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Functional Form, Difference 
in Differences, and 
Structural Change

§
6.1	 INTRODUCTION

This chapter will examine a variety of ways that the linear regression model can be 
adapted for particular situations and specific features of the environment. Section 6.2 
begins by using binary variables to accommodate nonlinearities and discrete shifts in 
the model. Sections 6.3 and 6.4 examine two specific forms of the linear model that are 
suited for analyzing causal impacts of policy changes, difference in differences models 
and regression kink and regression discontinuity designs. Section 6.5 broadens the class 
of models that are linear in the parameters. By using logarithms, quadratic terms, and 
interaction terms (products of variables), the regression model can accommodate a wide 
variety of functional forms in the data. Section 6.6 examines the issue of specifying and 
testing for discrete change in the underlying process that generates the data, under the 
heading of structural change. In a time-series context, this relates to abrupt changes in 
the economic environment, such as major events in financial markets (e.g., the world 
financial crisis of 2007–2008) or commodity markets (such as the several upheavals 
in the oil market). In a cross section, we can modify the regression model to account 
for discrete differences across groups such as different preference structures or market 
experiences of men and women.

6.2	 USING BINARY VARIABLES

One of the most useful devices in regression analysis is the binary, or dummy variable. 
A dummy variable takes the value one for some observations to indicate the presence 
of an effect or membership in a group and zero for the remaining observations. Binary 
variables are a convenient means of building discrete shifts of the function into a 
regression model.

6.2.1    BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other 
quantitative variables,

	 yi = xi
=B + gdi + ei,	 (6-1)
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154	 Part I  ✦   The Linear Regression Model

where di = 1 for some condition occurring, and 0 if not.1 In the earnings equation in 
Example 5.2, we included a variable Kids to indicate whether there were children in the 
household, under the assumption that for many married women, this fact is a significant 
consideration in labor supply decisions. The results shown in Example 6.1 appear to be 
consistent with this hypothesis.

Example 6.1    Dummy Variable in an Earnings Equation
Table 6.1 reproduces the estimated earnings equation in Example 5.2. The variable Kids is 
a dummy variable that equals one if there are children under 18 in the household and zero 
otherwise. Because this is a semilog equation, the value of -0.35 for the coefficient is an 
extremely large effect, one which suggests that all other things equal, the earnings of women with 
children are nearly a third less than those without. This is a large difference, but one that would 
certainly merit closer scrutiny. Whether this effect results from different labor market effects that 
influence wages and not hours, or the reverse, remains to be seen. Second, having chosen a 
nonrandomly selected sample of those with only positive earnings to begin with, it is unclear 
whether the sampling mechanism has, itself, induced a bias in the estimator of this parameter.

Dummy variables are particularly useful in loglinear regressions. In a model of the 
form

ln y = b1 + b2x + b3d + e,

the coefficient on the dummy variable, d, indicates a multiplicative shift of the function. 
The percentage change in E[y � x, d] asociated with the change in d is

  %(∆E[y � x, d]/∆d) = 100%b E[y � x, d = 1] - E[y � x, d = 0]

E[y � x, d = 0]
r

 = 100%b exp(b1 + b2x + b3)E[exp(e)] - exp(b1 + b2x) E[exp(e)]

exp(b1 + b2x)E[exp(e)]
r

 = 100%[exp(b3) - 1].	�  (6-2)

1 We are assuming at this point (and for the rest of this chapter) that the dummy variable in (6-1) is exogenous. 
That is, the assignment of values of the dummy variable to observations in the sample is unrelated to ei. This is 
consistent with the sort of random assignment to treatment designed in a clinical trial. The case in which di is 
endogenous would occur, for example, when individuals select the value of di themselves. Analyses of the effects 
of program participation, such as job training on wages or agricultural extensions on productivity, would be 
examples. The endogenous treatment effect model is examined in Section 8.5.

ln earnings = b1 + b2 Age + b3 Age2 + b4 Education + b5 Kids + e

Sum of squared residuals: 599.4582
Standard error of the regression:     1.19044

R2 based on 428 observations:     0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392

Age2 -0.002315 0.000987 -2.345

Education 0.067472 0.025248 2.672
Kids -0.35119 0.14753 -2.380

Table 6.1  Estimated Earnings Equation

M06_GREE1366_08_SE_C06.indd   154 2/24/17   12:44 PM



	 CHAPTER 6  ✦  Functional Form, Difference in Differences, and Structural Change	 155

Example 6.2    Value of a Signature
In Example 4.10 we explored the relationship between log of sale price and surface area for 
430 sales of Monet paintings. Regression results from the example are shown in Table 6.2. 
The results suggest a strong relationship between area and price—the coefficient is 1.33372, 
indicating a highly elastic relationship, and the t ratio of 14.70 suggests the relationship is highly 
significant. A variable (effect) that is clearly left out of the model is the effect of the artist’s 
signature on the sale price. Of the 430 sales in the sample, 77 are for unsigned paintings. The 
results at the right of Table 6.2 include a dummy variable for whether the painting is signed or 
not. The results show an extremely strong effect. The regression results imply that

E[Price � Area, Aspect Ratio, Signature) =
exp[-9.64 + 1.35 ln Area - 0.0 8 Aspect Ratio + 1.23 Signature + 0.9932/2].

(See Section 4.8.2.) Computing this result for a painting of the same area and aspect ratio, 
we find the model predicts that the signature effect would be

100% *
∆E[Price]

Price
= 100%[exp(1.26) - 1] = 252%.

The effect of a signature on an otherwise similar painting is to more than double the price. The 
estimated standard error for the signature coefficient is 0.1253. Using the delta method, we 
obtain an estimated standard error for [exp(b3) - 1] of the square root of [exp(b3)]2 * 0.12532, 
which is 0.4417. For the percentage difference of 252%, we have an estimated standard error 
of 44.17%.

Superficially, it is possible that the size effect we observed earlier could be explained by 
the presence of the signature. If the artist tended on average to sign only the larger paintings, 
then we would have an explanation for the counterintuitive effect of size. (This would be 
an example of the effect of multicollinearity of a sort.) For a regression with a continuous 
variable and a dummy variable, we can easily confirm or refute this proposition. The average 
size for the 77 sales of unsigned paintings is 1,228.69 square inches. The average size of 
the other 353 is 940.812 square inches. There does seem to be a substantial systematic 
difference between signed and unsigned paintings, but it goes in the other direction. We 
are left with significant findings of both a size and a signature effect in the auction prices of 
Monet paintings. Aspect Ratio, however, appears still to be inconsequential.

ln price = b1 + b2 ln Area + b3 Aspect Ratio + b4 Signature + e

Mean of ln Price 0.33274
Number of observations 430

Sum of squared residuals 520.765 420.609
Standard error 1.10435 1.35024
R-squared 0.33417 0.46223
Adjusted R-squared 0.33105 0.45844

Variable Coefficient
Standard  

Error t Ratio Coefficient
Standard  

Error t Ratio

Constant -8.34327 0.67820 -12.30 -9.65443 0.62397 -15.47
ln Area 1.31638 0.09205 14.30 1.34379 0.08787 16.22
Aspect ratio -0.09623 0.15784 -0.61 -0.01966 0.14222 -0.14
Signature — — — 1.26090 0.12519 10.07

TABLE 6.2  Estimated Equations for Log Price
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Example 6.3    Gender and Time Effects in a Log Wage Equation
Cornwell and Rupert (1988) examined the returns to schooling in a panel data set of 595 heads 
of households observed in seven years, 1976-1982. The sample data (Appendix Table F8.1) 
are drawn from years 1976 to 1982 from the “Non-Survey of Economic Opportunity” from the 
Panel Study of Income Dynamics. A prominent result that appears in different specifications 
of their regression model is a persistent difference between wages of female and male heads 
of households. A slightly modified version of their regression model is

 ln Wageit = b1 + b2Expit + b3Expit
2 + b4Wksit + b5Occit + b6Indit + b7Southit +

 b8SMSAit + b9MSit + b10Unionit + b11Edi + b12Femi + a 1982
t= 1977gtDit + eit.

The variables in the model are listed in Example 4.6. (See Appendix Table F8.1 for the data 
source.)

Least squares estimates of the log wage equation appear at the left side in Table 6.3. 
Because these data are a panel, it is likely that observations within each group are correlated. 
The table reports cluster corrected standard errors, based on (4-42). The coefficient on 

Aggregate Effect Individual Fixed Effects

Sum of squares 391.056 81.5201
Residual std. error 0.30708 0.15139
R-squared 0.55908 0.90808
Observations 4165 595 * 7
F[17,577] 1828.50

Coefficient
Clustered  
Std.Error t Ratio Coefficient

Clustered  
Std.Error t Ratio

Constant 5.08397 0.12998 39.11 Individual Fixed Effects
EXP 0.03128 0.00419 7.47 0.10370 0.00691 15.00

EXP2 -0.00055 0.00009 -5.86 -0.00040 0.00009 -4.43

WKS 0.00394 0.00158 2.50 0.00068 0.00095 0.72
OCC -0.14116 0.02687 -5.25 -0.01916 0.02033 -0.94
IND 0.05661 0.02343 2.42 0.02076 0.02422 0.86
SOUTH -0.07180 0.02632 -2.73 0.00309 0.09620 0.03
SMSA 0.15423 0.02349 6.57 -0.04188 0.03133 -1.34
MS 0.09634 0.04301 2.24 -0.02857 0.02887 -0.99
UNION 0.08052 0.02335 3.45 0.02952 0.02689 1.10
ED 0.05499 0.00556 9.88 — — —
FEM -0.36502 0.04829 -7.56 — — —
Year(Base = 1976)
1977 0.07461 0.00601 12.42 — — —
1978 0.19611 0.00989 19.82 0.04107 0.01267 3.24
1979 0.28358 0.01016 27.90 0.05170 0.01662 3.11
1980 0.36264 0.00985 36.82 0.05518 0.02132 2.59
1981 0.43695 0.01133 38.58 0.04612 0.02718 1.70
1982 0.52075 0.01211 43.00 0.04650 0.03254 1.43

TABLE 6.3  Estimated Log Wage Equations
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FEM is -0.36502. Using (6-2), this translates to a roughly 100%[exp(-0.365) - 1] = 31% 
wage differential. Because the data are a panel, it is quite likely that the disturbances are 
correlated across the years within a household. Thus, robust standard errors are reported 
in Table 6.3. The effect of the adjustment is substantial. The conventional standard error 
for FEM based on s2(X′X)-1 is 0.02201—less than half the reported value of 0.04829. Note 
the reported denominator degrees of freedom for the model F statistic is 595 - 18 = 577. 
Given that observations within a unit are not independent, it seems that 4147 would overstate 
the degrees of freedom. The number of groups of 595 is the natural alternative number of 
observations. However, if this were the case, then the statistic reported, computed as if there 
were 4165 observations, would not have an F distribution. This remains as an ambiguity in 
the computation of robust statistics. As we will pursue in Chapter 8, there is yet another 
ambiguity in this equation. It seems likely unobserved factors that influence ln Wage (in eit) 
(e.g., ability) might also be influential in the level of education. If so (i.e., if Edi is correlated with 
eit), then least squares might not be an appropriate method of estimation of the parameters 
in this model.

It is common for researchers to include a dummy variable in a regression to 
account for something that applies only to a single observation. For example, in time-
series analyses, an occasional study includes a dummy variable that is one only in a 
single unusual year, such as the year of a major strike or a major policy event. (See, for 
example, the application to the German money demand function in Section 21.3.5.) It 
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of 
deleting that observation from computation of the least squares slopes and variance 
estimator (but not from R-squared).

6.2.2    SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting for 
seasonal factors in macroeconomic data is a common application. We could write a 
consumption function for quarterly data as

Ct = b1 + b2xt + d1Dt1 + d2Dt2 + d3Dt3 + et,

where xt is disposable income. Note that only three of the four quarterly dummy 
variables are included in the model. If the fourth were included, then the four dummy 
variables would sum to one at every observation, which would replicate the constant 
term—a case of perfect multicollinearity. This is known as the dummy variable trap. To 
avoid the dummy variable trap, we drop the dummy variable for the fourth quarter. 
(Depending on the application, it might be preferable to have four separate dummy 
variables and drop the overall constant.2) Any of the four quarters (or 12 months) can 
be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative 
formulation:

Ct = bxt + d1Dt1 + d2Dt2 + d3Dt3 + d4Dt4 + et.

2 See Suits (1984) and Greene and Seaks (1991).
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Using the results from Section 3.3 on partitioned regression, we know that the preceding 
multiple regression is equivalent to first regressing C and x on the four dummy variables 
and then using the residuals from these regressions in the subsequent regression of 
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this 
fashion prior to computing the simple regression of consumption on income produces 
the same coefficient on income (and the same vector of residuals) as including the set 
of dummy variables in the regression.

Example 6.4    Genre Effects on Movie Box Office Receipts
Table 4.10 in Example 4.12 presents the results of the regression of log of box office receipts 
in 2009 for 62 movies on a number of variables including a set of dummy variables for four 
genres: Action, Comedy, Animated, or Horror. The left out category is “any of the remaining 
9 genres” in the standard set of 13 that is usually used in models such as this one.3 The four 
coefficients are -0.869, -0.016, -0.833, and +0.375, respectively. This suggests that, save 
for horror movies, these genres typically fare substantially worse at the box office than other 
types of movies. We note the use of b directly to estimate the percentage change for the 
category, as we did in Example 6.1 when we interpreted the coefficient of -0.35 on Kids as 
indicative of a 35% change in income. This is an approximation that works well when b is 
close to zero but deteriorates as it gets far from zero. Thus, the value of -0.869 above does 
not translate to an 87% difference between Action movies and other movies. Using (6-2), we 
find an estimated difference closer to 100% [exp(-0.869)-1] or about 58%. Likewise, the 
-0.35 result in Example 6.1 corresponds to an effect of about 29%.

6.2.3    MODELING INDIVIDUAL HETEROGENEITY

In the previous examples, a dummy variable is used to account for a specific event or 
feature of the observation or the environment, such as whether a painting is signed or 
not or the season. When the sample consists of repeated observations on a large number 
of entities, such as the 595 individuals in Example 6.3, a strategy often used to allow for 
unmeasured (and unnamed) fixed individual characteristics (effects) is to include a full 
set of dummy variables in the equation, one for each individual. To continue Example 
6.3, the extended equation would be

 ln Wageit = b1 + a 595
i= 1aiAit + b2Expit + b3Expit

2 + b4Wksit + b5Occit +

b6Indit + b7Southit +  b8SMSAit + b9MSit + b10Unionit +

b11Edit + b12Femit + a 1982
t= 1977gtDit + eit,

where Ait equals one for individual i in every period and zero otherwise. The unobserved 
effect, ai, in an earnings model could include factors such as ability, general skill, 
motivation, and fundamental experience. This model would contain the 12 variables from 
earlier plus the six time dummy variables for the periods, plus the 595 dummy variables 
for the individuals. There are some distinctive features of this model to be considered 
before it can be estimated.

●● Because the full set of time dummy variables, Dit, t = 1976, c,1982, sums to 1 at every 
observation, which would replicate the constant term, one of them is dropped—1976 is 

3Authorities differ a bit on this list. From the MPAA, we have Drama, Romance, Comedy, Action, Fantasy, 
Adventure, Family, Animated, Thriller, Mystery, Science Fiction, Horror, Crime.
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identified as the “base year” in the results in Table 6.3. This avoids a multicollinearity 
problem known as the dummy variable trap.4 The same problem will arise with the set 
of individual dummy variables, Ait, i = 1, c, 595. The obvious remedy is to drop one 
of the effects, say the last one. An equivalent strategy that is usually used is to drop the 
overall constant term, leaving the “fixed effects” form of the model,

 ln Wageit = a 595
i= 1aiAit + b2Expit + b3Expit

2 + b4Wksit + b5Occit + b6Indit +

b7Southit +  b8SMSAit + b9MSit + b10Unionit + b11Edit +

b12Femit + a 1982
t= 1977gtDit + eit

(This is a application of Theorem 3.8.) Note that this does not imply that the base 
year time dummy variable should now be restored. If so, the dummy variable trap 
would reappear as

a 595
i= 1Ait = a 1982

t= 1976Dit.

In a model that contains a set of fixed individual effects, it is necessary either to 
drop the overall constant term or one of the effects.

●● There is another subtle multicollinearity problem in this model. The variable Femit 
does not change within the block of 7 observations for individual i—it is either 1 or 0 
in all 7 years for each person. Let the matrix A be the 4165 *  595 matrix in which the 
ith column contains ai, the dummy variable for individual i. Let fem be the 4165 *  1 
vector that contains the variable Femit; fem is the column of the full data matrix that 
contains FEMit. In the block of seven rows for individual i, the 7 elements of fem are 
all 1 or 0 corresponding to Femit. Finally, let the 595 *  1 vector f equal 1 if individual 
i is female and 0 if male. Then, it is easy to see that fem = Af. That is, the column of 
the data matrix that contains Femit is a linear combination of the individual dummy 
variables, again, a multicollinearity problem. This is a general result:

In a model that contains a full set of N individual effects represented by a set of N 
dummy variables, any other variable in the model that takes the same value in every 
period for every individual can be written as a linear combination of those effects.

This means that the coefficient on Femit cannot be estimated. The natural 
remedy is to fix that coefficient at zero—that is, to drop that variable. In fact, the 
education variable, EDit, has the same characteristic and must also be dropped from 
the model. This turns out to be a significant disadvantage of this formulation of 
the model for data such as these. Indeed, in this application, the gender effect was 
of particular interest. (We will examine the model with individual heterogeneity 
modeled as fixed effects in greater detail in Chapter 11.)

4 A second time dummy variable is dropped in the model results on the right-hand side of Table 6.3. This 
is a result of another dummy variable trap that is specific to this application. The experience variable, 
EXP, is a simple count of the number of years of experience, starting from an individual specific value. 
For the first individual in the sample, EXP1,t = 3, c, 9 while for the second, it is EXP2,t = 30, c, 36. 
With the individual specific constants and the six time dummy variables, it is now possible to reproduce 
EXPi,t as a linear combination of these two sets of dummy variables. For example, for the first person, 
EXP1,1 = 3*A1,1; EXP1,2 = 3*A1,2 + D1,1978; EXP1,3 = 3*A1,3 + 2D1,1979; EXP1,4 = 3*A1,3 + 3D1,1980 and so 
on. So, each value EXPit can be produced as a linear combination of Ait and one of the Dit’s. Dropping a second 
period dummy variable interrupts this result.
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●● The model with N individual effects has become very unwieldy. The wage equation now 
has more than 600 variables in it; later we will analyze a similar data set with more than 
7,000 individuals. One might question the practicality of actually doing the computations. 
This particular application shows the power of the Frisch–Waugh result, Theorem 3.2—
the computation of the regression is equally straightforward whether there are a few 
individuals or millions. To see how this works, write the log wage equation as

yit = ai + xit
 =B + eit.

We are not necessarily interested in the specific constants ai, but they must appear in 
the equation to control for the individual unobserved effects. Assume that there are no 
invariant variables such as FEMit in xit. The mean of the observations for individual i is

yi =
1
7

 a 1982
t= 1976  yit = ai + xi

=B + ei.

A strategy for estimating B without having to worry about ai is to transform the 
data using simple deviations from group means:

yit - yi = (xit - xi)′B + (eit - ei).

This transformed model can be estimated by least squares. All that is necessary is 
to transform the data beforehand. This computation is automated in all modern 
software. (Details of the theoretical basis of the computation are considered in 
Chapter 11.)

To compute the least squares estimates of the coefficients in a model that contains N 
dummy variables for individual fixed effects, the data are transformed to deviations 
from individual means, then simple least squares is used based on the transformed 
data. (Time dummy variables are transformed as well.) Standard errors are 
computed in the ways considered earlier, including robust standard errors for 
heteroscedasticity. Correcting for clustering within the groups would be natural.

Notice what becomes of a variable such as FEM when we compute (xit - xi). Because 
FEM and ED take the same value in every period, the group mean is that value, and the 
deviations from the means becomes zero at every observation. The regression cannot be 
computed if X contains any columns of zeros. Finally, for some purposes, we might be 
interested in the estimates of the individual effects, ai. We can show using Theorem 3.2 
that the least squares coefficients on Ait in the original model would be ai = yi - xi

=b.
Results of the fixed effects regression are shown at the right in Table 6.3. Accounting 

for individual effects in this fashion often produces quite substantial changes in the 
results. Notice that the fit of the model, measured by R2, improves dramatically. The 
effect of UNION membership, which was large and significant before has essentially 
vanished. And, unfortunately, we have lost view of the gender and education effects.

Example 6.5  �  Sports Economics: Using Dummy Variables for Unobserved 
Heterogeneity5

In 2000, the Texas Rangers major league baseball team signed 24-year-old Alex Rodriguez 
(A-Rod), who was claimed at the time to be “the best player in baseball,” to the largest 
contract in baseball history (up to that time). It was publicized to be some $25Million/year for 

5 This application is based on Cohen, R. and Wallace, J., “A-Rod: Signing the Best Player in Baseball,” Harvard 
Business School, Case 9-203-047, Cambridge, 2003.
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10 years, or roughly a quarter of a billion dollars.6 Treated as a capital budgeting decision, 
the investment is complicated partly because of the difficulty of valuing the benefits of the 
acquisition. Benefits would consist mainly of more fans in the stadiums where the team 
played, more valuable broadcast rights, and increased franchise value. We (and others) 
consider the first of these. It was projected that A-Rod could help the team win an average 
of 8 more games per season and would surely be selected as an All-Star every year. How do 
8 additional wins translate into a marginal value for the investors? The franchise value and 
broadcast rights are highly speculative. But there is a received literature on the relationship 
between team wins and game attendance, which we will use here.7 The final step will then 
be to calculate the value of the additional attendance.

Appendix Table F6.5 contains data on attendance, salaries, games won, and several other 
variables for 30 teams observed from 1985 to 2001. (These are panel data. We will examine 
this subject in greater detail in Chapter 11.) We consider a dynamic linear regression model,

Attendancei, t = Σ iaiAi, t + gAttendancei, t - 1 + b1Winsi, t + b2Winsi, t - 1 + b3All Starsi, t + ei, t,

i = 1, c,30; t = 1985, c,2001.

The previous year’s attendance and wins are loyalty effects. The model contains a separate 
constant term for each team. The effect captured by ai includes the size of the market and 
any other unmeasured time constant characteristics of the market.

The team specific dummy variable, Ai,t is used to model unit specific unobserved 
heterogeneity. We will revisit this modeling aspect in Chapter 11. The setting is different here 
in that in the panel data context in Chapter 11, the sampling framework will be with respect 
to units “i” and statistical properties of estimators will refer generally to increases in the 
number of units. Here, the number of units (teams) is fixed at 30, and asymptotic results would 
be based on additional years of data.8

Table 6.4 presents the regression results for the dynamic model. Results are reported with 
and without the separate team effects. Standard errors for the estimated coefficients are 
adjusted for the clustering of the observations by team. The F statistic for H0  :ai = a, i=1,c,31 
is computed as

F[30,401] =
(23.267 - 20.254)/30

20.254/401
= 1.988

The 95% critical value for F[30,401] is 1.49 so the hypothesis of no separate team effects is 
rejected. The individual team effects appear to improve the model—note the peculiar negative 
loyalty effect in the model without the team effects.

In the dynamic equation, the long run equilibrium attendance would be

Attendance* = (ai + b1Wins* + b2Wins* + b3 All Stars*)/(1 - g).

(See Section 11.11.3.) The marginal value of winning one more game every year would be 
(b1 + b2)/(1 - g). The effect of winning 8 more games per year and having an additional  
All-Star on the team every year would be

(8(b1 + b2) + b3)/(1 - g) * 1 million = 268,270 additional fans/season.

6 Though it was widely reported to be a 10-year arrangement, the payout was actually scheduled over more than 
20 years, and much of the payment was deferred until the latter years. A realistic present discounted value at 
the time of the signing would depend heavily on assumptions, but using the 8% standard at the time, would be 
roughly $160M, not $250M.
7 See, for example, The Journal of Sports Economics and Lemke, Leonard, and Tlhokwane (2009).
8 There are 30 teams in the data set, but one of the teams changed leagues. This team is treated as two observations.
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In this case, the calculation of monetary value is 268,270 fans times $50 per fan (possibly 
somewhat high) or about $13.0 million against the cost of roughly $18 to $20 million per 
season.

6.2.4    SETS OF CATEGORIES

The case in which several sets of dummy variables are needed is much the same as 
those we have already considered, with one important exception. Consider a model of 
statewide per capita expenditure on education, y, as a function of statewide per capita 
income, x. Suppose that we have observations on all n = 50 states for T = 10 years. 
A regression model that allows the expected expenditure to change over time as well 
as across states would be

yit = a + bxit + di + ut + eit.

As before, it is necessary to drop one of the variables in each set of dummy variables to 
avoid the dummy variable trap. For our example, if a total of 50 state dummies and 10 
time dummies is retained, a problem of perfect multicollinearity remains; the sums of the 
50 state dummies and the 10 time dummies are the same, that is, 1. One of the variables 
in each of the sets (or the overall constant term and one of the variables in one of the 
sets) must be omitted.

Example 6.6    Analysis of Covariance
The data in Appendix Table F6.1 were used in a study of efficiency in production of airline 
services in Greene (2007a). The airline industry has been a favorite subject of study [e.g., 
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest in 
this rapidly changing market in a period of deregulation and partly because of an abundance of 
large, high-quality data sets collected by the (no longer existent) Civil Aeronautics Board. The 
original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984), a “balanced 
panel.” Several of the firms merged during this period and several others experienced strikes, 
which reduced the number of complete observations substantially. Omitting these and others 

Mean of Attendance 2.22048 Million
Number of observations 437 (31 Teams)

No Team Effects Team Effects

Sum of squared residuals 23.267 20.254
Standard error 0.23207 0.24462
R-squared 0.74183 0.75176
Adjusted R-squared 0.73076 0.71219

Variable Coefficient Standard Error* t Ratio Coefficient Standard Error* t Ratio

Attendancet - 1 0.70233 0.03507 20.03 0.54914 0.02760 16.76
Wins 0.00992 0.00147 6.75 0.01109 0.00157 7.08
Winst - 1 -0.00051 0.00117 -0.43 0.00220 0.00100 2.20
All stars 0.02125 0.01241 1.71 0.01459 0.01402 1.04
Constant -1.20827 0.87499 -1.38 Individual Team Effects

*Standard errors clustered at the team level.

TABLE 6.4  Estimated Attendance Model
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because of missing data on some of the variables left a group of 10 full observations, from 
which we have selected 6 for the example to follow. We will fit a cost equation of the form

 ln Ci,t = b1 + b2 ln Qi,t + b3 ln2 Qi,t + b4 ln Pfuel,i,t + b5 Load Factori,t

 + a
14

t= 1
utDi,t + a

5

i= 1
diFi,t + ei,t.

The dummy variables are Di,t, which is the year variable, and Fi,t, which is the firm variable. 
We have dropped the first one in each group. The estimated model for the full specification is

 ln Ci,t = 12.89 + 0.8866 ln Qi,t + 0.01261 ln2 Qi,t + 0.1281 ln Pfuel,i,t - 0.8855 Load Factori,t
 + time effects + firm effects + ei,t.

We are interested in whether the firm effects, the time effects, both, or neither are 
statistically significant. Table 6.5 presents the sums of squares from the four regressions. 
The F statistic for the hypothesis that there are no firm-specific effects is 65.94, which is 
highly significant. The statistic for the time effects is only 2.61, which is also larger than the 
critical value of 1.84. In the absence of the year-specific dummy variables, the year-specific 
effects are probably largely absorbed by the price of fuel.

6.2.5    THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors, 
such as membership in a group, or to represent a particular time period. There are cases, 
however, in which the dummy variable(s) represents levels of some underlying factor 
that might have been measured directly if this were possible. For example, education is 
a case in which we often observe certain thresholds rather than, say, years of education. 
Suppose, for example, that our interest is in a regression of the form

Earnings = b1 + b2 Age + Effect of Education + e.

The data on education might consist of the highest level of education attained, such as 
less than high school (LTHS), high school (HS), college (C), post graduate (PG). An 
obviously unsatisfactory way to proceed is to use a variable, E, that is 0 for the first  
group, 1 for the second, 2 for the third, and 3 for the fourth. That would be 
Earnings = b1 + b2 Age + b3E + e. The difficulty with this approach is that it assumes 
that the increment in income at each threshold is the same; b3 is the difference between 
income with post graduate study and college and between college and high school.9  

9 One might argue that a regression model based on years of education instead of this sort of step function would 
be likewise problematic. It seems natural that in most cases, the 12th year of education (with graduation) would 
be far more valuable than the 11th.

Model Sum of Squares
Restrictions  

on Full Model F
Degrees of  
Freedom

Full model 0.17257 0 —
Time effects only 1.03470 5 65.94 [5, 66]
Firm effects only 0.26815 14 2.61 [14, 66]
No effects 1.27492 19 22.19 [19, 66]

Table 6.5   F Tests for Firm and Year Effects
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This is unlikely and unduly restricts the regression. A more flexible model would use 
three (or four) binary variables, one for each level of education. Thus, we would write

Earnings = b1 + b2 Age + dB HS + dM C + dP PG + e.

The correspondence between the coefficients and income for a given age is

less than high school:  E[Earnings � Age, LTHS] = b1 + b2 Age,

high school:      E[Earnings � Age, HS]   = b1 + b2 Age + dHS,

college:       E[Earnings � Age, C]   = b1 + b2 Age + dC,

Post graduate:     E[Earnings � Age, PG]   = b1 + b2 Age + dPG.

The differences between, say, dPG and dC and between dC and dHS are of interest. 
Obviously, these are simple to compute. An alternative way to formulate the equation 
that reveals these differences directly is to redefine the dummy variables to be 1 if the 
individual has the level of education, rather than whether the level is the highest obtained. 
Thus, for someone with post graduate education, all three binary variables are 1, and so 
on. By defining the variables in this fashion, the regression is now

Less Than High School:  E[Earnings � Age, LTHS] = b1 + b2 Age,

High School:  E[Earnings � Age, HS]  = b1 + b2 Age + dHS,

College:  E[Earnings � Age, C]   = b1 + b2 Age + dHS + dC,

Post Graduate:  E[Earnings � Age, PG]  = b1 + b2 Age + dHS + dC + dPG.

Instead of the difference between post graduate and the base case of less than high 
school, in this model dPG is the marginal value of the post graduate education, after 
college.

6.2.6    TRANSITION TABLES

When a group of categories appear in the model as a set of dummy variables, as 
in Example 6.4, each included dummy variable reports the comparison between 
its category and the “base case.” In the movies example, the four reported values 
each report the comparison to the base category, the nine omitted genres. The 
comparison of the groups to each other is also a straightforward calculation. In 
Example 6.4, the reported values for Action, Comedy, Animated, and Horror are 
(-0.869, -0.016, -0.833, +0.375). The implication is, for example, that E[ln Revenue � x] 
is 0.869 less for Action movies than the base case. Moreover, based on the same results, 
the expected log revenue for Animated movies is -0.833 - (-0.869) = +0.036 greater 
than for Action movies. A standard error for the difference of the two coefficients 
would be computed using the square root of

asy.Var[bAnimated - bAction] = asy.Var[bAnimated] + asy.Var[bAction]

- 2asy.cov[bAnimated,bAction].

A similar effect could be computed for each pair of outcomes. Hodge and Shankar 
(2014) propose a useful framework for arranging the effects of a sequence of categories 
based on this principle. An application to five categories of health outcomes is shown in 
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Contoyannis, Jones, and Rice (2004). The education thresholds example in the previous 
example is another natural application.

Example 6.7    Education Thresholds in a Log Wage Equation
Figure 6.1 is a histogram for the education levels reported in variable ED in the ln Wage model 
of Example 6.3. The model in Table 6.3 constrains the effect of education to be the same 5.5% 
per year for all values of ED. A possible improvement in the specification might be provided 
by treating the threshold values separately. We have recoded ED in these data to be

Less Than High School = 1 if ED … 11   (22% of the sample),

High School  = 1 if ED = 12  (36% of the sample),

College    = 1 if 13 … ED … 16  (30% of the sample),

Post Grad   = 1 if ED = 17  (12% of the sample).

(Admittedly, there might be some misclassification at the margins. It also seems likely that the 
Post Grad category is “top coded”—17 years represents 17 or more.) Table 6.6 reports the 
respecified regression model. Note, first, the estimated gender effect is almost unchanged. 
But, the effects of education are rather different. According to these results, the marginal 
value of high school compared to less than high school is 0.13832, or 14.8%. The estimated 
marginal value of attending college after high school is 0.29168 - 0.13832 = 0.15336, 
16.57%—this is roughly 4% per year for four years compared to 5.5% estimated earlier. But, 
again, one might suggest that most of that gain would be a “sheepskin” effect attained in 
the fourth year by graduating. Hodge and Shankar’s “transition matrix” is shown in Table 6.7. 
(We have omitted the redundant terms and transitions from more education to less which are 
the negatives of the table entries.)

Figure 6.1    Education Levels in Log Wage Data.
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Threshold Effects         Education in Years

Sum of squared residuals 403.329 391.056
Standard error of the regression 0.31194 0.30708
R-squared based on 4165 observations 0.54524 0.55908

Clustered Clustered

Coefficient Std.Error t Ratio Coefficient Std.Error t Ratio

Constant 5.60883 0.10087 55.61 5.08397 0.12998 39.11
EXP 0.03129 0 .00421 7.44 0.03128 0.00419 7.47

EXP2 -0.00056 0.00009 -5.97 -0.00055 0.00009 -5.86

WKS 0.00383 0.00157 2.44 0.00394 0.00158 2.50
OCC -0.16410 0.02683 -6.12 -0.14116 0.02687 -5.25
IND 0.05365 0.02368 2.27 0.05661 0.02343 2.42
SOUTH -0.07438 0.02704 -2.75 -0.07180 0.02632 -2.73
SMSA 0.16844 0.02368 7.11 0.15423 0.02349 6.57
MS 0.10756 0.04470 2.41 0.09634 0.04301 2.24
UNION 0.07736 0.02405 3.22 0.08052 0.02335 3.45
FEM -0.35323 0.05005 -7.06 -0.36502 0.04829 -7.56
ED 0.05499 0.00556 9.88
LTHS 0.00000 —– —–
HS 0.13832 0.03351 4.13
COLLEGE 0.29168 0.04181 6.98
POSTGRAD 0.40651 0.04896 8.30
Year(Base = 1976)
1977 0.07493 0.00608 12.33 0.07461 0.00601 12.42
1978 0.19720 0.00997 19.78 0.19611 0.00989 19.82
1979 0.28472 0.01023 27.83 0.28358 0.01016 27.90
1980 0.36377 0.00997 36.47 0.36264 0.00985 36.82
1981 0.43877 0.01147 38.25 0.43695 0.01133 38.58
1982 0.52357 0.01219 42.94 0.52075 0.01211 43.00

TABLE 6.6  Estimated log Wage Equations with Education Thresholds

Effects of switches between categories in education level

Initial Education New Education Partial Effect Standard Error t Ratio

LTHS HS 0.13832 0.03351 4.13
LTHS COLLEGE 0.29168 0.04181 6.98
LTHS POSTGRAD 0.40651 0.04896 8.30
HS COLLEGE 0.15336 0.03047 5.03
HS POSTGRAD 0.26819 0.03875 6.92
COLLEGE POSTGRAD 0.11483 0.03787 3.03

TABLE 6.7  Education Effects in Estimated Log Wage Equation
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6.3	 DIFFERENCE IN DIFFERENCES REGRESSION

Many recent studies have examined the causal effect of a treatment on some kind of 
response. Examples include the effect of attending an elite college on lifetime income 
[Dale and Krueger (2002, 2011)], the effect of cash transfers on child health [Gertler 
(2004)], the effect of participation in job training programs on income [LaLonde (1986)], 
the effect on employment of an increase in the minimum wage in one of two neighboring 
states [Card and Krueger (1994)] and pre- versus post-regime shifts in macroeconomic 
models [Mankiw (2006)], to name but a few.

6.3.1    TREATMENT EFFECTS

The applications can often be formulated in regression models involving a treatment 
dummy variable, as in

yi = xi
=B + dDi + ei,

where the shift paramet	er, d (under the right assumptions), measures the causal effect 
of the treatment or the policy change (conditioned on x) on the sampled individuals. 
For example, Table 6.6 provides a log wage equation based on a national (U.S.) panel 
survey. One of the variables is UNION, a dummy variable that indicates union 
membership. Measuring the effect of union membership on wages is a longstanding 
objective in labor economics—see, for example, Card (2001). Our estimate in Table 6.6 
is roughly 0.08, or 8%. It will take a bit of additional specification analysis to conclude 
that the UNION dummy truly does measure the effect of membership in that context.10

In the simplest case of a comparison of one group to another, without covariates,

yi = b1 + dDi + ei.

Least squares regression of y on D will produce

b1 = (y � Di = 0),

that is, the average outcome of those who did not experience the treatment, and

d = (y � Di = 1) - (y � Di = 0),

the difference in the means of the two groups. Continuing our earlier example, if we 
measure the UNION effect in Table 6.6 without the covariates, we find

ln Wage = 6.673 (0.023) + 0.00834 UNION (0.028).

(Standard errors are in parentheses.) Based on a simple comparison of means, there 
appears to be a less than 1% impact of union membership. This is in sharp contrast to 
the 8% reported earlier.

When the analysis is of an intervention that occurs over time to everyone in the 
sample, such as in Krueger’s (1999) analysis of the Tennessee STAR experiment in which 
school performance measures were observed before and after a policy that dictated a 
change in class sizes, the treatment dummy variable will be a period indicator, Tt = 0 
in period 1 and 1 in period 2. The effect in b2 then measures the change in the outcome 
variable, for example, school performance, pre- to post-intervention; b2 = y1 - y0.

10 See, for example, Angrist and Pischke (2009, pp. 221–225.)
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The assumption that the treatment group does not change from period 1 to period 2 
(or that the treatment group and the control group look the same in all other respects) 
weakens this analysis. A strategy for strengthening the result is to include in the sample 
a group of control observations that do not receive the treatment. The change in the 
outcome for the treatment group can then be compared to the change for the control 
group under the presumption that the difference is due to the intervention. An intriguing 
application of this strategy is often used in clinical trials for health interventions to 
accommodate the placebo effect. The placebo effect is a controversial, but apparently 
tangible outcome in some clinical trials in which subjects “respond” to the treatment 
even when the treatment is a decoy intervention, such as a sugar or starch pill in a drug 
trial.11 A broad template for assessment of the results of such a clinical trial is as follows: 
The subjects who receive the placebo are the controls. The outcome variable—level of 
cholesterol, for example—is measured at the baseline for both groups. The treatment 
group receives the drug, the control group receives the placebo, and the outcome variable 
is measured pre- and post-treatment. The impact is measured by the difference in 
differences,

E = [(yexit � treatment) - (ybaseline � treatment)] - [(yexit � placebo) - (ybaseline � placebo)].

The presumption is that the difference in differences measurement is robust to the 
placebo effect if it exists. If there is no placebo effect, the result is even stronger (assuming 
there is a result).

A common social science application of treatment effect models is in the evaluation 
of the effects of discrete changes in policy.12 A pioneering application is the study of the 
Manpower Development and Training Act (MDTA) by Ashenfelter and Card (1985) 
and Card and Krueger (2000). A widely discussed application is Card and Krueger’s 
(1994) analysis of an increase in the minimum wage in New Jersey. The simplest form of 
the model is one with a pre- and post-treatment observation on a group, where the 
outcome variable is y, with

	 yit = b1 + b2Tt + b3Di + d(Tt * Di) + eit, t = 0, 1.	 (6-3)

In this model, Tt is a dummy variable that is zero in the pre-treatment period and one 
after the treatment and Di equals one for those individuals who received the treatment. 
The change in the outcome variable for the treated individuals will be

(yi2 � Di = 1) - (yi1 � Di = 1) = (b1 + b2 + b3 + d) - (b1 + b3) = b2 + d.

For the controls, this is

(yi2 � Di = 0) - (yi1 � Di = 0) = (b1 + b2) - b1 = b2.

The difference in differences is

[(yi2 � Di = 1) - (yi1 � Di = 1)] - [(yi2 � Di = 0) - (yi1 � Di = 0)] = d.

11 See Hróbjartsson and Götzsche (2001).
12 Surveys of literatures on treatment effects, including use of “D-i-D” estimators, are provided by Imbens and 
Wooldridge (2009), Millimet, Smith, and Vytlacil (2008), Angrist and Pischke (2009), and Lechner (2011).
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In the multiple regression of yit on a constant, T, D, and T *  D, the least squares estimate 
of d will equal the difference in the changes in the means,

 d = (y � D = 1, Period 2) - (y � D = 1, Period 1)

 - (y � D = 0, Period 2) - (y � D = 0, Period 1)

 = ∆y � treatment - ∆y � control.

The regression is called a difference in differences estimator in reference to this result.

Example 6.8    SAT Scores
Each year, about 1.7 million American high school students take the SAT test. Students 
who are not satisfied with their performance have the opportunity to retake the test. Some 
students take an SAT prep course, such as Kaplan or Princeton Review, before the second 
attempt in the hope that it will help them increase their scores. An econometric investigation 
might consider whether these courses are effective in increasing scores. The investigation 
might examine a sample of students who take the SAT test twice, with scores yi0 and yi1. The 
time dummy variable Tt takes value T0 = 0 “before” and T1 = 1 “after.” The treatment dummy 
variable is Di = 1 for those students who take the prep course and 0 for those who do not. 
The applicable model would be (6-3),

SAT Scorei,t = b1 + b2 2ndTestt + b3 PrepCoursei + d 2ndTestt * PrepCoursei + ei,t.

The estimate of d would, in principle, be the treatment, or prep course effect.
This small example illustrates some major complications. First, and probably most 

important, the setting does not describe a randomized experiment such as the clinical trial 
suggested earlier would be. The treatment variable, PrepCourse, would naturally be taken 
by those who are persuaded that it would provide a benefit—that is, the treatment variable 
is not an exogenous variable. Unobserved factors that are likely to contribute to higher test 
scores (and are embedded in ei,t) would likely motivate the student to take the prep course 
as well. This selection effect is a compelling confounder of studies of treatment effects when 
the treatment is voluntary and self selected. Dale and Krueger’s (2002, 2011) analysis of the 
effect of attendance at an elite college provides a detailed analysis of this issue. Second, 
test performance, like other performance measures, is probably subject to regression to the 
mean—there is a negative autocorrelation in such measures. In this regression context, an 
unusually high disturbance in period 0, all else equal, would likely be followed by a low value 
in period 1. Of course, those who achieve an unusually high test score in period 0 are less 
likely to return for the second attempt. Together with the selection effect, this produces a very 
muddled relationship between the outcome and the test preparation that is estimated by least 
squares. Finally, it is possible that there are other measurable factors (covariates) that might 
contribute to the test outcome or changes in the outcome. A more complete model might 
include these covariates. We do note any such variable xi,t would have to vary between the 
first and second test, else they would simply be absorbed in the constant term.

When the treatment is the result of a policy change or event that occurs completely 
outside the context of the study, the analysis is often termed a natural experiment. Card’s 
(1990) study of a major immigration into Miami in 1979 is an application.

Example 6.9    A Natural Experiment: The Mariel Boatlift
A sharp change in policy can constitute a natural experiment. An example studied by Card 
(1990) is the Mariel boatlift from Cuba to Miami (May–September 1980), which increased 
the Miami labor force by 7%. The author examined the impact of this abrupt change in 
labor market conditions on wages and employment for nonimmigrants. The model compared 
Miami (the treatment group) to a similar city, Los Angeles (the control group). Let i denote an 

M06_GREE1366_08_SE_C06.indd   169 2/24/17   12:44 PM



170	 Part I  ✦   The Linear Regression Model

individual and D denote the “treatment,” which for an individual would be equivalent to “lived 
in the city that experienced the immigration.” For an individual in either Miami or Los Angeles, 
the outcome variable is

Yi = 1 if they are unemployed and 0 if they are employed.

Let c denote the city and let t denote the period, before (1979) or after (1981) the immigration. 
Then, the unemployment rate in city c at time t is E[yi,0 � c, t] if there is no immigration and it is 
E[yi,1 � c, t] if there is the immigration. These rates are assumed to be constants. Then

E[ yi,0 � c, t] = bt + gc   without the immigration,

E[ yi,1 � c, t] = bt + gc + d  with the immigration.

The effect of the immigration on the unemployment rate is measured by d. The natural 
experiment is that the immigration occurs in Miami and not in Los Angeles but is not a result 
of any action by the people in either city. Then,

E[ yi � M,79] = b79 + gM  and  E[ yi � M, 81] = b81 + gM + d  for Miami,

E[ yi � L, 79] = b79 + gL  and  E[ yi � L, 81] = b81 + gL    for Los Angeles.

It is assumed that unemployment growth in the two cities would be the same if there were 
no immigration. If neither city experienced the immigration, the change in the unemployment 
rate would be

E[ yi,0 � M, 81] - E[ yi,0 � M, 79] = b81 - b79   for Miami,

E[ yi,0 � L, 81] - E[ yi,0 � L, 79] = b81 - b79   for Los Angeles.

If both cities were exposed to migration,

E[ yi,1 � M, 81] - E[ yi,1 � M, 79] = b81 - b79 + d  for Miami,

E[ yi,1 � L, 81] - E[ yi,1 � L, 79] = b81 - b79 + d  for Los Angeles.

Only Miami experienced the immigration (the “treatment”). The difference in differences that 
quantifies the result of the experiment is

{E[ yi,1 � M, 81] - E[ yi,1 � M, 79]} - {E[ yi,0 � L, 81] - E[ yi,0 � L, 79]} = d.

The author examined changes in employment rates and wages in the two cities over several 
years after the boatlift. The effects were surprisingly modest (essentially nil) given the scale 
of the experiment in Miami.

Example 6.10    Effect of the Minimum Wage
Card and Krueger’s (1994) widely cited analysis of the impact of a change in the minimum 
wage is similar to Card’s analysis of the Mariel Boatlift. In April 1992, New Jersey (NJ) raised 
its minimum wage from $4.25 to $5.05. The minimum wage in neighboring Pennsylvania 
(PA) was unchanged. The authors sought to assess the impact of this policy change by 
examining the change in employment in the two states from February to November, 1992 at 
fast food restaurants that tended to employ large numbers of people at the minimum wage. 
Conventional wisdom would suggest that, all else equal, whatever labor market trends were at 
work in the two states, NJ’s would be affected negatively by the abrupt 19% wage increase for 
minimum wage workers. This certainly qualifies as a natural experiment. NJ restaurants could 
not opt out of the treatment. The authors were able to obtain data on employment for 331 NJ 
restaurants and 97 PA restaurants in the first wave. Most of the first wave restaurants provided 
data for the second wave, 321 and 78, respectively. One possible source of “selection” would 
be attrition from the sample. Though the numbers are small, the possibility that the second 
wave sample was substantively composed of firms that were affected by the policy change 
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would taint the analysis (e.g., if firms were driven out of business because of the increased 
labor costs). The authors document at some length the data collection process for the second 
wave. Results for their experiment are shown in Table 6.8.

The first reported difference uses the full sample of available data. The second uses the 
“balanced sample” of all stores that reported data in both waves. In both cases, the difference 
in differences would be

∆(NJ ) - ∆(PA) = +2.75 full time employees.

A superficial analysis of these results suggests that they go in the wrong direction. 
Employment rose in NJ compared to PA in spite of the increase in the wage. Employment 
would have been changing in both places due to other economic conditions. The policy effect 
here might have distorted that trend. But, it is also possible that the trend in the two states 
was different. It has been assumed throughout so far that it is the same. Card and Krueger 
(2000) examined this possibility in a followup study. The newer data cast some doubt on the 
crucial assumption that the trends were the same in the two states.

Card and Krueger (1994) considered the possibility that restaurant specific factors 
might have influenced their measured outcomes. The implied regression would be

yit = b2Tt + b3Di + dTt * Di + (ai + G′xi) + eit, t = 0, 1.

Note the individual specific constant term that represents the unobserved heterogeneity 
and the addition to the regression. In the restaurant study, xi was characteristics of the 
store such as chain store type, ownership, and region—all features that would be the same 
in both waves. These would be fixed effects. In the difference in differences context, while 
they might indeed be influential in the outcome levels, it is clear that they will fall out of 
the differences:

∆E[ yit � Dit = 0, xi] = b2  + ∆(ai + G′xi),
∆E[ yit � Dit = 1, xi] = b2 + d + ∆(ai + G′xi).

The final term in both cases is zero, which leaves, as before,

∆E[ yit � Dit = 1, xi] - ∆E[ yi t � Dit = 1, xi] = d.

The useful conclusion is that in analyzing differences in differences, time invariant 
characteristics of the individuals will not affect the conclusions.

The analysis is more complicated if the control variables, xit, do change over time. 
Then,

yit = b2Tt + b3Di + dTt * Di + G′xit + eit, t = 0, 1.

PA NJ

First Wave (February) 23.33 20.44
Second Wave (November) 21.17 21.03
Difference -2.16 0.59
Difference (balanced) -2.28 0.47

TABLE 6.8  �Full Time Employment in NJ and PA 
Restaurants
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Then,

 ∆E[yit � xit, Dit = 1] = b2 + d + G′[∆xit � Dit = 1]

 ∆E[yit � xit, Dit = 0] = b2 +   G′[∆xit � Dit = 0]

∆E[yit � Dit = 1, xi] - ∆E[yit � Dit = 1, xi] = d + G′[(∆xit � Dit = 1) - (∆xit � Dit = 0)].

Now, if the effect of Dit is measured by the simple difference of means, the result will 
consist of the causal effect plus an additional term explained by the difference of the 
changes in the control variables. If individuals have been carefully sampled so that 
treatment and controls look the same in both periods, then the second effect might be 
ignorable. If not, then the second part of the regression should become part of the analysis.

6.3.2    EXAMINING THE EFFECTS OF DISCRETE POLICY CHANGES

The differences in differences result provides a convenient methodology for studying 
the effects of exogenously imposed policy changes. We consider an application from a 
recent antitrust case.

Example 6.11  �  Difference in Differences Analysis of a Price Fixing 
Conspiracy13

Roughly 6.5% of all British schoolchildren, and more than 18% of those over 16, attend 2,600 
independent fee-paying schools. Of these, roughly 10.5% are “boarders”—the remainder 
attend on a day basis. Each year from 1997 until June, 2003, a group of 50 of these schools 
shared information about intended fee increases for boarding and day students. The 
information was exchanged via a survey known as the “Sevenoaks Survey” (SS). The UK 
Office of Fair Trading (OFT, Davies (2012)) determined that the conspiracy, which was found 
to lead to higher fees, was prohibited under the antitrust law, the Competition Act of 1998. 
The OFT intervention consisted of a modest fine (10,000GBP) on each school, a mandate 
for the cartel to contribute about 3,000,000GBP to a trust, and prohibition of the Sevenoaks 
Survey. The OFT investigation was ended in 2006, but for the purposes of the analysis, the 
intervention is taken to have begun with the 2004/2005 academic year.

The authors of this study investigated the impact of the OFT intervention on the boarding 
and day fees of the Sevenoaks schools using a difference in differences regression. The pre-
intervention period is academic years 2001/02 to 2003/04. The post-intervention period 
extends to 2011/2012. The sample consisted of the treatment group, the 50 Sevenoaks 
schools, and 178 schools that were not party to the conspiracy and therefore, not impacted 
by the treatment. (Not necessarily. More on that below.) The “balanced panel data set” of 
12 years times 228 schools, or 2,736 observations, was reduced by missing data to 1,829 for 
the day fees model and 1,317 for the boarding fees model. Figure 6.2 (Figures 2 and 3 from 
the study) shows the behavior of the boarding and day fees for the schools for the period 
of the study.14 It is difficult to see a difference in the rates of change of the fees. The difference 
in the levels is obvious, but not yet explained.

A difference in differences methodology was used to analyze the behavior of the fees. Two 
key assumptions are noted at the outset.

1.	 The schools in the control group are not affected by the intervention. This may not be the 
case. The non-SS schools compete with the SS schools on a price basis. If the pricing 
behavior of the SS schools is affected by the intervention, that of the non-SS schools 
may be as well.

13 This case study is based on UK OFT (2012), Davies (2012) and Pesarisi et al. (2015).
14 The figures are extracted from the UK OFT (2012) working paper version of the study.
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Figure 6.2  Price Increases by Boarding Schools.
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2.	 It must be assumed that the trends and influences that affect the two groups of schools 
outside the effect of the intervention are the same. (Recall this was an issue in Card and 
Krueger’s analysis of the minimum wage in Example 6.10.)

The linear regression model used to study the behavior of the fees is

ln Feeit = ai + b1%boarderit + b2 %rankingit + b3 ln pupilsit + b4 yeart
+ l postinterventiont + d SSit * postinterventiont + eit
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Feeit  = inflation-adjusted day or boarding fees,
%boarder  = percentage of the students who are boarders at school i in year t,
%ranking  = percentile ranking of the school in Financial Times school rankings,
pupils  = number of students in the school,
year  = linear trend,
postintervention = dummy variable indicating the period after the intervention,
SS  = dummy variable for Sevenoaks school,
ai  = school-specific effect, modeled using a school specific dummy variable.

The effect of interest is d. Several assumptions underlying the data are noted to justify the 
interpretation of d as the sought-after causal impact of the intervention.

a.	 The effect of the intervention is exerted on the fees beginning in 2004/2005.
b.	 In the absence of the intervention, the regime would have continued on to 2012 as it had 

in the past.
c.	 The Financial Times ranking variable is a suitable indicator of the quality of the ranked 

school.
d.	 As noted earlier, pricing behavior by the control schools was not affected by the 

intervention.

The regression results are shown in Table 6.9.

The main finding is a decline of 1.5% for day fees and 1.6% for the boarding fees. 
Figure 6.3 [extracted from the UK OFT (2012) version of the paper ] summarizes the estimated 
cumulative impact of the study. The authors estimated the cumulative savings attributable to 
the intervention based on the results in Figure 6.3 to be roughly 85 million GBP.

One of the central issues in policy analysis concerns measurement of treatment 
effects when the treatment results from an individual participation decision. In the 
clinical trial example given earlier, the control observations (it is assumed) do not know 
they they are in the control group. The treatment assignment is exogenous to the 
experiment. In contrast, in Krueger and Dale (1999) study, the assignment to the 
treatment group, attended the elite college, is completely voluntary and determined by 
the individual. A crucial aspect of the analysis in this case is to accommodate the almost 
certain outcome that the treatment dummy might be measuring the latent motivation 
and initiative of the participants rather than the effect of the program itself. That is the 

Day Fees Boarding Feees
% Boarder 0.7730 (0.051)** 0.0367   (0.029)
% Ranking -0.0147 (0.019) 0.00396 (0.015)
ln Pupils 0.0247 (0.033) 0.0291   (0.021)
Year 0.0698 (0.004) 0.0709   (0.004)
Post-intervention 0.0750 (0.027) 0.0674   (0.022)
Post-intervention and SS -0.0149 (0.007) -0.0162   (0.005)
N 1,825 1,311
R2 0.949 0.957

Source: Pesaresi et al. (2015), Table 1.
* Model fit by least squares. Estimated individual fixed effects not shown.
** Robust standard errors that account for possible heteroscedasticity and 
autocorrelation in parentheses.

Table 6.9  Estimated Models for Day and Boarding Fees*
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main appeal of the natural experiment approach—it more closely (possibly exactly) 
replicates the exogenous treatment assignment of a clinical trial.15 We will examine some 
of these cases in Chapters 8 and 19.

15 See Angrist and Krueger (2001) and Angrist and Pischke (2010) for discussions of this approach.

Figure 6.3  Cumulative Impact of Sevenoaks Intervention.
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6.4	 USING REGRESSION KINKS AND DISCONTINUITIES TO ANALYZE 
SOCIAL POLICY

The ideal situation for the analysis of a change in social policy would be a randomized 
assignment of a sample of individuals to treatment and control groups.16 There are some 
notable examples to be found. The Tennessee STAR class size experiment was designed to 
study the effect of smaller class sizes in the earliest grades on short and long term student 
performance. [See Mosteller (1995) and Krueger (1999) and, for some criticism, Hanushek 
(1999, 2002).] A second prominent example is the Oregon Health Insurance Experiment.

The Oregon Health Insurance Experiment is a landmark study of the effect of 
expanding public health insurance on health care use, health outcomes, financial strain, 
and well-being of low-income adults. It uses an innovative randomized controlled 
design to evaluate the impact of Medicaid in the United States. Although randomized 
controlled trials are the gold standard in medical and scientific studies, they are rarely 
possible in social policy research. In 2008, the state of Oregon drew names by lottery 
for its Medicaid program for low-income, uninsured adults, generating just such an 
opportunity. This ongoing analysis represents a collaborative effort between researchers 
and the state of Oregon to learn about the costs and benefits of expanding public health 
insurance. (www.nber.org/oregon/)

In 2008, a group of uninsured low-income adults in Oregon was selected by lottery 
to be given the chance to apply for Medicaid. This lottery provides a unique opportunity 
to gauge the effects of expanding access to public health insurance on the health care 
use, financial strain, and health of low-income adults using a randomized controlled 
design. In the year after random assignment, the treatment group selected by the lottery 
was about 25 percentage points more likely to have insurance than the control group 
that was not selected. We find that in this first year, the treatment group had substantively 
and statistically significantly higher health care utilization (including primary and 
preventive care as well as hospitalizations), lower out-of-pocket medical expenditures 
and medical debt (including fewer bills sent to collection), and better self-reported 
physical and mental health than the control group. [Finkelstein et al. (2011).]

Substantive social science studies such as these, based on random assignment, are rare. 
The natural experiment approach, such as in Example 6.9, is an appealing alternative 
when it is feasible. Regression models with kinks and discontinuities have been designed 
to study the impact of social policy in the absence of randomized assignment.

6.4.1    REGRESSION KINKED DESIGN

A plausible description of the age profile of incomes will show incomes rising throughout 
but at different rates after some distinct milestones, for example, at age 18, when the 
typical individual graduates from high school, and at age 22, when he or she graduates 
from college. The profile of incomes for the typical individual in this population might 
appear as in Figure 6.4. We could fit such a regression model just by dividing the sample 
into three subsamples. However, this would neglect the continuity of the proposed 
function and possibly misspecify the relationship of other variables that might appear 
in the model. The result would appear more like the dashed figure than the continuous 

16 See Angrist and Pischke (2009).
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function we had in mind. Constrained regression can be used to achieve the desired 
effect. The function we wish to estimate is

 E[income � age] = a0 + b0 age  if age 6 18,

 a1 + b1 age  if age Ú 18 and age 6 22,

 a2 + b2 age  if age Ú 22.
Let

 d1 = 1 if age Ú t1*,
 d2 = 1 if age Ú t2*,

where t1* = 18 and t2* = 22. To combine the three equations, we use

income = b1 + b2 age + g1d1 + d1d1 age + g2d2 + d2d2 age + e.

This produces the dashed function Figure 6.4. The slopes in the three segments are 
b2, b2 + d1, and b2 + d1 + d2. To make the function continuous, we require that the 
segments join at the thresholds—that is,

b1 + b2t1* = (b1 + g1) + (b2 + d1)t1* and
(b1 + g1) + (b2 + d1)t2* = (b1 + g1 + g2) + (b2 + d1 + d2)t2*.

These are linear restrictions on the coefficients. The first one is

g1 + d1t1* = 0 or g1 = -d1t1*.

Doing likewise for the second, we obtain

income = b1 + b2 age + d1d1 (age - t1*) + d2d2 (age - t2*) + e.

Figure 6.4  Piecewise Linear Regression.
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Constrained least squares estimates are obtainable by multiple regression, using a 
constant and the variables

 x1 = age,
 x2 = age - 18 if age Ú 18 and 0 othewise,
 x3 = age - 22 if age Ú 22 and 0 othewise.

We can test the hypothesis that the slope of the function is constant with the joint test 
of the two restrictions d1 = 0 and d2 = 0.

Example 6.12    Policy Analysis Using Kinked Regressions
Discontinuities such as those in Figure 6.4 can be used to help identify policy effects. Card, 
Lee, Pei, and Weber (2012) examined the impact of unemployment insurance (UI) on the 
duration of joblessness in Austria using a regression kink design. The policy lever, UI, has a 
sharply defined benefit schedule level tied to base year earnings that can be traced through 
to its impact on the duration of unemployment. Figure 6.5 [from Card et al. (2012, p. 48)] 

Figure 6.5    Regression Kink Design.
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Figure 6.6  Regression Discontinuity.
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suggests the nature of the identification strategy. Simonsen, Skipper, and Skipper (2015) used 
a similar strategy to examine the effect of a subsidy on the demand for pharmaceuticals in 
Denmark.

6.4.2    REGRESSION DISCONTINUITY DESIGN

Van der Klaauw (2002) studied financial aid offers that were tied to SAT scores and 
grade point averages using a regression discontinuity design. The conditions under which 
the approach can be effective are when (1) the outcome, y, is a continuous variable; 
(2) the outcome varies smoothly with an assignment variable, A; and (3) treatment is 
sharply assigned based on the value of A, specifically T = 1(A 7 A*) where A* is a 
fixed threshold or cutoff value. [A fuzzy design is based on Prob(T = 1 � A) = F(A). 
The identification problems with fuzzy design are much more complicated than with 
sharp design. Readers are referred to Van der Klaauw (2002) for further discussion of 
fuzzy design.] We assume, then, that

y = f(A, T) + e.

Suppose, for example, the outcome variable is a test score, and that an administrative 
treatment such as a special education program is funded based on the poverty rates 
of certain communities. The ideal conditions for a regression discontinuity design 
based on these assumptions are shown in Figure 6.6. The logic of the calculation is 
that the points near the threshold value, which have essentially the same stimulus 
value, constitute a nearly random sample of observations which are segmented by the 
treatment.

The method requires that E[e � A, T] = E[e � A]—the assignment variable—be 
exogenous to the experiment. The result in Figure 6.6 is consistent with

y = f(A) + aT + e,

where a will be the treatment effect to be estimated. The specification of f(A) can be 
problematic; assuming a linear function when something more general is appropriate 
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will bias the estimate of a. For this reason, nonparametric methods, such as the LOWESS 
regression (see Section 12.4), might be attractive. This is likely to enable the analyst to 
make fuller use of the observations that are more distant from the cutoff point.17 
Identification of the treatment effect begins with the assumption that f(A) is continuous 
at A*, so that

lim
AcA*

f(A) = lim
ATA*

f(A) = f(A*).

Then

 lim
ATA*

E[y � A] - lim
AcA*

E[y � A] = f(A*) + a + lim
ATA*

E[e � A] - f(A*) - lim
AcA*

E[e � A]

 = a.

With this in place, the treatment effect can be estimated by the difference of the 
average outcomes for those individuals close to the threshold value, A*. Details on 
regression discontinuity design are provided by Trochim (1984, 2000) and Van der 
Klaauw (2002).

Example 6.13    The Treatment Effect of Compulsory Schooling
Oreopoulos (2006) examined returns to education in the UK in the context of a discrete 
change in the national policy on mandatory school attendance. [See, also, Ashenfelter and 
Krueger (2010b) for a U.S. study.] In 1947, the minimum school-leaving age in Great Britain 
was changed from 14 to 15 years. In this period, from 1935 to 1960, the exit rate among those 
old enough in the UK was more than 50%, so the policy change would affect a significant 
number of students. For those who turned 14 in 1947, the policy would induce a mandatory 
increase in years of schooling for many students who would otherwise have dropped out. 
Figure 6.7 (composed from Figures 1 and 6 from the article) shows the quite stark impact 
of the policy change. (A similar regime change occurred in Northern Ireland in 1957.) A 
regression of the log of annual earnings that includes a control for birth cohort reveals a 
distinct break for those born in 1933, that is, those who were affected by the policy change 
in 1947. The estimated regression produces a return to compulsory schooling of about 7.9% 
for Great Britain and 11.3% for Northern Ireland. (From Table 2. The figures given are based 
on least squares regressions. Using instrumental variables produces results of about 14% 
and 18%, respectively.)

Example 6.14    Interest Elasticity of Mortgage Demand
DeFusco and Paciorek (2014, 2016) studied the interest rate elasticity of the demand for 
mortgages. There is a natural segmentation in this market imposed by the maximum limit on 
loan sizes eligible for purchase by the Government Sponsored Enterprises (GSEs), Fannie 
Mae and Freddie Mac. The limits, set by the Federal Housing Finance Agency, vary by housing 
type and have been adjusted over time. The current loan limit, called the conforming loan limit 
(CLL) for single family homes has been fixed at $417,000 since 2006. A loan that is larger than 
the CLL is labeled a “jumbo loan.” Because the GSEs are able to obtain an implicit subsidy 
in capital markets, there is a discrete jump in interest rates at the conforming loan limit. The 
relationship between the mortgage size and the interest rates is key to the specification of the 
denominator of the elasticity. This foregoing suggests a regression discontinuity approach 
to the relationship between mortgage rates and loan sizes, such as shown in the left panel 

17 See Van der Klaauw (2002).
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Figure 6.7    Regression Discontinuity Design for Returns to 
Schooling.
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Note: The lower line shows the proportion of British-born adults aged 32 to 
64 from the 1983 to 1998 General Household Surveys who report leaving full-
time education at or before age 14 from 1935 to 1965. The upper line shows 
the same, but for age 15. The minimum school leaving age in Great Britain 
changed in 1947 from 14 to 15.
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Note: Local averages are plotted for British-born adults aged 32 to 64 from the 
1983 to 1998 General Household Surveys. The curved line shows the predicted 
fit from regressing average log annual earnings on a birth cohort quartic poly-
nomial and an indicator for the school leaving age faced at age 14. The school 
leaving age increased from 14 to 15 in 1947, indicated by the vertical line. 
Earnings are measured in 1998 UK pounds using the UK retail price index.
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Figure 6.8    Regression Discontinuity Design for Mortgage Demand.
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FIG. 2.—Mean Interest Rate Relative to the Conforming 
Limit, Fixed-Rate Mortgages Only (2006). This figure plots 
the mean interest rate for fixed rate mortgages originated in 
2006 as a function of the loan amount relative to the con-
forming limit. Each dot represents the mean interest rate 
within a given $5,000 bin relative to the limit. The dashed 
lines are predicted values from a regression fit to the binned 
data allowing for changes in the slope and intercept at the 
conforming limit. Sample includes all loans in the LPS fixed-
rate sample that fall within $100,000 of the conforming limit. 
See text for details on sample construction.

FIG. 3.—Loan Size Distribution Relative to the Conform-
ing Limit. This figure plots the fraction of all loans that are 
in any given $5,000 bin relative to the conforming limit. 
Data are pooled across years and each loan is centered 
at the conforming limit in effect at the date of origina-
tion, so that a value of 0 represents a loan at exactly 
the conforming limit. Sample includes all transactions in 
the primary DataQuick sample that fall within $400,000 
of the conforming limit. See text for details on sample 
construction.

of Figure 6.8. [Figure 2 in DeFusco and Paciorek (2014).] The semiparametric regression 
proposed was as follows:

ri,t = az(i),t + bJi,t + f J= 0(mi,t) + f J= 1(mi,t) + sLTV(LTVit) + sDTI(DTIi,t) +
sFICO(FICOi,t) + PMIi,t + PPi,t + g(TERMi,t) + ei,t.

The variables in the specification are:

ri,t  = interest rate on loan i originated at time t,
aZ(i),t  = fixed effect for zip code and time,
J  = dummy variable for jumbo loan (J=1) or conforming loan (J=0),
mi,t  = size  of the mortgage,
f J= 0  = (1-J ) * cubic polynomial in the mortgage size,
f J= 1  = J * cubic polynomial in the mortgage size,
LTVi,t  = loan to value ratio,
DTIi,t  = debt to income ratio,
FICOi,t  = credit score of borrower,
PMIi,t  = dummy variable for whether borrower took out private mortgage insurance,
PPi,t  = dummy variable for whether mortgatge has a prepayment penalty,
TERMi,t = control for the length of the mortgage.
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A coefficient of interest is b which is the estimate of the jumbo, conforming loan spread. 
Estimates obtained in this study were roughly 16 basis points. A complication for obtaining the 
numerator of the elasticity (the response of the mortgage amount) is that the crucial variable 
J is endogenous in the model. This is suggested by the bunching of observations at the CLL 
that can be seen in the right panel of Figure 6.8. Essentially, individuals who would otherwise 
take out a jumbo loan near the boundary can take advantage of the lower rate by taking out 
a slightly smaller mortgage. The implication is that the unobservable characteristics of many 
individuals who are conforming loan borrowers are those of individuals who are in principle 
jumbo loan borrowers. The authors consider a semiparametric approach and an instrumental 
variable approach suggested by Kaufman (2012) (we return to this in Chapter 8) rather than a 
simple RD approach. (Results are obtained using both approaches.) The instrumental variable 
used is an indicator related to the appraised home value; the exogeneity of the indicator 
is argued because home buyers cannot control the appraisal of the home. In the terms 
developed for IVs in Chapter 8, the instrumental variable is certainly exogenous as it is not 
controlled by the borrower, and is certainly relevant through the correlation between the 
appraisal and the size of the mortgage. The main empirical result in the study is an estimate of 
the interest elasticity of the loan demand, which appears to be measurable at the loan limit. A 
further complication of the computation is that the increase in the cost of the loan at the loan 
limit associated with the interest rate increase is not marginal. The increased cost associated 
the increased interest rate is applied to the entire mortgage, not just the amount by which 
it exceeds the loan limit. Accounting for that aspect of the computation, the authors obtain 
estimates of the semi-elasticity ranging from -0.016 to -0.052. They find, for an example, 
that this suggests an increase in rates from 5% to 6% (a 20% increase) attends a 2% to 3% 
decrease in demand.

6.5	 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: 
Let z = z1, z2, c, zL be a set of L independent variables; let f1, f2, c, fK be K 
linearly independent functions of z; let g(y) be an observable function of y; and retain 
the usual assumptions about the disturbance. The linear regression model may be 
written

	  g(y) = b1 f1(z) + b2 f2(z) + g + bKfK(z) + e	

	  = b1x1 + b2x2 + g + bKxK + e 	

	  = x′B + e. 	 (6-4)

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials, 
products, ratios, and so on, this linear model can be tailored to any number of 
situations.

6.5.1    FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

ln y = ln a + a
k
bk ln Xk + e = b1 + a

k
bkxk + e.
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In this model, the coefficients are elasticities:

	 a 0y

0Xk
b aXk

y
b =

0 ln y
0 ln Xk

= bk.	 (6-5)

In the loglinear equation, measured changes are in proportional or percentage terms; 
bk measures the percentage change in y associated with a one percent change in Xk. 
This removes the units of measurement of the variables from consideration in using 
the regression model. For example, in Example 6.2, in our analysis of auction prices of 
Monet paintings, we found an elasticity of price with respect to area of 1.34935. (This is 
an extremely large value—the value well in excess of 1.0 implies that not only do sale 
prices rise with area, they rise considerably faster than area.)

An alternative approach sometimes taken is to measure the variables and 
associated changes in standard deviation units. If the data are standardized before 
estimation using xik* = (xik - xk)/sk and likewise for y, then the least squares 
regression coefficients measure changes in standard deviation units rather than 
natural units or percentage terms. (Note that the constant term disappears from 
this regression.) It is not necessary actually to transform the data to produce these 
results; multiplying each least squares coefficient bk in the original regression by sk/sy 
produces the same result.

A hybrid of the linear and loglinear models is the semilog equation

	 ln y = b1 + b2x + e.	 (6-6)

In a semilog equation with a time trend, d ln y/dt = b2 is the average rate of growth 
of y. The estimated values of 0.0750 and 0.0709 for day fees and boarding fees reported 
in Table 6.9 suggests that over the full estimation period, after accounting for all other 
factors, the average rate of growth of the fees was about 7% per year.

The coefficients in the semilog model are partial- or semi-elasticities; in (6-6), 
b2 is 0 ln y/0x. This is a natural form for models with dummy variables such as the 
earnings equation in Example 6.1. The coefficient on Kids of -0.35 suggests that 
all else equal, earnings are approximately 35% less when there are children in the 
household.

Example 6.15    Quadratic Regression
The quadratic earnings equation in Example 6.3 shows another use of nonlinearities in 
the variables. Using the results in Example 6.3, we find that the experience-wage profile 
appears as in Figure 6.8. This figure suggests an important question in this framework. It is 
tempting to conclude that Figure 6.8 shows the earnings trajectory of a person as experience 
accumulates. (The distinctive downturn is probably exaggerated by the use of a quadratic 
regression rather than a more flexible function.) But that is not what the data provide. The 
model is based on a cross section, and what it displays is the earnings of different people 
with different experience levels. How this profile relates to the expected earnings path of one 
individual is a different, and complicated, question.
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6.5.2    INTERACTION EFFECTS

Another useful formulation of the regression model is one with interaction terms. For 
example, the model for ln Wage in Example 6.3 might be extended to allow different 
partial effects of education for men and women with

ln Wage = b1ED + b2FEM + b3ED * FEM + c + e.

In this model,

0 E[ln Wage � ED, FEM, c]

0 ED
= b1 + b3FEM,

which implies that the marginal effect of education differs between men and women 
(assuming that b3 is not zero).18 If it is desired to form confidence intervals or test hypotheses 
about these marginal effects, then the necessary standard error is computed from

Vara 0 En [lnWage � ED, FEM, c]

0 ED
b = Var[bn1] + FEM2 Var[bn3] + 2FEM Cov[bn1, bn3].

(Because FEM is a dummy variable, FEM2 = FEM.) The calculation is similar for

∆E[ln Wage � ED, FEM, c]
 = E[ln Wage � ED, FEM = 1, c] - E[ln Wage � ED, FEM = 0, c]
 = b2 + b3ED.

18 See Ai and Norton (2004) and Greene (2010) for further discussion of partial effects in models with interaction terms.

Figure 6.9  Experience-Earnings Profile.
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Example 6.16    Partial Effects in a Model with Interactions
We have extended the model in Example 6.3 by adding an interaction term between FEM and 
ED. The results for this part of the expanded model are

ln Wage = c + 0.05250 ED - 0.69799 FEM + 0.02572 ED *  FEM + c
          (0.00588)    (0.15207)     (0.01055)

Est.Asy.CovCb1

b2

b3

S = C    0.0000345423
 0.000349259 0.0231247

-0.0000243829 -0.00152425 0.000111355
S .

The individual coefficients are not informative about the marginal impact of gender or 
education. The mean value of ED in the full sample is 12.8. The partial effect of a year 
increase in ED is 0.05250 (0.00588) for men and 0.05250 + 0.02572 = 0.07823 (0.00986) 
for women. The gender difference in earnings is -0.69799 + 0.02572 *  ED. At the mean 
value of ED, this is -0.36822. The standard error would be (0.0231247 + 12.82 (0.000111355)
- 2(12.8)(0.00152425)1/2 = 0.04846. A convenient way to summarize the information is a plot 
of the gender difference for the different values of ED, as in Figure 6.10. The figure reveals 
a richer interpretation of the model produced by the nonlinearity—the gender difference in 
wages is persistent, but does diminish at higher levels of education.

6.5.3    IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may 
help to identify any nonlinearity and provide some information about it from the sample. 
For example, if the suspected nonlinearity is with respect to a single regressor in the 
equation, then fitting a quadratic or cubic polynomial rather than a linear function may 
capture some of it. The residuals from a plot of the estimated function can also help to 
reveal the appropriate functional form.

Figure 6.10    Partial Effects in a Nonlinear Model.
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Example 6.17    Functional Form for a Nonlinear Cost Function
In a pioneering study of economies of scale in the U.S. electric power industry, Nerlove (1963) 
analyzed the production costs of 145 American electricity generating companies. Economies 
of scale are typically modeled as a characteristic of the production function. Nerlove chose 
a Cobb–Douglas function to model output as a function of capital, K, labor, L, and fuel, F:

Q = a0KaKLaLFaFee,

where Q is output and ei embodies the unmeasured differences across firms. The economies 
of scale parameter is r = aK + aL + aF. The value 1.0 indicates constant returns to scale. 
The production model is loglinear, so assuming that other conditions of the classical 
regression model are met, the four parameters could be estimated by least squares. But, 
for a firm that optimizes by choosing its factors of production, the demand for fuel would 
be F* = F*(Q, PK, PL, PF) and likewise for labor and capital. The three factor demands are 
endogenous and the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms 
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well 
as the factor prices) could be viewed as exogenous to the firm. Based on an argument by 
Zellner, Kmenta, and Dreze (1966), Nerlove argued that at equilibrium, the deviation of costs 
from the long-run optimum would be independent of output. The firm’s objective was cost 
minimization subject to the constraint of the production function. This can be formulated as 
a Lagrangean problem,

MinK, L, FPKK + PLL + PFF + l(Q - a0KaKLaLFaF).

The solution to this minimization problem is the three factor demands and the multiplier 
(which measures marginal cost). Inserted back into total costs, this produces a loglinear cost 
function,

PKK + PLL + PFF = C(Q, PK, PL, PF) = rAQ1/rPK
aK/rPL

aL/rPF
aF/ree/r,

or

	 ln C = b1 + bq ln Q + bK ln PK + bL ln PL + bF ln PF + u,� (6-7)

where bq = 1/(aK + aL + aF) is now the parameter of interest and bj = aj/r, j = K, L, F.
The cost parameters must sum to one; bK + bL + bF = 1. This restriction can be imposed 

by regressing ln(C/PF) on a constant, ln Q, ln(PK/PF), and ln(PL/PF). Nerlove’s results appear at 
the left of Table 6.10.19 The hypothesis of constant returns to scale can be firmly rejected. 
The t ratio is (0.721-1)/0.0174 = -16.03, so we conclude that this estimate is significantly 
less than 1 or, by implication, r is significantly greater than 1. Note that the coefficient on the 
capital price is negative. In theory, this should equal aK/r, which should be positive. Nerlove 
attributed this to measurement error in the capital price variable. The residuals in a plot of the 
average costs against the fitted loglinear cost function as in Figure 6.11 suggested that the 
Cobb-Douglas model was not picking up the increasing average costs at larger outputs, which 
would suggest diminished economies of scale. An approach used was to expand the cost 
function to include a quadratic term in log output. This approach corresponds to a more 
general model. Again, a simple t test strongly suggests that increased generality is called for; 
t = 0.051/0.00054 = 9.44. The output elasticity in this quadratic model is bq + 2gqq log Q. 
There are economies of scale when this value is less than 1 and constant returns to scale 
when it equals 1. Using the two values given in the table (0.152 and 0.0052, respectively), we 

19Nerlove’s data appear in Appendix Table F6.2. Figure 6.6 is constructed by computing the fitted log cost values 
using the means of the logs of the input prices. The plot then uses observations 31–145.
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find that this function does, indeed, produce a U-shaped average cost curve with minimum 
at ln Q* = (1 - 0.152)/(2 * 0.051) = 8.31, or Q = 4079. This is roughly in the middle of the 
range of outputs for Nerlove’s sample of firms.

6.5.4    INTRINSICALLY LINEAR MODELS

The loglinear model illustrates a nonlinear regression model. The equation is intrinsically 
linear, however. By taking logs of Yi = aX i

b2eei, we obtain

ln Yi = ln a + b2 ln Xi + ei

or
yi = b1 + b2xi + ei.

Log-linear Log-quadratic

Sum of squares 21.637 13.248

R2 0.932 0.958

Standard Standard
Variable Coefficient Error t Ratio Coefficient Error t Ratio

Constant -4.686 0.885 -5.29 -3.764 0.702 -5.36
ln Q 0.721 0.0174 41.4 0.152 0.062 2.45
ln2 Q 0.000 0.000 —– 0.051 0.0054 9.44
ln (PL/PF) 0.594 0.205 2.90 0.481 0.161 2.99
ln (PK/PF) -0.0085 0.191 -0.045 0.074 0.150 0.49

TABLE 6.10  Cobb–Douglas Cost Functions for log (C/PF) based on 145 observations

Figure 6.11  Estimated Cost Functions.
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Although this equation is linear in most respects, something has changed in that it is 
no longer linear in a. But, written in terms of b1, we obtain a fully linear model. That 
may not be the form of interest, but nothing is lost because b1 is just ln a. If b1 can be 
estimated, then the obvious estimator of a is an = exp(b1).

This fact leads us to a useful aspect of intrinsically linear models; they have an 
“invariance property.” Using the nonlinear least squares procedure described in the next 
chapter, we could estimate a and b2 directly by minimizing the sum of squares function:

	 minimize with respect to (a, b2) : S(a, b2) = a
n

i= 1
(ln Yi - ln a - b2 ln Xi)

2.	 (6-8)

This is a complicated mathematical problem because of the appearance of the term ln a. 
However, the equivalent linear least squares problem,

	 minimize with respect to (b1, b2) : S(b1, b2) = a
n

i= 1
,(yi - b1 - b2xi)

2,	 (6-9)

is simple to solve with the least squares estimator we have used up to this point. The 
invariance feature that applies is that the two sets of results will be numerically identical; 
we will get the identical result from estimating a using (6-8) and from using exp (b1) 
from (6-9). By exploiting this result, we can broaden the definition of linearity and 
include some additional cases that might otherwise be quite complex.

DEFINITION 6.1  Intrinsic Linearity
In the linear regression model, if the K parameters b1, b2, c, bK can be written 
as K one-to-one, possibly nonlinear functions of a set of K underlying parameters 
u1, u2, c, uK, then the model is intrinsically linear in u.

Example 6.18    Intrinsically Linear Regression
In Section 14.6.4, we  will estimate by maximum likelihood the parameters of the model

f( y �b, x) =
( b + x)-r

Γ( r)
 yr - 1e-y/( b + x).

In this model, E[y � x] = (br) + rx, which suggests another way that we might estimate the 
two parameters. This function is an intrinsically linear regression model, E[y � x] = b1 + b2x, 
in which b1 = br and b2 = r. We can estimate the parameters by least squares and then 
retrieve the estimate of b using b1/b2. Because this value is a nonlinear function of the 
estimated parameters, we use the delta method to estimate the standard error. Using the data 
from that example,20 the least squares estimates of b1 and b2 (with standard errors in 
parentheses) are -4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance is -36.979. 
The estimate of b is -4.1431/2.4261 = -1.708. We estimate the sampling variance of bn with

 Est. Var[bn] = a 0bn

0b1
b

2

Var
¿

[b1] + a 0bn

0b2
b

2

Var
¿

[b2] + 2a 0bn

0b1
b a 0bn

0b2
bCov
¿

[b1, b2]

 = 8.6892.

20 The data are given in Appendix Table FC.1.
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Table 6.11 compares the least squares and maximum likelihood estimates of the parameters. 
The lower standard errors for the maximum likelihood estimates result from the inefficient 
(equal) weighting given to the observations by the least squares procedure. The gamma 
distribution is highly skewed. In addition, we know from our results in Appendix C that this 
distribution is an exponential family. We found for the gamma distribution that the sufficient 
statistics for this density were Σ iyi and Σ i ln yi. The least squares estimator does not use the 
second of these, whereas an efficient estimator will.

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then 
the model can be estimated in terms of the functions b1, c, bK, and the underlying 
parameters derived after these are estimated. The one-to-one correspondence is an 
identification condition. If the condition is met, then the underlying parameters of the 
regression (U) are said to be exactly identified in terms of the parameters of the linear 
model B. An excellent example is provided by Kmenta (1986, p. 515).

Example 6.19    CES Production Function
The constant elasticity of substitution production function may be written

	 ln y = ln g -
n

r
 ln [dK-r + (1 - d)L-r] + e.� (6-10)

A Taylor series approximation to this function around the point r = 0 is

 ln y = ln g + nd ln K + n(1 - d) ln L + rnd(1 - d)5 -1
2[ln K - ln L]26 + e′

 = b1x1 + b2x2 + b3x3 + b4x4 + e′, � (6-11)

where x1 = 1, x2 = ln K, x3 = ln L, x4 = -1
2 ln2(K/L), and the transformations are

	
b1 = ln g, b2 = nd, b3 = n(1 - d), b4 = rnd(1 - d),

g = eb1, d = b2/(b2 + b3), n = b2 + b3, r = b4(b2 + b3)/(b2b3).
� (6-12)

Estimates of b1, b2, b3, and b4 can be computed by least squares. The estimates of g, d, n, and 
r obtained by the second row of (6-12) are the same as those we would obtain had we found 
the nonlinear least squares estimates of (6-11) directly. [As Kmenta shows, however, they are 
not the same as the nonlinear least squares estimates of (6-10) due to the use of the Taylor 
series approximation to get to (6-11).] We would use the delta method to construct the estimated 
asymptotic covariance matrix for the estimates of U′ = [g, d, n, r]. The derivatives matrix is

C =
0U

0B′
= Deb1 0 0 0

0 b3/(b2 + b3)2 -b2/(b2 + b3)2 0
0 1 1 0
0 -b3b4/(b2

2b3) -b2b4/(b2b3
2) (b2 + b3)/(b2b3)

T .

The estimated covariance matrix for Un is Cn 5Asy.Var3un4 6Cn ′.

B R

Estimate Standard Error Estimate Standard Error

Least squares -1.708 8.689 2.426 1.592
Maximum likelihood -4.719 2.345 3.151 0.794

TABLE 6.11  �Estimates of the Regression in a Gamma Model: Least Squares versus 
Maximum Likelihood
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Not all models of the form

	 yi = b1(u)xi1 + b2(u)xi2 + g + bK(u)xik + ei	 (6-13)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e., 
that the parameters be exactly identified) was required. For example,

yi = a + bxi1 + gxi2 + bgxi3 + ei

is nonlinear. The reason is that if we write it in the form of (6-13), we fail to account 
for the condition that b4 equals b2b3, which is a nonlinear restriction. In this model, the 
three parameters a, b, and g are overidentified in terms of the four parameters b1, b2, b3, 
and b4. Unrestricted least squares estimates of b2, b3, and b4 can be used to obtain two 
estimates of each of the underlying parameters, and there is no assurance that these will 
be the same. Models that are not intrinsically linear are treated in Chapter 7.

6.6	 STRUCTURAL BREAK AND PARAMETER VARIATION

One of the more common applications of hypothesis testing is in tests of structural 
change.21 In specifying a regression model, we assume that its assumptions apply to all 
the observations in the sample. It is straightforward, however, to test the hypothesis that 
some or all of the regression coefficients are different in different subsets of the data. To 
analyze an example, we will revisit the data on the U.S. gasoline market that we examined 
in Examples 2.3 and 4.2. As Figure 4.2 suggests, this market behaved in predictable, 
unremarkable fashion prior to the oil shock of 1973 and was quite volatile thereafter. 
The large jumps in price in 1973 and 1980 are clearly visible, as is the much greater 
variability in consumption. It seems unlikely that the same regression model would apply 
to both periods.

6.6.1    DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was 
plentiful and world prices for gasoline had been stable or falling for at least two decades. 
The embargo of 1973 marked a transition in this market, marked by shortages, rising 
prices, and intermittent turmoil. It is possible that the entire relationship described by 
the regression model changed in 1974. To test this as a hypothesis, we could proceed as 
follows: Denote the first 21 years of the data in y and X as y1 and X1 and the remaining 
years as y2 and X2. An unrestricted regression that allows the coefficients to be different 
in the two periods is

	 Jy1

y2
R = JX1 0

0 X2
R JB1

B2
R + JE1

E2
R .	 (6-14)

Denoting the data matrices as y and X, we find that the unrestricted least squares 
estimator is

	 b = (X′X)-1X′y = JX1
=X1 0
0 X2

=X2
R -1JX1

=y1

X2
=y2

R = Jb1

b2
R ,	 (6-15)

21This test is often labeled a Chow test, in reference to Chow (1960).
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which is least squares applied to the two equations separately. Therefore, the total sum 
of squared residuals from this regression will be the sum of the two residual sums of 
squares from the two separate regressions:

e′e = e1
=e1 + e2

= e2.

The restricted coefficient vector can be obtained by imposing a constraint on least 
squares. Formally, the restriction B1 = B2 is RB = q, where R = [I: -  I] and q = 0. 
The general result given earlier can be applied directly. An easy way to proceed is to 
build the restriction directly into the model. If the two coefficient vectors are the same, 
then (6-14) may be written Jy1

y2
R = JX1

X2
RB + JE1

E2
R ;

the restricted estimator can be obtained simply by stacking the data and estimating a 
single regression. The residual sum of squares from this restricted regression, e*

=e*, then 
forms the basis for the test.

We begin by assuming that the disturbances are homoscedastic, nonautocorrelated, 
and normally distributed. More general cases are considered in the next section. 
Under these assumptions, the test statistic is given in (5-29), where J, the number of 
restrictions, is the number of columns in X2 and the denominator degrees of freedom is 
n1 + n2 - 2K. For this application,

	 F[K, n1 + n2 - 2K] =
(e*

=e* - e1
=e1 - e2

=e2)/K

(e1
=e1 + e2

=e2)/(n1 + n2 - 2K)
.	 (6-16)

Example 6.20    Structural Break in the Gasoline Market
Figure 4.2 shows a plot of prices and quantities in the U.S. gasoline market from 1953 to 2004. 
The first 21 points are the layer at the bottom of the figure and suggest an orderly market. 
The remainder clearly reflect the subsequent turmoil in this market. We will use the Chow 
tests described to examine this market. The model we will examine is the one suggested in 
Example 2.3, with the addition of a time trend:

ln(G/Pop)t = b1 + b2 ln (Income/Pop)t + b3 ln PGt + b4 ln PNCt + b5 ln PUCt + b6t + et.

The three prices in the equation are for G, new cars and used cars. Income/Pop is per capita 
Income, and G/Pop is per capita gasoline consumption. The time trend is computed as 
t = Year-1952, so in the first period t = 1. Regression results for three functional forms 
are shown in Table 6.12. Using the data for the entire sample, 1953 to 2004, and for the two 
subperiods, 1953 to 1973 and 1974 to 2004, we obtain the three estimated regressions in 
the first and last two columns. Using the full set of 52 observations to fit the model, the sum 
of squares is e*

=e* = 0.101997. The F statistic for testing the restriction that the coefficients 
in the two equations are the same is

F[6, 40] =
(0.101997 - (0.00202244 + 0.007127899))/6
(0.00202244 + 0.007127899)/(21 + 31 - 12)

= 67.645.

The tabled critical value is 2.336, so, consistent with our expectations, we would reject the 
hypothesis that the coefficient vectors are the same in the two periods.
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6.6.2    ROBUST TESTS OF STRUCTURAL BREAK WITH UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance 
is the same in both (or all) regressions. In the restricted model, if this is not true, the first 
n1 elements of e have variance s1

2, whereas the next n2 have variance s2
2, and so on. The 

restricted model is, therefore, heteroscedastic, and the results for normally distributed 
disturbances no longer apply. In several earlier examples, we have gone beyond 
heteroscedasticity, and based inference on robust specifications that also accommodate 
clustering and correlation across observations. In both settings, the results behind the 
F statistic in (6-16) will no longer apply. As analyzed by Schmidt and Sickles (1977), 
Ohtani and Toyoda (1985), and Toyoda and Ohtani (1986), it is quite likely that the 
actual probability of a type I error will be larger than the significance level we have 
chosen. (That is, we shall regard as large an F statistic that is actually less than the 
appropriate but unknown critical value.) Precisely how severe this effect is going to be 
will depend on the data and the extent to which the variances differ, in ways that are 
not likely to be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or not 
the disturbance variances are the same. Suppose that Un1 and Un2 are two consistent and 
asymptotically normally distributed estimators of a parameter based on independent 
samples, with asymptotic covariance matrices V1 and V2. Then, under the null hypothesis 
that the true parameters are the same,

Un1 - Un2 has mean 0 and asymptotic covariance matrix V1 + V2.

Under the null hypothesis, the Wald statistic,

	 W = (Un1 - Un2)′(Vn1 + Vn2)
-1(Un1 - Un2),	 (6-17)

has a limiting chi-squared distribution with K degrees of freedom. A test that the 
difference between the parameters is zero can be based on this statistic.22 It is 
straightforward to apply this to our test of common parameter vectors in our regressions. 
Large values of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property 
that the probability of a type I error is persistently larger than the critical level we 

22 See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the 
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.

Coefficients 1953–2004 1953–1973 1974–2004

Constant -26.6787 -22.1647 -15.3238
ln Income/Pop 1.6250 0.8482 0.3739
ln PG -0.05392 -0.03227 -0.1240
ln PNC -0.08343 0.6988 -0.001146
ln PUC -0.08467 -0.2905 -0.02167
Year -0.01393 0.01006 0.004492

R2 0.9649 0.9975 0.9529

Standard error 0.04709 0.01161 0.01689
Sum of squares 0.101997 0.00202244 0.007127899

Table 6.12  Gasoline Consumption Functions
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use to carry it out. (That is, we shall too frequently reject the null hypothesis that the 
parameters are the same in the subsamples.) We should be using a larger critical value. 
Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy 
for the problem. In general, this test attains its validity in relatively large samples.

Example 6.21    Sample Partitioning by Gender
Example 6.3 considers the labor market experiences of a panel of 595 individuals, each 
observed 7 times. We have observed persistent differences between men and women in 
the relationship of log wages to various variables. It might be the case that different models 
altogether would apply to the two subsamples. We have fit the model in Example 6.3 
separately for men and women (omitting FEM from the two regressions, of course), and 
calculated the Wald statistic in (6-17) based on the cluster corrected asymptotic covariance 
matrices as used in the pooled model as well. The chi-squared statistic with 17 degrees of 
freedom is 27.587, so the hypothesis of equal parameter vectors is rejected. The sums of 
squared residuals for the pooled data set for men and for women, respectively, are 416.988, 
360.773, and 24.0848; the F statistic is 20.287 with critical value 1.625. This produces the 
same conclusion.

Example 6.22    The World Health Report
The 2000 version of the World Health Organization’s (WHO) World Health Report contained a 
major country-by-country inventory of the world’s health care systems. [World Health Organization 
(2000). See also http://www.who.int/whr/en/.] The book documented years of research and has 
thousands of pages of material. Among the most controversial and most publicly debated parts 
of the report was a single chapter that described a comparison of the delivery of health care by 
191 countries—nearly all of the world’s population. [Evans et al. (2000a,b). See, e.g., Hilts (2000) 
for reporting in the popular press.] The study examined the efficiency of health care delivery 
on two measures: the standard one that is widely studied, (disability adjusted) life expectancy 
(DALE), and an innovative new measure created by the authors that was a composite of five 
outcomes (COMP) and that accounted for efficiency and fairness in delivery. The regression-style 
modeling, which was done in the setting of a frontier model (see Section 19.2.4), related health 
care attainment to two major inputs, education and (per capita) health care expenditure. The 
residuals were analyzed to obtain the country comparisons.

The data in Appendix Table F6.3 were used by the researchers at the WHO for the study. 
(They used a panel of data for the years 1993 to 1997. We have extracted the 1997 data for 
this example.) The WHO data have been used by many researchers in subsequent analyses.23 
The regression model used by the WHO contained DALE or COMP on the left-hand side and 
health care expenditure, education, and education squared on the right. Greene (2004b) 
added a number of additional variables such as per capita GDP, a measure of the distribution 
of income, and World Bank measures of government effectiveness and democratization of 
the political structure.

Among the controversial aspects of the study was the fact that the model aggregated 
countries of vastly different characteristics. A second striking aspect of the results, suggested 
in Hilts (2000) and documented in Greene (2004b), was that, in fact, the “efficient” countries in 
the study were the 30 relatively wealthy OECD members, while the rest of the world on average 
fared much more poorly. We will pursue that aspect here with respect to DALE. Analysis 
of COMP is left as an exercise. Table 6.8 presents estimates of the regression models for 
DALE for the pooled sample, the OECD countries, and the non-OECD countries, respectively. 
Superficially, there do not appear to be very large differences across the two subgroups. We 
first tested the joint significance of the additional variables, income distribution (GINI), per 

23 See, for example, Hollingsworth and Wildman (2002), Gravelle et al. (2002), and Greene (2004b).
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capita GDP, and so on. For each group, the F statistic is [(e*
=e* - e′e)/7]/[e′e/(n - 11)]. These 

F statistics are shown in the last row of the table. The critical values for F[7,180] (all), F[7,19] 
(OECD), and F[7,150] (non-OECD) are 2.061, 2.543, and 2.071, respectively. We conclude 
that the additional explanatory variables are significant contributors to the fit for the non-
OECD countries (and for all countries), but not for the OECD countries. Finally, to conduct 
the structural change test of OECD vs. non-OECD, we computed

F[11, 169] =
[7757.002 - (69.74428 + 7378.598)]/11
(69.74428 + 7378.598)/(191 - 11 - 11)

= 0.637.

The 95% critical value for F[11,169] is 1.846. So, we do not reject the hypothesis that the 
regression model is the same for the two groups of countries. The Wald statistic in (6-17) tells 
a different story. The statistic is 35.221. The 95% critical value from the chi-squared table 
with 11 degrees of freedom is 19.675. On this basis, we would reject the hypothesis that the 
two coefficient vectors are the same.

6.6.3    POOLING REGRESSIONS

Extending the homogeneity test to multiple groups or periods should be straightforward. 
As usual, we begin with independent and identically normally distributed disturbances. 
Assume there are G groups or periods. (In Example 6.3, we are examining 7 years of 
observations.) The direct extension of the F statistic in (6-16) would be

	 F[(G - 1)K, Σg = 1
G (ng - K)] =

(e*
=e* - Σg = 1

G eg
=eg)/(G - 1)K

(Σg = 1
G eg

=eg)/Σg = 1
G (ng - K)

.	 (6-18)

To apply (6-18) to a more general case, begin with the simpler setting of possible 
heteroscedasticity. Then, we can consider a set of G estimators, bg, each with associated 

All Countries OECD Non-OECD

Constant 25.237 38.734 42.728 49.328 26.816 41.408
Health exp 0.00629 -0.00180 0.00268 0.00114 0.00955 -0.00178
Education 7.931 7.178 6.177 5.156 7.0433 6.499

Education2 -0.439 -0.426 -0.385 -0.329 -0.374 -0.372

Gini coeff -17.333 -5.762 -21.329
Tropic -3.200 -3.298 -3.144
Pop. Dens. -0.255e-4 0.000167 -0.425e-4
Public exp -0.0137 -0.00993 -0.00939
PC GDP 0.000483 0.000108 0.000600
Democracy 1.629 -0.546 1.909
Govt. Eff. 0.748 1.224 0.786

R2 0.6824 0.7299 0.6483 0.7340 0.6133 0.6651

Std. Err. 6.984 6.565 1.883 1.916 7.366 7.014
Sum of sq. 9121.795 7757.002 92.21064 69.74428 8518.750 7378.598
N 191 30 161
GDP/Pop 6609.37 18199.07 4449.79
F test 4.524 0.874 3.311

Table 6.13  Regression Results for Life Expectancy
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asymptotic covariance matrix Vg. A Wald test along the lines of (6-17) can be carried 
out by testing h0:B1 - B2 = 0, B1 - B3 = 0, c, B1 - BG = 0. This can be based on 
G sets of least squares results. The Wald statistic is

	 W = (Rb)=(R(Asy. Var[b])R=)-1(Rb),	 (6-19)

where

	 R = E I −I 0 c 0
I 0 −  I c 0
I 0 0 c 0
c c c c c
I 0 0 c −I

U ; b = § b1

b2

c
bG

¥.	 (6-20)

The results in (6-19) and (6-20) are straightforward based on G separate regressions. For 
example, to test equality of the coefficient vectors for three periods, (6-19) and (6-20) 
would produce

W = [(b1 - b2)
= (b1 - b3)′]J(V1 + V2) V1

V1 (V1 + V3)
R -1J(b1 - b2)

(b1 - b3)
R .

The computations are rather more complicated when observations are correlated, as in 
a panel. In Example 6.3, we are examining seven periods of data but robust calculation 
of the covariance matrix for the estimates results in correlation across the observations 
within a group. The implication for current purposes would be that we are not using 
independent samples for the G estimates of bg. The following practical strategy for this 
computation is suggested for the particular application—extensions to other settings 
should be straightforward. We have seven years of data for individual i, with regression 
specification

yit = xit
=B + eit.

For each individual, we construct

X∼i = D xi1
= 0= c 0=

0′ xi2
= c 0′

c c c c
0′ 0′ c xi7

=

T and § yi1

yi2

c
yi7

¥.

Then, the 7K *  1 vector of estimated coefficient vectors is computed by least squares,

b = 3 a 595
i= 1X

∼
i
=X∼i4 -1a 595

i= 1X
∼

i
=y∼i

The estimator of the asymptotic covariance matrix of b is the cluster estimator from 
(4-41) and (4-42),

	 Est.Asy.Var[b] = c a 595
i= 1X

∼
i
=X∼i d

-1

e a 595
i= 1(X∼i

=ei)(ei
=X∼i) f c a 595

i= 1X
∼

i
=X∼i d

-1

.	 (6-21)

Example  6.23    Pooling in a Log Wage Model
Using the data and model in Example 6.3, the sums of squared residuals are as follows:

1976: 44.3242	 1977: 38.7594	 1978: 63.9203	 1979: 61.4599
1980: 54.9996	 1981: 58.6650	 1982: 62.9827	 Pooled: 513.767
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The F statistic based on (6-18) is 14.997. The 95% critical value from the F table with 6*12 
and (4165-84) degrees of freedom is 1.293. The large sample approximation for this statistic 
would be 72(14.997) = 1079.776 with 72 degrees of freedom. The 95% critical value for 
the chi-squared distribution with 72 degrees of freedom is 92.808, which is slightly less 
than 72(1.293). The Wald statistic based on (6-19) using (6-21) to compute the asymptotic 
covariance matrix is 3068.78 with 72 degrees of freedom. Finally, the Wald statistic based 
on (6-19) and 7 separate estimates, allowing different variances, is 1478.62. All versions of 
the test procedure produce the same conclusion. The homogeneity restriction is decisively 
rejected. We note, this conclusion gives no indication of the nature of the change from year 
to year.

6.7 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined the 
use of dummy variables and other transformations to build nonlinearity into the model 
to accommodate specific features of the environment, such as the effects of discrete 
changes in policy. We then considered other nonlinear models in which the parameters of 
the nonlinear model could be recovered from estimates obtained for a linear regression. 
The final sections of the chapter described hypothesis tests designed to reveal whether 
the assumed model had changed during the sample period, or was different for different 
groups of observations.

Key Terms and Concepts

•	Binary variable
•	Chow test
•	Control group
•	Control observations
•	Difference in differences
•	Dummy variable
•	Dummy variable trap
•	Dynamic linear regression 

model
•	Exactly identified

•	Fuzzy design
•	Identification condition
•	Interaction terms
•	Intrinsically linear
•	Loglinear model
•	Marginal effect
•	Natural experiment
•	Nonlinear restriction
•	Overidentified
•	Placebo effect

•	Regression discontinuity 
design

•	Regression kink design
•	Response
•	Semilog equation
•	Structural change
•	Treatment
•	Treatment group
•	Unobserved heterogeneity

Exercises

1.	 A regression model with K = 16 independent variables is fit using a panel of 
seven years of data. The sums of squares for the seven separate regressions and 
the pooled regression are shown below. The model with the pooled data allows 
a separate constant for each year. Test the hypothesis that the same coefficients 
apply in every year.

2004 2005 2006 2007 2008 2009 2010 All

Observations   65 55   87   95 103   87   78   570
e′e 104 88 206 144 199 308 211 1425
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2.	 Reverse regression. A method of analyzing statistical data to detect discrimination 
in the workplace is to fit the regression

	 y = a + x′b + gd + e,� (1)

where y is the wage rate and d is a dummy variable indicating either membership 
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested 
the discrimination is directed. The regressors x include factors specific to the 
particular type of job as well as indicators of the qualifications of the individual. 
The hypothesis of interest is H0 :g Ú 0 versus H1 :g 6 0. The regression seeks to 
answer the question, “In a given job, are individuals in the class (d = 1) paid less 
than equally qualified individuals not in the class (d = 0)?” Consider an alternative 
approach. Do individuals in the class in the same job as others, and receiving the 
same wage, uniformly have higher qualifications? If so, this might also be viewed 
as a form of discrimination. To analyze this question, Conway and Roberts (1983) 
suggested the following procedure:

1.	 Fit (1) by ordinary least squares. Denote the estimates a, b, and c.
2.	 Compute the set of qualification indices,

	 q = ai + Xb.� (2)

Note the omission of cd from the fitted value.
3.	 Regress q on a constant, y and d. The equation is

	 q = a* + b*y + g*d + e*.� (3)

The analysis suggests that if g 6 0, then g* 7 0.
a.	 Prove that the theory notwithstanding, the least squares estimates c and c* 

are related by

	 c* =
(y1 - y)(1 - R2)

(1 - P)(1 - ryd
2 )

- c,� (4)

where

y1 = mean of y for observations with d = 1,
y  = mean of y for all observations,
P = mean of d,
R2 = coefficient of determination for (1),
ryd

2 = squared correlation between y and d.
[Hint: The model contains a constant term]. Thus, to simplify the algebra, assume 
that all variables are measured as deviations from the overall sample means and 
use a partitioned regression to compute the coefficients in (3). Second, in (2), 
use the result that based on the least squares results y = ai + Xb + cd + e, 
so q = y - cd - e. From here on, we drop the constant term. Thus, in the 
regression in (3) you are regressing [y - cd - e] on y and d.

b.	 Will the sample evidence necessarily be consistent with the theory? [Hint: 
Suppose that c = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of 
Business and Economic Statistics in April 1983.

3.	 Reverse regression continued. This and the next exercise continue the analysis of 
Exercise 2. In Exercise 2, interest centered on a particular dummy variable in which 
the regressors were accurately measured. Here we consider the case in which the 
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crucial regressor in the model is measured with error. The paper by Kamlich and 
Polachek (1982) is directed toward this issue.

Consider the simple errors in the variables model,

y = a + bx* + e,  x = x* + u,

where u and e are uncorrelated and x is the erroneously measured, observed 
counterpart to x*.
a.	 Assume that x*, u, and e are all normally distributed with means m*, 0, and 0, 

variances s*
2, su

2, and se
2, and zero covariances. Obtain the probability limits of 

the least squares estimators of a and b.
b.	 As an alternative, consider regressing x on a constant and y, and then computing 

the reciprocal of the estimate. Obtain the probability limit of this estimator.
c.	 Do the “direct” and “reverse” estimators bound the true coefficient?

4.	 Reverse regression continued. Suppose that the model in Exercise 3 is extended 
to y = bx* + gd + e, x = x* + u. For convenience, we drop the constant 
term. Assume that x*, e, and u are independent normally distributed with zero 
means. Suppose that d is a random variable that takes the values one and zero 
with probabilities p and 1 - p in the population and is independent of all other 
variables in the model. To put this formulation in context, the preceding model 
(and variants of it) have appeared in the literature on discrimination. We view y 
as a “wage” variable, x* as “qualifications,” and x as some imperfect measure such 
as education. The dummy variable, d, is membership (d = 1) or nonmembership 
(d = 0) in some protected class. The hypothesis of discrimination turns on g 6 0 
versus g Ú 0.
a.	 What is the probability limit of c, the least squares estimator of g, in the least 

squares regression of y on x and d? [Hints: The independence of x* and d is 
important. Also, plim d′d/n = Var[d] + E2[d] = p(1 - p) + p2 = p. This 
minor modification does not affect the model substantively, but it greatly 
simplifies the algebra.] Now suppose that x* and d are not independent. In 
particular, suppose that E[x* � d = 1] = m1 and E[x* � d = 0] = m0. Repeat the 
derivation with this assumption.

b.	 Consider, instead, a regression of x on y and d. What is the probability limit of 
the coefficient on d in this regression? Assume that x* and d are independent.

c.	 Suppose that x* and d are not independent, but g is, in fact, less than 
zero. Assuming that both preceding equations still hold, what is estimated 
by (y � d = 1) - (y � d = 0)? What does this quantity estimate if g does equal 
zero?

5.	 Dummy variable for one observation. Suppose the data set consists of n observations, 
(yn, Xn) and an additional observation, (ys, xs

=). The full data set contains a dummy 
variable, d, that equals zero save for one (the last) observation. Then, the full data set is

(Xn,s , dn,s) = JXn 0
x′s 1

R  and y n,s = Jyn

ys
R .

It is claimed in the text that in the full regression of yn,s on (Xn,s, dn,s) using all n+1 
observations, the slopes on Xn,s, bn,s, and their estimated standard errors will be the 
same as those on Xn, bn in the short regression of yn on Xn, and the sum of squared 
residuals in the full regression will be the same as the sum of squared residuals in 
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the short regression. That is, the last observation will be ignored. However, the R2 
in the full regression will not be the same as the R2 in the short regression. Prove 
these results.

Applications

1.	 In Application 1 in Chapter 3 and Application 1 in Chapter 5, we examined Koop 
and Tobias’s data on wages, education, ability, and so on. We continue the analysis 
here. (The source, location and configuration of the data are given in the earlier 
application.) We consider the model

 ln Wage = b1 + b2 Educ + b3 Ability + b4 Experience
 + b5 Mother’s education + b6 Father’s education + b7 Broken home
 + b8 Siblings + e.

a.	 Compute the full regression by least squares and report your results. Based on 
your results, what is the estimate of the marginal value, in $/hour, of an additional 
year of education, for someone who has 12 years of education when all other 
variables are at their means and Broken home = 0?

b.	 We are interested in possible nonlinearities in the effect of education on ln Wage. 
(Koop and Tobias focused on experience. As before, we are not attempting to 
replicate their results.) A histogram of the education variable shows values from 
9 to 20, a spike at 12 years (high school graduation), and a second at 15. Consider 
aggregating the education variable into a set of dummy variables:

 HS = 1 if Educ … 12,0 otherwise
 Col = 1 if Educ 7 12 and Educ … 16, 0 otherwise

 Grad = 1 if Educ 7 16, 0 otherwise.

Replace Educ in the model with (Col, Grad), making high school (HS) the 
base category, and recompute the model. Report all results. How do the results 
change? Based on your results, what is the marginal value of a college degree? 
What is the marginal impact on ln Wage of a graduate degree?

c.	 The aggregation in part b actually loses quite a bit of information. Another way 
to introduce nonlinearity in education is through the function itself. Add Educ2 
to the equation in part a and recompute the model. Again, report all results. 
What changes are suggested? Test the hypothesis that the quadratic term in the 
equation is not needed—that is, that its coefficient is zero. Based on your results, 
sketch a profile of log wages as a function of education.

d.	 One might suspect that the value of education is enhanced by greater ability. We 
could examine this effect by introducing an interaction of the two variables in 
the equation. Add the variable

Educ_ Ability = Educ * Ability

to the base model in part a. Now, what is the marginal value of an additional 
year of education? The sample mean value of ability is 0.052374. Compute a 
confidence interval for the marginal impact on ln Wage of an additional year of 
education for a person of average ability.
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e.	 Combine the models in c and d. Add both Educ2 and Educ_Ability to the base 
model in part a and reestimate. As before, report all results and describe your 
findings. If we define low ability as less than the mean and high ability as greater 
than the mean, the sample averages are -0.798563 for the 7,864 low-ability 
individuals in the sample and +0.717891 for the 10,055 high-ability individuals in 
the sample. Using the formulation in part c, with this new functional form, sketch, 
describe, and compare the log wage profiles for low- and high-ability individuals.

2.	 (An extension of Application 1.) Here we consider whether different models as 
specified in Application 1 would apply for individuals who reside in “Broken 
homes.” Using the results in Section 6.6, test the hypothesis that the same model 
(not including the Broken home dummy variable) applies to both groups of 
individuals, those with Broken home = 0 and with Broken home = 1.

3.	 In Solow’s classic (1957) study of technical change in the U.S. economy, he 
suggests the following aggregate production function: q(t) = A(t) f [k(t)], 
where q(t) is aggregate output per work hour, k(t) is the aggregate capital labor 
ratio, and A(t) is the technology index. Solow considered four static models, 
q/A = a + b ln k, q/A = a - b/k, ln(q/A) = a + b ln k, and ln(q/A) = a + b/k. 
Solow’s data for the years 1909 to 1949 are listed in Appendix Table F6.4.
a.	 Use these data to estimate the a and b of the four functions listed above. (Note: 

Your results will not quite match Solow’s. See the next exercise for resolution 
of the discrepancy.)

b.	 In the aforementioned study, Solow states:

A scatter of q / A against k is shown in Chart 4. Considering the amount of a 
priori doctoring which the raw figures have undergone, the fit is remarkably 
tight. Except, that is, for the layer of points which are obviously too high. 
These maverick observations relate to the seven last years of the period, 
1943–1949. From the way they lie almost exactly parallel to the main scatter, 
one is tempted to conclude that in 1943 the aggregate production function 
simply shifted.

Compute a scatter diagram of q / A against k and verify the result he notes above.
c.	 Estimate the four models you estimated in the previous problem including a 

dummy variable for the years 1943 to 1949. How do your results change? (Note: 
These results match those reported by Solow, although he did not report the 
coefficient on the dummy variable.)

d.	 Solow went on to surmise that, in fact, the data were fundamentally different 
in the years before 1943 than during and after. Use a Chow test to examine the 
difference in the two subperiods using your four functional forms. Note that 
with the dummy variable, you can do the test by introducing an interaction term 
between the dummy and whichever function of k appears in the regression. Use 
an F test to test the hypothesis.
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