x]}2 + E{E[y ∙ x] - x′G}2.

We seek the g that minimizes this expectation. The first term is not a function of g, so 
only the second term needs to be minimized. The necessary condition is

 
0E{E(y ∙ x) - x′G}2

0G
= Eb 0{E(y ∙ x) - x′G}2

0G
r

 = -2E{x[E(y ∙ x) - x′G]} = 0.

We arrive at the equivalent condition

E[xE(y ∙ x)] = E[xx′]G.

The left-hand side of this result is E[xE(y ∙ x)] = Cov[x, E(y ∙ x)] + E[x]E[E(y ∙ x)] =
Cov[x,y] + E[x]E[y] = E[xy]. (We have used Theorem B.2.) Therefore, the necessary 
condition for finding the minimum MSE predictor is

 E[xy] = E[xx′]G. (4-3)

This is the same as (4-1), which takes us back to the least squares condition. Assuming 
that these expectations exist, they would be estimated by the sums in (4-2), which means 
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that regardless of the form of the conditional mean, least squares is an estimator of the 
coefficients of the minimum expected squared error linear predictor of y ∙ x.

4.2.3  MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seek the one 
that has smallest variance, we will be led once again to least squares. This proposition 
will be proved in Section 4.3.5.

4.3 STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR

An estimator is a strategy, or formula, for using the sample data that are drawn from a 
population. The properties of that estimator are a description of how it can be expected 
to behave when it is applied to a sample of data. To consider an example, the concept 
of unbiasedness implies that on average an estimator (strategy) will correctly estimate 
the parameter in question; it will not be systematically too high or too low. It is not 
obvious how one could know this if they were only going to analyze a single sample of 
data from the population. The argument adopted in econometrics is provided by the 
sampling properties of the estimation strategy. A conceptual experiment lies behind 
the description. One imagines repeated sampling from the population and characterizes 
the behavior of the sample of samples. The underlying statistical theory of the estimator 
provides the basis of the description. Example 4.1 illustrates.

The development of the properties of least squares as an estimator can be viewed 
in three stages. The finite sample properties based on Assumptions A1–A6 are precise, 
and are independent of the sample size. They establish the essential characteristics of 
the estimator, such as unbiasedness and the broad approach to be used to estimate 
the sampling variance. Finite sample results have two limiting aspects. First, they can 
only be obtained for a small number of statistics—essentially only for the basic least 
squares estimator. Second, the sharpness of the finite sample results is obtained by 
making assumptions about the data-generating process that we would prefer not to 
impose, such as normality of the disturbances (Assumption A6 in Table 4.1). Asymptotic 
properties of the estimator are obtained by deriving reliable results that will provide 
good approximations in moderate sized or large samples. For example, the large sample 
property of consistency of the least squares estimator is looser than unbiasedness in one 
respect, but at the same time, is more informative about how the estimator improves as 
more sample data are used. Finally, robust inference methods are a refinement of the 
asymptotic results. The essential asymptotic theory for least squares modifies the finite 
sample results after relaxing certain assumptions, mainly A5 (data-generating process 

THEOREM 4.1 Minimum Mean Squared Error Predictor
If the mechanism generating the data (xi, yi), i = 1, c, n, is such that the law of 
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the 
slopes of the minimum expected squared error linear predictor of y are estimated 
by the least squares coefficient vector.
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58 PART I  ✦   The Linear Regression Model

for X) and A6 (normality). Assumption A4 (homoscedasticity and nonautocorrelation) 
remains a limitation on the generality of the model assumptions. Real-world data are 
likely to be heteroscedastic in ways that cannot be precisely quantified. They may also 
be autocorrelated as a consequence of the sample design, such as the within household 
correlation of panel data observations. These possibilities may taint the inferences that 
use standard errors that are based on A4. Robust methods are used to accommodate 
possible violations of Assumption A4 without redesigning the estimation strategy. 
That is, we continue to use least squares, but employ inference procedures that will be 
appropriate whether A4 is reasonable or not.

Example 4.1  The Sampling Distribution of a Least Squares Estimator
The following sampling experiment shows the nature of a sampling distribution and the 
implication of unbiasedness. We drew two samples of 10,000 random draws on variables 
wi and xi from the standard normal population (mean 0, variance 1). We generated a set 
of ei’s equal to 0.5wi and then yi = 0.5 + 0.5xi + ei. We take this to be our population. 
We then drew 1,000 random samples of 100 observations on (yi,xi) from this population 
(without replacement), and with each one, computed the least squares slope, using at 
replication r,

br = JΣ i= 1
100 (xir - xr)yir R /JΣ i= 1

100 (xir - xr)2 R .

The histogram in Figure 4.1 shows the result of the experiment. Note that the distribution of 
slopes has mean and median roughly equal to the true value of 0.5, and it has a substantial 
variance, reflecting the fact that the regression slope, like any other statistic computed from 
the sample, is a random variable. The concept of unbiasedness relates to the central tendency 
of this distribution of values obtained in repeated sampling from the population. The shape 
of the histogram also suggests the normal distribution of the estimator that we will show 
theoretically in Section 4.3.6.

FIGURE 4.1  Histogram for Sampled Least Squares Regression Slopes.
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4.3.1  UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write

 b = (X′X)-1X′y = (X′X)-1X′(XB + E) = B + (X′X)-1X′E. (4-4)

Now, take expectations, iterating over X:

E[b ∙ X] = B + E[(X′X)-1X′E ∙ X].

By Assumption A3, the expected value of the second term is (X′X/n)-1E[Σixiei/n ∙ X]. 
Each term in the sum has expectation zero, which produces the result we need:

 E[b ∙ X] = B. (4-5)

Therefore,

 E[b] = Ex{E[b ∙ x]} = Ex[B] = B. (4-6)

The interpretation of this result is that for any sample of observations, X, the least 
squares estimator has expectation B. When we average this over the possible values of X, 
we find the unconditional mean is B as well.

4.3.2  OMITTED VARIABLE BIAS

Suppose that a correctly specified regression model would be

 y = XB + zg + E, (4-7)

where the two parts have K and 1 columns, respectively. If we regress y on X without 
including the relevant variable, z, then the estimator is

 b = (X′X)-1X′y = B + (X′X)-1X′zg + (X′X)-1X′E. (4-8)

(Note, “relevant” means g ∙ 0.) Taking the expectation, we see that unless X′z = 0, b 
is biased. The well-known result is the omitted variable formula:

 E[b ∙ X,z] = B + pX.zg, (4-9)

where
 pX.z = (X′X)-1X′z. (4-10)

The vector pX.z is the column of slopes in the least squares regression of z on X. 
Theorem 3.2 (Frisch-Waugh) and Corollary 3.2.1 provide some insight for this result. 
For each coefficient in (4-9), we have

 E[bk ∙ X,z] = bk + g¢Cov(z,xk ∙ all other x’s

Var(xk ∙ all other x’s)
≤ (4-11)

Example 4.2  Omitted Variable in a Demand Equation
If a demand equation is estimated without the relevant income variable, then (4-11) shows 
how the estimated price elasticity will be biased. The gasoline market data we have examined 
in Example 2.3 provides a clear example. The base demand model is

Quantity = a + bPrice + gIncome + e.
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60 PART I  ✦   The Linear Regression Model

Letting b be the slope coefficient in the regression of Quantity on Price, we obtain

E[b ∙ Price, Income] = b + g 
Cov[Price, Income]

Var[Price]
.

In aggregate data, it is unclear whether the missing covariance would be positive or negative. 
The sign of the bias in b would be the same as this covariance, however, because Var[Price] 
and g would both be positive for a normal good such as gasoline. Figure 4.2 shows a simple 
plot of per capita gasoline consumption, G/Pop, against the price index PG (in inverted 
Marshallian form). The plot disagrees with what one might expect. But a look at the data 
in Appendix Table F2.2 shows clearly what is at work. In these aggregate data, the simple 
correlations for (G/Pop, Income/Pop) and for (PG, Income/Pop) are 0.938 and 0.934, 
respectively. To see if the expected relationship between price and consumption shows up, 
we will have to purge our price and quantity data of the intervening effect of income. To do 
so, we rely on the Frisch–Waugh result in Theorem 3.2. In the simple regression of the log of 
per capita gasoline consumption on a constant and the log of the price index, the coefficient 
is 0.29904, which, as expected, has the wrong sign. In the multiple regression of the log of 
per capita gasoline consumption on a constant, the log of the price index and the log of 
per capita income, the estimated price elasticity, bn, is -0.16949 and the estimated income 
elasticity, gn, is 0.96595. This agrees with expectations.

In this development, it is straightforward to deduce the directions of bias when there 
is a single included variable and one omitted variable, as in Example 4.2. It is important 
to note, however, that if more than one variable is included in X, then the terms in the 
omitted variable formula, (4-9) and (4-10), involve multiple regression coefficients, which 
have the signs of partial, not simple correlations. For example, in the demand model of 
the previous example, if the price of a closely related product, say new cars, had been 
included as well, then the simple correlation between gasoline price and income would 
be insufficient to determine the direction of the bias in the price elasticity. What would 
be required is the sign of the correlation between price and income net of the effect of 
the other price:

FIGURE 4.2  Per Capita Gasoline Consumption Versus Price, 1953–2004.
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E[bGasoline Price ∙ X,z] = bGasoline Price

 + aCov(Income, Gasoline Price ∙ New Cars Price

Var(Gasoline Price ∙ New Cars Price)
bg. (4-12)

This sign might not be obvious, and it would become even less so as more regressors 
are added to the equation. However, (4-12) does suggest what would be needed for an 
argument that the least squares estimator remains unbiased, at least for coefficients that 
correspond to zero partial correlations.

4.3.3  INCLUSION OF IRRELEVANT VARIABLES

We can view the omission of a set of relevant variables as equivalent to imposing 
an incorrect restriction on (4-7). In particular, omitting z is equivalent to incorrectly 
estimating (4-7) subject to the restriction g = 0. Incorrectly imposing a restriction 
produces a biased estimator. Suppose, however, that our error is a failure to use some 
information that is correct. If the regression model is correctly given by y = XB + E and 
we estimate it as if (4-7) were correct [i.e., we include an (or some) extra variable(s)], 
then the inclusion of the irrelevant variable z in the regression is equivalent to failing 
to impose g = 0 on (4-7) in estimation. But (4-7) is not incorrect; it simply fails to 
incorporate g = 0. The least squares estimator of (B, g) in (4-7) is still unbiased even 
given the restriction:

 EJ ¢b
c
≤ ∙ X,zR = ¢B

g
≤ = ¢B

0
≤. (4-13)

The broad result is that including irrelevant variables in the estimation equation does not 
lead to bias in the estimation of the nonzero coefficients. Then where is the problem? 
It would seem that to be conservative, one might generally want to overfit the model. 
As we will show in Section 4.9.1, the covariance matrix in the regression that properly 
omits the irrelevant z is generally smaller than the covariance matrix for the estimator 
obtained in the presence of the superfluous variables. The cost of overspecifying the 
model is larger variances (less precision) of the estimators.

4.3.4  VARIANCE OF THE LEAST SQUARES ESTIMATOR

The least squares coefficient vector is

 b = (X′X)-1X′(XB + E) = B + AE, (4-14)

where A = (X′X)-1X′. By Assumption A4, E[ee′ ∙ X] = Var[e ∙ X] = s2I. The con-
ditional covariance matrix of the least squares slope estimator is

 Var[b ∙ X] = E[(b - B)(b - B)′ ∙ X]
 = E[AEE′A′ ∙ X]

  = AE[EE′ ∙ X]A′  (4-15)
 = s2(X′X)-1.

If we wish to use b to test hypotheses about B or to form confidence intervals, 
then we will require a sample estimate of this matrix. The population parameter s2 
remains to be estimated. Because s2 is the expected value of ei

2 and ei is an estimate 
of ei, sn

2 = (1/n)a n
i= 1ei

2 would seem to be the natural estimator. But the least squares 
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62 PART I  ✦   The Linear Regression Model

residuals are imperfect estimates of their population counterparts; ei = yi - xi
=b =

ei - xi
=(b - B). The estimator sn 2 is distorted because B must be estimated.

The least squares residuals are e = My = M[XB + E] = ME, as MX = 0.  [See 
Definition 3.1 and (3-15).] An estimator of s2 will be based on the sum of squared 
residuals:

e′e = E′ME.

The expected value of this quadratic form is E[e′e ∙ X] = E[E′ME ∙ X]. The scalar E′ME is a 
1 * 1 matrix, so it is equal to its trace. By using (A-94), E[tr(E′ME) ∙ X] = E[tr(MEE′) ∙ X]. 
Because M is a function of X, the result is tr(ME[EE′ ∙ X]) = tr(Ms2I) = s2 tr(M). The 
trace of M is tr[In - X(X′X)-1X′] = tr(In) - tr[(X′X)-1X′X] = tr(In) - tr(IK) = n - K. 
Therefore,

 E[e′e ∙ X] = (n - K)s2. (4-16)

The natural estimator is biased toward zero, but the bias becomes smaller as the sample 
size increases. An unbiased estimator of s2 is

 s2 =
e′e

n - K
. (4-17)

Like b, s2 is unbiased unconditionally, because E[s2] = Ex{E[s2 ∙ X]} = Ex[s
2] = s2. 

The standard error of the regression is s, the square root of s2. We can then compute

 Est. Var[b ∙ X] = s2(X′X)-1. (4-18)

Henceforth, we shall use the notation Est.Var[Est.Var[ # ]] to indicate a sample estimate 
of the sampling variance of an estimator. The square root of the kth diagonal element 
of this matrix, {[s2(X′X)-1]kk}1/2, is the standard error of the estimator bk, which is often 
denoted simply the standard error of bk.

4.3.5  THE GAUSS–MARKOV THEOREM

We will now obtain a general result for the class of linear unbiased estimators of B. 
Because b ∙ X = Ay, where A = (X′X)-1X′, is a linear function of e, by the definition 
we will use here, it is a linear estimator of B. Because E[AE ∙ X] = 0, regardless of the 
distribution of E, under our other assumptions, b is a linear, unbiased estimator of B.

THEOREM 4.2 Gauss–Markov Theorem
In the linear regression model with given regressor matrix X, (1) the least squares 
estimator, b, is the minimum variance linear unbiased estimator of B and (2) for 
any vector of constants w, the minimum variance linear unbiased estimator of w′B 
is w′b.

Note that the theorem makes no use of Assumption A6, normality of the distribution 
of the disturbances. Only A1 to A4 are necessary. Let b0 = Cy be a different linear 
unbiased estimator of B, where C is a K * n matrix. If b0 is unbiased, then E[Cy ∙ X] =  
E[(CXB + CE) ∙ X] = B, which implies that CX = I and b0 = b + Ce, so 
Var[b0 ∙ X] = s2CC′. Now, let D = C - A so Dy = b0 - b. Because CX = I and 
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AX = I, DX = 0 and DA′ = 0. Then, Var[b0 ∙ X] = s2[(D + A)(D + A)′]. By 
multiplying the terms, we find

Var[b0 ∙ X] = s2(X′X)-1 + s2DD′ = Var[b ∙ X] + s2DD′.

The quadratic form in DD′ is q′DD′q = v′v Ú 0. The conditional covariance matrix of 
b0 equals that of b plus a nonnegative definite matrix. Every quadratic form in Var[b0 ∙ X] 
is larger than the corresponding quadratic form in Var[b ∙ X], which establishes result (1).

The proof of result (2) of the theorem follows from the previous derivation, because 
the variance of w′b is a quadratic form in Var[b ∙ X], and likewise for any b0, and implies 
that each individual slope estimator bk is the best linear unbiased estimator of bk. (Let 
w be all zeros except for a one in the kth position.) The result applies to every linear 
combination of the elements of B. The implication is that under Assumptions A1–A5, 
b is the most efficient (linear unbiased) estimator of B.

4.3.6  THE NORMALITY ASSUMPTION

To this point, the specification and analysis of the regression model are semiparametric (see 
Section 12.3). We have not used Assumption A6, normality of E, in any of the results. 
In (4-4), b is a linear function of the disturbance vector, E. If E has a multivariate normal 
distribution, then we may use the results of Section B.10.2 and the mean vector and 
covariance matrix derived earlier to state that

b ∙ X ∙ N[B, s2(X′X)-1].

Each element of b ∙ X is normally distributed:

bk ∙ X ∙ N[bk, s2(X′X)kk
-1].

We found evidence of this result in Figure 4.1 in Example 4.1.
The exact distribution of b is conditioned on X. The normal distribution of b in 

a finite sample is a consequence of the specific assumption of normally distributed 
disturbances. The normality assumption is useful for constructing test statistics and for 
forming confidence intervals. But we will ultimately find that we will be able to establish 
the results we need for inference about B based only on the sampling behavior of the 
statistics without tying the analysis to a narrow assumption of normality of E.

4.4 ASYMPTOTIC PROPERTIES OF THE LEAST SQUARES ESTIMATOR

The finite sample properties of the least squares estimator are helpful in suggesting the 
range of results that can be obtained from a sample of data. But the list of settings in 
which exact finite sample results can be obtained is extremely small. The assumption of 
normality likewise narrows the range of the applications. Estimation and inference can 
be based on approximate results that will be reliable guides in even moderately sized 
data sets, and require fewer assumptions.

4.4.1  CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF B

Unbiasedness is a useful starting point for assessing the virtues of an estimator. It assures 
the analyst that their estimator will not persistently miss its target, either systematically 
too high or too low. However, as a guide to estimation strategy, unbiasedness has 
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64 PART I  ✦   The Linear Regression Model

two shortcomings. First, save for the least squares slope estimator we are discussing 
in this chapter, it is rare for an econometric estimator to be unbiased. In nearly all 
cases beyond the multiple linear regression model, the best one can hope for is that 
the estimator improves in the sense suggested by unbiasedness as more information 
(data) is brought to bear on the study. As such, we will need a broader set of tools to 
guide the econometric inquiry. Second, the property of unbiasedness does not, in fact, 
imply that more information is better than less in terms of estimation of parameters. 
The sample means of random samples of two, 20 and 20,000 are all unbiased estimators 
of a population mean—by this criterion all are equally desirable. Logically, one would 
hope that a larger sample is better than a smaller one in some sense that we are about to 
define. The property of consistency improves on unbiasedness in both of these directions.

To begin, we leave the data-generating mechanism for X unspecified—X may be 
any mixture of constants and random variables generated independently of the process 
that generates E. We do make two crucial assumptions. The first is a modification of 
Assumption A5; A5a. (xi, ei), i = 1, c, n  is a sequence of independent, identically 
distributed observations.

The second concerns the behavior of the data in large samples:

 
plim

n S ∞
X′X

n
= Q,  a positive definite matrix. (4-19)

Note how this extends A2. If every X has full column rank, then X′X/n is a positive 
definite matrix in a specific sample of n Ú K observations. Assumption (4-19) extends 
that to all samples with at least K observations. A straightforward way to reach (4-19) 
based on A5a is to assume

E[xixi′] = Q,

so that by the law of large numbers, (1/n)Σixixi
= converges in probability to its expec-

tation, Q, and via Theorem D.14, (X′X/n)-1 converges in probability to Q-1.
Time-series settings that involve trends, polynomial time series, and trending 

variables often pose cases in which the preceding assumptions are too restrictive. A 
somewhat weaker set of assumptions about X that is broad enough to include most of 
these is the Grenander Conditions listed in Table 4.2.2 The conditions ensure that the 
data matrix is “well behaved” in large samples. The assumptions are very weak and likely 
to be satisfied by almost any data set encountered in practice.

At many points from here forward, we will make an assumption that the data are 
well behaved so that an estimator or statistic will converge to a result. Without repeating 
them in each instance, we will broadly rely on conditions such as those in Table 4.2.

The least squares estimator may be written

 b = B + aX′X
n

b
-1

aX′E
n

b . (4-20)

Then,

plim b = B + Q-1plimaX′E
n

b .

2See Grenander (1956), Palma (2016, p. 373) and Judge et al. (1985, p. 162).
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G1.  For each column of X, xk, if dnk
2 = xk

= xk, then limnS ∞ dnk
2 = + ∞ . Hence, xk does not degenerate 

to a sequence of zeros. Sums of squares will continue to grow as the sample size increases.

G2.  LimnS ∞ xik
2 /dnk

2 = 0 for all i = 1, c, n. No single observation will ever dominate xk
= xk. As 

n S ∞ , individual observations will become less important.
G3.  Let Cn be the sample correlation matrix of the columns of X, excluding the constant term if 

there is one. Then limnS ∞Cn = C, a positive definite matrix. This condition implies that the 
full rank condition will always be met. We have already assumed that X has full rank in a finite 
 sample. This rank condition will not be violated as the sample size increases.

TABLE 4.2 Grenander Conditions for Well-Behaved Data

We require the probability limit of the last term. In Section 4.2.1, we found that E[e ∙ x] = 0 
implies E[xe] = 0. Based on this result, again invoking D.4., we find X′E/n = (1/n)Σixiei 
converges in probability to its expectation of zero, so

 plimaX′E
n

b = 0. (4-21)

It follows that

 plim b = B + Q-1 # 0 = B. (4-22)

This result establishes that under Assumptions A1–A4 and the additional assumption 
(4-19), b is a consistent estimator of B in the linear regression model. Note how 
consistency improves on unbiasedness. The asymptotic result does not insist that b be 
unbiased. But, by the definition of consistency (see Definition D.6), it will follow that 
limnS ∞ Prob[ ∙ bk - bk ∙ 7 d] = 0 for any positive d. This means that with increasing 
sample size, the estimator will be ever closer to the target. This is sometimes (loosely) 
labeled “asymptotic unbiasedness.”

4.4.2  THE ESTIMATOR OF Asy. Var[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator 
of Asy. Var[b] = (s2/n)Q-1. With (4-19), it is sufficient to restrict attention to s2, so 
the purpose here is to assess the consistency of s2 as an estimator of s2. Expanding 
s2 = E′ME/(n - K) produces

s2 =
1

n - K
 [E′E - E′X(X′X)-1X′E] =

n
n - k

JE′E
n

- ¢E′X
n

b aX′X
n

b
-1

aX′E
n

b R .

The leading constant clearly converges to 1. We can apply (4-19), (4-21) (twice), and 
the product rule for probability limits (Theorem D.14) to assert that the second term 

in the brackets converges to 0. That leaves 
1
n a

n

i= 1
ei

2. This is a narrow case in which the 

random variables ei
2 are independent with the same finite mean s2, so not much is 

required to get the mean to converge almost surely to s2 = E[ei
2]. By the Markov 

theorem (D.8), what is needed is for E[(ei
2)1 + d] to be finite, so the minimal assumption 

thus far is that ei have finite moments up to slightly greater than 2. Indeed, if we 
further assume that every ei has the same distribution, then by the Khinchine theorem 
(D.5) or the corollary to D8, finite moments (of ei) up to 2 is sufficient. So, under 
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fairly weak conditions, the first term in brackets converges in probability to s2, which 
gives our result,

plim s2 = s2,

and, by the product rule,

 plim s2(X′X/n)-1 = s2Q-1. (4-23)

The appropriate estimator of the asymptotic covariance matrix of b is the familiar one,

 Est.Asy.Var[b] = s2 (X′X)-1. (4-24)

4.4.3  ASYMPTOTIC NORMALITY OF THE LEAST SQUARES ESTIMATOR

By relaxing assumption A6, we will lose the exact normal distribution of the estimator 
that will enable us to form confidence intervals in Section 4.7. However, normality of 
the disturbances is not necessary for establishing the distributional results we need to 
allow statistical inference, including confidence intervals and testing hypotheses. Under 
generally reasonable assumptions about the process that generates the sample data, 
large sample distributions will provide a reliable foundation for statistical inference in 
the regression model (and more generally, as we develop more elaborate estimators 
later in the book).

To derive the asymptotic distribution of the least squares estimator, we shall use 
the results of Section D.3. We will make use of some basic central limit theorems, so in 
addition to Assumption A3 (uncorrelatedness), we will assume that observations are 
independent. It follows from (4-20) that

 2n(b - B) = ¢X=X
n

≤-1

a 12n
bX=E. (4-25)

If the limiting distribution of the random vector in (4-25) exists, then that limiting 
distribution is the same as that of

 Jplim¢X=X
n

≤-1 R a 12n
bX=E = Q-1a 12n

bX=E. (4-26)

Thus, we must establish the limiting distribution of

 a 12n
bX=e = 2n(w - E[w]), (4-27)

where wi = xiei and E[wi] = E[w] = 0. The mean vector w is the average of n 
independent identically distributed random vectors with means 0 and variances

 Var[xiei] = s2E[xix
=
i] = s2Q. (4-28)

The variance of 2n w =
12n

a n
i= 1xiei is

 s2a 1
n
b [Q + Q + g + Q] = s2Q. (4-29)
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We may apply the Lindeberg–Levy central limit theorem (D.18) to the vector 2n w, as 
we did in Section D.3 for the univariate case 2n x. If [xiei], i = 1, c, n are independent 
vectors, each distributed with mean 0 and variance s2Q 6 ∞ , and if (4-19) holds, then

 a 12n
bX=E Sd

N[0, s2Q]. (4-30)

It then follows that

 Q-1a 12n
bX=E ¡d

N[Q-10, Q-1(s2Q)Q-1]. (4-31)

Combining terms,

 2n(b - B) ¡d
N[0, s2Q-1]. (4-32)

Using the technique of Section D.3, we then obtain the asymptotic distribution of b:

THEOREM 4.3 Asymptotic Distribution of b with IID Observations
If {ei} are independently distributed with mean zero and finite variance s2 and xik 
is such that the Grenander conditions are met, then

 b ∙
a

NJB, 
s2

n
 Q-1 R . (4-33)

The development here has relied on random sampling from (xi, ei). If observa-
tions are not identically distributed, for example, if E[xixi′] = Qi, then under 
suitable, more general assumptions, an argument could be built around the 
Lindeberg–Feller Central Limit Theorem (D.19A). The essential results would 
be the same.

In practice, it is necessary to estimate (1/n)Q-1 with (X=X)-1 and s2 with e∙e/(n - K).
If E is normally distributed, then normality of b ∙ X holds in every sample, so it 

holds asymptotically as well. The important implication of this derivation is that if the 
regressors are well behaved and observations are independent, then the asymptotic 
normality of the least squares estimator does not depend on normality of the disturbances; 
it is a consequence of the Central Limit Theorem.

4.4.4  ASYMPTOTIC EFFICIENCY

It remains to establish whether the large-sample properties of the least squares estimator 
are optimal by any measure. The Gauss–Markov theorem establishes finite sample 
conditions under which least squares is optimal. The requirements that the estimator be 
linear and unbiased limit the theorem’s generality, however. One of the main purposes 
of the analysis in this chapter is to broaden the class of estimators in the linear regression 
model to those which might be biased, but which are consistent. Ultimately, we will 
be interested in nonlinear estimators as well. These cases extend beyond the reach of 
the Gauss–Markov theorem. To make any progress in this direction, we will require an 
alternative estimation criterion.
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68 PART I  ✦   The Linear Regression Model

We can compare estimators based on their asymptotic variances. The complication 
in comparing two consistent estimators is that both converge to the true parameter as 
the sample size increases. Moreover, it usually happens (as in our Example 4.3), that they 
converge at the same rate—that is, in both cases, the asymptotic variances of the two 
estimators are of the same order, such as O(1/n). In such a situation, we can sometimes 
compare the asymptotic variances for the same n to resolve the ranking. The least absolute 
deviations estimator as an alternative to least squares provides a leading example.

Example 4.3   Least Squares Vs. Least Absolute Deviations—A Monte 
Carlo Study

Least absolute deviations (LAD) is an alternative to least squares. (The LAD estimator is 
considered in more detail in Section 7.3.1.) The LAD estimator is obtained as

bLAD = the minimizer ofa n
i= 1 ∙ yi - x=

ib0 ∙ ,

in contrast to the linear least squares estimator, which is

bLS = the minimizer ofa n
i= 1(yi - x=

ib0)2.

Suppose the regression model is defined by

yi = x=
ib + ei,

where the distribution of ei has conditional mean zero, constant variance s2, and conditional 
median zero as well—the distribution is symmetric—and plim(1/n)X=e = 0. That is, all the 
usual regression assumptions, but with the normality assumption replaced by symmetry of 
the distribution. Then, under our assumptions, bLS is a consistent and asymptotically normally 
distributed estimator with asymptotic covariance matrix given in Theorem 4.3, which we will 
call s2A. As Koenker and Bassett (1978, 1982), Huber (1987), Rogers (1993), and Koenker 
(2005) have discussed, under these assumptions, bLAD is also consistent. A good estimator 
of the asymptotic variance of bLAD would be (1/2)2[1/f(0)]2 A where f(0) is the density of e at 
its median, zero. This means that we can compare these two estimators based on their 
asymptotic variances. The ratio of the asymptotic variance of the kth element of bLAD to the 
corresponding element of bLS would be

qk = Var(bk, LAD)/Var(bk, LS) = (1/2)2(1/s2)[1/f(0)]2.

If e did actually have a normal distribution with mean (and median) zero, then 
f(e) = (2ps2)-1/2 exp(-e2/(2s2)) so f(0) = (2ps2)-1/2 and for this special case qk = p/2. If the 
disturbances are normally distributed, then LAD will be asymptotically less efficient by a 
factor of p/2 = 1.573.

The usefulness of the LAD estimator arises precisely in cases in which we cannot assume 
normally distributed disturbances. Then it becomes unclear which is the better estimator. It 
has been found in a long body of research that the advantage of the LAD estimator is most 
likely to appear in small samples and when the distribution of e has thicker tails than the 

DEFINITION 4.1 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally 
distributed, and has an asymptotic covariance matrix that is not larger than the 
asymptotic covariance matrix of any other consistent, asymptotically normally 
 distributed estimator.
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normal—that is, when outlying values of yi are more likely. As the sample size grows larger, 
one can expect the LS estimator to regain its superiority. We will explore this aspect of the 
estimator in a small Monte Carlo study.

Examples 2.6 and 3.4 note an intriguing feature of the fine art market. At least in some 
settings, large paintings sell for more at auction than small ones. Appendix Table F4.1 
contains the sale prices, widths, and heights of 430 Monet paintings. These paintings sold 
at auction for prices ranging from $10,000 to $33 million. A linear regression of the log of the 
price on a constant term, the log of the surface area, and the aspect ratio produces the results 
in the top line of Table 4.3. This is the focal point of our analysis. In order to study the different 
behaviors of the LS and LAD estimators, we will do the following Monte Carlo study: We will 
draw without replacement 100 samples of R observations from the 430. For each of the 100 
samples, we will compute bLS,r and bLAD,r. We then compute the average of the 100 vectors 
and the sample variance of the 100 observations.3 The sampling variability of the 100 sets 
of results corresponds to the notion of “variation in repeated samples.” For this experiment, 
we will do this for R = 10, 50, and 100. The overall sample size is fairly large, so it is 
reasonable to take the full sample results as at least approximately the “true parameters.” 
The standard errors reported for the full sample LAD estimator are computed using 
bootstrapping. Briefly, the procedure is carried out by drawing B—we used B = 100—
samples of n (430) observations with replacement, from the full sample of n observations. 
The estimated variance of the LAD estimator is then obtained by computing the mean 
squared deviation of these B estimates around the mean of the B estimates. This procedure 
is discussed in detail in Section 15.4.

3The sample size R is not a negligible fraction of the population size, 430 for each replication. However, this does 
not call for a finite population correction of the variances in Table 4.3. We are not computing the variance of a 
sample of R observations drawn from a population of 430 paintings. We are computing the variance of a sample of 
R statistics, each computed from a different subsample of the full population. There about 1020 different samples 
of 10 observations we can draw. The number of different samples of 50 or 100 is essentially infinite.

Constant Log Area Aspect Ratio

Full 
Sample Mean

Standard 
Error* Mean

Standard  
Error Mean

Standard  
Error

LS -8.34327 0.67820 1.31638 0.09205 -0.09623 0.15784
LAD -8.22726 0.82480 1.25904 0.13718 0.04195 0.22762

R ∙ 10
LS -10.6218 8.39355 1.65525 1.21002 -0.07655 1.55330

LAD -12.0635 11.1734 1.81531 1.53662 0.18269 2.11369
R ∙ 50

LS -8.57755 1.94898 1.35026 0.27509 -0.08521 0.46600
LAD -8.33638 2.18488 1.31408 0.36047 -0.06011 0.60910

R ∙ 100
LS -8.38235 1.38332 1.32946 0.19682 -0.09378 0.33765

LAD -8.37291 1.52613 1.31028 0.24277 -0.07908 0.47906

* For the full sample, standard errors for LS use (4-18). Standard errors for LAD are based on 100 bootstrap  
replications. For the R = 10, 50, and 100 experiments, standard errors are the sample standard deviations of 
the 100 sets of results from the runs of the experiments.

TABLE 4.3 Estimated Equations for Art Prices
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70 PART I  ✦   The Linear Regression Model

If the assumptions underlying the regression model are correct, we should observe the 
following:

1. Because both estimators are consistent, the averages should resemble the full sample 
results, the more so as R increases.

2. As R increases, the sampling variance of the estimators should decline.
3. We should observe generally that the standard deviations of the LAD estimates are larger 

than the corresponding values for the LS estimator.
4. When R is small, the LAD estimator should compare more favorably to the LS estimator, 

but as R gets larger, the advantage of the LS estimator should become apparent.

A kernel density estimate for the distribution of the least squares residuals appears in 
Figure 4.3. There is a bit of skewness in the distribution, so a main assumption underlying 
our experiment may be violated to some degree. Results of the experiments are shown in 
Table 4.3. The force of the asymptotic results can be seen most clearly in the column for the 
coefficient on log Area. The decline of the standard deviation as R increases is evidence of 
the consistency of both estimators. In each pair of results (LS, LAD), we can also see that the 
estimated standard deviation of the LAD estimator is greater by a factor of about 1.2 to 1.4, 
which is also to be expected. Based on the normal distribution, we would have expected this 
ratio to be 2p/2 = 1.253.

4.4.5  LINEAR PROJECTIONS

Assumptions A1–A6 define the conditional mean function (CMF) in the joint 
distribution of (yi,xi), E[y ∙ x] = x′B, and the conditional distribution of y ∙ x (normal). 
Based on Assumptions A1–A6, we find that least squares is a consistent estimator 
of the slopes of the linear conditional mean under quite general conditions. A 
useful question for modeling is “What is estimated by linear least squares if the 
conditional mean function is not linear?” To consider this, we begin with a more 

FIGURE 4.3  Kernel Density Estimator for Least Squares Residuals.
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general statement of the structural model—this is sometimes labeled the “error 
form” of the model—in which

y = E[y ∙ x] + e = m(x) + e.

We have shown earlier using the law of iterated expectations that E[e ∙ x] = E[e] = 0 
regardless of whether m(x) is linear or not. As a side result to modeling a conditional 
mean function without the linearity assumption, the modeler might use the results of 
linear least squares as an easily estimable, interesting feature of the population.

To examine the idea, we retain only the assumption of well-behaved data on x, A2, 
and A5, and assume, as well, that (yi,xi), i = 1, c, n are a random sample from the 
joint population of (y,x). We leave the marginal distribution of x and the conditional 
distribution of y ∙ x both unspecified, but assume that all variables in (yi, xi) have finite 
means, variances, and covariances. The linear projection of y on x, Proj[y ∙ x], is defined by

y = g0 + x∙G + w = Proj[y ∙ x] + w,

where       g0 = E[y] - E[x]′G
and       G = (Var[x])-1Cov[x,y]. (4-34)

As noted earlier, if E[w ∙ x] = 0, then this would define the CMF, but we have not assumed 
that. It does follow by inserting the expression for g0 in E[y] = g0 + E[x]′G + E[w] that 
E[w] = 0, and by expanding Cov[x,y] that Cov[x,w] = 0. The linear projection is a 
characteristic of the joint distribution of (yi,xi). As we have seen, if the CMF in the joint 
distribution is linear, then the projection will be the conditional mean. But, in the more 
general case, the linear projection will simply be a feature of the joint distribution. Some 
aspects of the linear projection function follow from the specification of the model:

1. Because the linear projection is generally not a structural model—that would 
usually be the CMF—the coefficients in the linear projection will generally not 
have a causal interpretation; indeed, the elements of G will usually not have any 
direct economic interpretation other than as approximations (of uncertain quality) 
to the slopes of the CMF.

2. As we saw in Section 4.2.1, linear least squares regression of y on X (under the 
assumed sampling conditions) always estimates the g0 and G of the projection 
regardless of the form of the conditional mean.

3. The CMF is the minimum mean squared error predictor of y in the joint distribution 
of (y,x). We showed in Section 4.2.2 that the linear projection would be the minimum 
mean squared error linear predictor of y. Because both functions are predicting the 
same thing, it is tempting to infer that the linear projection is a linear approximation 
to the conditional mean function—and the approximation is exact if the conditional 
mean is linear. This approximation aspect of the projection function is a common 
motivation for its use. How effective it is likely to be is obviously dependent on the 
CMF—a linear function is only going to be able to approximate a nonlinear function 
locally, and how accurate that is will depend generally on how much curvature there 
is in the CMF. No generality seems possible; this would be application specific.

4. The interesting features in a structural model are often the partial effects or 
derivatives of the CMF—in the context of a structural model these are generally 
the objects of a search for causal effects. A widely observed empirical regularity that 
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remains to be established with a firm theory is that G in the linear projection often 
produces a good approximation to the average partial effects based on the CMF.

Example 4.4  Linear Projection: A Sampling Experiment
Table F7.1 describes panel data on 7,293 German households observed from 1 to 7 times for 
a total of 27,326 household-year observations. Looking ahead to Section 18.4, we examine a 
model with a nonlinear conditional mean function, a Poisson regression for the number of doctor 
visits by the household head, conditioned on the age of the survey respondent. We carried out 
the following experiment: Using all 27,326 observations, we fit a pooled Poisson regression 
by maximum likelihood in which the conditional mean function is li = exp(b0 + b1Agei). 
The estimated values of (b0,b1) are [0.11384,0.02332]. We take this to be the population; 
f(yi ∙ xi) = Poisson(li). We then used the observed data on age to (1) compute this true li for 
each of the 27,326 observations. (2) We used a random number generator to draw 27,326 
observations on yi from the Poisson population with mean equal to this constructed li. Note 
that the generated data conform exactly to the model with nonlinear conditional mean. The 
true value of the average partial effect is computed from 0E[yi ∙ xi]/0xi = b1li. We computed 
this for the full sample. The true APE is (1/27,326)Σ ib1li = 0.07384. For the last step, we 
randomly sampled 1,000 observations from the population and fit the Poisson regression. The 
estimated coefficient was b1 = 0.02334. The estimated average partial effect based on the 
MLEs is 0.07141. Finally, we linearly regressed the random draws yi on Agei using the 1,000 
values. The estimated slope is 0.07163—nearly identical to the estimated average partial 
effect from the CMF. The estimated CMF and the linear projection are shown in Figure 4.4. The 
closest correspondence of the two functions occurs in the center of the data—the average 
age is 43 years. Several runs of the experiment (samples of 1,000 observations) produced 
the same result (not surprisingly).

As noted earlier, no firm theoretical result links the CMF to the linear projection save for 
the case when they are equal. As suggested by Figure 4.4, how good an approximation it 
provides will depend on the curvature of the CMF, and is an empirical question. For the present 
example, the fit is excellent in the middle of the data. Likewise, it is not possible to tie the 
slopes of the CMF at any particular point to the coefficients of the linear projection. The widely 
observed empirical regularity is that the linear projection can deliver good approximations 
to average partial effects in models with nonlinear CMFs. This is the underlying motivation 

FIGURE 4.4  Nonlinear Conditional Mean Function and Linear Projection.
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for recent applications of “linear probability models”—that is, for using linear least squares 
to fit a familiar nonlinear model. See Angrist and Pischke (2010) and Section 17.3 for further 
examination.

4.5 ROBUST ESTIMATION AND INFERENCE

Table 4.1 lists six assumptions that define the “Classical Linear Regression Model.” 
A1–A3 define the linear regression framework. A5 suggests a degree of flexibility—
the model is broad enough to encompass a wide variety of data generating processes. 
Assumptions A4 and A6, however, specifically narrow the situations in which the 
model applies. In particular, A4 seems to preclude the approach developed so far if 
the disturbances are heteroscedastic or autocorrelated, while A6 limits the stochastic 
specification to normally distributed disturbances. In fact, we have established all 
of the finite sample properties save for normality of b ∙ X, and all of the asymptotic 
properties without actually using Assumption A6. As such, by these results, the least 
squares estimator is “robust” to violations of the normality assumption. In particular, it 
appears to be possible to establish the properties we need for least squares without any 
specific assumption about the distribution of e (again, so long as the other assumptions 
are met).

An estimator of a model is said to be “robust” if it is insensitive to departures from 
the base assumptions of the model. In practical econometric terms, robust estimators 
retain their desirable properties in spite of violations of some of the assumptions of 
the model that motivate the estimator. We have seen, for example, that the unbiased 
least squares estimator is robust to a departure from the normality assumption, A6. 
In fact, the unbiasedness of least squares is also robust to violations of assumption 
A4. But, as regards unbiasedness, it is certainly not robust to violations of A3. Also, 
whether consistency for least squares can be established without A4 remains to be 
seen. Robustness is usually defined with respect to specific violations of the model 
assumptions. Estimators are not globally “robust.” Robustness is not necessarily a 
precisely defined feature of an estimator, however. For example, the LAD estimator 
examined in Example 4.4 is often viewed as a more robust estimator than least squares, 
at least in small samples, because of its numerical insensitivity to the presence of outlying 
observations in the data.

For our practical purposes, we will take robustness to be a broad characterization of 
the asymptotic properties of certain estimators and procedures. We will specifically focus 
on and distinguish between robust estimation and robust inference. A robust estimator, 
in most settings, will be a consistent estimator that remains consistent in spite of 
violations of assumptions used to motivate it. To continue the example, with some fairly 
inocuous assumptions about the alternative specification, the least squares estimator 
will be robust to violations of the homoscedasticity assumption Var[ei ∙ xi] = s2. In most 
applications, inference procedures are robust when they are based on estimators of 
asymptotic variances that are appropriate even when assumptions are violated.

Applications of econometrics rely heavily on robust estimation and inference. The 
development of robust methods has greatly simplified the development of models, as we 
shall see, by obviating assumptions that would otherwise limit their generality. We will 
develop a variety of robust estimators and procedures as we proceed.
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4.5.1  CONSISTENCY OF THE LEAST SQUARES ESTIMATOR

In the context of A1–A6, we established consistency of b by invoking two results. 
Assumption A2 is an assumption about existence. Without A2, discussion of consistency 
is moot, because if X=X/n does not have full rank, b does not exist. We also relied on 
A4. The central result is plim X=E/n = 0, which we could establish if E[xiei] = 0. The 
remaining element would be a law of large numbers by which the sample mean would 
converge to its population counterpart. Collecting terms, it turns out that normality, 
homoscedasticity and nonautocorrelation are not needed for consistency of b, so, in 
turn, consistency of the least squares estimator is robust to violations of these three 
assumptions. Broadly, random sampling is sufficient.

4.5.2  A HETEROSCEDASTICITY ROBUST COVARIANCE MATRIX FOR LEAST SQUARES

The derivations in Sections 4.4.2 of Asy.Var[b] = (s2/n)Q-1 relied specifically on 
Assumption A4. In the analysis of a cross section, in which observations are uncorrelated, 
the issue will be the implications of violations of the homoscedasticity assumption. (We 
will consider the heteroscedasticity case here. Autocorrelation in time-series data is 
examined in Section 20.5.2.) For the most general case, suppose Var[ei ∙ xi] = si

2, with 
variation assumed to be over xi. In this case,

b = B + (X=X)-1a
i

 xiei.

Then,

 Var[b ∙ X] = (X=X)-1Ja
i

 si
2xix′i R (X=X)-1. (4-35)

Based on this finite sample result, the asymptotic variance will be

 Asy.Var[b] =
1
n

 Q-1 cplim
1
n a

i
 si

2xix′i dQ-1 =
1
n

 Q-1Q*Q-1. (4-36)

Two points to consider are (1) is s2(X=X)-1 likely to be a valid estimator of Asy.Var[b] 
in this case? and, if not, (2) is there a strategy available that is “robust” to unspecified 
heteroscedasticity? The first point is pursued in detail in Section 9.3. The answer 
to the second is yes. What is required is a feasible estimator of Q*. White’s (1980) 
heteroscedasticity robust estimator of Q* is

Whet =
1
n a

i
 ei

2xix′i ,

where ei is the least squares residual, yi - xi′b. With Whet in hand, an estimator of 
Asy.Var[b] that is robust to unspecified heteroscedasticity is

 Est.Asy.Var[b] = n(X=X)-1 Whet(X=X)-1. (4-37)

The implication to this point will be that we can discard the homoscedasticity assumption 
in A4 and recover appropriate standard errors by using (4-37) to estimate the asymptotic 
standard errors for the coefficients.
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4.5.3  ROBUSTNESS TO CLUSTERING

Settings in which the sample data consist of groups of related observations are increasingly 
common. Panel data applications such as that in Example 4.5 and in Chapter 11 are an 
obvious case. Samples of firms grouped by industries, students in schools, home prices 
in neighborhoods, and so on are other examples. In this application, we suppose that the 
sample consists of C groups, or “clusters” of observations, labeled c = 1,...,C. There are 
Nc observations in cluster c where Nc is one or more. The n observations in the entire 
sample therefore comprise n = a cNc observations. The regression model is

yi,c = xi,c′    B + ei,c.

The observations within a cluster are grouped by the correlation across observations 
within the group. Consider, for example, student test scores where students are grouped 
by their class. The common teacher will induce a cross-student correlation of ei,c. An 
intuitively appealing formulation of such teacher effects would be the “random effects” 
formulation,
 yi,c = xi,c′ B +  wc + ui,c. (4-38)

By this formulation, the common within cluster effect (e.g., the common teacher effect) 
would induce the same correlation across all members of the group. This random effects 
specification is considered in detail in Chapter 11. For present purposes, the assumption 
is stronger than necessary—note that in (4-38), assuming ui,c is independent across 
observations, Cov(ei,c,ej,c) = sw

2 . At this point, we prefer to allow the correlation to be 
unspecified, and possibly vary for different pairs of observations.

The least squares estimator is

b = B + ¢aC
c = 1 X=

cXc≤-1JaC
c = 1¢aN

i= 1 xi,cei,c≤R = B + ¢X=X≤-1JaC
c = 1¢  X=

cEc≤ R ,

where Xc is the Nc * K matrix of exogenous variables for cluster c and Ec is the Nc 
disturbances for the group. Assuming that the clusters are independent,

 Var[b ∙ X] = ¢X=X≤-1JaC
c = 1 Xc𝛀cX

=
c R ¢X=X≤-1

. (4-39)

Like si
2 before, 𝛀c is not meant to suggest a particular set of population parameters. 

Rather, 𝛀c represents the possibly unstructured correlations allowed among the Nc 
disturbances in cluster c. The construction is essentially the same as the White estimator, 
though 𝛀c is the matrix of variances and covariances for the full vector ec. (It would be 
identical to the White estimator if each cluster contained one observation.) Taking the 
same approach as before, we obtain the asymptotic variance

 Asy.Var[b] =
1
C

 Q-1Jplim 
1
C aC

c = 1Xc𝛀cX
=
c dQ-1.4  (4-40)

4Since the observations in a cluster are not assumed to be independent, the number of observations in the sample 
is no longer n. Logically, the sample would now consist of C multivariate observations. In order to employ the 
asymptotic theory used to obtain Asy.Var[b], we are implicitly assuming that C is large while Nc is relatively small, 
and asymptotic results would relate to increasing C, not n. In practical applications, the number of clusters is often 
rather small, and the group sizes relatively large. We will revisit these complications in Section 11.3.3.
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76 PART I  ✦   The Linear Regression Model

A feasible estimator of the bracketed matrix based on the least squares residuals is

 Wcluster =
1
C aC

c = 1¢X∙
cecb ae=

cXc≤ =
1
C aC

c = 1¢ aNc

i= 1xiceicb ¢ aNc

i= 1 xiceic≤=. (4-41)

Then,
 Est.Asy.Var[b] =  C(X=X)-1 Wcluster(X=X)-1. (4-42)

[A refinement intended to accommodate a possible downward bias induced by a small 
number of clusters is to multiply Wcluster by C/(C - 1) (SAS) or by [C/(C - 1)] *
[(n - 1)/(n - K)] (Stata, NLOGIT).]

Example 4.5  Robust Inference About the Art Market
The Monet paintings examined in Example 4.3 were sold at auction over 1989–2006. Our 
model thus far is

lnPriceit = b1 + b2lnAreait + b3AspectRatioit + eit

The subscript “it” uniquely identifies the painting and when it was sold. Prices in open 
outcry auctions reflect (at least) three elements, the common (public), observable features 
of the item, the public unobserved (by the econometrician) elements of the asset, and the 
private unobservable preferences of the winning bidder. For example, it will turn out (in a later 
example) that whether the painting is signed or not has a large and significant influence on 
the price. For now, we assume (for sake of the example), that we do not observe whether the 
painting is signed or not, though, of course, the winning bidders do observe this. It does seem 
reasonable to suggest that the presence of a signature is uncorrelated with the two attributes 
we do observe, area and aspect ratio. We respecify the regression as

lnPriceit = b1 + b2lnAreait + b3AspectRatioit + wit + uit,

where wit represents the intrinsic, unobserved features of the painting and uit represents the 
unobserved preferences of the buyer. In fact, the sample of 430 sales involves 376 unique 
paintings. Several of the sales are repeat sales of the same painting. The numbers of sales 
per painting were one, 333; two, 34; three, 7; and four, 2. Figure 4.5 shows the configuration 
of the sample. For those paintings that sold more than once, the terms wit do relate to the 
same i, and, moreover, would naturally be correlated. [They needn’t be identical as in (4-38), 
however. The valuation of attributes of paintings or other assets sold at auction could vary 
over time.]

FIGURE 4.5  Repeat Sales of Monet Paintings.
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The least squares estimates and three sets of estimated standard errors are shown 
in Table 4.4. Even with only a small amount of clustering, the correction produces a 
tangible adjustment of the standard errors. Perhaps surprisingly, accommodating possible 
heteroscedasticity produces a more pronounced effect than the cluster correction. Note, 
finally, in contrast to common expectations, the robust covariance matrix does not always 
have larger standard errors. The standard errors do increase slightly in this example, 
however.

4.5.4  BOOTSTRAPPED STANDARD ERRORS WITH CLUSTERED DATA

The sampling framework that underlies the treatment of clustering in the preceding 
section assumes that the sample consists of a reasonably large number of clusters, drawn 
randomly from a very large population of clusters. Within each cluster reside a number 
of observations generated by the linear regression model. Thus,

yi,c = x′i,c  B + ei,c,

where within each cluster, E[ei,c,ej,c] may be nonzero—observations may be freely 
correlated. Clusters are assumed to be independent. Each cluster consists of Nc 
observations, (yc,Xc,Ec) and the cluster is the unit of observation. For example, we 
might be examining student test scores in a state where students are grouped by 
classroom, and there are potentially thousands of classrooms in the state. The sample 
consists of a sample of classrooms. (Higher levels of grouping, such as classrooms in 
a school, and schools in districts, would require some extensions. We will consider 
this possibility later in Chapter 11.) The essential feature of the data is the likely 
correlation across observations in the group. Another natural candidate for this type 
of process would be a panel data set such as the labor market data examined in 
Example 4.6, where a sample of 595 individuals is each observed in 7 consecutive 
years. The common feature is the large number of relatively small or moderately sized 
clusters in the sample.

The method of estimating a robust asymptotic covariance matrix for the least 
squares estimator that was introduced in the preceding section involves a method of 
using the data and the least squares residuals to build a covariance matrix. Bootstrapping 
is another method that is likely to be effective under these assumed sampling conditions. 
(We emphasize, if the number of clusters is quite small and/or group sizes are very large 
relative to the number of clusters, then bootstrapping, like the previous method, is likely 
not to be effective.5 Bootstrapping was introduced in Example 4.3 where we used the 

5See, for example, Wooldridge (2010, Chapter 20).

Estimated LS Standard Heteroscedasticity Cluster Robust

Variable Coefficient Error Robust Std.Error Std.Error

Constant -8.34237 0.67820 0.73342 0.75873
ln Area 1.31638 0.09205 0.10598 0.10932
Aspect Ratio -0.09623 0.15784 0.16706 0.17776

TABLE 4.4 Robust Standard Errors
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method to estimate an asymptotic covariance matrix for the LAD estimator. The basic 
steps in the methodology are:

1. For R repetitions, draw a random sample of Nc observations from the full sample of 
Nc observations with replacement. Estimate the parameters of the regression model 
with each of the R constructed samples.

2. The estimator of the asymptotic covariance matrix is the sample variance of the R 
sets of estimated coefficients.

Keeping in mind that in the current case, the cluster is the unit of observation, we use a 
block bootstrap. In the example below, the block is the 7 observations for individual i, so 
each observation in the bootstrap replication is a block of 7 observations. Example 4.6 
below illustrates the use of block bootstrap.

Example 4.6  Clustering and Block Bootstrapping
Cornwell and Rupert (1988) examined the returns to schooling in a panel data set of 595 heads 
of households observed in seven years, 1976–1982. The sample data (Appendix Table F8.1) 
are drawn from years 1976 to 1982 from the Non-Survey of Economic Opportunity from the 
Panel Study of Income Dynamics. A slightly modified version of their regression model is

 ln Wageit = b1 + b2Expit + b3Expit
2 + b4Wksit + b5Occit + b6Indit + b7Southit

+  b8SMSAit + b9MSit + b10Unionit + b11Edi + b12Femi + b13Blki + eit.

The variables in the model are as follows:

Exp =  years of full time work experience,
Wks =  weeks worked,
Occ = 1 if blue-collar occupation, 0 if not,
Ind = 1 if the individual works in a manufacturing industry, 0 if not,
South = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if not,
MS = 1 if the individual is married, 0 if not,
Union = 1 if the individual wage is set by a union contract, 0 if not,
Ed =  years of education as of 1976,
Fem = 1 if the individual is female, 0 if not,
Blk = 1 if the individual is black.

See Appendix Table F8.1 for the data source.
Table 4.5 presents the least squares and three sets of asymptotic standard errors. The first 

is the conventional results based on s2(X=X)-1. Compared to the other estimates, it appears 
that the uncorrected standard errors substantially understate the variability of the least 
squares estimator. The clustered standard errors are computed using (4-42). The values are 
50%–100% larger. The bootstrapped standard errors are quite similar to the robust estimates, 
as would be expected.

4.6 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b: THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be a 
set of J continuous, linear, or nonlinear and continuously differentiable functions of the 
least squares estimator, and let

C(b) =
0f(b)

0b∙
,
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where C is the J * K matrix whose jth row is the vector of derivatives of the jth function 
with respect to b∙. By the Slutsky theorem (D.12),

plim f(b) = f(B)

and

plim C(b) =
0f(B)

0B′
= 𝚪.

Using a linear Taylor series approach, we expand this set of functions in the approximation

f(b) = f(B) + 𝚪 * (b - B) + higher@order terms.

The higher-order terms become negligible in large samples if plim b = B. Then, the 
asymptotic distribution of the function on the left-hand side is the same as that on the 
right. The mean of the asymptotic distribution is plim f(b) = f(B), and the asymptotic 
covariance matrix is {𝚪[Asy.Var(b - B)]𝚪∙}, which gives us the following theorem:

Least Squares Standard Clustered Bootstrapped White Hetero.
Variable Estimate Error Std.Error Std.Error Robust Std.Error

Constant 5.25112 0.07129 0.12355 0.11171 0.07435
Exp 0.00401 0.00216 0.00408 0.00434 0.00216
ExpSq - 0.00067 0.00005 0.00009 0.00010 0.00005
Wks 0.00422 0.00108 0.00154 0.00164 0.00114
Occ - 0.14001 0.01466 0.02724 0.02555 0.01494
Ind 0.04679 0.01179 0.02366 0.02153 0.01199
South - 0.05564 0.01253 0.02616 0.02414 0.01274
SMSA 0.15167 0.01207 0.02410 0.02323 0.01208
MS 0.04845 0.02057 0.04094 0.03749 0.02049
Union 0.09263 0.01280 0.02367 0.02553 0.01233
Ed 0.05670 0.00261 0.00556 0.00483 0.00273
Fem - 0.36779 0.02510 0.04557 0.04460 0.02310
Blk - 0.16694 0.02204 0.04433 0.05221 0.02075

TABLE 4.5 Clustered, Robust, and Bootstrapped Standard Errors

THEOREM 4.4 Asymptotic Distribution of a Function of b
If f(b) is a set of continuous and continuously differentiable functions of b such that 
f(plim b) exists and 𝚪 = 0f(B)/0B′ and if Theorem 4.4 holds, then

 f(b) ∙
a

NJf(B), 𝚪¢Asy.Var[b]≤𝚪∙R . (4-43)

In practice, the estimator of the asymptotic covariance matrix would be

Est.Asy.Var[f(b)] = C{Est. Asy.Var[b]}C∙.

M04_GREE1366_08_SE_C04.indd   79 2/24/17   12:29 PM



80 PART I  ✦   The Linear Regression Model

If any of the functions are nonlinear, then the property of unbiasedness that holds 
for b may not carry over to f(b). Nonetheless, f(b) is a consistent estimator of f(B), and 
the asymptotic covariance matrix is readily available.

Example 4.7  Nonlinear Functions of Parameters: The Delta Method
A dynamic version of the demand for gasoline model  in Example 2.3 would be used to 
separate the short- and long-term impacts of changes in income and prices. The model 
would be

 ln(G/Pop)t = b1 + b2 In PG,t + b3 In(Income/Pop)t + b4 In Pnc,t

 + b5 In Puc,t + g ln(G/Pop)t - 1 + et,

where Pnc and Puc are price indexes for new and used cars. In this model, the short-run 
price and income elasticities are b2 and b3. The long-run elasticities are f2 = b2/(1 - g) 
and f3 = b3/(1 - g), respectively. To estimate the long-run elasticities, we will estimate 
the parameters by least squares and then compute these two nonlinear functions of the 
estimates. We can use the delta method to estimate the standard errors.

Least squares estimates of the model parameters with standard errors and t ratios are given 
in Table 4.6. (Because these are aggregate time-series data, we have not computed a robust 
covariance matrix.) The estimated short-run elasticities are the estimates given in the table. The two 
estimated long-run elasticities are f2 = b2/(1 - c) = -0.069532/(1 - 0.830971) = -0.411358 
and f3 = 0.164047/(1 - 0.830971) = 0.970522. To compute the estimates of the standard 
errors, we need the estimated partial derivatives of these functions with respect to the six 
parameters in the model:

𝚪n ′2 = 0f2(Bn )/0Bn ′ = [0,1/(1 - Gn ), 0, 0, 0, Bn2/(1 - Gn )2] = [0, 5.91613, 0, 0, 0, - 2.43365],

𝚪n ′3 = 0f3(Bn )/0Bn ′ = [0, 0,1/(1 - Gn ), 0, 0, Bn3/(1 - Gn )2] = [0, 0, 5.91613, 0, 0, 5.74174].

Using (4-43), we can now compute the estimates of the asymptotic variances for the two 
estimated long-run elasticities by computing g=

2[s2(X=X)-1]g2 and g=
3[s2(X=X)-1]g3. The results 

are 0.023194 and 0.0263692, respectively. The two asymptotic standard errors are the square 
roots, 0.152296 and 0.162386.

Sum of squared residuals: 0.0127352
Standard error of the regression: 0.0168227
R2 based on 51 observations 0.9951081

Variable Coefficient Standard Error t Ratio

Constant -3.123195 0.99583 -3.136
ln PG -0.069532 0.01473 -4.720
ln Income / Pop 0.164047 0.05503 2.981
ln Pnc -0.178395 0.05517 -3.233
ln Puc 0.127009 0.03577 3.551
last period ln G / Pop 0.830971 0.04576 18.158

TABLE 4.6 Regression Results for a Demand Equation
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Estimated Covariance Matrix for b (e -n ∙ times 10∙n)

Constant ln PG ln (Income/Pop) ln Pnc ln Puc ln (G/Pop)t–1

0. 99168
–  0. 0012088 0.00021705
–  0. 052602 1.62165e–5 0.0030279

0. 0051016 -0.00021705 -0.00024708 0.0030440
0. 0091672 -4.0551e-5 -0.00060624 -0.0016782 0.0012795
0. 043915 -0.0001109 -0.0021881 0.00068116 8.57001e–5 0.0020943

4.7 INTERVAL ESTIMATION

The objective of interval estimation is to present the best estimate of a parameter with 
an explicit expression of the uncertainty attached to that estimate. A general approach 
for estimation of a parameter u would be

 un { sampling variability. (4-44)

(We are assuming that the interval of interest would be symmetric around un.) Following 
the logic that the range of the sampling variability should convey the degree of (un)
certainty, we consider the logical extremes. We can be absolutely (100%) certain that 
the true value of the parameter we are estimating lies in the range un { ∞ . Of course, 
this is not particularly informative. At the other extreme, we should place no certainty 
(0.0%) on the range un { 0. The probability that our estimate precisely hits the true 
parameter value should be considered zero. The point is to choose a value of a:0.05 
or 0.01 is conventional—such that we can attach the desired confidence (probability), 
100(1 - a)%, to the interval in (4-44). We consider how to find that range and then 
apply the procedure to three familiar problems, calculating an interval for one of the 
regression parameters, estimating a function of the parameters, and predicting the value 
of the dependent variable in the regression using a specific setting of the independent 
variables. For this latter purpose, we will rely on the asymptotic normality of the 
estimator.

4.7.1  FORMING A CONFIDENCE INTERVAL FOR A COEFFICIENT

If the disturbances are normally distributed, then for any particular element of b,

bk ∙ N[bk,s2Skk],

where Skk denotes the kth diagonal element of (X′X)-1. By standardizing the variable, 
we find

 zk =
bk - bk2s2Skk

 (4-45)

has a standard normal distribution. Note that zk, which is a function of bk, bk, s2, and Skk, 
nonetheless has a distribution that involves none of the model parameters or the data. Using 
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the conventional 95% confidence level, we know that Prob[-1.96 … zk … 1.96] = 0.95. 
By a simple manipulation, we find that

 Prob[bk - 1.962s2Skk … bk … bk + 1.962s2Skk] = 0.95. (4-46)

This states the probability that the random interval, [bk {  the sampling variability], 
contains bk, not the probability that bk lies in the specified interval. If we wish to use 
some other level of confidence, not 95%, then the 1.96 in (4-46) is replaced by the 
appropriate z(1 - a/2). (We are using the notation z(1 - a/2) to denote the value of z such that 
for the standard normal variable z, Prob[z … z(1 - a/2)] = 1 - a/2. Thus, z0.975 = 1.96, 
which corresponds to a = 0.05.)

We would have the desired confidence interval in (4-46), save for the complication 
that s2 is not known, so the interval is not operational. Using s2 from the regression 
instead, the ratio

 tk =
bk - bk2s2Skk

 (4-47)

has a t distribution with (n - K) degrees of freedom.6 We can use tk to test hypotheses 
or form confidence intervals about the individual elements of b. A confidence interval 
for bk would be formed using

Prob Jbk - t (1 - a/ 2 ),[n - K]2s 2Skk … bk … bk + t (1 -a/ 2 ),[n - K]2s 2SkkR = 1 - a, (4-48)

where t(1 - a/2),[n - K] is the appropriate critical value from the t distribution. The distri-
bution of the pivotal statistic depends on the sample size through (n - K), but, once 
again, not on the parameters or the data.

If the disturbances are not normally distributed, then the theory for the t distribution 
in (4-48) does not apply. But, the large sample results in Section 4.4 provide an alternative 
approach. Based on the development that we used to obtain Theorem 4.3 and (4-33), the 
limiting distribution of the statistic

zk =
2n(bk - bk)2s2Qkk

is standard normal, where Q = [plim(X′X/n)]-1 and Qkk is the kth diagonal element 
of Q. Based on the Slutsky theorem (D.16), we may replace s2 with a consistent 
estimator, s2, and obtain a statistic with the same limiting distribution. We estimate Q 
with (X′X/n)-1. This gives us precisely (4-47), which states that under the assumptions 
in Section 4.4, the “t” statistic in (4-47) converges to standard normal even if the 
disturbances are not normally distributed. The implication would be that to employ the 
asymptotic distribution of b, we should use (4-48) to compute the confidence interval 
but use the critical values from the standard normal table (e.g., 1.96) rather than from the 
t distribution. In practical terms, if the degrees of freedom in (4-48) are moderately large, 
say greater than 100, then the t distribution will be indistinguishable from the standard 
normal, and this large sample result would apply in any event. For smaller sample 
sizes, however, in the interest of conservatism, one might be advised to use the critical 

6See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared 
variable divided by its degrees of freedom.
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values from the t table rather the standard normal, even in the absence of the normality 
assumption. In the application in Example 4.8, based on a sample of 52 observations, we 
form a confidence interval for the income elasticity of demand using the critical value 
of 2.012 from the t table with 47 degrees of freedom. If we chose to base the interval on 
the asymptotic normal distribution, rather than the standard normal, we would use the 
95% critical value of 1.96. One might think this is a bit optimistic, however, and retain 
the value 2.012, again, in the interest of conservatism.

The preceding analysis starts from Assumption A6, normally distributed disturbance, 
then shows how the procedure is adjusted to rely on the asymptotic properties of 
the estimator rather than the narrow possibly unwarranted assumption of normally 
distributed disturbances. It continues to rely on the homoscedasticity assumption in A4. 
(For the present, we are assuming away possible autocorrelation.) Section 4.5 showed 
how the estimator of the asymptotic covariance matrix can be refined to allow for 
unspecified heteroscedasticity or cluster effects. The final adjustment of the confidence 
intervals would be to replace (4-48) with

 Prob[bk - z(1 - a/2)2Est.Asy.Var[bk ] … bk … bk

 + z(1 - a/2)2Est.Asy.Var[bk]] = 1 - a, (4-49)

Example 4.8   Confidence Interval for the Income Elasticity of Demand 
for Gasoline

Using the gasoline market data discussed in Examples 4.2 and 4.4, we estimated the following 
demand equation using the 52 observations:

ln(G/Pop) = b1 + b2 ln PG + b3 ln(Income/Pop) + b4 ln Pnc + b5 ln Puc + e.

Least squares estimates of the model parameters with standard errors and t ratios are given in 
Table 4.7. To form a confidence interval for the income elasticity, we need the critical value from 
the t distribution with n - K = 52 - 5 = 47 degrees of freedom. The 95% critical value is 2.012. 
Therefore a 95% confidence interval for b3 is 1.095874 { 2.012 (0.07771) = [0.9395,1.2522].

4.7.2  CONFIDENCE INTERVAL FOR A LINEAR COMBINATION OF COEFFICIENTS: 
THE OAXACA DECOMPOSITION

In Example 4.8, we showed how to form a confidence interval for one of the elements 
of B. By extending those results, we can show how to form a confidence interval for a 

Sum of squared residuals: 0.120871
Standard error of the regression: 0.050712
R2 based on 52 observations 0.958443

Variable Coefficient Standard Error t Ratio

Constant -21.21109 0.75322 -28.160
ln PG -0.02121 0.04377 -0.485
ln Income/Pop 1.09587 0.07771 14.102
ln Pnc -0.37361 0.15707 -2.379
ln Puc 0.02003 0.10330 0.194

TABLE 4.7 Regression Results for a Demand Equation
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84 PART I  ✦   The Linear Regression Model

linear function of the parameters. Oaxaca’s (1973) and Blinder’s (1973) decomposition 
provides a frequently used application.7

Let w denote a K * 1 vector of known constants. Then, the linear combination 
c = w′b is asymptotically normally distributed with mean g = w′B and variance 
sc

2 = w′[Asy.Var[b]]w, which we estimate with sc
2 = w′[Est.Asy.Var[b]]w. With these 

in hand, we can use the earlier results to form a confidence interval for g :

 Prob[c - z(1 - a/2)sc … g … c + z(1 - a/2)sc] = 1 - a. (4-50)

This general result can be used, for example, for the sum of the coefficients or for a 
difference.

Consider, then, Oaxaca’s (1973) application. In a study of labor supply, separate 
wage regressions are fit for samples of nm men and nf  women. The underlying regression 
models are

ln wagem,i = x′m,iBm + em,i, i = 1, c, nm

and

ln wagef,j = xf, j′ Bf + ef,j, j = 1, c, nf.

The regressor vectors include sociodemographic variables, such as age, and human 
capital variables, such as education and experience. We are interested in comparing these 
two regressions, particularly to see if they suggest wage discrimination. Oaxaca suggested 
a comparison of the regression functions. For any two vectors of characteristics,

 E[ln wagem,i ∙ xm,i] - E[ln wagef,j ∙ xf,i] = xm,i
= Bm - xf, j

= Bf

 = xm,i
= Bm - xm,i

= Bf + xm,i
= Bf - xf, j

= Bf

 = xm, i
= (Bm - Bf) + (xm, i - xf,i)′Bf.

The second term in this decomposition is identified with differences in human capital 
that would explain wage differences naturally, assuming that labor markets respond to 
these differences in ways that we would expect. The first term shows the differential in 
log wages that is attributable to differences unexplainable by human capital; holding 
these factors constant at xm makes the first term attributable to other factors. Oaxaca 
suggested that this decomposition be computed at the means of the two regressor 
vectors, xm and xf, and the least squares coefficient vectors, bm and bf. If the regressions 
contain constant terms, then this process will be equivalent to analyzing ln ym - ln yf.

We are interested in forming a confidence interval for the first term, which will 
require two applications of our result. We will treat the two vectors of sample means as 
known vectors. Assuming that we have two independent sets of observations, our two 
estimators, bm and bf, are independent with means Bm and Bf  and estimated asymptotic 
covariance matrices Est.Asy.Var[bm] and Est.Asy.Var[bf]. The covariance matrix of the 
difference is the sum of these two matrices. We are forming a confidence interval for 
xm
=  d where d = bm - bf. The estimated covariance matrix is

 Est.Asy.Var[d] = Est.Asy.Var[bm] + Est.Asy.Var[bf]. (4-51)

Now we can apply the result above. We can also form a confidence interval for the 
second term; just define w = xm - xf  and apply the earlier result to w′bf.

7See Bourgignon et al. (2002) for an extensive application.
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Example 4.9  Oaxaca Decomposition of Home Sale Prices
The town of Shaker Heights, Ohio, a suburb of Cleveland, developed in the twentieth century 
as a patchwork of neighborhoods associated with neighborhood-based school districts. 
Responding to changes in the demographic composition of the city, in 1987, Shaker Heights 
redistricted the neighborhoods. Some houses in some neighborhoods remained in the same 
school district while others in the same neighborhood were removed to other school districts. 
Bogart and Cromwell (2000) examined how this abrupt policy change affected home values 
in Shaker Heights by studying sale prices of houses before and after the change. Several 
econometric approaches were used.

•	 Difference in Differences Regression: Houses that did not change districts constituted 
a control group while those that did change constitute a treatment group. Sales take place 
both before and after the treatment date, 1987. A hedonic regression of home sale prices 
on attributes and the treatment and policy dummy variables reveals the causal effect of 
the policy change. (We will examine this method in Chapter 6.)

•	 Repeat Sales: Some homes were sold more than once. For those that sold both before 
and after the redistricting, a regression of the form

lnPricei1 - lnPricei0 = time effects + school effects + ∆redistricted.

 The advantage of the first difference regression is that it effectively controls for and 
eliminates the characteristics of the house, and leaves only the persistent school effects 
and the effect of the policy change.

•	 Oaxaca Decomposition: Two hedonic regressions based on house characteristics are fit for 
different parts of neighborhoods where there are both houses that are in the neighborhood 
school areas and houses that are districted to other schools. The decomposition approach 
described above is applied to the two groups. The differences in the means of the sale prices 
are decomposed into a component that can be explained by differences in the house attributes 
and a residual effect that is suggested to be related to the benefit of having a neighborhood 
school. Figure 4.6 below shows the authors’ main results for this part of the analysis.8

8Bogart and Cromwell (2000, p. 298).

FIGURE 4.6  Results of Oaxaca Decomposition.

TABLE 6
Within Neighborhood Estimates of Neighborhood Schools Effect, Lomond Neighborhood 
(1987–1994)

Difference in mean house value
Percent of difference due to district change
Effect of district change on mean house value 
(decrease)
Dummy variable estimate of effect of district 
change
Number of observations (662 total sales)

$6,545
52.9%–59.1%
$3462–$3868
$3779
476—same district
186—change district

Note: Percent of difference due to district change equals 100% minus the percent explained by 
differences in observable characteristics. Included characteristics are heavy traffic, ln(frontage), 
ln(living area), ln(lot size), ln(age of house), average room size, plumbing fixtures, attached garage, 
finished attic, construction grade AA/A+ , construction grade A, construction grade B or C or D, 
bad or fair condition, excellent condition, and a set of year dummies. Regressions estimated using 
data from 1987 to 1994. Complete regression results available on request.
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86 PART I  ✦   The Linear Regression Model

4.8 PREDICTION AND FORECASTING

After the estimation of the model parameters, a common use of regression modeling is 
for prediction of the dependent variable. We make a distinction between prediction and 
forecasting most easily based on the difference between cross section and time-series 
modeling. Prediction (which would apply to either case) involves using the regression 
model to compute fitted (predicted) values of the dependent variable, either within the 
sample or for observations outside the sample. The same set of results will apply to cross 
sections, panels, and time series. We consider these methods first. Forecasting, while largely 
the same exercise, explicitly gives a role to time and often involves lagged dependent 
variables and disturbances that are correlated with their past values. This exercise usually 
involves predicting future outcomes. An important difference between predicting and 
forecasting (as defined here) is that for predicting, we are usually examining a scenario 
of our own design. Thus, in the example below in which we are predicting the prices of 
Monet paintings, we might be interested in predicting the price of a hypothetical painting 
of a certain size and aspect ratio, or one that actually exists in the sample. In the time-
series context, we will often try to forecast an event such as real investment next year, 
not based on a hypothetical economy but based on our best estimate of what economic 
conditions will be next year. We will use the term ex post prediction (or ex post forecast) 
for the cases in which the data used in the regression equation to make the prediction are 
either observed or constructed experimentally by the analyst. This would be the first case 
considered here. An ex ante forecast (in the time-series context) will be one that requires 
the analyst to forecast the independent variables first before it is possible to forecast the 
dependent variable. In an exercise for this chapter, real investment is forecasted using 
a regression model that contains real GDP and the consumer price index. In order to 
forecast real investment, we must first forecast real GDP and the price index. Ex ante 
forecasting is considered briefly here and again in Chapter 20.

4.8.1  PREDICTION INTERVALS

Suppose that we wish to predict the value of y0 associated with a regressor vector x0. 
The actual value would be

y0 = x0′B + e0.

It follows from the Gauss–Markov theorem that

 yn0 = x0′b (4-52)

is the minimum variance linear unbiased estimator of E[y0 ∙ x0] = x0′B. The prediction 
error is

e0 = yn0 - y0 = (b - B)′x0 - e0.

The prediction variance of this estimator based on (4-15) is

 Var[e0 ∙ X, x0] = s2 + Var[(b - B)′x0 ∙ X, x0] = s2 + x0′[s2(X′X)-1]x0. (4-53)

If the regression contains a constant term, then an equivalent expression is

 Var[e0 ∙ X, x0] = s2 c 1 +
1
n

+ a
K - 1

j= 1
, a
K - 1

k = 1
(xj

0 - xj)(xk
0 - xk)(Z′M0Z)jk d , (4-54)
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where Z is the K - 1 columns of X not including the constant, Z′M0Z is the matrix 
of sums of squares and products for the columns of X in deviations from their 
means [see (3-21)], and the “jk” superscript indicates the jk element of the inverse of 
the matrix. This result suggests that the width of a confidence interval (i.e., a prediction 
interval) depends on the distance of the elements of x0 from the center of the data. 
Intuitively, this idea makes sense; the farther the forecasted point is from the center of 
our experience, the greater is the degree of uncertainty. Figure 4.7 shows the effect for 
the bivariate case. Note that the prediction variance is composed of three parts. The 
second and third become progressively smaller as we accumulate more data (i.e., as n 
increases). But, the first term, s2 is constant, which implies that no matter how much 
data we have, we can never predict perfectly.

The prediction variance can be estimated by using s2 in place of s2. A confidence 
(prediction) interval for y0 would then be formed using

 prediction interval = yn0 { t(1 - a/2),[n - K]se(e0), (4-55)

where t(1 - a/2),[n - K] is the appropriate critical value for 100(1 - a) % significance from 
the t table for n - K degrees of freedom and se(e0) is the square root of the estimated 
prediction variance.

4.8.2  PREDICTING y WHEN THE REGRESSION MODEL DESCRIBES LOG y

It is common to use the regression model to describe a function of the dependent 
variable, rather than the variable, itself. In Example 4.5 we model the sale prices of 
Monet paintings using

ln Price = b1 + b2 ln Area + b3 Aspect Ratio + e.

The log form is convenient in that the coefficient provides the elasticity of the 
dependent variable with respect to the independent variable, that is, in this model, 

FIGURE 4.7  Prediction Intervals.
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88 PART I  ✦   The Linear Regression Model

b2 = 0E [lnPrice ∙ lnArea, AspectRatio]/0 lnArea. However, the equation in this form is 
less interesting for prediction purposes than one that predicts the price itself. The natural 
approach for a predictor of the form

ln y0 = x0′b

would be to use

yn0 = exp(x0′b).

The problem is that E[y ∙ x0] is not equal to exp(E[ln y ∙ X0]). The appropriate conditional 
mean function would be

 E[y ∙ x0] = E[exp(x0′b + e0) ∙ x0] = exp(x0′b) E[exp(e0) ∙ x0].

The second term is not exp(E[e0 ∙ x0]) = 1 in general. The precise result if e0 ∙ x0 is 
normally distributed with mean zero and variance s2 is E[exp(e0) ∙ x0] = exp(s2/2). (See 
Section B.4.4.) The implication for normally distributed disturbances would be that an 
appropriate predictor for the conditional mean would be

 yn0 = exp(x0′b + s2/2) 7 exp(x0′b), (4-56)

which would seem to imply that the naïve predictor would systematically underpredict y. 
However, this is not necessarily the appropriate interpretation of this result. The inequality 
implies that the naïve predictor will systematically underestimate the conditional mean 
function, not necessarily the realizations of the variable itself. The pertinent question 
is whether the conditional mean function is the desired predictor for the exponent of 
the dependent variable in the log regression. The conditional median might be more 
interesting, particularly for a financial variable such as income, expenditure, or the price 
of a painting. If the distribution of the variable in the log regression is symmetrically 
distributed (as they are when the disturbances are normally distributed), then the 
exponent will be asymmetrically distributed with a long tail in the positive direction, 
and the mean will exceed the median, possibly vastly so. In such cases, the median is 
often a preferred estimator of the center of a distribution. For estimating the median, 
rather then the mean, we would revert to the original naïve predictor, yn0 = exp(x0′b).

Given the preceding, we consider estimating E[exp(y) ∙ x0]. If we wish to avoid 
the normality assumption, then it remains to determine what one should use for 
E[exp(e0) ∙ x0]. Duan (1983) suggested the consistent estimator (assuming that the 
expectation is a constant, that is, that the regression is homoscedastic),

 En [exp(e0) ∙ x0] = h0 =
1
n a n

i= 1exp(ei), (4-57)

where ei is a least squares residual in the original log form regression. Then, Duan’s 
smearing estimator for prediction of y0 is

yn0 = h0 exp(x0′b).

4.8.3  PREDICTION INTERVAL FOR y WHEN THE REGRESSION MODEL DESCRIBES LOG y

We obtained a prediction interval in (4-55) for ln y ∙ x0 in the loglinear model ln 
y = x′b + e,
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[ln ynLOWER
0 , ln ynUPPER

0 ] = Jx0′b ∙ t(1 - a/2),[n - K]se(e0), x0′b ∙ t(1 - a/2), [n - K]se(e0) R .

For a given choice of a, say, 0.05, these values give the 0.025 and 0.975 quantiles of 
the distribution of ln y ∙ x0. If we wish specifically to estimate these quantiles of the 
distribution of y ∙ x0, not lny ∙ x0, then we would use:

 JynLOWER
0 , ynUPPER

0 R = bexpJx0′b - t(1 - a/2),[n - K]se(e0) R , 

expJx0′b ∙ t(1 - a/2), [n - K]se(e0) R r . (4-58)

This follows from the result that if Prob[ln y … ln L] = 1 - a/2, then 
Prob[y … L] = 1 - a/2. The result is that the natural estimator is the right one for 
estimating the specific quantiles of the distribution of the original variable. However, if 
the objective is to find an interval estimator for y ∙ x0 that is as narrow as possible, then 
this approach is not optimal. If the distribution of y is asymmetric, as it would be for a 
loglinear model with normally distributed disturbances, then the naïve interval estimator 
is longer than necessary. Figure 4.8 shows why. We suppose that (L, U) in the figure is 
the prediction interval formed by (4-58). Then the probabilities to the left of L and to 
the right of U each equal a/2. Consider alternatives L0 = 0 and U0 instead. As we have 
constructed the figure, the area (probability) between L0 and L equals the area between 
U0 and U. But, because the density is so much higher at L, the distance (0, U0), the dashed 
interval, is visibly shorter than that between (L, U). The sum of the two tail probabilities 
is still equal to a, so this provides a shorter prediction interval. We could improve on 
(4-58) by using, instead, (0, U0), where U0 is simply exp[x0′b + t(1 - a), [n - K]se(e0)] (i.e., 
we put the entire tail area to the right of the upper value). However, while this is an 
improvement, it goes too far, as we now demonstrate.

Consider finding directly the shortest prediction interval. We treat this as an 
optimization problem,

Minimize(L, U):I = U - L subject to F (L) + [1 - F (U)] = a,

where F is the cdf of the random variable y (not ln y). That is, we seek the shortest interval 
for which the two tail probabilities sum to our desired a (usually 0.05). Formulate this 
as a Lagrangean problem,

Minimize(L, U, l):I * = U - L + l[F(L) + (1 - F(U)) - a].

The solutions are found by equating the three partial derivatives to zero:

0I */0L = -1 + lf (L) = 0,

0I */0U = 1 - lf (U) = 0,
0I */0l = F(L) + [1 - F(U)] - a = 0,

where f(L) = F′(L) and f(U) = F′(U) are the derivatives of the cdf, which are the 
densities of the random variable at L and U, respectively. The third equation enforces 
the restriction that the two tail areas sum to a but does not force them to be equal. By 
adding the first two equations, we find that l[f(L) - f(U)] = 0, which, if l is not zero, 
means that the solution is obtained by locating (L*, U*) such that the tail areas sum to a 
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90 PART I  ✦   The Linear Regression Model

and the densities are equal. Looking again at Figure 4.8, we can see that the solution we 
would seek is (L*, U*) where 0 6 L* 6 L and U* 6 U0. This is the shortest interval, 
and it is shorter than both [0, U0] and [L, U].

This derivation would apply for any distribution, symmetric or otherwise. For a 
symmetric distribution, however, we would obviously return to the symmetric interval 
in (4-58). It provides the correct solution for when the distribution is asymmetric. In 
Bayesian analysis, the counterpart when we examine the distribution of a parameter 
conditioned on the data, is the highest posterior density interval. (See Section 16.4.2.) 
For practical application, this computation requires a specific assumption for the 
distribution of y ∙ x0, such as lognormal. Typically, we would use the smearing estimator 
specifically to avoid the distributional assumption. There also is no simple formula to 
use to locate this interval, even for the lognormal distribution. A crude grid search 
would probably be best, though each computation is very simple. What this derivation 
does establish is that one can do substantially better than the naïve interval estimator, 
for example, using [0, U0].

Example 4.10  Pricing Art
In Examples 4.3 and 4.5, we examined an intriguing feature of the market for Monet paintings, 
that larger paintings sold at auction for more than smaller ones. Figure 4.9 shows a histogram 
for the sample of sale prices (in $million). Figure 4.10 shows a histogram for the logs of the 
prices. Results of the linear regression of lnPrice on lnArea (height times width) and Aspect 
Ratio (height divided by width) are given in Table 4.8.

We consider using the regression model to predict the price of one of the paintings, a 1903 
painting of Charing Cross Bridge that sold for $3,522,500. The painting is 25.6″ high and 31.9″ 
wide. (This is observation 58 in the sample.) The log area equals ln(25.6 * 31.9) = 6.705198 
and the aspect ratio equals 31.9/25.6 = 1.246094. The prediction for the log of the price would be

ln P ∙ x0 = - 8.34327 + 1.31638(6.705198) - 0.09623(1.246094) = 0.3643351

Note that the mean log price is 0.33274, so this painting is expected to sell for roughly 9.5% 
more than the average painting, based on its dimensions. The estimate of the prediction 
variance is computed using (4-53); sp = 1.105640 The sample is large enough to use the 

FIGURE 4.8  Lognormal Distribution for Prices of Monet Paintings.
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critical value from the standard normal table, 1.96, for a 95% confidence interval. A prediction 
interval for the log of the price is therefore

0.364331 { 1.96(1.10564) = [-1.80272,2.53140].

For predicting the price, the naïve predictor would be exp(0.3643351) = $1.43956M, which is 
far under the actual sale price of $3,522,500. To compute the smearing estimator, we require 

FIGURE 4.9  Histogram for Sale Prices of 430 Monet Paintings ($million).
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FIGURE 4.10  Histogram of Logs of Auction Prices for Monet Paintings.
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92 PART I  ✦   The Linear Regression Model

the mean of the exponents of the residuals, which is 1.81661. The revised point estimate 
for the price would thus be 1.81661 * 1.43956 = $2.61511M—this is better, but still fairly 
far off. This particular painting seems to have sold for relatively more than history (the data) 
would have predicted.

4.8.4  FORECASTING

The preceding discussion assumes that x0 is known with certainty, ex post, or has been 
forecast perfectly, ex ante. If x0 must, itself, be forecast (an ex ante forecast), then the 
formula for the forecast variance in (4-46) would have to be modified to incorporate the 
uncertainty in forecasting x0. This would be analogous to the term s2 in the prediction 
variance that accounts for the implicit prediction of e0. This will vastly complicate the 
computation. Many authors view it as simply intractable. Beginning with Feldstein 
(1971), derivation of firm analytical results for the correct forecast variance for this 
case remain to be derived except for simple special cases. The one qualitative result 
that seems certain is that (4-53) will understate the true variance. McCullough (1996) 
presents an alternative approach to computing appropriate forecast standard errors 
based on the method of bootstrapping. (See Chapter 15.)

Various measures have been proposed for assessing the predictive accuracy of 
forecasting models.9 Most of these measures are designed to evaluate ex post forecasts; 
that is, forecasts for which the independent variables do not themselves have to be 
forecast. Two measures that are based on the residuals from the forecasts are the root 
mean squared error,

RMSE = A 1
n0 a

i
(yi - yni)

2,

9See Theil (1961) and Fair (1984).

Mean of ln Price 0.33274
Sum of squared residuals 520.765
Standard error of regression 1.10435
R-squared 0.33417
Adjusted R-squared 0.33105
Number of observations 430

Variable Coefficient Standard Error t Ratio Mean of X

Constant -8.34327 0.67820 -12.30 1.00000
ln Area 1.31638 0.09205 14.30 6.68007
Aspect Ratio -0.09623 0.15784 -0.61 1.23066

Estimated Asymptotic Covariance Matrix

Constant ln Area Aspect Ratio

Constant 0.45996
ln Area -0.05969 0.00847
Aspect Ratio -0.04744 0.00251 0.02491

TABLE 4.8 Estimated Equation for ln Price
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and the mean absolute error,

MAE =
1
n0 a

i
∙ yi - yni ∙ ,

where n0 is the number of periods being forecasted. (Note that both of these, as well as 
the following measure below, are backward looking in that they are computed using the 
observed data on the independent variable.) These statistics have an obvious scaling 
problem—multiplying values of the dependent variable by any scalar multiplies the 
measure by that scalar as well. Several measures that are scale free are based on the 
Theil U statistic:10

U = a (1/n0)a
i

(yi - yni)
2

(1/n0)a
i

yi
2

.

This measure is related to R2 but is not bounded by zero and one. Large values indicate 
a poor forecasting performance.

4.9 DATA PROBLEMS

The analysis to this point has assumed that the data in hand, X and y, are well measured 
and correspond to the assumptions of the model and to the variables described by the 
underlying theory. At this point, we consider several ways that real-world observed 
nonexperimental data fail to meet the assumptions. Failure of the assumptions generally 
has implications for the performance of the estimators of the model parameters—
unfortunately, none of them good. The cases we will examine are:

●● Multicollinearity: Although the full rank assumption, A2, is met, it almost 
fails. (Almost is a matter of degree, and sometimes a matter of interpretation.) 
Multicollinearity leads to imprecision in the estimator, though not to any systematic 
biases in estimation.

●● Missing values: Gaps in X and/or y can be harmless. In many cases, the analyst can 
(and should) simply ignore them, and just use the complete data in the sample. In 
other cases, when the data are missing for reasons that are related to the outcome 
being studied, ignoring the problem can lead to inconsistency of the estimators.

●● Measurement error: Data often correspond only imperfectly to the theoretical 
construct that appears in the model—individual data on income and education are 
familiar examples. Measurement error is never benign. The least harmful case is 
measurement error in the dependent variable. In this case, at least under probably 
reasonable assumptions, the implication is to degrade the fit of the model to the data 
compared to the (unfortunately hypothetical) case in which the data are accurately 
measured. Measurement error in the regressors is malignant—it produces systematic 
biases in estimation that are difficult to remedy.

10Theil (1961).
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4.9.1  MULTICOLLINEARITY

The Gauss–Markov theorem states that among all linear unbiased estimators, the least 
squares estimator has the smallest variance. Although this result is useful, it does not 
assure us that the least squares estimator has a small variance in any absolute sense. 
Consider, for example, a model that contains two explanatory variables and a constant. 
For either slope coefficient,

 Var[bk ∙ X] =
s2

(1 - r12
2 )a n

i= 1(xik - xk)2 =
s2

(1 - r12
2 )Skk

, k = 1, 2. (4-59)

If the two variables are perfectly correlated, then the variance is infinite. The case of an 
exact linear relationship among the regressors is a serious failure of the assumptions 
of the model, not of the data. The more common case is one in which the variables 
are highly, but not perfectly, correlated. In this instance, the regression model retains 
all its assumed properties, although potentially severe statistical problems arise. The 
problem faced by applied researchers when regressors are highly, although not perfectly, 
correlated include the following symptoms:

●● Small changes in the data produce wide swings in the parameter estimates.
●● Coefficients may have very high standard errors and low significance levels even 

though they are jointly significant and the R2 for the regression is quite high.
●● Coefficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K - 1 other 
variables measured in deviations from their means. Let xk denote the kth variable, and 
let X(k) denote all the other variables (including the constant term). Then, in the inverse 
matrix, (X′X)-1, the kth diagonal element is

  (xk
= M(k)xk)-1 = [xk

= xk - xk
= X(k)(X(k)

= X(k))
-1X(k)

= xk]-1

  = Jxk
= xk¢1 -

xk
= X(k)(X(k)

= X(k))
-1X(k)

= xk

xk
= xk

≤ R -1

  =
1

(1 - Rk.
2 ) Skk

,  (4-60)

where Rk.
2  is the R2 in the regression of xk on all the other variables. In the multiple 

regression model, the variance of the kth least squares coefficient estimator is s2 times 
this ratio. It then follows that the more highly correlated a variable is with the other 
variables in the model (collectively), the greater its variance will be. In the most extreme 
case, in which xk can be written as a linear combination of the other variables, so that 
Rk.

2 = 1, the variance becomes infinite. The result,

 Var[bk ∙ X] =
s2

(1 - Rk.
2 )a n

i= 1(xik - xk)2
, (4-61)
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shows the three ingredients of the precision of the kth least squares coefficient estimator:

●● Other things being equal, the greater the correlation of xk with the other variables, 
the higher the variance will be, due to multicollinearity.

●● Other things being equal, the greater the variation in xk, the lower the variance will be.
●● Other things being equal, the better the overall fit of the regression, the lower the 

variance will be. This result would follow from a lower value of s2.

Because nonexperimental data will never be orthogonal (Rk.
2 = 0), to some extent 

multicollinearity will always be present. When is multicollinearity a problem? That is, 
when are the variances of our estimates so adversely affected by this intercorrelation that 
we should be “concerned”? Some computer packages report a variance inflation factor 
(VIF), 1/(1 - Rk.

2 ), for each coefficient in a regression as a diagnostic statistic. As can 
be seen, the VIF for a variable shows the increase in Var[bk] that can be attributable to 
the fact that this variable is not orthogonal to the other variables in the model. Another 
measure that is specifically directed at X is the condition number of X′X, which is the 
square root of the ratio of the largest characteristic root of X′X to the smallest after 
scaling each column so that it has unit length. Values in excess of 20 are suggested as 
indicative of a problem [Belsley, Kuh, and Welsh (1980)]. (The condition number for the 
Longley data of Example 4.11 is over 15,000!)

Example 4.11  Multicollinearity in the Longley Data
The data in Appendix Table F4.2 were assembled by J. Longley (1967) for the purpose of 
assessing the accuracy of least squares computations by computer programs. (These data 
are still widely used for that purpose.11) The Longley data are notorious for severe 
multicollinearity. Note, for example, the last year of the data set. The last observation does 
not appear to be unusual. But the results in Table 4.9 show the dramatic effect of dropping 
this single observation from a regression of employment on a constant and the other variables. 
The last coefficient rises by 600%, and the third rises by 800%.

Several strategies have been proposed for finding and coping with multicollinearity.12 
Under the view that a multicollinearity problem arises because of a shortage of 
information, one suggestion is to obtain more data. One might argue that if analysts 
had such additional information available at the outset, they ought to have used it 
before reaching this juncture. More information need not mean more observations, 

11Computing the correct least squares coefficients with the Longley data is not a particularly difficult task by 
modern standards. The current standard benchmark is set by the NIST’s “Filipelli Data.” See www.itl.nist.gov/
div898/strd/data/Filip.shtml. This application is considered in the Exercises.
12See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.

1947–1961 Variance Inflation 1947–1962

Constant 1,459,415 1,169,087
Year -721.756 143.4638 -576.464
GNP Deflator -181.123  75.6716 -19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces -0.0749370  1.55319 -0.0101453

TABLE 4.9 Longley Results: Dependent Variable Is Employment
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however. The obvious practical remedy (and surely the most frequently used) is to drop 
variables suspected of causing the problem from the regression—that is, to impose on the 
regression an assumption, possibly erroneous, that the problem variable does not appear 
in the model. If the variable that is dropped actually belongs in the model (in the sense 
that its coefficient, bk, is not zero), then estimates of the remaining coefficients will be 
biased, possibly severely so. On the other hand, overfitting—that is, trying to estimate a 
model that is too large—is a common error, and dropping variables from an excessively 
specified model might have some virtue.

Using diagnostic tools to detect multicollinearity could be viewed as an attempt 
to distinguish a bad model from bad data. But, in fact, the problem only stems from 
a prior opinion with which the data seem to be in conflict. A finding that suggests 
multicollinearity is adversely affecting the estimates seems to suggest that, but for this 
effect, all the coefficients would be statistically significant and of the right sign. Of course, 
this situation need not be the case. If the data suggest that a variable is unimportant in 
a model, then, the theory notwithstanding, the researcher ultimately has to decide how 
strong the commitment is to that theory. Suggested remedies for multicollinearity might 
well amount to attempts to force the theory on the data.

As a response to what appears to be a multicollinearity problem, it is often difficult 
to resist the temptation to drop what appears to be an offending variable from the 
regression. This strategy creates a subtle dilemma for the analyst. Consider the 
partitioned multiple regression

y = XB + zg + e.

If we regress y only on X, the estimator is biased:

E[b ∙ X] = B + pX.zg.

The covariance matrix of this estimator is

Var[b ∙ X] = s2(X′X)-1.

(Keep in mind, this variance is around E[b ∙ X], not around B.) If g is not actually zero, 
then in the multiple regression of y on (X, z), the variance of bX.z around its mean, 
b would be

 Var[bX.z ∙ X,z] = s2(X′MzX)-1

 = s2[X′X - X′z(z′z)-1z′X]-1.

To compare the two covariance matrices, it is simpler to compare their inverses. [See 
result (A-120).] Thus,

{Var[b ∙ X]}-1 - {Var[bX.z ∙ X,z]}-1 = (1/s2)X′z(z′z)-1z′X,

which is a nonnegative definite matrix. The implication is that the variance of b is not 
larger than the variance of bX.z (because its inverse is at least as large). It follows that 
although b is biased, its variance is never larger than the variance of the unbiased 
estimator. In any realistic case (i.e., if X′z is not zero), in fact, it will be smaller. We get 
a useful comparison from a simple regression with two variables, x and z, measured as 
deviations from their means. Then, Var[b ∙ x] = s2/Sxx where Sxx = a n

i= 1(xi - x)2 while 
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Var[bx.z ∙ x,z] = s2/[Sxx(1 - rxz
2 )] where rxz

2  is the squared correlation between x and z. 
Clearly, Var[bx.z ∙ x,z] is larger.

The result in the preceding paragraph poses a bit of a dilemma for applied 
researchers. The situation arises frequently in the search for a model specification. Faced 
with a variable that a researcher suspects should be in the model, but that is causing a 
problem of multicollinearity, the analyst faces a choice of omitting the relevant variable 
or including it and estimating its (and all the other variables’) coefficient imprecisely. This 
presents a choice between two estimators, the biased but precise b1 and the unbiased but 
imprecise b1.2. There is no accepted right answer to this dilemma, but as a general rule, 
the methodology leans away from estimation strategies that include ad hoc remedies for 
multicollinearity. For this particular case, there would be a general preference to retain 
z in the estimated model.

4.9.2  PRINCIPAL COMPONENTS

A device that has been suggested for reducing multicollinearity is to use a small number, 
say L, of principal components constructed as linear combinations of the K original 
variables.13 (The mechanics are illustrated in Example 4.11.) The argument against using 
this approach is that if the original specification in the form y = XB + E were correct, 
then it is unclear what one is estimating when one regresses y on some small set of 
linear combinations of the columns of X. For a set of L 6 K principal components, if 
we regress y on Z = XCL to obtain d, it follows that E[d] = D = CL

= B. (The proof is 
considered in the exercises.) In an economic context, if B has an interpretation, then it 
is unlikely that D will. For example, how do we interpret the price elasticity minus twice 
the income elasticity?

This orthodox interpretation cautions the analyst about mechanical devices for 
coping with multicollinearity that produce uninterpretable mixtures of the coefficients. 
But there are also situations in which the model is built on a platform that might well 
involve a mixture of some measured variables. For example, one might be interested 
in a regression model that contains ability, ambiguously defined. As a measured 
counterpart, the analyst might have in hand standardized scores on a set of tests, none 
of which individually has any particular meaning in the context of the model. In this 
case, a mixture of the measured test scores might serve as one’s preferred proxy for the 
underlying variable. The study in Example 4.11 describes another natural example.

Example 4.12  Predicting Movie Success
Predicting the box office success of movies is a favorite exercise for econometricians.14 The 
traditional predicting equation takes the form

Box Office Receipts = f(Budget, Genre, MPAA Rating, Star Power, Sequel, etc.) + e.

Coefficients of determination on the order of 0.4 are fairly common. Notwithstanding the 
relative power of such models, the common wisdom in Hollywood is “nobody knows.” 
There is tremendous randomness in movie success, and few really believe they can forecast 
it with any reliability. Versaci (2009) added a new element to the model, “Internet buzz.” 

13See, for example, Gurmu, Rilstone, and Stern (1999).
14See, for example, Litman (1983), Ravid (1999), De Vany (2003), De Vany and Walls (1999, 2002, 2003), and 
Simonoff and Sparrow (2000).
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Internet buzz is vaguely defined to be Internet traffic and interest on familiar Web sites such 
as RottenTomatoes.com, ImDB.com, Fandango.com, and traileraddict.com. None of these 
by itself defines Internet buzz. But, collectively, activity on these Web sites, say three weeks 
before a movie’s opening, might be a useful predictor of upcoming success. Versaci’s data 
set (Table F4.3) contains data for 62 movies released in 2009, including four Internet buzz 
variables, all measured three weeks prior to the release of the movie:

 buzz1 = number of Internet views of movie trailer at traileraddict.com

 buzz2 = number of message board comments about the movie at ComingSoon.net

 buzz3 = total number of “can’t wait” (for release) plus “don’t care” votes at Fandango.com

 buzz4 = percentage of Fandango votes that are “can’t wait”

We have aggregated these into a single principal component as follows: We first computed 
the logs of buzz1 - buzz3 to remove the scale effects. We then standardized the four 
variables, so zk contains the original variable minus its mean, zk, then divided by its standard 
deviation, sk. Let Z denote the resulting 62 * 4 matrix (z1, z2, z3, z4). Then V = (1/61)Z′Z is 
the sample correlation matrix. Let c1 be the characteristic vector of V associated with the 
largest characteristic root. The first principal component (the one that explains most of the 
variation of the four variables) is Zc1. (The roots are 2.4142, 0.7742, 0.4522, and 0.3585, 
so the first principal component explains 2.4142/4 or 60.3% of the variation. Table 4.10 
shows the regression results for the sample of 62 2009 movies. It appears that Internet buzz 
adds substantially to the predictive power of the regression. The R2 of the regression nearly 
doubles, from 0.34 to 0.59, when Internet buzz is added to the model. As we will discuss in 
Chapter 5, buzz is also a highly significant predictor of success.

4.9.3  MISSING VALUES AND DATA IMPUTATION

It is common for data sets to have gaps for a variety of reasons. Perhaps the most 
frequent occurrence of this problem is in survey data, in which respondents may simply 

e′e 
R2 

Variable

Internet Buzz Model  
22.30215  
0.58883

Traditional Model  
35.66514  
0.34247

Coefficient Std.Error t Coefficient Std.Error t

Constant 15.4002 0.64273 23.96 13.5768 0.68825 19.73
Action -0.86932 0.29333 -2.96 -0.30682 0.34401 -0.89
Comedy -0.01622 0.25608 -0.06 -0.03845 0.32061 -0.12
Animated -0.83324 0.43022 -1.94 -0.82032 0.53869 -1.52
Horror 0.37460 0.37109 1.01 1.02644 0.44008 2.33
G 0.38440 0.55315 0.69 0.25242 0.69196 0.36
PG 0.53359 0.29976 1.78 0.32970 0.37243 0.89
PG13 0.21505 0.21885 0.98 0.07176 0.27206 0.26
ln Budget 0.26088 0.18529 1.41 0.70914 0.20812 3.41
Sequel 0.27505 0.27313 1.01 0.64368 0.33143 1.94
Star Power 0.00433 0.01285 0.34 0.00648 0.01608 0.40
Buzz 0.42906 0.07839 5.47 – – –

TABLE 4.10 Regression Results for Movie Success
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fail to respond to the questions. In a time series, the data may be missing because they do 
not exist at the frequency we wish to observe them; for example, the model may specify 
monthly relationships, but some variables are observed only quarterly. In panel data sets, 
the gaps in the data may arise because of attrition from the study. This is particularly 
common in health and medical research, when individuals choose to leave the study—
possibly because of the success or failure of the treatment that is being studied.

There are several possible cases to consider, depending on why the data are missing. 
The data may be simply unavailable, for reasons unknown to the analyst and unrelated 
to the completeness or the values of the other observations in the sample. This is the 
most benign situation. If this is the case, then the complete observations in the sample 
constitute a usable data set, and the only issue is what possibly helpful information could 
be salvaged from the incomplete observations. Griliches (1986) calls this the ignorable 
case in that, for purposes of estimation, if we are not concerned with efficiency, then we 
may simply delete the incomplete observations and ignore the problem. Rubin (1976, 
1987), Afifi and Elashoff (1966, 1967), and Little and Rubin (1987, 2002) label this case 
missing completely at random (MCAR). A second case, which has attracted a great 
deal of attention in the econometrics literature, is that in which the gaps in the data set 
are not benign but are systematically related to the phenomenon being modeled. This 
case happens most often in surveys when the data are self-selected or self-reported. For 
example, if a survey were designed to study expenditure patterns and if high-income 
individuals tended to withhold information about their income, then the gaps in the data 
set would represent more than just missing information. The clinical trial case is another 
instance. In this (worst) case, the complete observations would be qualitatively different 
from a sample taken at random from the full population. The missing data in this situation 
are termed not missing at random (NMAR). We treat this second case in Chapter 19 with 
the subject of sample selection, so we shall defer our discussion until later.

The intermediate case is that in which there is information about the missing data 
contained in the complete observations that can be used to improve inference about 
the model. The incomplete observations in this missing at random (MAR) case are 
also ignorable, in the sense that unlike the NMAR case, simply using the complete 
data does not induce any biases in the analysis, as long as the underlying process that 
produces the missingness in the data does not share parameters with the model that is 
being estimated, which seems likely.15 This case is unlikely, of course, if “missingness” is 
based on the values of the dependent variable in a regression. Ignoring the incomplete 
observations when they are MAR but not MCAR does ignore information that is in the 
sample and therefore sacrifices some efficiency. Researchers have used a variety of data 
imputation methods to fill gaps in data sets. The (by far) simplest case occurs when the 
gaps occur in the data on the regressors. For the case of missing data on the regressors, 
it helps to consider the simple regression and multiple regression cases separately. In 
the first case, X has two columns: the column of 1s for the constant and a column with 
some blanks where the missing data would be if we had them. The zero-order method of 
replacing each missing x with x based on the observed data results in no changes and is 
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However, the 
R2 will be lower. An alternative, modified zero-order regression, fills the second column 
of X with zeros and adds a variable that takes the value one for missing observations 

15See Allison (2002).
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and zero for complete ones. We leave it as an exercise to show that this is algebraically 
identical to simply filling the gaps with x. These same methods can be used when there 
are multiple regressors. Once again, it is tempting to replace missing values of xk with 
simple means of complete observations or with the predictions from linear regressions 
based on other variables in the model for which data are available when xk is missing. In 
most cases in this setting, a general characterization can be based on the principle that 
for any missing observation, the true unobserved xik is being replaced by an erroneous 
proxy that we might view as xnik = xik + uik, that is, in the framework of measurement 
error. Generally, the least squares estimator is biased (and inconsistent) in the presence 
of measurement error such as this. (We will explore the issue in Chapter 8.) A question 
does remain: Is the bias likely to be reasonably small? As intuition should suggest, it 
depends on two features of the data: (1) how good the prediction of xik is in the sense of 
how large the variance of the measurement error, uik, is compared to that of the actual 
data, xik, and (2) how large a proportion of the sample the analyst is filling.

The regression method replaces each missing value on an xk with a single prediction 
from a linear regression of xk on other exogenous variables—in essence, replacing 
the missing xik with an estimate of it based on the regression model. In a Bayesian 
setting, some applications that involve unobservable variables (such as our example 
for a binary choice model in Chapter 17) use a technique called data augmentation to 
treat the unobserved data as unknown parameters to be estimated with the structural 
parameters, such as B in our regression model. Building on this logic researchers, for 
example, Rubin (1987) and Allison (2002), have suggested taking a similar approach in 
classical estimation settings. The technique involves a data imputation step that is similar 
to what was suggested earlier, but with an extension that recognizes the variability in 
the estimation of the regression model used to compute the predictions. To illustrate, 
we consider the case in which the independent variable, xk, is drawn in principle from a 
normal population, so it is a continuously distributed variable with a mean, a variance, 
and a joint distribution with other variables in the model. Formally, an imputation step 
would involve the following calculations:

1. Using as much information (complete data) as the sample will provide, linearly 
regress xk on other variables in the model (and/or outside it, if other information 
is available), Zk, and obtain the coefficient vector dk with associated asymptotic 
covariance matrix Ak and estimated disturbance variance sk

2.
2. For purposes of the imputation, we draw an observation from the estimated 

asymptotic normal distribution of dk; that is, dk,m = dk + vk where vk is a vector 
of random draws from the normal distribution with mean zero and covariance 
matrix Ak.

3. For each missing observation in xk that we wish to impute, we compute 
xi,k,m = dk, m

= zi,k + sk,mui,k, where sk,m is sk divided by a random draw from the chi-
squared distribution with degrees of freedom equal to the number of degrees of 
freedom in the imputation regression.

At this point, the iteration is the same as considered earlier, where the missing values 
are imputed using a regression, albeit a much more elaborate procedure. The regression 
is then computed, using the complete data and the imputed data for the missing 
observations, to produce coefficient vector, bm, and estimated covariance matrix, Vm. 
This constitutes a single round. The technique of multiple imputation involves repeating 
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this set of steps M times. The estimators of the parameter vector and the appropriate 
asymptotic covariance matrix are

 Bn = b =
1
M aM

m= 1bm, (4-61)

 Vn = V + B =
1
M aM

m= 1Vm + ¢1 +
1
M

b a 1
M - 1

b aM
m= 1(bm - b)(bm - b)′. 

 (4-62)

Researchers differ on the effectiveness or appropriateness of multiple imputation. 
When all is said and done, the measurement error in the imputed values remains. It takes 
very strong assumptions to establish that the multiplicity of iterations will suffice to average 
away the effect of this error. Very elaborate techniques have been developed for the special 
case of joint normally distributed cross sections of regressors such as those suggested 
above. However, the typical application to survey data involves gaps due to nonresponse 
to qualitative questions with binary answers. The efficacy of the theory is much less well 
developed for imputation of binary, ordered, count, or other qualitative variables.

Example 4.13  Imputation in the Survey of Consumer Finances16

The Survey of Consumer Finances (SCF) is a survey of U.S. households sponsored every 
three years by the Board of Governors of the Federal Reserve System with the cooperation 
of the U.S. Department of the Treasury. SCF interviews are conducted by NORC at the 
University of Chicago. Data from the SCF are used to inform monetary policy, tax policy, 
consumer protection, and a variety of other policy issues. The most recent release of the 
survey was in 2013. The 2016 survey is in process as of this writing. Missing data in the survey 
have been imputed five times using a multiple imputation technique. The information is stored 
in five separate imputation replicates (implicates). Thus, for the 6,026 families interviewed for 
the current survey, there are 30,130 records in the data set.17 Rhine et al. (2016) used the 
Survey of Consumer Finances to examine savings behavior in the United States during the 
Great Recession of 2007–2009.

The more manageable case is missing values of the dependent variable, yi. Once 
again, it must be the case that yi is at least MAR and that the mechanism that is 
determining presence in the sample does not share parameters with the model itself. 
Assuming the data on xi are complete for all observations, one might consider filling the 
gaps in the data on yi by a two-step procedure: (1) estimate B with bc using the complete 
observations, Xc and yc, then (2) fill the missing values, ym, with predictions, ynm = Xmbc, 
and recompute the coefficients. We leave as an exercise (Exercise 17) to show that the 
second step estimator is exactly equal to the first. However, the variance estimator at the 
second step, s2, must underestimate s2, intuitively because we are adding to the sample 
a set of observations that are fit perfectly.18 So, this is not a beneficial way to proceed. 

17The Federal Reserve’s download site for the SCF provides the following caution: WARNING: Please review 
the following PDF for instructions on how to calculate correct standard errors. As a result of multiple imputation, 
the dataset you are downloading contains five times the number of actual observations. Failure to account for the 
imputations and the complex sample design will result in incorrect estimation of standard errors. (Ibid.)

16See http://www.federalreserve.gov/econresdata/scf/scfindex.htm

18See Cameron and Trivedi (2005, Chapter 27).
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The flaw in the method comes back to the device used to impute the missing values 
for yi. Recent suggestions that appear to provide some improvement involve using a 
randomized version, ynm = Xmbc + Enm, where Enm are random draws from the (normal) 
population with zero mean and estimated variance s2[I + Xm(Xc

=Xc)
-1Xm

= ]. (The 
estimated variance matrix corresponds to Xmbc + Em.) This defines an iteration. After 
reestimating B with the augmented data, one can return to re-impute the augmented 
data with the new Bn , then recompute b, and so on. The process would continue until the 
estimated parameter vector stops changing. (A subtle point to be noted here: The same 
random draws should be used in each iteration. If not, there is no assurance that the 
iterations would ever converge.)

In general, not much is known about the properties of estimators based on using 
predicted values to fill missing values of y. Those results we do have are largely from 
simulation studies based on a particular data set or pattern of missing data. The results 
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion 
seems to be that in a single-equation regression context, filling in missing values of y 
leads to biases in the estimator which are difficult to quantify. The only reasonably 
clear result is that imputations are more likely to be beneficial if the proportion of 
observations that are being filled is small—the smaller the better.

4.9.4  MEASUREMENT ERROR

There are any number of cases in which observed data are imperfect measures of their 
theoretical counterparts in the regression model. Examples include income, education, 
ability, health, the interest rate, output, capital, and so on. Mismeasurement of the 
variables in a model will generally produce adverse consequences for least squares 
estimation. Remedies are complicated and sometimes require heroic assumptions. In this 
section, we will provide a brief sketch of the issues. We defer to Section 8.8 for a more 
detailed discussion of the problem of measurement error, the most common solution 
(instrumental variables estimation), and some applications.

It is convenient to distinguish between measurement error in the dependent variable 
and measurement error in the regressor(s). For the second case, it is also useful to 
consider the simple regression case and then extend it to the multiple regression model. 
Consider a model to describe expected income in a population,

 I * = x′B + e, (4-63)

where I* is the intended total income variable. Suppose the observed counterpart is I, 
earnings. How I relates to I* is unclear; it is common to assume that the measurement 
error is additive, so I = I * + w. Inserting this expression for I into (4-63) gives

 I = x′B + e + w

 = x′B + y,  (4-64)

which appears to be a slightly more complicated regression, but otherwise similar to 
what we started with. As long as w and x are uncorrelated, that is the case. If w is a 
homoscedastic zero mean error that is uncorrelated with x, then the only difference 
between the models in (4-63) and (4-64) is that the disturbance variance in (4-64) 
is sw

2 + se
2 7 se

2. Otherwise both are regressions and evidently B can be estimated 
consistently by least squares in either case. The cost of the measurement error is in the 
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precision of the estimator because the asymptotic variance of the estimator in (4-64) is 
(sy

2/n)[plim(X′X/n)]-1, while it is (se
2/n)[plim(X′X/n)]-1 if B is estimated using (4-63). 

The measurement error also costs some fit. To see this, note that the R2 in the sample 
regression in (4-63) is

R*
2 = 1 - (e′e/n)/(I*′M0I*/n).

The numerator converges to se
2 while the denominator converges to the total variance 

of I*, which would approach se
2 + B′QB where Q = plim(X′X/n). Therefore,

plimR*
2 = B′QB/[se

2 + B′QB.

The counterpart for (4-64), R2, differs only in that se
2 is replaced by sy

2 7 se
2 in the 

denominator. It follows that

plim R*
2 - plim R2 7 0.

This implies that the fit of the regression in (4-64) will, at least broadly in expectation, 
be inferior to that in (4-63). (The preceding is an asymptotic approximation that might 
not hold in every finite sample.)

These results demonstrate the implications of measurement error in the dependent 
variable. We note, in passing, that if the measurement error is not additive, if it is 
correlated with x, or if it has any other features such as heteroscedasticity, then the 
preceding results are lost, and nothing in general can be said about the consequence of 
the measurement error. Whether there is a solution is likewise an ambiguous question. 
The preceding explanation shows that it would be better to have the underlying variable 
if possible. In the absence, would it be preferable to use a proxy? Unfortunately, I is 
already a proxy, so unless there exists an available I′ which has smaller measurement 
error variance, we have reached an impasse. On the other hand, it does seem that the 
outcome is fairly benign. The sample does not contain as much information as we might 
hope, but it does contain sufficient information consistently to estimate b and to do 
appropriate statistical inference based on the information we do have.

The more difficult case occurs when the measurement error appears in the 
independent variable(s). For simplicity, we retain the symbols I and I* for our observed 
and theoretical variables. Consider a simple regression,

y = b1 + b2I
* + e,

where y is the perfectly measured dependent variable and the same measurement 
equation, I = I* + w, applies now to the independent variable. Inserting I into the 
equation and rearranging a bit, we obtain

 y = b1 + b2I + (e - b2w)

 = b1 + b2I + y.  (4-65)

It appears that we have obtained (4-64) once again. Unfortunately, this is not the case, 
because Cov[I, y] = Cov[I * + w, e - b2w] = -b2sw

2 . Because the regressor in (4-65) 
is correlated with the disturbance, least squares regression in this case is inconsistent. 
There is a bit more that can be derived—this is pursued in Section 8.5, so we state it here 
without proof. In this case,

plim b2 = b2[s*
2/(s*

2 + sw
2 )],
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where s*
2 is the marginal variance of I*. The scale factor is less than one, so the least 

squares estimator is biased toward zero. The larger the measurement error variance, 
the worse is the bias. (This is called least squares attenuation.) Now, suppose there are 
additional variables in the model:

y = x′B1 + b2I
* + e.

In this instance, almost no useful theoretical results are forthcoming. The following fairly 
general conclusions can be drawn—once again, proofs are deferred to Section 8.5:

1. The least squares estimator of b2 is still biased toward zero.
2. All the elements of the estimator of B1 are biased, in unknown directions, even 

though the variables in x are not measured with error.

Solutions to the “measurement error problem” come in two forms. If there is outside 
information on certain model parameters, then it is possible to deduce the scale factors 
(using the method of moments) and undo the bias. For the obvious example, in (4-65), 
if sw

2  were known, then it would be possible to deduce s*
2 from Var[I] = s*

2 + sw
2  and 

thereby compute the necessary scale factor to undo the bias. This sort of information is 
generally not available. A second approach that has been used in many applications is 
the technique of instrumental variables. This is developed in detail for this application 
in Section 8.5.

4.9.5  OUTLIERS AND INFLUENTIAL OBSERVATIONS

Figure 4.10 shows a scatter plot of the data on sale prices of Monet paintings that were 
used in Example 4.5. Two points have been highlighted. The one noted with the square 
overlay shows the smallest painting in the data set. The circle highlights a painting that 
fetched an unusually low price, at least in comparison to what the regression would 
have predicted. (It was not the least costly painting in the sample, but it was the one 
most poorly predicted by the regression.) Because least squares is based on squared 
deviations, the estimator is likely to be strongly influenced by extreme observations such 
as these, particularly if the sample is not very large.

An influential observation is one that is likely to have a substantial impact on the least 
squares regression coefficient(s). For a simple regression such as the one shown in Figure 
4.11, Belsley, Kuh, and Welsh (1980) defined an influence measure, for observation xi,

 hi =
1
n

+
(xi - x(i))

2

Σj= 1,j ∙ i
n (xj - x(i))

2
, (4-66)

where x(i) and the summation in the denominator of the fraction are computed without 
this observation. (The measure derives from the difference between b and b(i) where the 
latter is computed without the particular observation. We will return to this shortly.) It 
is suggested that an observation should be noted as influential if hi 7 2/n. The decision 
is whether to drop the observation or not. We should note observations with high 
leverage are arguably not outliers (which remains to be defined) because the analysis 
is conditional on xi. To underscore the point, referring to Figure 4.11, this observation 
would be marked even if it fell precisely on the regression line—the source of the 
influence is the numerator of the second term in hi, which is unrelated to the distance 
of the point from the line. In our example, the influential observation happens to be the 
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FIGURE 4.11  Log Price Versus Log Area for Monet Paintings.

In�uential observation

–5

–4

–3

–2

–1

0

1

2

3

4
ln

 P
ri

ce

Outlier

ln Area

9876543

result of Monet’s decision to paint a small painting. The point is that in the absence of 
an underlying theory that explains (and justifies) the extreme values of xi, eliminating 
such observations is an algebraic exercise that has the effect of forcing the regression 
line to be fitted with the values of xi closest to the means.

The change in the linear regression coefficient vector in a multiple regression when 
an observation is added to the sample is

 b - b(i) = ∆b =
1

1 + xi
= (X(i)

= X(i))
-1xi

 (X(i)
= X(i))

-1xi (yi - xi
=b(i)), (4-67)

where b is computed with observation i in the sample, b(i) is computed without 
observation i, and X(i) does not include observation i. (See Exercise 5 in Chapter 3.) It 
is difficult to single out any particular feature of the observation that would drive this 
change. The influence measure,

hii = xi
=(X(i)

= X(i))
-1xi

 =
1
n

+ a
K - 1

j= 1
a

K - 1

k = 1
(xi,j - xn, j)(xi,k - xk)(Z(i)

= M0Z(i))
jk, (4-68)

has been used to flag influential observations.19 In this instance, the selection criterion 
would be hii 7 2(K - 1)/n. Squared deviations of the elements of xi from the means of 
the variables appear in hii, so it is also operating on the difference of xi from the center 
of the data. (See expression (4-54) for the forecast variance in Section 4.8.1 for an 
application.)

In principle, an outlier is an observation that appears to be outside the reach of the 
model, perhaps because it arises from a different data-generating process. The outlier 

19See, once again, Belsley, Kuh, and Welsh (1980) and Cook (1977).
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in Figure 4.11 appears to be a candidate. Outliers could arise for several reasons. The 
simplest explanation would be actual data errors. Assuming the data are not erroneous, 
it then remains to define what constitutes an outlier. Unusual residuals are an obvious 
choice. But, because the distribution of the disturbances would anticipate a certain small 
percentage of extreme observations in any event, simply singling out observations with 
large residuals is actually a dubious exercise. On the other hand, one might suspect that 
the outlying observations are actually generated by a different population. Studentized 
residuals are constructed with this in mind by computing the regression coefficients and 
the residual variance without observation i for each observation in the sample and then 
standardizing the modified residuals. The ith studentized residual is

 e(i) =
ei21 - hii

nAe′e - ei
2/(1 - hii)

n - 1 - K
, (4-69)

where e is the residual vector for the full sample, based on b, including ei the residual 
for observation i. In principle, this residual has a t distribution with n - 1 - K degrees 
of freedom (or a standard normal distribution asymptotically). Observations with large 
studentized residuals, that is, greater than 2.0, would be singled out as outliers.

There are several complications that arise with isolating outlying observations in 
this fashion. First, there is no a priori assumption of which observations are from the 
alternative population, if this is the view. From a theoretical point of view, this would 
suggest a skepticism about the model specification. If the sample contains a substantial 
proportion of outliers, then the properties of the estimator based on the reduced sample 
are difficult to derive. In the next application, the suggested procedure deletes 4.2% of 
the sample (18 observations). Finally, it will usually occur that observations that were not 
outliers in the original sample will become outliers when the original set of outliers is 
removed. It is unclear how one should proceed at this point. (Using the Monet paintings 
data, the first round of studentizing the residuals removes 18 observations. After 11 
iterations, the sample size stabilizes at 364 of the original 430 observations, a reduction 
of 15.3%.) Table 4.11 shows the original results (from Table 4.4) and the modified results 
with 18 outliers removed. Given that the 430 is a relatively large sample, the modest 
change in the results is to be expected.

Number of observations 430 412
Mean of log price 0.33274 0.36328
Sum of squared residuals 520.765 393.845
Standard error of regression 1.10435 0.98130
R-squared 0.33417 0.38371
Adjusted R-squared 0.33105 0.38070

Coefficient Standard Error t

Variable n = 430 n = 412 n = 430 n = 412 n = 430 n = 412

Constant -8.34237 -8.62152 0.67820 0.62524 -12.30 -13.79
ln Area 1.31638 1.35777 0.09205 0.08612 14.30 15.77
Aspect Ratio -0.09623 -0.08346 0.15784 0.14569 -0.61 -0.57

TABLE 4.11 Estimated Equations for Log Price
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Key Terms and Concepts

•	Assumptions
•	Asymptotic covariance 

matrix
•	Asymptotic distribution
•	Asymptotic efficiency
•	Asymptotic normality
•	Asymptotic properties
•	Attrition
•	Bootstrapping
•	Condition number
•	Confidence intervals
•	Consistency
•	Consistent estimator
•	Data imputation
•	Efficient scale

•	Estimator
•	Ex ante forecast
•	Ex post forecast
•	Ex post predication
•	Finite sample properties
•	Gauss–Markov theorem
•	Grenander conditions
•	Highest posterior density 

interval
•	Ignorable case
•	Interval estimation
•	Least squares attenuation
•	Lindeberg–Feller Central 

Limit Theorem
•	Linear estimator

•	Linear unbiased estimator
•	Mean absolute error
•	Mean squared error
•	Measurement error
•	Method of moments
•	Minimum mean squared 

error
•	Minimum variance linear 

unbiased estimator
•	Missing at random (MAR)
•	Missing completely at 

random (MCAR)
•	Missing observations
•	Modified zero-order 

regression

It is difficult to draw firm general conclusions from this exercise. It remains likely 
that in very small samples, some caution and close scrutiny of the data are called 
for. If it is suspected at the outset that a process prone to large observations is at 
work, it may be useful to consider a different estimator altogether, such as least 
absolute deviations, or even a different model specification that accounts for this 
possibility. For example, the idea that the sample may contain some observations that 
are generated by a different process lies behind the latent class model that is discussed 
in Chapters 14 and 18.

4.10 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will 
apply in all samples, including unbiasedness and efficiency among unbiased estimators. 
The formal assumptions of the linear model are pivotal in the results of this chapter. 
All of them are likely to be violated in more general settings than the one considered 
here. For example, in most cases examined later in the book, the estimator has a possible 
bias, but that bias diminishes with increasing sample sizes. For purposes of forming 
confidence intervals and testing hypotheses, the assumption of normality is narrow, so 
it was necessary to extend the model to allow nonnormal disturbances. These and other 
“large-sample” extensions of the linear model were considered in Section 4.4. The crucial 
results developed here were the consistency of the estimator and a method of obtaining 
an appropriate covariance matrix and large-sample distribution that provides the basis 
for forming confidence intervals and testing hypotheses. Statistical inference in the form 
of interval estimation for the model parameters and for values of the dependent variable 
was considered in Sections 4.6 and 4.7. This development will continue in Chapter 5 
where we will consider hypothesis testing and model selection.

Finally, we considered some practical problems that arise when data are less than 
perfect for the estimation and analysis of the regression model, including multicollinearity, 
missing observations, measurement error, and outliers.
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Exercises

1. Suppose that you have two independent unbiased estimators of the same parameter 
u, say un1 and un2, with different variances v1 and v2. What linear combination 
un = c1u

n

1 + c2u
n

2 is the minimum variance unbiased estimator of u?
2. Consider the simple regression yi = bxi + ei where E[e ∙ x] = 0 and E[e2 ∙ x] = s2

a. What is the minimum mean squared error linear estimator of b? [Hint: Let 
the estimator be (bn = c′y). Choose c to minimize Var(bn) + (E(bn - b))2. The 
answer is a function of the unknown parameters.]

b. For the estimator in part a, show that ratio of the mean squared error of bn to that 
of the ordinary least squares estimator b is

MSE[bn]

MSE[b]
=

t2

(1 + t2)
, where t2 =

b2

[s2/X′X]
.

Note that t is the population analog to the “t ratio” for testing the hypothesis 
that b = 0, which is given in (5-11). How do you interpret the behavior of this 
ratio as t S ∞?

3. Suppose that the classical regression model applies but that the true value of 
the constant is zero. Compare the variance of the least squares slope estimator 
computed without a constant term with that of the estimator computed with an 
unnecessary constant term.

4. Suppose that the regression model is yi = a + bxi + ei, where the disturbances 
ei have f(ei) = (1/l) exp(-ei/l), ei Ú 0. This model is rather peculiar in that all 
the disturbances are assumed to be nonnegative. Note that the disturbances have 
E[ei ∙ xi] = l and Var[ei ∙ xi] = l2. Show that the least squares slope estimator is 
unbiased but that the intercept estimator is biased.

5. Prove that the least squares intercept estimator in the classical regression model is 
the minimum variance linear unbiased estimator.

6. As a profit-maximizing monopolist, you face the demand curve Q = a + bP + e. 
In the past, you have set the following prices and sold the accompanying quantities:

Q 3 3 7 6 10 15 16 13 9 15 9 15 12 18 21
P 18 16 17 12 15 15 4 13 11 6 8 10 7 7 7

  Suppose that your marginal cost is 10. Based on the least squares regression, compute 
a 95% confidence interval for the expected value of the profit-maximizing output.

•	Monte Carlo study
•	Multicollinearity
•	Not missing at random 

(NMAR)
•	Oaxaca’s and Blinder’s 

decomposition
•	Optimal linear predictor
•	Panel data
•	Point estimation
•	Prediction error

•	Prediction interval
•	Prediction variance
•	Principal components
•	Probability limit
•	Root mean squared error
•	Sample selection
•	Sampling distribution
•	Sampling variance
•	Semiparametric
•	Smearing estimator

•	Standard error
•	Standard error of the 

regression
•	Statistical properties
•	Theil U statistic
•	Variance inflation factor 

(VIF)
•	Zero-order method
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7. The following sample moments for x = [1, x1, x2, x3] were computed from 100 
observations produced using a random number generator:

X′X = D100 123 96 109
123 252 125 189
96 125 167 146

109 189 146 168

T ,   X′y = D460
810
615
712

T ,   y′y = 3924.

  The true model underlying these data is y = x1 + x2 + x3 + e.
a. Compute the simple correlations among the regressors.
b. Compute the ordinary least squares coefficients in the regression of y on a 

constant x1, x2, and x3.
c. Compute the ordinary least squares coefficients in the regression of y on a 

constant, x1 and x2, on a constant, x1 and x3, and on a constant, x2 and x3.
d. Compute the variance inflation factor associated with each variable.
e. The regressors are obviously badly collinear. Which is the problem variable? 

Explain.
8. Consider the multiple regression of y on K variables X and an additional variable z. 

Prove that under the assumptions A1 through A6 of the classical regression model, 
the true variance of the least squares estimator of the slopes on X is larger when z 
is included in the regression than when it is not. Does the same hold for the sample 
estimate of this covariance matrix? Why or why not? Assume that X and z are 
nonstochastic and that the coefficient on z is nonzero.

9. For the classical normal regression model y = XB + E with no constant term and 
K regressors, assuming that the true value of b is zero, what is the exact expected 
value of F[K, n - K] = (R2/K)/[(1 - R2)/(n - K)]?

10. Prove that E[b′b] = B′B + s2aK
k = 1(1/lk), where b is the ordinary least squares 

estimator and lk is a characteristic root of X′X.
11. For the classical normal regression model y = XB + E with no constant term and 

K regressors, what is plim F[K, n - K] = plim R2/K
(1 - R2)/(n - K), assuming that the 

true value of B is zero?
12. Let ei be the ith residual in the ordinary least squares regression of y on X in the 

classical regression model, and let ei be the corresponding true disturbance. Prove 
that plim(ei - ei) = 0.

13. For the simple regression model yi = m + ei, ei ∙ N[0, s2], prove that the sample 
mean is consistent and asymptotically normally distributed. Now consider the 

alternative estimator mn = a iwiyi, wi =
i

(n(n + 1)/2) =
i

a ii
. Note that a iwi = 1. 

Prove that this is a consistent estimator of m and obtain its asymptotic variance. 
[Hint: a ii

2 = n(n + 1)(2n + 1)/6.]

14. Consider a data set consisting of n observations, nc complete and nm incomplete, 
for which the dependent variable, yi, is missing. Data on the independent variables, 
xi, are complete for all n observations, Xc and Xm. We wish to use the data to 
estimate the parameters of the linear regression model y = XB + E. Consider the 
following the imputation strategy: Step 1: Linearly regress yc on Xc and compute bc. 
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Step 2: Use Xm to predict the missing ym with Xmbc. Then regress the full sample of 
observations, (yc, Xmbc), on the full sample of regressors, (Xc, Xm).
a. Show that the first and second step least squares coefficient vectors are identical.
b. Is the second step coefficient estimator unbiased?
c. Show that the sum of squared residuals is the same at both steps.
d. Show that the second step estimator of s2 is biased downward.

15. In (4-13), we find that when superfluous variables X2 are added to the regression 
of y on X1 the least squares coefficient estimator is an unbiased estimator of 
the true parameter vector, B = (B1

= , 0′)′. Show that, in this long regression, 
e′e/(n - K1 - K2) is also unbiased as estimator of s2.

16. In Section 4.9.2, we consider regressing y on a set of principal components, rather 
than the original data. For simplicity, assume that X does not contain a constant 
term, and that the K variables are measured in deviations from the means and 
are standardized by dividing by the respective standard deviations. We consider 
regression of y on L principal components, Z = XCL, where L 6 K. Let d denote 
the coefficient vector. The regression model is y = Xb + e. In the discussion, it is 
claimed that E[d] = CL

=  b. Prove the claim.
17. Example 4.10 presents a regression model that is used to predict the auction 

prices of Monet paintings. The most expensive painting in the sample sold for 
$33.0135M (ln = 17.3124). The height and width of this painting were 35″ and 
39.4″, respectively. Use these data and the model to form prediction intervals for 
the log of the price and then the price for this painting.

Applications

1. Data on U.S. gasoline consumption for the years 1953 to 2004 are given in Table 
F2.2. Note the consumption data appear as total expenditure. To obtain the per 
capita quantity variable, divide GASEXP by GASP times Pop. The other variables 
do not need transformation.
a. Compute the multiple regression of per capita consumption of gasoline on per 

capita income, the price of gasoline, the other prices, and a time trend. Report all 
results. Do the signs of the estimates agree with your expectations?

b. Test the hypothesis that at least in regard to demand for gasoline, consumers do 
not differentiate between changes in the prices of new and used cars.

c. Estimate the own price elasticity of demand, the income elasticity, and the cross-
price elasticity with respect to changes in the price of public transportation. Do 
the computations at the 2004 point in the data.

d. Reestimate the regression in logarithms so that the coefficients are direct 
estimates of the elasticities. (Do not use the log of the time trend.) How do your 
estimates compare with the results in the previous question? Which specification 
do you prefer?

e. Compute the simple correlations of the price variables. Would you conclude that 
multicollinearity is a problem for the regression in part a or part d?

f. Notice that the price index for gasoline is normalized to 100 in 2000, whereas the 
other price indices are anchored at 1983 (roughly). If you were to renormalize 
the indices so that they were all 100.00 in 2004, then how would the results of 
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the regression in part a change? How would the results of the regression in part 
d change?

g. This exercise is based on the model that you estimated in part d. We are 
interested in investigating the change in the gasoline market that occurred in 
1973. First, compute the average values of log of per capita gasoline consumption 
in the years 1953–1973 and 1974–2004 and report the values and the difference. 
If we divide the sample into these two groups of observations, then we can 
decompose the change in the expected value of the log of consumption into a 
change attributable to change in the regressors and a change attributable to a 
change in the model coefficients, as shown in Section 4.7.2. Using the Oaxaca–
Blinder approach described there, compute the decomposition by partitioning 
the sample and computing separate regressions. Using your results, compute a 
confidence interval for the part of the change that can be attributed to structural 
change in the market, that is, change in the regression coefficients.

2. Christensen and Greene (1976) estimated a “generalized Cobb–Douglas” cost 
function for electricity generation of the form

ln C = a + b ln Q + g[1
2 (ln Q)2] + dk ln Pk + dl ln Pl + df ln Pf + e.

  Pk, Pl, and Pf  indicate unit prices of capital, labor, and fuel, respectively, Q is 
output, and C is total cost. To conform to the underlying theory of production, it 
is necessary to impose the restriction that the cost function be homogeneous of 
degree one in the three prices. This is done with the restriction dk + dl + df = 1, 
or df = 1 - dk - dl. Inserting this result in the cost function and rearranging terms 
produces the estimating equation,

ln(C/Pf) = a + b ln Q + g[1
2 (ln Q)2] + dk ln(Pk/Pf) + dl ln(Pl/Pf) + e.

The purpose of the generalization was to produce a U-shaped average total cost 
curve. We are interested in the efficient scale, which is the output at which the cost 
curve reaches its minimum. That is the point at which (0 ln C/0 ln Q)∙Q=Q* = 1 or 
Q* = exp[(1 - b)/g].
a. Data on 158 firms extracted from Christensen and Greene’s study are given in 

Table F4.4. Using all 158 observations, compute the estimates of the parameters 
in the cost function and the estimate of the asymptotic covariance matrix.

b. Note that the cost function does not provide a direct estimate of df. Compute 
this estimate from your regression results, and estimate the asymptotic standard 
error.

c. Compute an estimate of Q* using your regression results and then form a 
confidence interval for the estimated efficient scale.

d. Examine the raw data and determine where in the sample the efficient scale 
lies. That is, determine how many firms in the sample have reached this scale, 
and whether, in your opinion, this scale is large in relation to the sizes of firms 
in the sample. Christensen and Greene approached this question by computing 
the proportion of total output in the sample that was produced by firms that 
had not yet reached efficient scale. (Note: There is some double counting in the 
data set—more than 20 of the largest “firms” in the sample we are using for this 
exercise are holding companies and power pools that are aggregates of other 
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firms in the sample. We will ignore that complication for the purpose of our 
numerical exercise.)

3. The Filipelli data mentioned in Footnote 11 are used to test the accuracy of 
computer programs in computing least squares coefficients. The 82 observations 
on (x,y) are given in Appendix Table F4.5. The regression computation involves 
regression of y on a constant and the first 10 powers of x. (The condition number 
for this 11-column data matrix is 0.3 * 1010.) The correct least squares solutions 
are given on the NIST Website. Using the software you are familiar with, compute 
the regression using these data.
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