
242

8

EndogEnEity and instrumEntal 
VariablE Estimation

§
8.1 INTRODUCTION

the assumption that xi and ei are uncorrelated in the linear regression model,

 y = x=B + e, (8-1)

has been crucial in the development thus far. but there are many applications in which 
this assumption is untenable. Examples include models of treatment effects such as 
those in Examples 6.8–6.13, models that contain variables that are measured with error, 
dynamic models involving expectations, and a large variety of common situations that 
involve variables that are unobserved, or for other reasons are omitted from the equation. 
Without the assumption that the disturbances and the regressors are uncorrelated, none 
of the proofs of consistency or unbiasedness of the least squares estimator that were 
obtained in Chapter 4 will remain valid, so the least squares estimator loses its appeal. 
this chapter will develop an estimation method that arises in situations such as these.

it is convenient to partition x in (8-1) into two sets of variables, x1 and x2, with the 
assumption that x1 is not correlated with e and x2 is, or may be (part of the empirical 
investigation). We are assuming that x1 is exogenous in the model—see assumption a.3 
in the statement of the linear regression model in section 2.3. it will follow that x2 is, 
by this definition, endogenous in the model. How does endogeneity arise? Example 8.1 
suggests some common settings.

Example 8.1  Models with Endogenous Right-Hand-Side Variables
The following models and settings will appear at various points in this book.

Omitted Variables: In Example 4.2, we examined an equation for gasoline consumption 
of the form

ln G = b1 + b2 ln Price + b3 ln Income + e.

When income is improperly omitted from this (any) demand equation, the resulting “model” is

ln G = b1 + b2 ln Price + w,

where w = b3 ln Income + e. Linear regression of lnG on a constant and lnPrice does not 
consistently estimate (b1, b2) if lnPrice is correlated with w. It surely will be in aggregate 
time-series data. The omitted variable reappears in the equation, in the disturbance, causing 
omitted variable bias in the least squares estimator of the misspecified equation.

Berry, Levinsohn, and Pakes (1995) examined the equilibrium in the U.S. automobile 
market. The centerpiece of the model is a random utility, multinomial choice model. For 
consumer i in market t, the utility of brand choice j is Uijt = U(wi, pjt, xjt, fjt �B), where wi is 
individual heterogeneity, pjt is the price, xjt is a vector of observed attributes, and fjt is a vector 
of unobserved features of the brand. Under the assumptions of random utility maximizing, and 
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aggregating over individuals, the model produces a market share equation, sjt = sj(pt, Xt, ft �B). 
Because ft is unobserved features that consumers care about (i.e., fjt influences the market 
share of brand j), and fjt is reflected in the price of the brand, pjt, pt is endogenous in this 
choice model that is based on observed market shares.

Endogenous Treatment Effects: Krueger and Dale (1999) and Dale and Krueger (2002, 
2011) examined the effect of attendance at an elite college on lifetime earnings. The regression 
model with a “treatment effect” dummy variable, T, which equals one for those who attended 
an elite college and zero otherwise, appears as

ln y = x′B + dT + e.

Least squares regression of a measure of earnings, ln y, on x and T attempts to produce an 
estimate of d, the impact of the treatment. It seems inevitable, however, that some unobserved 
determinants of lifetime earnings, such as ambition, inherent abilities, persistence, and so on 
would also determine whether the individual had an opportunity to attend an elite college. 
If so, then the least squares estimator of d will inappropriately attribute the effect to the 
treatment, rather than to these underlying factors. Least squares will not consistently estimate 
d, ultimately because of the correlation between T and e.

In order to quantify definitively the impact of attendance at an elite college on the individuals 
who did so, the researcher would have to conduct an impossible experiment. Individuals in 
the sample would have to be observed twice, once having attended the elite college and a 
second time (in a second lifetime) without having done so. Whether comparing individuals 
who attended elite colleges to other individuals who did not adequately measures the effect 
of the treatment on the treated individuals is the subject of a vast current literature. See, 
for example, Imbens and Wooldridge (2009) for a survey.

Simultaneous Equations: In an equilibrium model of price and output determination in 
a market, there would be equations for both supply and demand. For example, a model of 
output and price determination in a product market might appear,

 (Demand)  QuantityD = a0 + a1 Price + a2 Income + eD,

 (Supply)  QuantityS = b0 + b1 Price + b2 Input Price + eS,

 (Equilibrium) QuantityD = QuantityS.

Consider attempting to estimate the parameters of the demand equation by regression of a 
time series of equilibrium quantities on equilibrium prices and incomes. The equilibrium price 
is determined by the equation of the two quantities. By imposing the equilibrium condition, 
we can solve for Price = (a0 - b0 + a2 Income - b2 Input Price + eD - eS)/(b1 - a1). The 
implication is that Price is correlated with eD—if an external shock causes eD to change, that 
induces a shift in the demand curve and ultimately causes a new equilibrium Price. Least 
squares regression of quantity on Price and Income does not estimate the parameters of the 
demand equation consistently. This “feedback” between eD and Price in this model produces 
simultaneous equations bias in the least squares estimator.

Dynamic Panel Data Models: In Chapter 11, we will examine a dynamic random 
effects model of the form yit = xit′B + gyi,t - 1 + eit + ui where ui contains the time-invariant 
unobserved features of individual i. Clearly, in this case, the regressor yi,t - 1 is correlated 
with the disturbance, (eit + ui)—the unobserved heterogeneity is present in yit in every 
period. In Chapter 13, we will examine a model for municipal expenditure of the form 
Sit = f(Si,t - 1, c) + eit. The disturbances are assumed to be freely correlated across periods, 
so both Si,t - 1 and eit are correlated with ei,t - 1. It follows that they are correlated with each 
other, which means that this model, even without time-persistent effects, does not satisfy the 
assumptions of the linear regression model. The regressors and disturbances are correlated.
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244 PART I  ✦   The Linear Regression Model

Omitted Parameter Heterogeneity: Many cross-country studies of economic growth 
have the following structure (greatly simplified for purposes of this example),

∆ ln Yit = ai + uit + bi ∆ ln Yi,t - 1 + eit,

where ∆ ln Yit is the growth rate of country i in year t.1 Note that the coefficients in the model 
are country specific. What does least squares regression of growth rates of income on a time 
trend and lagged growth rates estimate? Rewrite the growth equation as

 ∆ ln Yit = a + ut + b(∆ ln Yi,t - 1) + (ai - a) + (ui - u)t + (bi - b)(∆ ln Yi,t - 1) + eit
 = a + ut + b(∆ ln Yi,t - 1) + wit.

We assume that the “average” parameters, a, u, and b, are meaningful fixed parameters to 
be estimated. Does the least squares regression of ∆ ln Yit on a constant, t, and ∆ ln Yi,t - 1 
estimate these parameters consistently? We might assume that the cross-country variation in 
the constant terms is purely random, and the time trends, ui, are driven by purely exogenous 
factors. But the differences across countries of the convergence parameters, bi, are likely 
at least to be correlated with the growth in incomes in those countries, which will induce 
a correlation between the lagged income growth and the term (bi - b) embedded in wit. If 
(bi - b) is random noise that is uncorrelated with ∆ ln Yi,t - 1, then (bi - b) ∆ ln Yi,t - 1 will be also.

Measurement Error: Ashenfelter and Krueger (1994), Ashenfelter and Zimmerman (1997), 
and Bonjour et al. (2003) examined applications in which an earnings equation,

yi,t = f(Educationi,t, c) + ei,t,

is specified for sibling pairs (twins) t = 1, 2 for n families. Education is a variable that is 
inherently unmeasurable; years of schooling is typically the best proxy variable available. 
Consider, in a very simple model, attempting to estimate the parameters of

yit = b1 + b2 Educationit + eit,

by a regression of Earningsit on a constant and Schoolingit, with

Schoolingit = Educationit + uit,

where uit is the measurement error. By a simple substitution, we find

yit = b1 + b2 Schoolingit + wit,

where wit = eit - b2uit. Schooling is clearly correlated with wit = (eit - b2uit). The interpretation 
is that at least some of the variation in Schooling is due to variation in the measurement 
error, uit. Because schooling is correlated with wit, it is endogenous in the earnings equation, 
and least squares is not a suitable estimator. As we will show later, in cases such as this 
one, the mismeasurement of a relevant variable causes a particular form of inconsistency, 
attenuation bias, in the estimator of b2.

Nonrandom Sampling: In a model of the effect of a training program, an employment 
program, or the labor supply behavior of a particular segment of the labor force, the sample 
of observations may have voluntarily selected themselves into the observed sample. 
The Job Training Partnership Act (JTPA) was a job training program intended to provide 
employment assistance to disadvantaged youth. Anderson et al. (1991) found that for 
a sample that they examined, the program appeared to be administered most often to 
the best qualified applicants. In an earnings equation estimated for such a nonrandom 
sample, the implication is that the disturbances are not truly random. For the application just 
described, for example, on average, the disturbances are unusually high compared to the 

1see, for example, lee, Pesaran, and smith (1997).
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full population. Merely unusually high would not be a problem save for the general finding 
that the explanation for the nonrandomness is found at least in part in the variables that 
appear elsewhere in the model. This nonrandomness of the sample translates to a form of 
omitted variable bias known as sample selection bias.

Attrition: We can observe two closely related important cases of nonrandom sampling. 
In panel data studies of firm performance, the firms still in the sample at the end of the 
observation period are likely to be a subset of those present at the beginning—those firms 
that perform badly, “fail,” or drop out of the sample. Those that remain are unusual in the same 
fashion as the previous sample of JTPA participants. In these cases, least squares regression 
of the performance variable on the covariates (whatever they are) suffers from a form of 
selection bias known as survivorship bias. In this case, the distribution of outcomes, firm 
performances for the survivors is systematically higher than that for the population of firms as 
a whole. This produces a phenomenon known as truncation bias. In clinical trials and other 
statistical analyses of health interventions, subjects often drop out of the study for reasons 
related to the intervention itself—for a quality of life intervention such as a drug treatment for 
cancer, subjects may leave because they recover and feel uninterested in returning for the exit 
interview, or they may pass away or become incapacitated and be unable to return. In either 
case, the statistical analysis is subject to attrition bias. The same phenomenon may impact 
the analysis of panel data in health econometrics studies. For example, Contoyannis, Jones, 
and Rice (2004) examined self-assessed health outcomes in a long panel data set extracted 
from the British Household Panel Survey. In each year of the study, a significant number of 
the observations were absent from the next year’s data set, with the result that the sample 
was winnowed significantly from the beginning to the end of the study.

in all the cases listed in Example 8.1, the term bias refers to the result that least 
squares (or other conventional modifications of least squares) is an inconsistent 
(persistently biased) estimator of the coefficients of the model of interest. though the 
source of the result differs considerably from setting to setting, all ultimately trace back 
to endogeneity of some or all of the right-hand-side variables and this, in turn, translates 
to correlation between the regressors and the disturbances. these can be broadly viewed 
in terms of some specific effects:

●● omitted variables, either observed or unobserved,
●● Feedback effects,
●● dynamic effects,
●● Endogenous sample design, and so on.

there are three general solutions to the problem of constructing a consistent 
estimator. in some cases, a more detailed, structural specification of the model can 
be developed. these usually involve specifying additional equations that explain the 
correlation between xi and ei in a way that enables estimation of the full set of parameters 
of interest. We will develop a few of these models in later chapters, including, for example, 
Chapter 19, where we consider Heckman’s (1979) model of sample selection. the second 
approach, which is becoming increasingly common in contemporary research, is the 
method of instrumental variables. the method of instrumental variables is developed 
around the following estimation strategy: suppose that in the model of (8-1), the K 
variables xi may be correlated with ei. suppose as well that there exists a set of L variables 
zi, such that zi is correlated with xi, but not with ei. We cannot estimate B consistently by 
using the familiar least squares estimator. but the assumed lack of correlation between 
zi and ei implies a set of relationships that may allow us construct a consistent estimator 
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246 PART I  ✦   The Linear Regression Model

of B by using the assumed relationships among zi, xi, and ei. a third method that builds 
off the second augments the equation with a constructed exogenous variable (or set of 
variables), Ci, such that in the presence of the control function, C, xi2 is not correlated with 
ei. the best known approach to the sample selection problem turns out to be a control 
function estimator. the method of two-stage least squares can be construed as another.

this chapter will develop the method of instrumental variables as an extension of 
the models and estimators that have been considered in Chapters 2–7. section 8.2 will 
formalize the model in a way that provides an estimation framework. the method of 
instrumental variables (IV) estimation and two-stage least squares (2SLS) is developed 
in detail in section 8.3. two tests of the model specification are considered in section 8.4. 
a particular application of the estimation with measurement error is developed in detail 
in section 8.5. section 8.6 will consider nonlinear models and begin the development of 
the generalized method of moments (gmm) estimator. the iV estimator is a powerful 
tool that underlies a great deal of contemporary empirical research. a shortcoming, the 
problem of weak instruments, is considered in section 8.7. Finally, some observations 
about instrumental variables and the search for causal effects are presented in section 8.8.

this chapter will develop the fundamental results for iV estimation. the use of 
instrumental variables will appear in many applications in the chapters to follow, including 
multiple equations models in Chapter 10, the panel data methods in Chapter 11, and in 
the development of the generalized method of moments in Chapter 13.

8.2 ASSUMPTIONS OF THE EXTENDED MODEL

the assumptions of the linear regression model, laid out in Chapters 2 and 4, are:

A.1. Linearity: yi = xi1b1 + xi2b2 + g + xiKbK + ei.
A.2. Full rank: the n * K sample data matrix, X, has full column rank.
A.3.  Exogeneity of the independent variables: E[ei � xj1, xj2, c, xjk] = 0, i, j = 1, c, n. 

there is no correlation between the disturbances and the independent variables.
A.4.  Homoscedasticity and nonautocorrelation: Each disturbance, ei, has the same finite 

variance, s2, and is uncorrelated with every other disturbance, ej, conditioned on X.
A.5. Stochastic or nonstochastic data: (xi1, xi2, c, xiK), i = 1, c, n.
A.6. Normal distribution: the disturbances are normally distributed.

We will maintain the important result that plim (X′X/n) = Qxx. the basic 
assumptions of the regression model have changed, however. First, a.3 (no correlation 
between x and e) is, under our new assumptions,

A.I3. E[ei � xi] = h.

We interpret assumption a.i3 to mean that the regressors now provide information 
about the expectations of the disturbances. the important implication of a.i3 is that 
the disturbances and the regressors are now correlated. assumption a.i3 implies that

 E[xiei] = G (8-2)

for some nonzero G. if the data are well behaved, then we can apply theorem d.5 
(Khinchine’s theorem) to assert that,

 plim (1/n)X′E = G. (8-3)
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notice that the original model results if h = 0. the implication of (8-3) is that the 
regressors, X, are no longer exogenous. assumptions a.4–a.6 will be secondary 
considerations in the discussion of this chapter. We will develop some essential results 
with a.4 in place, then turn to robust inference procedures that do not rely on it. as 
before, we will characterize the essential results based on random sampling from the 
joint distribution of y and x (and z). assumption a.6 is no longer relevant—all results 
from here forward will be based on asymptotic distributions.

We now assume that there is an additional set of variables, z = (z1, c, zL), that 
have two essential properties:

1. Relevance: they are correlated with the independent variables, X.
2. Exogeneity: they are uncorrelated with the disturbance.

We will formalize these notions as we proceed. in the context of our model, variables 
that have these two properties are instrumental variables. We assume the following:

A.I7. [xi, zi, ei], i = 1, c, n, are an i.i.d. sequence of random variables.
A.I8a. E [xik

2 ] = Qxx,kk 6 ∞, a finite constant, k = 1, c, K.
A.I8b. E [zil

2] = Qzz,ll 6 ∞, a finite constant, l = 1, c, L.
A.I8c. E [zilxik] = Qzx,lk 6 ∞, a finite constant, l = 1, c, L, k = 1, c, K.
A.I9. E [ei � zi] = 0.

in later work in time-series models, it will be important to relax assumption a.i7. Finite 
means of zl follows from a.i8b. using the same analysis as in section 4.4, we have

 plim (1/n)Z′Z = Qzz, a finite, positive definite matrix (well@behaved data),
 plim (1/n)Z′X = Qzx, a finite, L * K matrix with rank K (relevance),
 plim (1/n)Z′E = 0 (exogeneity).

in our statement of the regression model, we have assumed thus far the special case of 
h = 0; G = 0 follows.

For the present, we will assume that L = K—there are the same number of 
instrumental variables as there are right-hand-side variables in the equation. recall in the 
introduction and in Example 8.1, we partitioned x into x1, a set of K1 exogenous variables, 
and x2, a set of K2 endogenous variables, on the right-hand side of (8-1). in nearly all 
cases in practice, the problem of endogeneity is attributable to one or a small number 
of variables in x. in the Krueger and dale (1999) study of endogenous treatment effects 
in Example 8.1, we have a single endogenous variable in the equation, the treatment 
dummy variable, T. the implication for our formulation here is that in such a case, the K1 
variables x1 will be K1 of the variables in Z and the K2 remaining variables will be other 
exogenous variables that are not the same as x2. the usual interpretation will be that 
these K2 variables, z2, are the instruments for x2 while the x1 variables are instruments for 
themselves. to continue the example, the matrix Z for the endogenous treatment effects 
model would contain the K1 columns of X and an additional instrumental variable, z, 
for the treatment dummy variable. in the simultaneous equations model of supply and 
demand, the endogenous right-hand-side variable is x2 = price while the exogenous 
variables are (1, Income). one might suspect (correctly), that in this model, a set of 
instrumental variables would be z = (1, Income, InputPrice). in terms of the underlying 
relationships among the variables, this intuitive understanding will provide a reliable 
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248 PART I  ✦   The Linear Regression Model

guide. For reasons that will be clear shortly, however, it is necessary statistically to treat 
Z as the instruments for X in its entirety.

there is a second subtle point about the use of instrumental variables that will 
likewise be more evident below. the relevance condition must actually be a statement of 
conditional correlation. Consider, once again, the treatment effects example, and suppose 
that z is the instrumental variable in question for the treatment dummy variable T. the 
relevance condition as stated implies that the correlation between z and (x,T) is nonzero. 
Formally, what will be required is that the conditional correlation of z with T � x be nonzero. 
one way to view this is in terms of a projection; the instrumental variable z is relevant if 
the coefficient on z in the projection of T on (x, z) is nonzero. intuitively, z must provide 
information about the movement of T that is not provided by the x variables that are 
already in the model.

8.3 INSTRUMENTAL VARIABLES ESTIMATION

For the general model of section 8.2, we lose most of the useful results we had for 
least squares. We will consider the implications for least squares and then construct an 
alternative estimator for B in this extended model.

8.3.1  LEAST SQUARES

the least squares estimator, b, is no longer unbiased,

E[b � X] = B + (X′X)-1X′h ≠ B,

so the gauss–markov theorem no longer holds. the estimator is also inconsistent,

 plim b = B + plim aX′X
n

b
-1

 plimaX′e
n

b = B + QXX
-1 G ≠ B. (8-4)

(the asymptotic distribution is considered in the exercises.) the inconsistency of least 
squares is not confined to the coefficients on the endogenous variables. to see this, apply 
(8-4) to the treatment effects example discussed earlier. in that case, all but the last 
variable in X are uncorrelated with E. this means that

plim aX′E
n

b = § 0
0
f
gK

¥ = gK§ 0
0
f
1

¥.

it follows that for this special case, the result in (8-4) is

plim b = B + gK * the last column of QXX
-1 .

there is no reason to expect that any of the elements of the last column of QXX
-1  will equal 

zero. the implication is that even though only one of the variables in X is correlated 
with E, all of the elements of b are inconsistent, not just the estimator of the coefficient 
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on the endogenous variable. this effect is called smearing; the inconsistency due to the 
endogeneity of the one variable is smeared across all of the least squares estimators.

8.3.2  THE INSTRUMENTAL VARIABLES ESTIMATOR

because E[ziEi] = 0 and all terms have finite variances, it follows that plimaZ′E
n

b = 0. 

therefore,

 plim aZ′y
n

b = Jplim aZ′X
n

b RB + plimaZ′E
n

b = JplimaZ′X
n

b RB. (8-5)

We have assumed that Z has the same number of variables as X. For example, suppose 
in our consumption function that xt = [1, Yt] when zt = [1, Yt - 1]. We have also assumed 
that the rank of Z′X is K, so now Z′X is a square matrix. it follows thatJplim aZ′X

n
b R -1

 plimaZ′y
n

b = B,

which leads us to the instrumental variable estimator,

 biV = (Z′X)-1Z′y. (8-6)

For a model with a constant term and a single x and instrumental variable z, we have

biV = a n
i= 1(zi - z)(yi - y)

a n
i= 1(zi - z)(xi - x)

=
Cov(z, y)

Cov(z, x)
.

We have already proved that biV is consistent. We now turn to the asymptotic 
distribution. We will use the same method as in section 4.4.3. First,2n (biV - B) = aZ′X

n
b

-1

 
12n

 Z′E,

which has the same limiting distribution as Qzx
-1[(1/2n)Z′E]. our analysis of (1/2n)Z′E 

can be the same as that of (1/2n)X′E in section 4.4.3, so it follows that

a 12n
 Z′Eb ¡d

N[0, S2Qzz],

and

aZ′X
n

b
-1

a 12n
 Z′Eb ¡d

N[0, s2Qzx
-1QzzQxz

-1].

this step completes the derivation for the next theorem.
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250 PART I  ✦   The Linear Regression Model

THEOREM 8.1  Asymptotic Distribution of the Instrumental Variables 
Estimator

If Assumptions A.1–A5, A.I7, A.I8a–c, and A.I9 all hold for [yi, xi, zi, ei], where z is 
a valid set of L = K instrumental variables, then the asymptotic distribution of the 
instrumental variables estimator biV = (Z′X)-1Z′y is

 biV ∼
a

NJB, 
s2

n
 Qzx

-1QzzQxz
-1 R . (8-7)

where Qzx = plim(Z′X/n) and Qzz = plim(Z′Z/n). If Assumption A4 is dropped, 
then the asymptotic covariance matrix will be the population counterpart to the 
robust estimators in (8-8h) or (8-8c), below.

8.3.3  ESTIMATING THE ASYMPTOTIC COVARIANCE MATRIX

to estimate the asymptotic covariance matrix, we will require an estimator of s2. the 
natural estimator is

sn 2 =
1

n - K a
n

i= 1
(yi - xi′biV)2.

the correction for degrees of freedom is unnecessary, as all results here are asymptotic, 
and sn 2 would not be unbiased in any event. nonetheless, it is standard practice to make 
the degrees of freedom correction. using the same approach as in section 4.4.2 for 
the regression model, we find that sn 2 is a consistent estimator of s2. We will estimate 
asy.Var[biV] with

 Est.asy.Var[biV] =
1
n

 ¢En ′En
n

b aZ′X
n

b
-1

aZ′Z
n

b aX′Z
n

b
-1

 = sn 2(Z′X)-1(Z′Z)(X′Z)-1.  

(8-8)

the estimator in (8-8) is based on assumption a.4, homoscedasticity and 
nonautocorrelation. by writing the iV estimator as

bIV = B + Ja n
i= 1zixi′R -1

a n
i= 1ziei

we can use the same logic as in (4-35)–(4-37) and (4-40)–(4-42) to construct estimators 
of the asymptotic covariance matrix that are robust to heteroscedasticity,

 Est.asy.Var[bIV] = Ja n
i= 1zixi′R -1Ja n

i= 1zizi′eni
2 R Ja n

i= 1xi′ziR -1

 = n(Z′X)-1 c 1
n a n

i= 1zizi′eni
2 d (X′Z)-1, 

(8-8h)

and to clustering,
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Est.asy.Var[bIV] = C(Z′X)-1 c a C
C - 1

b 1
C aC

c = 1¢aNc

i= 1zicenic≤ ¢aNc

i= 1zicenic≤=R (X′Z)-1,

 (8-8c)
respectively.

8.3.4  MOTIVATING THE INSTRUMENTAL VARIABLES ESTIMATOR

in obtaining the iV estimator, we relied on the solutions to the equations in (8-5), 
plim(Z′y/n) = plim(Z′X/n)B or QZy = QZXB. the iV estimator is obtained by solving 
this set of K moment equations. because this is a set of K equations in K unknowns, 
if QZX

-1  exists, then there is an exact solution for B, given in (8-6). the corresponding 
moment equations if only X is used would be

plim(X′y/n) = plim(X′X/n)B + plim(X′E/n) = plim(X′X/n)B + G

or

QXy = QXXB + G,

which is, without further restrictions, K equations in 2K unknowns. there are insufficient 
equations to solve this system for either B or G. the further restrictions that would allow 
estimation of B would be G = 0; this is precisely the exogeneity assumption a.3. the 
implication is that the parameter vector B is not identified in terms of the moments of X 
and y alone—there does not exist a solution. but it is identified in terms of the moments 
of Z, X, and y, plus the K restrictions imposed by the exogeneity assumption, and the 
relevance assumption that allows computation of biV.

by far the most common application of iV estimation involves a single endogenous 
variable in a multiple regression model,

yi = xi1b1 + xi2b2 + gxi KbK + ei,

with Cov(xK, e) ≠ 0. the instrumental variable estimator, based on instrument z, 
proceeds from two conditions:

●● relevance: Cov(z, xK � x1, c, xK - 1) ≠ 0,
●● Exogeneity: E(e � z) = 0.

in words, the relevance condition requires that the instrument provide explanatory 
power of the variation of the endogenous variable beyond that provided by the other 
exogenous variables already in the model. a theoretical basis for the relevance condition 
would be a projection of xK on all of the exogenous variables in the model,

xK = u1x1 + u2x2 + g + uK - 1xK - 1 + lz + u.

in this form, the relevance condition will require l ≠ 0. this can be verified empirically; 
in a linear regression of xK on (x1, c, xK - 1, z), one would expect the least squares 
estimate of l to be statistically different from zero. the exogeneity condition is not 
directly testable. it is entirely theoretical. (the Hausman and Wu tests suggested below 
are only indirect.)

Consider these results in the context of a simplified model,

y = bx + dT + e.
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in order for least squares consistently to estimate d (and b), it is assumed that movements 
in T are exogenous to the model, so that covariation of y and T is explainable by the 
movement of T and not by the movement of e. When T and e are correlated and e varies 
through some factor not in the equation, the movement of y will appear to be induced 
by variation in T when it is actually induced by variation in e which is transmitted 
through T. if T is exogenous, that is, not correlated with e, then movements in e will not 
“cause” movements in T (we use the term cause very loosely here) and will thus not be 
mistaken for exogenous variation in T. the exogeneity assumption plays precisely this 
role. What is needed, then, to identify d is movement in T that is definitely not induced 
by movement in e? Enter the instrumental variable, z. if z is an instrumental variable 
with Cov(z, T) ≠ 0 and Cov(z, e) = 0, then movement in z provides the variation that 
we need. if we can consider doing this exercise experimentally, in order to measure the 
“causal effect” of movement in T, we would change z and then measure the per unit 
change in y associated with the change in T, knowing that the change in T was induced 
only by the change in z, not e. that is, the estimator of d is (∆y/∆z)/(∆T/∆z).

Example 8.2  Instrumental Variable Analysis
Grootendorst (2007) and Deaton (1997) recount what appears to be the earliest application 
of the method of instrumental variables:

Although IV theory has been developed primarily by economists, the method originated in 
epidemiology. IV was used to investigate the route of cholera transmission during the London 
cholera epidemic of 1853–54. A scientist from that era, John Snow, hypothesized that cholera 
was waterborne. To test this, he could have tested whether those who drank purer water had 
lower risk of contracting cholera. In other words, he could have assessed the correlation between 
water purity (x) and cholera incidence (y). Yet, as Deaton (1997) notes, this would not have been 
convincing: “The people who drank impure water were also more likely to be poor, and to live in 
an environment contaminated in many ways, not least by the ‘poison miasmas’ that were then 
thought to be the cause of cholera.” Snow instead identified an instrument that was strongly 
correlated with water purity yet uncorrelated with other determinants of cholera incidence, both 
observed and unobserved. This instrument was the identity of the company supplying households 
with drinking water. At the time, Londoners received drinking water directly from the Thames 
River. One company, the Lambeth Water Company, drew water at a point in the Thames above 
the main sewage discharge; another, the Southwark and Vauxhall Company, took water below 
the discharge. Hence the instrument z was strongly correlated with water purity x. The instrument 
was also uncorrelated with the unobserved determinants of cholera incidence (y). According to 
Snow (1855, pp. 74–75), the households served by the two companies were quite similar; indeed: 
“the mixing of the supply is of the most intimate kind. The pipes of each Company go down all the 
streets, and into nearly all the courts and alleys. . . . The experiment, too, is on the grandest scale. 
No fewer than three hundred thousand people of both sexes, of every age and occupation, and 
of every rank and station, from gentlefolks down to the very poor, were divided into two groups 
without their choice, and in most cases, without their knowledge; one group supplied with water 
containing the sewage of London, and amongst it, whatever might have come from the cholera 
patients, the other group having water quite free from such impurity.

A stylized sketch of Snow’s experiment is useful for suggesting how the instrumental 
variable estimator works. The theory states that

Cholera Occurrence = f(Impure Water, Other Factors).

For simplicity, denote the occurrence of cholera in household i with

ci = a + dwi + ei,
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where ci represents the presence of cholera, wi = 1 if the household has (measurably) impure 
water, 0 if not, and d is the sought after causal effect of the water impurity on the prevalence 
of cholera. It would seem that one could simply compute d = (c � w = 1) - (c � w = 0), which 
would be the result of a regression of c on w, to assess the effect of impure water on the 
prevalence of cholera. The flaw in this strategy is that a cholera prone environment, u, affects 
both the water quality, w, and the other factors, e. Interpret this to say that both Cov(w, u) and 
Cov(e, u) are nonzero and therefore, Cov(w, e) is nonzero. The endogeneity of w in the equation 
invalidates the regression estimator of d. The pernicious effect of the common influence, u, 
works through the unobserved factors, e. The implication is that E[c � w] ≠ a + dw because 
E[e � w] ≠ 0. Rather,

 E[c � w = 1] = a + d + E[e � w = 1]

 E[c � w = 0] = a + g + E[e � w = 0]

so,

E[c � w = 1] - E[c � w = 0] = d + {E[e � w = 1] - E[e � w = 0]}.

It follows that comparing the cholera rates of households with bad water to those with good 
water, P[c � w = 1] - P[c � w = 0], does not reveal only the impact of the bad water on the 
prevalence of cholera. It partly reveals the impact of bad water on some other factor in e that, 
in turn, impacts the cholera prevalence. Snow’s IV approach based on the water supplying 
company works as follows: Define

l = 1 if water is supplied by Lambeth,
0 if Southwark and Vauxhall.

To establish the relevance of this instrument, Snow argued that

E[w � l = 1] ≠ E[w � l = 0].

Snow’s theory was that water supply was the culprit, and Lambeth supplied purer water than 
Southwark. This can be verified observationally. The instrument is exogenous if

E[e � l = 1] = E[e � l = 0].

This is the theory of the instrument. Water is supplied randomly to houses. Homeowners do 
not even know who supplies their water. The assumption is not that the unobserved factor, e, 
is unaffected by the water quality. It is that the other factors, not the water quality, are present 
in equal measure in households supplied by the two different water suppliers. This is Snow’s 
argument that the households supplied by the two water companies are otherwise similar. 
The assignment is random. To use the instrument, we note E[c � l] = dE[w � l] + E[e � l], so

 E[c � l = 1] = a + dE[w � l = 1] + E[e � l = 1],

 E[c � l = 0] = a + dE[w � l = 0] + E[e � l = 0].

This produces an estimating equation,

 E[c � l = 1] - E[c � l = 0] = d{E[w � l = 1] - E[w � l = 0]}

 + {E[e � l = 1] - E[e � l = 0]}.

The second term in braces is zero if l is exogenous, which was assumed. The IV estimator 
is then

dn =
E[c � l = 1] - E[c � l = 0]

E[w � l = 1] - E[w � l = 0]
.
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Note that the nonzero denominator results from the relevance condition. We can see that d 
is analogous to Cov(c,l)/Cov(w,l), which is (8-6).

To operationalize the estimator, we will use

 P(c � l = 1) = En(c � l = 1) = c1 = proportion of households supplied by Lambeth that
have cholera,

 P(w � l = 1) = En(w � l = 1) = w1 = proportion of households supplied by Lambeth that
have bad water,

 P(c � l = 0) = En(c � l = 0) = c0 = proportion of households supplied by Vauxhall that
have cholera,

 P(w � l = 0) = En(w � l = 0) = w0 = proportion of households supplied by Vauxhall that
 have bad water.

To complete this development of Snow’s experiment, we can show that the estimator dn is an 
application of (8-6). Define three dummy variables, ci = 1 if household i suffers from cholera 
and 0 if not, wi = 1 if household i receives impure water and 0 if not, and li = 1 if household 
i receives its water from Lambeth and 0 if from Vauxhall; let c, w, and l denote the column 
vectors of n observations on the three variables; and let i denote a column of ones. For the 
model ci = a + dwi + ei, we have Z = [i, l], X = [i, w], and y = c. The estimator is

 ¢a
d
≤ = [Z′X]-1Z′y =

 J i′i i′w
l′i l′w

R -1¢ i′c
l′c

≤ = J n nw
n1 n1w1

R -1¢ nc
n1c1

≤ =
1

nn1(w1 - w)
 Jn1w1 -nw

-n1 n
R ¢ nc

n1c1
≤.

Collecting terms, d = (c1 - c)/(w1 - w). Because n = n0 + n1, c1 = (n0c1 + n1c1)/n and 
c = (n0c0 + n1c1)/n, so c1 - c = (n0/n)(c1 - c0). Likewise, w1 - w = (n0/n)(w1 - w0) so 
d = (c1 - c0)/(w1 - w0) = dn. This estimator based on the difference in means is the Wald 
(1940) estimator.

Example 8.3  Streams as Instruments
In Hoxby (2000), the author was interested in the effect of the amount of school “choice” in 
a school “market” on educational achievement in the market. The equations of interest were 
of the form

Aikm

ln Ekm
= b1Cm + xikm

= B2 + x.km
= B3 + x..m

= B4 + eikm + ekm + em,

where “ikm” denotes household i in district k in market m, Aikm is a measure of achievement, 
and Eikm is per capita expenditures. The equation contains individual-level data, district means, 
and market means. The exogenous variables are intended to capture the different sources of 
heterogeneity at all three levels of aggregation. (The compound disturbance, which we will 
revisit when we examine panel data specifications in Chapter 10, is intended to allow for random 
effects at all three levels as well.) Reasoning that the amount of choice available to students, 
Cm, would be endogenous in this equation, the author sought a valid instrumental variable that 
would “explain” (be correlated with) Cm but uncorrelated with the disturbances in the equation. 
In the U.S. market, to a large degree, school district boundaries were set in the late 18th through 
the 19th centuries and handed down to present-day administrators by historical precedent. In 
the formative years, the author noted, district boundaries were set in response to natural travel 
barriers, such as rivers and streams. It follows, as she notes, that “the number of districts in a 

M08_GREE1366_08_SE_C08.indd   254 2/24/17   12:46 PM



 CHAPTER 8  ✦  Endogeneity and Instrumental Variable Estimation 255

given land area is an increasing function of the number of natural barriers”; hence, the number 
of streams in the physical market area provides the needed instrumental variable.2 This study 
is an example of a “natural experiment,” as described in Angrist and Pischke (2009).

Example 8.4  Instrumental Variable in Regression
The role of an instrumental variable in identifying parameters in regression models was 
developed in Working’s (1926) classic application, adapted here for our market equilibrium 
example in Example 8.1. Figure 8.1a displays the observed data for the market equilibria 
in a market in which there are random disturbances (eS, eD) and variation in demanders’ 
incomes and input prices faced by suppliers. The market equilibria in Figure 8.1a are scattered 
about as the aggregates of all these effects. Figure 8.1b suggests the underlying conditions 
of supply and demand that give rise to these equilibria. Different outcomes in the supply 
equation corresponding to different values of the input price and different outcomes on the 
demand side corresponding to different income values produce nine regimes, punctuated 

2the controversial topic of the study and the unconventional choice of instruments caught the attention of the 
popular press, for example, http://www.wsj.com/articles/sb113011672134577225 and http://www.thecrimson.com/
article/2005/7/8/star-ec-prof-caught-in-academic/, and academic observers including rothstein (2004).

FIGURE 8.1  Identifying a Demand Curve with an Instrumental Variable.
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256 PART I  ✦   The Linear Regression Model

by the random variation induced by the disturbances. Given the ambiguous mass of points, 
linear regression of quantity on price (and income) is likely to produce a result such as that 
shown by the heavy dotted line in Figure 8.1c. The slope of this regression barely resembles 
the slope of the demand equations. Faced with this prospect, how is it possible to learn 
about the slope of the demand curve? The experiment needed, shown in Figure 8.1d, would 
involve two elements: (1) Hold Income constant, so we can focus on the demand curve in a 
particular demand setting. That is the function of multiple regression—Income is included as 
a conditioning variable in the equation. (2) Now that we have focused on a particular set of 
demand outcomes (e.g., D2), move the supply curve so that the equilibria now trace out the 
demand function. That is the function of the changing InputPrice, which is the instrumental 
variable that we need for identification of the demand function(s) for this experiment.

8.4 TWO-STAGE LEAST SQUARES, CONTROL FUNCTIONS, AND LIMITED 
INFORMATION MAXIMUM LIKELIHOOD

thus far, we have assumed that the number of instrumental variables in Z is the same as 
the number of variables (exogenous plus endogenous) in X. in the typical application, 
there is one instrument for the single endogenous variable in the equation. the 
model specification may imply additional instruments. recall the market equilibrium 
application considered in Examples 8.1 and 8.4. suppose this were an agricultural market 
in which there are two exogenous conditions of supply, InputPrice and Rainfall. then, 
the equations of the model are

 (demand) QuantityD = a0 + a1 Price + a2 Income + eD,

 (supply) QuantityS = b0 + b1 Price + b2 Input Price + b3 Rain fall + eS,

 (Equilibrium) QuantityD = QuantityS.

given the approach taken in Example 8.4, it would appear that the researcher could simply 
choose either of the two exogenous variables (instruments) in the supply equation for 
purpose of identifying the demand equation. intuition should suggest that simply choosing 
a subset of the available instrumental variables would waste sample information—it 
seems inevitable that it will be preferable to use the full matrix Z, even when L 7 K. 
(in the example above, z = (1, Income, InputPrice, Rainfall.) the method of two-stage 
least squares solves the problem of how to use all the information in the sample when Z 
contains more variables than are necessary to construct an instrumental variable estimator. 
We will also examine two other approaches to estimation. The results developed here also 
apply to the case in which there is one endogenous variable and one instrument.

in the model

y = x1
=B + x2l + e,

where x2 is a single variable, and there is a single instrument, z1, that is relevant and 
exogenous, then the parameters of the model, (B, l), can be estimated using the moments 
of (y, x1, x2, z1). the iV estimator in (8-6) shows the one function of the moments that 
can be used for the estimation. in this case, (B, l) are said to be exactly identified. there 
are exactly enough moments for estimation of the parameters. if there were a second 
exogenous and relevant instrument, say z2, then we could use z2 instead of z1 in (8-6) 
and obtain a second, different estimator. in this case, the parameters are overidentified 
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in terms of the moments of (y, x1, x2, z1, z2). this does not mean that there is now 
simply a second estimator. if z1 and z2 are both exogenous and relevant, then any linear 
combination of them, z* = a1z1 + a2z2, would also be a valid instrument. more than 
one iV estimator means an infinite number of possible estimators. overidentification is 
qualitatively different from exact identification. the methods examined in this section 
are usable for overidentified models.

8.4.1  TWO-STAGE LEAST SQUARES

if Z contains more variables than X, then Z′X will be L * K with rank K 6 L and will 
thus not have an inverse—(8-6) is not useable. the crucial result for estimation is plim 
(Z′E/n) = 0. that is, every column of Z is asymptotically uncorrelated with E. that also 
means that every linear combination of the columns of Z is also uncorrelated with E,  
which suggests that one approach would be to choose K linear combinations of the 
columns of Z. Which to choose? one obvious possibility is simply to choose K variables 
among the L in Z. discarding the information contained in the extra L - K columns will 
turn out to be inefficient. a better choice that uses all of the instruments is the projection 
of the columns of X in the column space of Z,

 Xn = Z(Z′Z)-1Z′X = ZF. (8-9)

the instruments in this case are linear combinations of the variables (columns) in Z. 
With this choice of instrumental variables, we have

 biV = (Xn ′X)-1Xn ′y
 = [X′Z(Z′Z)-1Z′X]-1X′Z(Z′Z)-1Z′y. (8-10)

the estimator of the asymptotic covariance matrix will be sn 2 times the bracketed matrix 
in (8-10). the proofs of consistency and asymptotic normality for this estimator are 
exactly the same as before, because our proof was generic for any valid set of instruments, 
and Xn  qualifies.

there are two reasons for using this estimator—one practical, one theoretical. if 
any column of X also appears in Z, then that column of X is reproduced exactly in Xn . 
this result is important and useful. Consider what is probably the typical application in 
which the regression contains K variables, only one of which, say, the kth, is correlated 
with the disturbances. We have one or more instrumental variables in hand, as well as 
the other K - 1 variables that certainly qualify as instrumental variables in their own 
right. then what we would use is Z = [X(k), z1, z2, c], where we indicate omission of 
the kth variable by (k) in the subscript. another useful interpretation of Xn  is that each 
column is the set of fitted values when the corresponding column of X is regressed on 
all the columns of Z. the coefficients for xk are in the kth column of F in (8-9). it also 
makes clear why each xk that appears in Z is perfectly replicated. Every xk provides a 
perfect predictor for itself, without any help from the remaining variables in Z. in the 
example, then, every column of X except the one that is omitted from X(k) is replicated 
exactly, whereas the one that is omitted is replaced in Xn  by the predicted values in the 
regression of this variable on all the z’s including the other x variables.

of all the different linear combinations of Z that we might choose, Xn  is the most 
efficient in the sense that the asymptotic covariance matrix of an iV estimator based on 
a linear combination ZF is smaller when F = (Z′Z)-1Z′X than with any other F that 
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uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained by 
dropping any columns of Z.3

We close this section with some practical considerations in the use of the instrumental 
variables estimator. by just multiplying out the matrices in the expression, you can show that

 bIV = (Xn ′X)-1Xn ′y

 = (X′(I - MZ)X)-1X′(I - MZ)y

 = (Xn ′Xn )-1Xn ′y 

(8-11)

because I - MZ is idempotent. thus, when (and only when) Xn  is the set of instruments, 
the iV estimator is computed by least squares regression of y on Xn . this conclusion 
suggests that biV can be computed in two steps, first by computing Xn , then by the least 
squares regression. For this reason, this is called the two-stage least squares (2sls) 
estimator. one should be careful of this approach, however, in the computation of the 
asymptotic covariance matrix; sn 2 should not be based on Xn . the estimator

siV
2 = a n

i= 1(yi - xn i
=biV)2

n

is inconsistent for s2, with or without a correction for degrees of freedom. (the 
appropriate calculation is built into modern software.)

an obvious question is where one is likely to find a suitable set of instrumental 
variables. the recent literature on natural experiments focuses on local policy changes 
such as the mariel boatlift (Example 6.9) or global policy changes that apply to the 
entire economy such as mandatory schooling (Example 6.13), or natural outcomes such 
as occurrences of streams (Example 8.3) or birthdays [angrist and Krueger (1992)]. in 
many time-series settings, lagged values of the variables in the model provide natural 
candidates. in other cases, the answer is less than obvious and sometimes involves some 
creativity as in Examples 8.9 and 8.11. unfortunately, there usually is not much choice 
in the selection of instrumental variables. the choice of Z is often ad hoc.

Example 8.5  Instrumental Variable Estimation of a Labor Supply Equation
Cornwell and Rupert (1988) analyzed the returns to schooling in a panel data set of 595 
observations on heads of households. The sample data are drawn from years 1976 to 1982 
from the “Non-Survey of Economic Opportunity” from the Panel Study of Income Dynamics. 
The estimating equation is

 ln Wageit = a1 + a2Expit + a3Expit
2 + a4Wksit + a5Occit + a6Indit + a7Southit +

 a8SMSAit + a9MSit + a10Unionit + a11Edi + a12Femi + a13Blki + eit.

(The variables are described in Example 4.6.) The main interest of the study, beyond comparing 
various estimation methods, is a11, the return to education. The equation suggested is a 
reduced form equation; it contains all the variables in the model but does not specify 
the underlying structural relationships. In contrast, the three-equation model specified at 
the beginning of this section is a structural equation system. The reduced form for this 
model would consist of separate regressions of Price and Quantity on (1, Income, InputPrice, 
Rainfall). We will return to the idea of reduced forms in the setting of simultaneous equations 
models in Chapter 10. For the present, the implication for the suggested model is that this 

3see brundy and Jorgenson (1971) and Wooldridge (2010, pp. 103–104).
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market equilibrium equation represents the outcome of the interplay of supply and demand 
in a labor market. Arguably, the supply side of this market might consist of a household labor 
supply equation such as

Wksit = b1 + b2 ln Wageit + b3Edi + b4Unionit + b5Femi + eit.

(One might prefer a different set of right-hand-side variables in this structural equation.) 
Structural equations are more difficult to specify than reduced forms. If the number of weeks 
worked and the accepted wage offer are determined jointly, then lnWageit and uit in this 
equation are correlated. We consider two instrumental variable estimators based on

z1 = [1, Indit, Edi, Unionit, Femi]

and

z2 = [1, Indit, Edi, Unionit, Femi, SMSAit].

We begin by examining the relevance condition. In the regression of ln Wage on z1, the t ratio 
on Ind is +6.02. In the regression of ln Wage on z2, the Wald statistic for the joint test that 
the coefficients on Ind and SMSA are both zero is +240.932. In both cases, the hypothesis 
is rejected, and we conclude that the instruments are, indeed, relevant. Table 8.1 presents 
the three sets of estimates. The least squares estimates are computed using the standard 
results in Chapters 3 and 4. One noteworthy result is the very small coefficient on the log 
wage variable. The second set of results is the instrumental variable estimates. Note that, 
here, the single instrument is INDit. As might be expected, the log wage coefficient becomes 
considerably larger. The other coefficients are, perhaps, contradictory. One might have different 
expectations about all three coefficients. The third set of coefficients are the two-stage least 
squares estimates based on the larger set of instrumental variables. In this case, SMSA and 
Ind are both used as instrumental variables.

8.4.2  A CONTROL FUNCTION APPROACH

a control function is a constructed variable that is added to a model to “control for” 
the correlation between an endogenous variable and the unobservable elements. in the 
presence of the control function, the endogenous variable becomes exogenous. Control 
functions appear in the estimators for several of the nonlinear models we will consider 
later in the book. For the linear model we are studying here, the approach provides a 

OLS IV with Z1 IV with Z2 Control Function

Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant 44.7665 1.2153 18.8987 13.0590 30.7044 4.9997 30.7044 4.9100
ln Wage 0.7326 0.1972 5.1828 2.2454 3.1518 0.8572 3.1518 0.8418
Education -0.1532 0.03206 -0.4600 0.1578 -0.3200 0.0661 -0.3200 0.0649
Union -1.9960 0.1701 -2.3602 0.2567 -2.1940 0.1860 -2.1940 0.1826
Female -1.3498 0.2642 0.6957 1.0650 -0.2378 0.4679 -0.2378 0.4594
un -2.5594 0.8659
sn a 1.0301 5.3195 5.1110 5.0187

asquare root of sum of squared residuals/n.

TABLE 8.1 Estimated Labor Supply Equation
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useful view of the iV estimator. For the model underlying the preceding example, we 
have a structural equation,

Wksit = b1 + b2 ln Wageit + b3Edi + b4 Unionit + b5Femi + eit,

and the projection (based on z2),

ln Wage = g1 + g2Indit + g3Edi + g4Unionit + g5Femi + g6SMSAit + uit.

the ultimate source of the endogeneity of ln Wage in the structural equation for Wks is 
the correlation of the unobservable variables, u and e. if u were observable—we’ll call 
this observed counterpart un—then the parameters in the augmented equation,

Wksit = b1 + b2 ln Wageit + b3Edi + b4Unionit + b5Femi + run + e∼it,

could be estimated consistently by least squares. in the presence of un , ln Wage is 
uncorrelated with the unobservable in this equation—un  would be the control function 
that we seek.

to formalize the approach, write the main equation as

 y = x1
=B + x2l + e, (8-12)

where x2 is the endogenous variable, so E[x2e] ≠ 0. the instruments, including x1, are 
in z. the projection of x2 on z is

 x2 = z′P + u, (8-13)

with E[zu] = 0. We can also form the projection of e on u,

 e = ru + w, (8-14)

where r = suw/sw
2 . by construction, u and w are uncorrelated. Finally, insert (8-14) in 

(8-12) so that

 y = x1
=B + x2l + ru + w. (8-15)

this is the control function form we had earlier. the loose end, as before, is that in order 
to proceed, we must observe u. We cannot observe u directly, but we can estimate it using 
(8-13), the “reduced form” equation for x2—this is the equation we used to check the 
relevance of the instrument(s) earlier. We can estimate u as the residual in (8-13), then 
in the second step, estimate (B, l, r) by simple least squares. the estimating equation is

 y = x1
=B + x2l + r(x2 - z′p) + w∼. (8-16)

(the constructed disturbance w∼ contains both w and the estimation error, z′p - z′P .) 
the  estimated residual is a control function. the control function estimates with 
estimated standard errors for the model in Example 8.5 are shown in the two rightmost 
columns in table 8.1.

this approach would not seem to provide much economy over 2sls. it still requires 
two steps (essentially the same two steps). surprisingly, as you can see in table 8.1, it is 
actually identical to 2sls, at least for the coefficients. (the proof of this result is pursued 
in the exercises.) the standard errors, however, are different. the general outcome is that 
control function estimators, because they contain constructed variables, require an 
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adjustment of the standard errors.  (We will examine several applications, notably 
Heckman’s sample selection model in Chapter 19.) Correction of the standard errors 
associated with control function estimators often requires elaborate post-estimation 
calculations (though some of them are built-in procedures in modern software).4 the 
calculation for 2sls, however, is surprisingly simple. the difference between the CF 
standard errors and the appropriate 2sls standard errors is a simple scaling.5 the 2sls 
difference is the estimator of s. because the coefficients on x are identical to 2sls, the 
sum of squared residuals for the CF estimator is smaller than that for the 2sls 
estimator. (see theorem 3.5.) the values are shown in the last row of table 8.1. it 
follows  that the only correction needed is to rescale the CF covariance matrix by 
(snCF/sn2SLS)2 = (5.1110/5.0187)2.

8.4.3  LIMITED INFORMATION MAXIMUM LIKELIHOOD6

We have considered estimation of the two equation model,

 Wksit = b1 + b2 ln Wageit + b3Edi + b4Unionit + b5Femi + eit,

 ln Wageit = g1 + g2Indit + g3Edi + g3Unionit + g4Femi + g5SMSAit + ui,

using 2sls. in generic form, the equations are

y = x1′B + x2l + e,

x2 = z′G + u.

the control function estimator is always identical to 2sls. they use exactly the same 
information contained in the moments and the two conditions, relevance and exogeneity. 
if we add to this system an assumption that (e, u) have a bivariate normal density, then we 
can construct another estimator, the limited information maximum likelihood estimator. 
the estimator is formed from the joint density of the two variables, (y, x2 � x1, z). We can 
write this as f(e, u � x1, z)abs � J �  where J is the Jacobian of the transformation from (e, u) 
to (y, x2),7 abs � J � = 1, e = (y - x1′B + x2l), and u = (x2 - z′G). the joint normal 
distribution with correlation r can be written f(e, u � x1, z) = f(e � u, x1, z)f(u � x1, z), where 
u ∼ N[0, su

2] and e � u ∼ N[(rse/su)u, (1 - r2)se
2]. (see appendix b.9.) For convenience, 

write the second of these as N[t u, sw
2 ]. then, the log of the joint density for an observation 

in the sample will be

ln fi = ln f(ei � ui) + lnf(ui) = -(1/2)ln sw
 2 - (1/2){[yi - x1′B - x2il - t(x2i - zi

=g)]/sw}2

 (8-17)

-  (1/2) ln su
 2 - (1/2){[x2i - zi

=g]/su}2.

4see, for example, Wooldridge (2010, appendix 6a and Chapter 12).
5you can see this in the results. the ratio of any two of the iV standard errors is the same as the ratio for the CF 
standard errors. For example, for ED and Union, 0.0661/0.1860 = 0.0649/0.1826.
6maximum likelihood estimation is developed in detail in Chapter 14. the term  Limited Information refers to the 
focus on only one structural equation in what might be a larger system of equations, such as those considered in 
section 10.4.

7J = J 0e/0y 0e/0x2

0u/0y 0u/0x2
R = J1 l

0 1
R , so abs � J � = 1.
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the log likelihood to be maximized is Σi ln fi.8 table 8.2 compares the 2sls and liml 
estimates for the model of Example 8.5 using instruments z2. the liml estimates are 
only slightly different from the 2sls results, but have substantially smaller standard 
errors. We can view this as the payoff to the narrower specification, that is, the additional 
normality assumption (though one should be careful about drawing a conclusion about 
the efficiency of an estimator based on one set of results). there is yet another approach 
to estimation. the liml estimator could be computed in two steps, by computing the 
estimates of G and su first (by least squares estimation of the second equation), then 
maximizing the log likelihood over (B, l, t, sw). this would be identical to the control 
function estimator—(B, l, t) would be estimated by regressing y on (x1, x2, un), then sw 
would be estimated using the residuals. (note that this would not estimate se. that would 
be done by using only the coefficients on x1 and x2 to compute the residuals.)

8.5 ENDOGENOUS DUMMY VARIABLES:  ESTIMATING TREATMENT 
EFFECTS

the leading recent application of models of sample selection and endogeneity is the 
evaluation of “treatment effects.” the central focus is on analysis of the effect of 
participation in a treatment, C, on an outcome variable, y—examples include job training 

8the parameter estimates would be computed by minimizing (8-17)using one of the methods described in 
appendix E. if the equation is overidentified, the least variance ratio estimator described in section 10.4.4 is an 
alternative estimation approach. the two approaches will produce the same results.

2SLS LIML

Variable
Estimated 
Parameter

Standard  
Error a

Estimated 
Parameter

Standard 
Error a

Constant 30.7044 8.25041 30.6392 5.05118
ln Wage 3.15182 1.41058 3.16303 0.87325
Education -0.31997 0.11453 -0.32074 0.06755
Union -2.19398 0.30507 -2.19490 0.19697
Female -0.23784 0.79781 -0.23269 0.46572
sw 5.01870b  5.01865 0.03339
Constant  5.71303 0.03316
Ind  0.08364 0.01284
Education  0.06560 0.00232
Union  0.05853 0.01448
Female  -0.46930 0.02158
SMSA  0.18225 0.01289
su  0.38408 0.00384
t  -2.57121 0.90334

a standard errors are clustered at the individual level using (8-8c).
b based on mean squared residual.

TABLE 8.2 Estimated Labor Supply Equation
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programs9 and education.10 imbens and Wooldridge (2009, pp. 22–23) cite a number of 
labor market applications. recent, more narrow, examples include munkin and trivedi’s 
(2007) analysis of the effect of dental insurance and Jones and rice’s (2011) survey that 
notes a variety of techniques and applications in health economics. a simple starting 
point, useful for framing ideas, is the linear regression model with a “treatment dummy 
variable,”

y = x′B + dC + e.

the analysis turns on whether it is possible to estimate the “treatment effect” (here, d), and 
under what assumptions is d a meaningful quantity that we are interested in measuring.

Empirical measurement of treatment effects, such as the impact of going to college 
or participating in a job training or agricultural extension program, presents a large 
variety of econometric complications. the natural, ultimate objective of an analysis of 
a treatment or intervention would be the effect of treatment on the treated. For example, 
what is the effect of a college education on the lifetime income of someone who goes 
to college? measuring this effect econometrically encounters at least two compelling 
complications:

Endogeneity of the treatment: the analyst risks attributing to the treatment causal 
effects that should be attributed to factors that motivate both the treatment and the 
outcome. in our example, the individual who goes to college might well have succeeded 
(more) in life than his or her counterpart who did not go to college even if the individual 
did not attend college. Example 6.8 suggests another case in which some of the students 
who take the sat a second time in hopes of improving their scores also take a test 
preparation course (C = 1),

∆SAT = (SAT1 - SAT0) = x′B + dC + e.

the complication here would be whether it is appropriate to attach a causal interpretation 
to d.

Missing counterfactual: the preceding thought experiment is not actually the effect 
we wish to measure. in order to measure the impact of college attendance on lifetime 
earnings in a pure sense, we would have to run an individual’s lifetime twice, once 
with college attendance and once without (and with all other conditions as they were). 
any individual is observed in only one of the two states, so the pure measurement is 
impossible. the sat example has the same nature - the experiment can only be run 
once, either with C = 1 or with C = 0.

accommodating these two problems forms the focal point of this enormous and 
still growing literature. rubin’s causal model (1974, 1978) provides a useful framework 
for the analysis. Every individual in a population has a potential outcome, y, and can be 
exposed to the treatment, C. We will denote by C the binary indicator of whether or not 
the individual receives the treatment. thus, the potential outcomes are y � (C = 1) = y1 
and y � (C = 0) = y0. We can combine these in

y = Cy1 + (1 - C)y0 = y0 + C(y1 - y0).

9see lalonde (1986), business Week (2009), Example 8.6.
10For example, test scores, angrist and lavy (1999), Van der Klaauw (2002).
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the average treatment effect, averaged across the entire population, is

ATE = E[y1 - y0].

the compelling complication is that the individual will exist in only one of the 
two states, so it is not possible to estimate ATE without further assumptions. more 
specifically, what the researcher would prefer to see is the average treatment effect 
on the treated,

ATET = E[y1 - y0 � C = 1],

and note that the second term is now the missing counterfactual.11

one of the major themes of the recent research is to devise robust methods of 
estimation that do not rely heavily on fragile assumptions such as identification by 
functional form (e.g., relying on bivariate normality) and identification by exclusion 
restrictions (e.g., relying on basic instrumental variable estimators). this is a challenging 
exercise—we will rely heavily on these assumptions in much of the rest of this book. For 
purposes of the general specification, we will denote by x the exogenous information 
that will be brought to bear on this estimation problem. the vector x may (usually will) 
be a set of variables that will appear in a regression model, but it is useful to think more 
generally than that and consider x rather to be an information set. Certain minimal 
assumptions are necessary to make any headway at all. the following appear at different 
points in the analysis.

Conditional independence: receiving the treatment, C, does not depend on the 
outcome variable once the effect of x on the outcome is accounted for. in particular, 
(y0, y1) � x is independent of C. Completely random assignment to the treatment would 
certainly imply this. if assignment is completely random, then we could omit the effect 
of x in this assumption. a narrower case would be assignment based completely on 
observable criteria (x), which would be “selection on observables” (as opposed to 
“selection on unobservables which is the foundation of models of “sample selection”). 
this assumption is extended for regression approaches with the conditional mean 
independence assumption: E[y0 � x, C] = E[y0 � x] and E[y1 � x, C] = E[y1 � x]. this states 
that the outcome in the untreated state does not affect the participation. the assumption 
is also labeled ignorability of the treatment. as its name implies (and as is clear from the 
definitions), under ignorability, ATE = ATET.

Distribution of potential outcomes: the model that is used for the outcomes is the same 
for treated and nontreated, f(y � x, C = 1) = f(y � x, C = 0). in a regression context, this 
would mean that the same regression applies in both states and that the disturbance is 
uncorrelated with T, or that T is exogenous. this is a very strong assumption that we 
will relax later.

11imbens and angrist (1994) define a still narrower margin, the “local average treatment effect,” or LATE. 
LATE is defined with respect to a specific binary instrumental variable. unlike ATET, the LATE is defined for a 
subpopulation related to the instrumental variable and differs with the definition of the instrument. broadly, the 
LATE narrows the relevant subpopulation to those induced to participate by the variation of the instrument. this 
specification extends the function of the iV to make it part of the specification of the model to the extent that the 
object of estimation (LATE) is defined by the iV, not independently of it, as in the usual case.
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Stable unit treatment value assumption (SUTVA): the treatment of individual i does 
not affect the outcome of any other individual, j. Without this assumption, which 
observations are subject to treatment becomes ambiguous. Pure random sampling of 
observations in a data set would be sufficient for statistical purposes.

Overlap assumption: For any value of x, 0 6 Prob(C = 1 � x) 6 1. the strict inequality 
in this assumption means that for any x, the population will contain a mix of treated 
and nontreated individuals. the usefulness of the overlap assumption is that with it, we 
can expect to find, for any treated individual, an individual who looks like the treated 
individual, but is not treated. this assumption will be useful for regression approaches.

the following sections will describe three major tools used in the analysis of 
treatment effects: instrumental variable regression, regression analysis with control 
functions, and propensity score matching. a fourth, regression discontinuity design, was 
discussed in section 6.4.2. as noted, this is a huge and rapidly growing literature. For 
example, imbens and Wooldridge’s (2009) survey paper runs to 85 pages and includes 
nearly 300 references, most of them since 2000 (likewise, Wooldridge (2010, Chapter 21)). 
our purpose here is to provide some of the vocabulary and a superficial introduction to 
methods. the survey papers by imbens and Wooldridge (2009) and Jones and rice 
(2010) provide greater detail. the conference volume by millment, smith, and Vytlacil 
(2008) contains many theoretical contributions and empirical applications.12 a Journal 
of Business and Economic Statistics symposium [angrist (2001)] raised many of the 
important questions on whether and how it is possible to measure treatment effects.

Example 8.6  German Labor Market Interventions
“Germany long had the highest ratio of unfilled jobs to unemployed people in Europe. Then, in 
2003, Berlin launched the so-called Hartz reforms, ending generous unemployment benefits 
that went on indefinitely. Now payouts for most recipients drop sharply after a year, spurring 
people to look for work. From 12.7% in 2005, unemployment fell to 7.1% last November. Even 
now, after a year of recession, Germany’s jobless rate has risen to just 8.6%.

At the same time, lawmakers introduced various programs intended to make it easier for 
people to learn new skills. One initiative instructed the Federal Labor Agency, which had 
traditionally pushed the long-term unemployed into government-funded make-work positions, 
to cooperate more closely with private employers to create jobs. That program last year paid 
Dutch staffing agency Randstad to teach 15,000 Germans information technology, business 
English, and other skills. And at a Daimler truck factory in Wörth, 55 miles west of Stuttgart, 
several dozen short-term employees at risk of being laid off got government help to continue 
working for the company as mechanic trainees.

Under a second initiative, Berlin pays part of the wages of workers hired from the ranks of 
the jobless. Such payments make employers more willing to take on the costs of training new 
workers. That extra training, in turn, helps those workers keep their jobs after the aid expires, 
a study by the government-funded Institute for Employment Research found. Café Nenninger 
in the city of Kassel, for instance, used the program to train an unemployed single mother. 
Co-owner Verena Nenninger says she was willing to take a chance on her in part because the 
government picked up about a third of her salary the first year. ‘It was very helpful, because 
you never know what’s going to happen,’ Nenninger says.” [Business Week (2009)]

12in the initial essay in the volume, goldberger (2008) reproduces goldberger (1972), in which the author explores 
the endogeneity issue in detail with specific reference to the Head start program of the 1960s.
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Example 8.7  Treatment Effects on Earnings
LaLonde (1986) analyzed the results of a labor market experiment, The National Supported Work 
Demonstration, in which a group of disadvantaged workers lacking basic job skills were given 
work experience and counseling in a sheltered environment. Qualified applicants were assigned 
to training positions randomly. The treatment group received the benefits of the program. Those 
in the control group “were left to fend for themselves.”13 The training period was 1976–1977; the 
outcome of interest for the sample examined here was post-training 1978 earnings. We will 
attempt to replicate some of the received results based on these data in Example 8.10.

Example 8.8  The Oregon Health Insurance Experiment
The Oregon Health Insurance Experiment is a landmark study of the effect of expanding public 
health insurance on health care use, health outcomes, financial strain, and well-being of low-
income adults. It uses an innovative randomized controlled design to evaluate the impact of 
Medicaid in the United States. Although randomized controlled trials are the gold standard in 
medical and scientific studies, they are rarely possible in social policy research. In 2008, the state 
of Oregon drew names by lottery for its Medicaid program for low-income, uninsured adults, 
generating just such an opportunity. This ongoing analysis represents a collaborative effort 
between researchers and the state of Oregon to learn about the costs and benefits of expanding 
public health insurance. (www.nber.org/oregon/) (Further details appear in Chapter 6.)

Example 8.9  The Effect of Counseling on Financial Management
Smith, Hochberg, and Greene (2014) examined the impact of a financial management skills 
program on later credit outcomes such as credit scores, debt, and delinquencies of a sample 
of home purchasers. From the abstract of the study:

 . . . . [D]evelopments in mortgage products and drastic changes in the housing market 
have made the realization of becoming a homeowner more challenging. Fortunately, 
homeownership counseling is available to help navigate prospective homebuyers in their 
quest. But the effectiveness of such counseling over time continues to be contemplated. 
Previous studies have made important strides in our understanding of the value of 
homeownership counseling, but more work is needed. More specifically, homeownership 
education and counseling have never been rigorously evaluated through a randomized field 
experiment.

This study is based on a long-term (five-year) effort undertaken by the Federal Reserve 
Bank of Philadelphia on the effectiveness of pre-purchase homeownership and financial 
management skills counseling. . . . [T]he study employs an experimental design, with study 
participants randomly assigned to a control or a treatment group. Participants completed a 
baseline survey and were tracked for four years after receiving initial assistance by means 
of an annual survey, which also tracks participants’ life changes over time. To assist in the 
analysis, additional information was obtained annually to track changes in the participants’ 
creditworthiness. The study considers the influence of counseling on credit scores, total 
debt, and delinquencies in payments.

8.5.1  REGRESSION ANALYSIS OF TREATMENT EFFECTS

an earnings equation that purports to account for the value of a college education is

ln Earningsi = xi
=B + dCi + ei,

13the demonstration was run in numerous cities in the mid-1970s. see lalonde (1986, pp. 605–609) for details on 
the nsW experiments.
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where Ci is a dummy variable indicating whether or not the individual attended 
college. the same format has been used in any number of other analyses of programs, 
experiments, and treatments. the question is: does d measure the value of a college 
education (assuming that the rest of the regression model is correctly specified)? the 
answer is no if the typical individual who chooses to go to college would have relatively 
high earnings whether or not he or she went to college. the problem is one of self-
selection. if our observation is correct, then least squares estimates of d will actually 
overestimate the treatment effect—it will likely pick up the college effect as well as 
effects explainable by the other latent factors (that are not in x). the same observation 
applies to estimates of the treatment effects in other settings in which the individuals 
themselves decide whether or not they will receive the treatment.

8.5.2  INSTRUMENTAL VARIABLES

the starting point to the formulation of the earnings equation would be the familiar 
rCm,

y = m0 + C(m1 - m0) + e0 + C(e1 - e0),

where mj = E[yj]. suppose, first, that e1 = e0, so the final term falls out of the equation. 
[though the assumption is unmotivated, we note that no sample will contain direct 
observations on (e1 - e0)—no individual will be in both states—so the assumption is a 
reasonable normalization.] there is no presumption at this point that ej is uncorrelated 
with x. suppose, as well, that there exist instrumental variables, z, that contain at least one 
variable that is not in x, such that the linear projection of e0 on x and z, Proj(e0 � x, z), equals 
Proj(e0 � x). that is, z is exogenous. (see section 4.4.5 and (4-34) for definition of the linear 
projection. it will be convenient to assume that x and z have no variables in common.) the 
linear projection is Proj(e0 � x) = g0 + x ′G. then,

y = (m0 + g0) + dC + x′G + w0,

where w0 = e0 - (g0 + x ′G). by construction, w0 and x are uncorrelated. there is also 
no assumption that C is uncorrelated with w0 since we have assumed that C is correlated 
with e0 at the outset. the setup would seem now to lend itself to a familiar iV approach. 
However, we have yet to certify z as a proper instrument. We assumed z is exogenous. 
We assume it is relevant, still using the projections, with Proj(C � x, z) ≠ Proj(C � x). this 
would be the counterpart to the relevance condition in assumption 1 in section 8.2. the 
model is, then,

y = l0 + dC + x ′G + w0 .

the parameters of this model can, in principle, be estimated by 2sls. in the notation of 
section 6.3, Xi = [1,Ci, xi

=] and Zi = [1, zi
=, xi

=]. Consistency and asymptotic normality of 
the 2sls estimator are based on the usual results. see theorem 8.1. because we have not 
assumed anything about Var[w0 � x], efficiency is unclear. Consistency is the objective, 
however, and inference can be based on heteroscedasticity robust estimators of the 
asymptotic covariance matrix of the 2sls estimator, as in (8-8h) or (8-8c).

the relevance assumption holds that in the projection of C on x and z,

C = g0 + x′Gx + z′Gz + wc = f′Gc + wc,
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Gz is not zero. strictly, the projection works. However, because C is a binary variable, wc 
equals either -f′Gc or 1 - f′Gc, so the lack of correlation between wc and f (specifically z)  
is a result of the construction of the linear projection, not necessarily a characteristic 
of the underlying design of the real-world counterpart to the variables in the model 
(though one would expect z to have been chosen with this in mind). one might 
observe that the understanding of the functioning of the instrument is that its variation 
makes participation more (or less) likely. as such, the relevance of the instrument is 
to the probability of participation. a more convincing specification that is consistent 
with this observation, albeit one less general, can replace the relevance assumption 
with a formal parametric specification of the conditional probability that C equals 1, 
Prob(C = 1 � x, z) = F(x, z: U) ≠ Prob(C = 1 � x). We also replace projections with 
expected values in the exogeneity assumption; Proj(e0 � x, z) = Proj(e0 � x) will now 
be E(e0 � x , z ) = Proj(e0 � x) = (g0 + x ′G).  this suggests an instrument of the form 
F(x, z: U) = Prob(C = 1 � x, z), a known function—the usual choice would be a 
probit model  (see section 17.2)—Φ(u0 + x ′Ux + z ′Uz) where Φ(t) is the standard 
normal CdF. to reiterate, the conditional probability is correlated with C � x but not 
correlated with w0 � x. With this additional assumption, a natural instrument in the form 
of Fn(x, z: U) = Φ(un0 + x′Unx + z′Unz) (estimated by maximum likelihood) can be used. 
the advantages of this approach are internally consistent specification of the treatment 
dummy variable and some gain in efficiency of the estimator that follows from the 
narrower assumptions.

this approach creates an additional issue that is not present in the previous linear 
approach. the approach suggested here would succeed even if there were no variables 
in z. the iV estimator is (Z′X)-1Z′y where the rows of Z and X are [1, Φn , x′] and 
[1, C, x′]. as long as Φn  is not a linear function of x (and is both relevant and exogenous), 
then the parameters will be identified by this iV estimator. because Φn  is nonlinear, it 
could meet these requirements even without any variables in z. the parameters in this 
instance are identified by the nonlinear functional form of the probability model. 
typically, the probability is at least reasonably highly (linearly) correlated with the 
variables in the model, so possibly severe problems of multicollinearity are likely to 
appear. but, more to the point, the entire logic of the instrumental variable approach is 
based on an exogenous source of variation that is correlated with the endogenous 
variable and not with the disturbance. the nonlinear terms in the probability model do 
not persuasively pass that test. thus, the typical application does, indeed, ensure that 
there are excluded (from the main equation) variables in z.14

Finally, note that because Fn(x, z: U) is not a linear function of x and z, this iV 
estimator is not two-stage least squares. that is, y is not regressed on (1, Φn , x) to estimate 
l0, d, G. rather, the estimator is in (8-6), (Z′X)-1Z′y. because no assumption has been 
made about the disturbance variance, the robust covariance matrix estimator in (8-8h) 
should be used.

14as an example, scott, schurer, Jensen, and sivey (2009) state, “although the model is formally identified by its 
nonlinear functional form, as long as the full rank condition of the data matrix is ensured (Heckman, 1978; Wilde, 
2000), we introduce exclusion restrictions to aid identification of the causal parameter . . . the row vector Iij 
captures the variables included in the PiP participation Equation (5) but excluded from the outcome Equation (4).” 
(“the Effects of an incentive Program on Quality of Care in diabetes management,” Health Economics, 19, 2009, 
pp. 1091–1108, section 4.2.)
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8.5.3  A CONTROL FUNCTION ESTIMATOR

the list of assumptions and implications that produced the second iV estimator above was:
Rubin Causal Model y = Cy1 + (1 - C)y0

= m0 + C(m1 - m0) + e0 + C(e1 - e0),

Nonignorability of the Treatment Cov(C, e0) ≠ 0,

Normalization e1 - e0 = 0,

Exogeneity and Linearity Proj(e0 � x , z ) = E[e0 � x , z ] = g0 + x ′G,   
no assumption is made about Var[e0 � x],

Relevance of the Instruments Prob(C = 1 � x, z) = F(x, z: U) ≠ Prob(C = 1 � x),

Reduced Form y = l0 + dC + x ′G + w0 , Cov(x , w0) = 0   
is implied,

Endogenous Treatment Dummy Variable Cov(C, w0) ≠ 0,

Probit Model for Prob(C = 1 ∣ x, z) C* = g0 + x′Gx + z′Gz + wc, wc ∼ N[0, 12],
C = 1 if C* 7 0 and C = 0 if C* … 0,
Prob(C = 1 � x, z ) = Φ(u0 + x ′Ux + z ′Uz).

the source of the endogeneity of the treatment dummy variable is now more explicit. 
because neither x nor z is correlated with w0, the source is the correlation of wc and w0. 
as in all such cases, the ultimate source of the endogeneity is the covariation among the 
unobservables in the model.

the foregoing is sufficient to produce a consistent instrumental variable estimator. 
We now pursue whether with the same data and assumptions, there is a regression-based 
estimator. based on the assumptions, we find that

E[y � C = 1, x, z] = l0 + d + x′G + E[w0 � C = 1, x, z],
E[y � C = 0, x, z] = l0 + x′G + E[w0 � C = 0, x, z].

because we have not specified the last term, the model is incomplete. suppose the 
model is fully parameterized with (w0, wc) bivariate normally distributed with means 0, 
variances s2 and 1 and covariance rs. under these assumptions, the functional form of 
the conditional mean is known,

 E[y � C = 1, x, z] = l0 + x′G + d + E[w0 � C = 1, x, z]

 = l0 + x′G + d + E[w0 � wc 7 (-g0 - x′Gx - z′Gz)]

 = l0 + x′G + d + rsJ f(g0 + x′Gx + z′Gz)

Φ(g0 + x′Gx + z′Gz)
R .

the counterpart for C = 0 would be

E[y � C = 0, x, z] = l0 + x′G + rsJ -f(g0 + x′Gx + z′Gz)

[1 - Φ(g0 + x′Gx + z′Gz)]
R .

by using the symmetry of the normal distribution, f(t) = f(- t) and Φ(t) = 1 - Φ(- t), 
we can combine these into a single regression,

 E[y � C xi, zi] = l0 + x′G + dC + rsJ (2C - 1)f[(2C - 1)(g0 + x′Gx + z′Gz)]

Φ[(2C - 1)(g0 + x′Gx + z′Gz)]
R

 = l0 + x′G + dC + tG(C, x, z: U).
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(see theorem 19.5.) the result is a feature of the bivariate normal distribution. there 
are two approaches that could be taken. the conditional mean function is a nonlinear 
regression that can be estimated by nonlinear least squares. the bivariate normality 
assumption carries an implicit assumption of homoscedasticity, so there is no need for 
a heteroscedasticity robust estimator for the covariance matrix. nonlinear least squares 
might be quite cumbersome. a simpler, two-step “control function” approach would 
be to fit the probit model as before, then compute the bracketed term and add it as an 
additional term. the estimating equation is

y = l0 + dC + x′G + TGn + h,

where h = y - E[y � C, x, z]. this can be estimated by linear least squares. as with other 
control function estimators, the asymptotic covariance matrix for the estimator must be 
adjusted for the constructed regressor. [see Heckman (1979) for results related to this 
model.] the result of murphy and topel (2002) can be used to obtain the correction. 
bootstrapping can be used as well. [this turns out to be identical to Heckman’s (1979) 
“sample selection” model developed in section 19.5.2. a covariance matrix for the two-step 
estimator as well as a full information maximum likelihood estimator are developed there.]

the precision and compactness of this result has been purchased by adding the 
bivariate normality assumption. it has also been made much simpler with the still 
unmotivated assumption, e1 - e0 = 0. a distributional assumption can be substituted 
for the normalization. Wooldridge (2010, pp. 945–948) assumes that [wc, (e1 - e0)] are 
bivariate normally distributed, and obtains another control function estimator, again 
based on properties of the bivariate normal distribution.

8.5.4  PROPENSITY SCORE MATCHING

if the treatment assignment is completely ignorable, then, as noted, estimation of the 
treatment effects is greatly simplified. suppose, as well, that there are observable variables 
that influence both the outcome and the treatment assignment. suppose it is possible to 
obtain pairs of individuals matched by a common xi, one with Ci = 0, the other with 
Ci = 1. if done with a sufficient number of pairs so as to average over the population of 
xi s, then a matching estimator, the average value of (yi � Ci = 1) - (yi � Ci = 0), would 
estimate E[y1 - y0], which is what we seek. of course, it is optimistic to hope to find a 
large sample of such matched pairs, both because the sample overall is finite and because 
there may be many regressors, and the “cells” in the distribution of xi are likely to be 
thinly populated. this will be worse when the regressors are continuous, for example, with 
a family income variable. rosenbaum and rubin (1983) and others15 suggested, instead, 
matching on the propensity score, F(xi) = Prob(Ci = 1 � xi). individuals with similar 
propensity scores are paired and the average treatment effect is then estimated by the 
differences in outcomes. Various strategies are suggested by the authors for obtaining the 
necessary subsamples and for verifying the conditions under which the procedures will 
be valid.16 We will examine and try to replicate a well-known application in Example 8.10.

15other important references in this literature are becker and ichino (1999), dehejia and Wahba (1999), lalonde 
(1986), Heckman, ichimura, and todd (1997, 1998), robins and rotnitzky (1995), Heckman, ichimura, smith, and 
todd (1998), Heckman, lalonde, and smith (1999), Heckman, tobias, and Vytlacil (2003), Hirano, imbens, and 
ridder (2003), and Heckman and Vytlacil (2000).
16see, for example, becker and ichino (2002).
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Example 8.10  Treatment Effects on Earnings
LaLonde (1986) analyzed the results of a labor market experiment, The National Supported Work 
Demonstration, in which a group of disadvantaged workers lacking basic job skills were given 
work experience and counseling in a sheltered environment. Qualified applicants were assigned 
to training positions randomly. The treatment group received the benefits of the program. Those 
in the control group “were left to fend for themselves.” The training period was 1976–1977; the 
outcome of interest for the sample examined here was posttraining 1978 earnings.

LaLonde reports a large variety of estimates of the treatment effect, for different subgroups 
and using different estimation methods. Nonparametric estimates for the group in our sample 
are roughly $900 for the income increment in the posttraining year. (See LaLonde, p. 609.) 
Similar results are reported from a two-step regression-based estimator similar to the control 
function estimator in Section 8.5.3. (See LaLonde’s footnote to Table 6, p. 616.)

LaLonde’s data are fairly well traveled, having been used in replications and extensions 
in, for example, Dehejia and Wahba (1999), Becker and Ichino (2002), Stata (2006), Dehejia 
(2005), Smith and Todd (2005), and Wooldridge (2010). We have reestimated the matching 
estimates reported in Becker and Ichino along with several side computations including the 
estimators developed in Sections 8.5.2 and 8.5.3. The data in the file used there (and here) 
contain 2,490 control observations and 185 treatment observations on the following variables:

 t = treatment dummy variable,

 age = age in years,

 educ = education in years,

 marr = dummy variable for married,

 black = dummy variable for black,

 hisp = dummy variable for Hispanic,

 nodegree = dummy for no degree (not used),

 re74 = real earnings in 1974,

 re75 = real earnings in 1975,

 re78 = real earnings in 1978.

Transformed variables added to the equation are

 age2 = age squared,

 educ2 = educ squared,

 re742 = re74 squared,

 re752 = re75 squared,

 blacku 74 = black times 1(re74 = 0).

We also scaled all earnings variables by 10,000 before beginning the analysis. (See Appendix 
Table F19.3. The data are downloaded from the Website http://users.nber.org/~rdehejia/
nswdata2.html. The two specific subsamples are in http://www.nber.org/~rdehejia//nsw_
control.txt, and http://www.nber.org/~rdehejia/nsw_treated.txt.) (We note that Becker and 
Ichino report they were unable to replicate Dehejia and Wahba’s results, although they could 
come reasonably close. We, in turn, were not able to replicate either set of results, though 
we, likewise, obtained quite similar results. See Table 8.3.)

To begin, Figure 8.2 describes the re78 data for the treatment group in the upper panel and 
the controls in the lower. Any regression- (or sample means–) based analysis of the differences 
of the two distributions will reflect the fact that the mean of the controls is far larger than that 
of the treatment group. The re74 and re75 data appear similar, so estimators that account 
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for the observable past values should be able to isolate the difference attributable to the 
treatment, if there is a difference.

Table 8.3 lists the results obtained with the regression-based methods and matching 
based on the propensity scores. The specification for the regression-based approaches is

simple difference in means: re781 - re780 = 6,349 - 21,553 = -15,204a

Estimator d Standard Error (Method)

Regression Based
simple ols 859a 765a (robust standard Error)
2sls 2,021 1,690  (robust standard Error)
iV using predicted probabilities 2,145 1,131 (robust standard Error)
2 step Control Function 2,273 1,012 (100 bootstrap replications)

1,249 (Heckman two step)
Propensity Score Matchingc

matching 1,571   669 (25 bootstrap replications)
becker and ichino 1,537b 1,016b (100 bootstrap replications)

a see Wooldridge (2010, p. 929, table 21.1).
b see becker and ichino (2002, p. 374) based on Kernel matching and common support. number of 
controls = 1,157 (1,155 here).
c becker and ichino employed the pscore and attk routines in Stata. results here used LOGIT and 
PSMATCH in NLOGIT6.

TABLE 8.3 Estimates of Average Treatment Effect on the Treated

Percent Lower Upper

0–5 0.000591 0.000783 sample size = 1,347
5–10 0.000787 0.001061 average score = 0.137238

10–15 0.001065 0.001377 std. dev score = 0.274079
15–20 0.001378 0.001748
20–25 0.001760 0.002321 lower upper # obs
25–30 0.002340 0.002956 1 0.000591 0.098016 1041
30–35 0.002974 0.004057 2 0.098016 0.195440 63
35–40 0.004059 0.005272 3 0.195440 0.390289 65
40–45 0.005278 0.007486 4 0.390289 0.585138 36
45–50 0.007557 0.010451 5 0.585138 0.779986 32
50–55 0.010563 0.014643 6 0.779986 0.877411 17
55–60 0.014686 0.022462 7 0.877411 0.926123 7
60–65 0.022621 0.035060 8 0.926123 0.974835 86
65–70 0.035075 0.051415
70–75 0.051415 0.076188
75–80 0.076376 0.134189
80–95 0.134238 0.320638
85–90 0.321233 0.616002
90–95 0.624407 0.949418
95–100 0.949418 0.974835

TABLE 8.4 Empirical Distribution of Propensity Scores
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FIGURE 8.2  Real 1978 Earnings, Treated Versus Controls.
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re78 = l0 + y1age + y2educ + y3black + y4hisp + y5marr + y6re74 + y7re75 + dT + w0.

The additional variables in z are (age2, educ2, re742, re752, blacku74). [Note, for consistency 
with Becker and Ichino, nodegree was not used. The specification of x in the regression 
equation follows Wooldridge (2010).] As anticipated, the simple difference in means is 
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uninformative. The regression-based estimates are quite consistent; the estimate of ATT is 
roughly $2,100. The propensity score method focuses only on the observable differences 
in the observations (including, crucially, re74 and re75) and produces an estimate of about 
$1,550.

The propensity score matching analysis proceeded as follows: A logit model in which the 
included variables were a constant, age, age2, education, education2, marr, black, hisp, re74, 
re75, re742, re752, and blacku74 was computed for the treatment assignment. The fitted 
probabilities are used for the propensity scores. By means of an iterative search, the range 
of propensity scores was partitioned into eight regions within which, by a simple F test, the 
mean scores of the treatments and controls were not statistically different. The partitioning 
is shown in Table 8.4. The 1,347 observations are all the treated observations and the 1,162 
control observations are those whose propensity scores fell within the range of the scores 
for the treated observations.

Within each interval, each treated observation is paired with a small number of the nearest 
control observations. We found the average difference between treated observation and 
control to equal $1,574.35. Becker and Ichino reported $1,537.94.

8.6 HYPOTHESIS TESTS

there are several tests to be carried out in this model.

8.6.1  TESTING RESTRICTIONS

For testing linear restrictions in H0: RB = q, the Wald statistic based on whatever form 
of asy.Var[biV] has been computed will be the usual choice. The test statistic, based on 
the unrestricted estimator, will be

 x2[J] = (RBn - q)′[R Est.asy.Var(Bn)R′]-1(RBn - q). (8-18)

For testing the simple hypothesis that a coefficient equals zero, this is the square of the 
usual t ratio that is always reported with the estimated coefficient. the t ratio, itself, can 
be used instead, though the implication is that the large sample critical value, 1.96 for 
95%, for example, would be used rather than the t distribution.

For the 2sls estimator based on least squares regression of y on Xn  an asymptotic F 
statistic can be computed as follows:

 F[J, n - K ] =
b a n

i= 1(yi - xn i
=Bnrestricted)2 - a n

i= 1(yi - xn i
=Bnunrestricted)2 r /J

a n
i= 1(yi - xi

=Bnunrestricted)2/(n - K)
. (8-19)

[see Wooldridge (2010, p. 105).] as in the regression model [see (5-14) and (5-15)], an 
approximation to the F statistic will be the chi-squared statistic, JF. unlike the earlier 
case, however, J times the statistic in (8-19) is not equal to the result in (8-18) even if the 
denominator is rescaled by (n-K)/n. they are different approximations. the F statistic 
is computed using both resticted and unresticted estimators.

a third approach to testing the hypothesis of the restrictions can be based on the 
lagrange multiplier principle. the moment equation for the 2sls estimator is

g =
1
n a n

i= 1xni(yi - xi
=Bn) =

1
n a n

i= 1xnieni = 0.
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(note that the residuals are computed using the original x, not the prediction.) the mean 
vector g will equal 0 when it is computed using Bnunrestricted to compute the residuals. it 
will generally not equal zero if Bnrestricted is used instead. We consider using a Wald test 
to test the hypothesis that E[g] = 0. the asymptotic variance of g will be estimated 
using 1/n times the matrix in (8-8), (8-8h) or (8-8c), whichever is appropriate. the Wald 
statistic will be

x2[J] = Ja n
i= 1xni(yi - xi

=Bnrestricted) R =

a 1
n

 Est.asy.VarJBnrestricted R ≤-1Ja n
i= 1xni(yi - xi

=Bnrestricted) R .

a convenient way to carry out this test is the approximation x2[J] = nR2 where the R2 
is the uncentered R2 in the least squares regression of En on Xn .

8.6.2  SPECIFICATION TESTS

there are two aspects of the model that we would be interested in verifying if possible, 
rather than assuming them at the outset. First, it will emerge in the derivation in 
section 8.4.1 that of the two estimators considered here, least squares and instrumental 
variables, the first is unambiguously more efficient (i.e., has a smaller variance around 
its mean). the iV estimator is robust; it is consistent whether or not plim(X′E/n) = 0. 
However, if iV is not needed, that is, if G = 0, then least squares would be a better 
estimator by virtue of its smaller variance.17 For this reason, and possibly in the interest 
of a test of the theoretical specification of the model, a test that reveals information 
about the bias of least squares will be useful. second, the use of two-stage least squares 
with L 7 K, that is, with “additional” instruments, entails L - K restrictions on the 
relationships among the variables in the model. as might be apparent from the derivation 
thus far, when there are K variables in X, some of which may be endogenous, then there 
must be at least K variables in Z in order to identify the parameters of the model, that 
is, to obtain consistent estimators of the parameters using the information in the sample. 
When there is an excess of instruments, one is actually imposing additional, arguably 
superfluous restrictions on the process generating the data. Consider, once again, the 
agricultural market example at the end of section 8.3.4. in that structure, it is certainly 
safe to assume that Rainfall is an exogenous event that is uncorrelated with the 
disturbances in the demand equation. but, it is conceivable that the interplay of the 
markets involved might be such that the InputPrice is correlated with the shocks in the 
demand equation. in the market for biofuels, corn is both an input in the market supply 
and an output in other markets. in treating InputPrice as exogenous in that example, we 
would be imposing the assumption that InputPrice is uncorrelated with eD, at least by 
some measure unnecessarily because the parameters of the demand equation can be 
estimated without this assumption. this section will describe two specification tests that 
consider these aspects of the iV estimator.

17it is possible that even if least squares is inconsistent, it might still be more precise. if ls is only slightly biased 
but has a much smaller variance than iV, then by the expected squared error criterion, variance plus squared bias, 
least squares might still prove the preferred estimator. this turns out to be nearly impossible to verify empirically.
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8.6.3  TESTING FOR ENDOGENEITY: THE HAUSMAN AND WU SPECIFICATION TESTS

if the regressors in the model are not correlated with the disturbances and are not 
measured with error, then there would be some benefit to using the least squares (ls) 
estimator rather than the iV estimator. Consider a comparison of the two covariance 
matrices under the hypothesis that both estimators are consistent, that is, assuming 
plim (1/n)X′E = 0 and assuming a.4 (section 8.2). the difference between the 
asymptotic covariance matrices of the two estimators is

  asy .Var[biV] - asy .Var[bls] =
s2

n
 plim¢X′Z(Z′Z)-1Z′X

n
≤-1

-
s2

n
 plimaX′X

n
b

-1

 =
s2

n
 plim n[(X′Z(Z′Z)-1Z′X)-1 - (X′X)-1]

 =
s2

n
 plim n{[X′(I - MZ)X]-1 - [X′X]-1}

 =
s2

n
 plim n{[X′X - X′MZX]-1 - [X′X]-1}.

 (8-20)

the matrix in braces is nonnegative definite, which establishes that least squares is 
more efficient than iV. our interest in the difference between these two estimators 
goes beyond the question of efficiency. the null hypothesis of interest will be specifically 
whether plim(1/n)X′E = 0. seeking the covariance between X and E through (1/n)X′e 
is fruitless, of course, because (1/n)X′e = 0. in a seminal paper, Hausman (1978) 
developed an alternative testing strategy. the logic of Hausman’s approach is as follows. 
under the null hypothesis, we have two consistent estimators of B, bls and biV. under 
the alternative hypothesis, only one of these, biV, is consistent. the suggestion, then, is 
to examine d = biV - bls. under the null hypothesis, plim d = 0, whereas under the 
alternative, plim d ≠ 0. We will test this hypothesis with a Wald statistic,

 H = d′{Est.asy.Var[d]}-1d
 = (biV - bls)′{Est.asy.Var[biV] - Est.asy.Var[bls]}-1(biV - bls)
 = (biV - bls)′Hn -1(biV - bls),

where Hn -1  is the estimator of the covariance matrix in (8-20). under the null hypothesis, 
we have two different, but consistent, estimators of s2. if we use s2 as the common 
estimator, then the statistic will be

H =
d ′[(Xn ′Xn)-1 - (X′X)-1]-1d

s 2 .

it is tempting to invoke our results for the full rank quadratic form in a normal vector 
and conclude the degrees of freedom for this chi-squared statistic is K. However, the 
rank of [(Xn ′Xn)-1 - (X′X)-1] is only K* = K - K0, where K0 is the number of exogenous 
variables in X (and the ordinary inverse will not exist), so K* is the degrees of freedom 
for the test. the Wald test requires a generalized inverse [see Hausman and taylor 
(1981)], so it is going to be a bit cumbersome. an alternative variable addition test 
approach devised by Wu (1973) and durbin (1954) is simpler. an F or Wald statistic with 
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K* and n - K - K* degrees of freedom can be used to test the joint significance of the 
elements of G in the augmented regression,

 y = XB + Xn*G + E*, (8-21)

where Xn* are the fitted values in regressions of the variables in X* on Z. this result is 
equivalent to the Hausman test for this model.18

Example 8.5  Labor Supply Model (Continued)
For the labor supply equation estimated in Example 8.5, we used the Wu (variable addition) 
test to examine the endogeneity of the In Wage variable. For the first step, In Wageit is 
regressed on z1,it. The predicted value from this equation is then added to the least squares 
regression of Wksit on xit. The results of this regression are

Wksit = 18.8987 + 0.6938 ln Wageit - 0.4600 Edi - 2.3602Unionit

(12.3284) (0.1980)   (0.1490)  (0.2423)
    + 0.6958 Femi + 4.4891 fitted ln Wageit + uit,

    (1.0054)  (2.1290),

where the estimated standard errors are in parentheses. The t ratio on the fitted log wage 
coefficient is 2.108, which is larger than the critical value from the standard normal table of 
1.96. Therefore, the hypothesis of exogeneity of the log Wage variable is rejected. If z2,it is 
used instead, the t ratio on the predicted value is 2.96, which produces the same conclusion.

the control function estimator based on (8-16),

y = x1
=B + x2l + r(x2 - z′p) + w∼,

resembles the estimating equation in (8-21). it is actually equivalent. if the residual in 
(8-16) is replaced by the prediction, z′p, the identical least squares results are obtained 
save for the coefficient on the residual, which changes sign. the results in the preceding 
example would thus be identical save for the sign of the coefficient on the prediction of 
ln Wage, which would be negative. the implication (as happens in many applications) is 
that the control function estimator provides a simple constructive test for endogeneity 
that is the same as the Hausman–Wu test. a test of the significance of the coefficient on 
the control function is equivalent to the Hausman test.

8.6.4  A TEST FOR OVERIDENTIFICATION

the motivation for choosing the iV estimator is not efficiency. the estimator is 
constructed to be consistent; efficiency is a secondary consideration. in Chapter 13, we 
will revisit the issue of efficient method of moments estimation. the observation that 
2sls represents the most efficient use of all L instruments establishes only the efficiency 
of the estimator in the class of estimators that use K linear combinations of the columns 
of Z. the iV estimator is developed around the orthogonality conditions,

 E[ziei] = 0. (8-22)

the sample counterpart to this is the moment equation,

 
1
n a

n

i= 1
ziei = 0. (8-23)

18algebraic derivations of this result can be found in the articles and in davidson and macKinnon (2004, section 8.7).
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the solution, when L = K, is bIV = (Z′X)-1Z′y, as we have seen. if L 7 K, then there 
is no single solution, and we arrived at 2sls as a strategy. Estimation is still based on 
(8-23). However, the sample counterpart is now L equations in K unknowns and (8-23) 
has no solution. nonetheless, under the hypothesis of the model, (8-22) remains true. 
We can consider the additional restrictions as a hypothesis that might or might not be 
supported by the sample evidence. the excess of moment equations provides a way to 
test the overidentification of the model. the test will be based on (8-23), which, when 
evaluated at biV, will not equal zero when L 7 K, though the hypothesis in (8-22) might 
still be true.

the test statistic will be a Wald statistic. (see section 5.4.) the sample statistic, based 
on (8-23) and the iV estimator, is

m =
1
n a

n

i= 1
zieiV,i =

1
n a

n

i= 1
zi(yi - xi

=biV).

the Wald statistic is

x2[L - K] = m′[Var(m)]-1m.

to complete the construction, we require an estimator of the variance. there are two 
ways to proceed. under the assumption of the model,

Var[m] =
s2

n2  Z′Z,

which can be estimated easily using the sample estimator of s2. alternatively, we might 
base the estimator on (8-22), which would imply that an appropriate estimator would be

Est.Var[m] =
1
n2 a

i= 1
(zieiV,i)(zieiV,i)′ =

1
n2 a

i= 1
eiV,i

2 zizi
=.

these two estimators will be numerically different in a finite sample, but under the 
assumptions that we have made so far, both (multiplied by n) will converge to the same 
matrix, so the choice is immaterial. Current practice favors the second. the Wald statistic 
is, then,

LM = na 1
n a

n

i= 1
zieiV,ib

=

c 1
n a

n

i= 1
eiV,i

2 zizi
= d

-1

a 1
n a

n

i= 1
zieiV,ib .

a remaining detail is the number of degrees of freedom. the test can only detect the 
failure of L - K moment equations, so that is the rank of the quadratic form; the 
limiting distribution of the statistic is chi squared with L - K degrees of freedom. if 
the equation is exactly identified, then (1/n)Z′eiV will be exactly zero. as we saw in 
testing linear restrictions in section 8.5.1, there is a convenient way to compute the lm 
statistic. the chi-squared statistic can be computed as n times the uncentered R2 in the 
linear regression of eiV on Z that would be

LM =
eIV
= Z(Z′Z)-1Z′eIV

eIV
= eIV

.
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IND SMSA IND and SMSA

Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant 18.8987 20.26604 33.0018 9.10852 30.7044 8.25041
LWAGE 5.18285 3.47416 2.75658 1.56100 3.15182 1.41058
ED -0.46000 0.24352 -0.29272 0.12414 -0.31997 0.11453
UNION -2.36016 0.43069 -2.16164 0.30395 -2.19398 0.30507
FEM 0.69567 1.66754 -0.41950 0.85547 -0.23784 0.79781
sn 5.32268 5.08719 5.11405

TABLE 8.5 2SLS Estimates of the Labor Supply Equation

Example 8.11  Overidentification of the Labor Supply Equation
In Example 8.5, we computed 2SLS estimates of the parameters of an equation for weeks 
worked. The estimator is based on

x = [1, ln Wage, Education, Union, Female]

and

z = [1, Ind, Education, Union, Female, SMSA].

There is one overidentifying restriction. The sample moment based on the 2SLS results in 
Table 8.1 is

(1/4165)Z′e2 SLS = [0, .03476, 0, 0, 0, - .01543]′.

The chi-squared statistic is 1.09399 with one degree of freedom. If the first suggested variance 
estimator is used, the statistic is 1.05241. Both are well under the 95 percent critical value 
of 3.84, so the hypothesis of overidentification is not rejected. Table 8.5 displays the 2SLS 
estimates based on the two instruments separately and the estimates based on both.

We note a final implication of the test. one might conclude, based on the underlying 
theory of the model, that the overidentification test relates to one particular instrumental 
variable and not another. For example, in our market equilibrium example with two 
instruments for the demand equation, Rainfall and InputPrice, rainfall is obviously 
exogenous, so a rejection of the overidentification restriction would eliminate InputPrice 
as a valid instrument. However, this conclusion would be inappropriate; the test suggests 
only that one or more of the elements in (8-22) are nonzero. it does not suggest which 
elements in particular these are.

8.7 WEAK INSTRUMENTS AND LIML

our analysis thus far has focused on the “identification” condition for iV estimation, 
that is, the “exogeneity assumption,” a.i9, which produces

 plim (1/n)Z′E = 0. (8-24)

taking the “relevance” assumption,

 plim (1/n)Z′X = QZX, a finite, nonzero, L * K matrix with rank K, (8-25)
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as given produces a consistent iV estimator. in absolute terms, with (8-24) in place, 
(8-25) is sufficient to assert consistency. as such, researchers have focused on exogeneity 
as the defining problem to be solved in constructing the iV estimator. a growing 
literature has argued that greater attention needs to be given to the relevance condition. 
While, strictly speaking, (8-25) is indeed sufficient for the asymptotic results we have 
claimed, the common case of “weak instruments,” in which (8-25) is only barely true has 
attracted considerable scrutiny. in practical terms, instruments are “weak” when they 
are only slightly correlated with the right-hand-side variables, X; that is, (1/n)Z′X is close 
to zero. researchers have begun to examine these cases, finding in some an explanation 
for perverse and contradictory empirical results.19

superficially, the problem of weak instruments shows up in the asymptotic 
covariance matrix of the iV estimator,

asy.Var[biV] =
se

2

n
 J aX′Z

n
b aZ′Z

n
b

-1

aZ′X
n

b R -1

,

which will be “large” when the instruments are weak, and, other things equal, larger the 
weaker they are. However, the problems run deeper than that. nelson and startz 
(1990a,b) and Hahn and Hausman (2003) list two implications: (i) the 2sls estimator 
is badly biased toward the ordinary least squares estimator, which is known to be 
inconsistent, and (ii) the standard first-order asymptotics (such as those we have used 
in the preceding) will not give an accurate framework for statistical inference. thus, the 
problem is worse than simply lack of precision. there is also at least some evidence that 
the issue goes well beyond “small sample problems.”20

Current research offers several prescriptions for detecting weakness in instrumental 
variables. For a single endogenous variable (x that is correlated with E), the standard 
approach is based on the first-step ols regression of 2sls. the conventional F statistic 
for testing the hypothesis that all the coefficients in the regression

xi = zi
=P + ui

are zero is used to test the “hypothesis” that the instruments are weak. an F statistic less 
than 10 signals the problem.21 When there are more than one endogenous variables in 
the model, testing each one separately using this test is not sufficient, because collinearity 
among the variables could impact the result but would not show up in either test. shea 
(1997) proposes a four-step multivariate procedure that can be used. godfrey (1999) 
derived a surprisingly simple alternative method of doing the computation. For 
endogenous variable k, the godfrey statistic is the ratio of the estimated variances of 
the two estimators, ols and 2sls,

Rk
2 =

vk(OLS)/e′e(ols)

vk(2SLS)/e′e(2sls)
,

19important references are nelson and startz (1990a,b), staiger and stock (1997), stock, Wright, and yogo (2002), 
Hahn and Hausman (2002, 2003), Kleibergen (2002), stock and yogo (2005), and Hausman, stock, and yogo 
(2005).
20see bound, Jaeger, and baker (1995).
21see nelson and startz (1990b), staiger and stock (1997), and stock and Watson (2007, Chapter 12) for 
motivation of this specific test.
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where vk (ols) is the kth diagonal element of [e′e(ols)/(n - K)](X′X)-1 and vk 
(2sls) is defined likewise. With the scalings, the statistic reduces to

Rk
2 =

(X′X)kk

(Xn ′Xn )kk
,

where the superscript indicates the element of the inverse matrix. the F statistic can 
then be based on this measure, F = [Rk

2/(L - 1)]/[(1 - Rk
2)/(n - L)] assuming that Z 

contains a constant term.
it is worth noting that the test for weak instruments is not a specification test, nor 

is it a constructive test for building the model. rather, it is a strategy for helping the 
researcher avoid basing inference on unreliable statistics whose properties are not well 
represented by the familiar asymptotic results, for example, distributions under assumed 
null model specifications. several extensions are of interest. other statistical procedures 
are proposed in Hahn and Hausman (2002) and Kleibergen (2002).

the stark results of this section call the iV estimator into question. in a fairly narrow 
circumstance, an alternative estimator is the “moment”-free liml estimator discussed 
in section 8.4.3. another, perhaps somewhat unappealing, approach is to retreat to least 
squares. the ols estimator is not without virtue. the asymptotic variance of the ols 
estimator,

asy.Var[bls] = (s2/n)QXX
-1 ,

is unambiguously smaller than the asymptotic variance of the iV estimator,

asy.Var[biV] = (s2/n)(QXZQZZ
-1 QZX)-1.

(the proof is considered in the exercises.) given the preceding results, it could be far 
smaller. the ols estimator is inconsistent, however,

plim bls - B = QXX
-1 G,

[see (8-4)]. by a mean squared error comparison, it is unclear whether the ols estimator 
with

M(bls �B) = (s2/n)QXX
-1 + QXX

-1 GG′QXX
-1 ,

or the iV estimator, with

M(biV �B) = (S2/n)(QXZQZZ
-1 QZX)-1,

is more precise. the natural recourse in the face of weak instruments is to drop the 
endogenous variable from the model or improve the instrument set. Each of these is a 
specification issue. strictly in terms of estimation strategy within the framework of the 
data and specification in hand, there is scope for ols to be the preferred strategy.

8.8 MEASUREMENT ERROR

thus far, it has been assumed (at least implicitly) that the data used to estimate the 
parameters of our models are true measurements on their theoretical counterparts. 
in practice, this situation happens only in the best of circumstances. all sorts of 
measurement problems creep into the data that must be used in our analyses. Even 
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carefully constructed survey data do not always conform exactly to the variables the 
analysts have in mind for their regressions. aggregate statistics such as gdP are only 
estimates of their theoretical counterparts, and some variables, such as depreciation, the 
services of capital, and “the interest rate,” do not even exist in an agreed-upon theory. 
at worst, there may be no physical measure corresponding to the variable in our model; 
intelligence, education, and permanent income are but a few examples. nonetheless, they 
all have appeared in very precisely defined regression models.

8.8.1  LEAST SQUARES ATTENUATION

in this section, we examine some of the received results on regression analysis with badly 
measured data. the biases introduced by measurement error can be rather severe. there 
are almost no known finite-sample results for the models of measurement error; nearly 
all the results that have been developed are asymptotic.22 the following presentation 
will use a few simple asymptotic results for the classical regression model.

the simplest case to analyze is that of a regression model with a single regressor and 
no constant term. although this case is admittedly unrealistic, it illustrates the essential 
concepts, and we shall generalize it presently. assume that the model,

 y* = bx* + e, (8-26)

conforms to all the assumptions of the classical normal regression model. if data on y* 
and x* were available, then b would be estimable by least squares. suppose, however, that 
the observed data are only imperfectly measured versions of y* and x*. in the context 
of an example, suppose that y* is ln(output/labor) and x* is ln(capital/labor). neither 
factor input can be measured with precision, so the observed y and x contain errors of 
measurement. We assume that

 y = y* + v with v ∼ N[0, sv
2], (8-27a)

 x = x* + u with u ∼ N[0, su
2]. (8-27b)

assume, as well, that u and v are independent of each other and of y* and x*. (as we 
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

as a first step, insert (8-27a) into (8-26), assuming for the moment that only y* is 
measured with error,

y = bx* + e + v = bx* + e′.

this result still conforms to the assumptions of the classical regression model. as long as 
the regressor is measured properly, measurement error on the dependent variable can 
be absorbed in the disturbance of the regression and ignored. to save some cumbersome 
notation, therefore, we shall henceforth assume that the measurement error problems 
concern only the independent variables in the model.

Consider, then, the regression of y on the observed x. by substituting (8-27b) into 
(8-26), we obtain

 y = bx + [e - bu] = bx + w. (8-28)

22see, for example, imbens and Hyslop (2001).
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because x equals x* + u, the regressor in (8-28) is correlated with the disturbance,

 Cov[x, w] = Cov[x* + u, e - bu] = -bsu
2. (8-29)

this result violates one of the central assumptions of the classical model, so we can 
expect the least squares estimator,

b =
(1/n)a n

i= 1xiyi

(1/n)a n
i= 1xi

2
,

to be inconsistent. to find the probability limits, insert (8-26) and (8-27b) and use the 
slutsky theorem,

plim b =
plim(1/n)a n

i= 1(xi* + ui)(bxi* + ei)

plim(1/n)a n
i= 1(xi* + ui)

2
.

because x*, e, and u are mutually independent, this equation reduces to

 plim b =
bQ*

Q* + su
2 =

b

1 + su
2/Q*

, (8-30)

where Q* = plim(1/n)a ixi*
2. as long as su

2 is positive, b is inconsistent, with a persistent 
bias toward zero. Clearly, the greater the variability in the measurement error, the worse 
the bias. the effect of biasing the coefficient toward zero is called attenuation.

in a multiple regression model, matters only get worse. suppose, to begin, we assume 
that y = X*B + E and X = X* + U, allowing every observation on every variable to 
be measured with error. the extension of the earlier result is

plim aX′X
n

b = Q* + �uu, and plim aX′y
n

b = Q*B.

Hence,

 plim b = [Q* + Σuu]-1Q*B = B - [Q* + �uu]-1�uuB. (8-31)

this probability limit is a mixture of all the parameters in the model. in the same fashion 
as before, bringing in outside information could lead to identification. the amount of 
information necessary is extremely large, however, and this approach is not particularly 
promising.

it is common for only a single variable to be measured with error. one might 
speculate that the problems would be isolated to the single coefficient. unfortunately, 
this situation is not the case. For a single bad variable—assume that it is the first—the 
matrix �uu is of the form

�uu = Dsu
2 0 g 0

0 0 g 0
f

0 0 g 0

T .

it can be shown that for this special case,

 plim b1 =
b1

1 + su
2q*11

, (8-32a)
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[note the similarity of this result to (8-30)], and, for k ≠ 1,

 plim bk = bk - b1J su
2q*k1

1 + su
2q*11 R , (8-32b)

where q*k1 is the (k,1)th element in (Q*)-1.23 this result depends on several unknowns 
and cannot be estimated. the coefficient on the badly measured variable is still biased 
toward zero. the other coefficients are all biased as well, although in unknown directions. 
a badly measured variable contaminates all the least squares estimates.24 if more than 
one variable is measured with error, there is very little that can be said.25 although 
expressions can be derived for the biases in a few of these cases, they generally depend 
on numerous parameters whose signs and magnitudes are unknown and, presumably, 
unknowable.

8.8.2  INSTRUMENTAL VARIABLES ESTIMATION

an alternative set of results for estimation in this model (and numerous others) is built 
around the method of instrumental variables. Consider once again the errors in variables 
model in (8-26) and (8-27a,b). the parameters, b, se

2, q*, and su
2 are not identified in 

terms of the moments of x and y. suppose, however, that there exists a variable z such 
that z is correlated with x* but not with u. For example, in surveys of families, income 
is notoriously badly reported, partly deliberately and partly because respondents often 
neglect some minor sources. suppose, however, that one could determine the total 
amount of checks written by the head(s) of the household. it is quite likely that this z 
would be highly correlated with income, but perhaps not significantly correlated with 
the errors of measurement. if Cov[x*, z] is not zero, then the parameters of the model 
become estimable, as

 plim 
(1/n)a iyizi

(1/n)a ixizi
=

b Cov[x*, z]

Cov[x*, z]
= b. (8-33)

the special case when the instrumental variable is binary produces a useful result. if zi is 
a dummy variable such that x�z = 1 - x�z = 0 is not zero—that is, the instrument is relevant 
(see section 8.2), then the estimator in (8-33) is

bn =
y�z = 1 - y�z = 0

x�z = 1 - x�z = 0
.

a proof of the result is given in Example 8.2.26 this is called the Wald (1940) estimator.
For the general case, y = X*B + E, X = X* + U, suppose that there exists a matrix 

of variables Z that is not correlated with the disturbances or the measurement error, 

23use (a-66) to invert [Q* + �uu] = [Q* + (sue1)(sue1)′], where e1 is the first column of a K * K identity matrix. 
the remaining results are then straightforward.
24this point is important to remember when the presence of measurement error is suspected.
25some firm analytic results have been obtained by levi (1973), theil (1961), Klepper and leamer (1983), garber 
and Klepper (1980), griliches (1986), and Cragg (1997).
26the proof in Example 8.2 is given for a dependent variable that is also binary. However, the proof is generic, and 
extends without modification to this case.
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but is correlated with regressors, X. then the instrumental variables estimator, based 
on Z, biV = (Z′X)-1Z′y, is consistent and asymptotically normally distributed with 
asymptotic covariance matrix that is estimated with

 Est.asy.Var[biV] = sn 2[Z′X]-1[Z′Z][X′Z]-1. (8-34)

For more general cases, theorem 8.1 and the results in section 8.3 apply.

8.8.3  PROXY VARIABLES

in some situations, a variable in a model simply has no observable counterpart. 
Education, intelligence, ability, and like factors are perhaps the most common examples. 
in this instance, unless there is some observable indicator for the variable, the model 
will have to be treated in the framework of missing variables. usually, however, such an 
indicator can be obtained; for the factors just given, years of schooling and test scores 
of various sorts are familiar examples. the usual treatment of such variables is in the 
measurement error framework. if, for example,

income = b1 + b2 education + e,

and

years of schooling = education + u,

then the model of section 8.8.1 applies. the only difference here is that the true variable 
in the model is “latent.” no amount of improvement in reporting or measurement would 
bring the proxy closer to the variable for which it is proxying.

the preceding is a pessimistic assessment, perhaps more so than necessary. Consider 
a structural model,

Earnings = b1 + b2 Experience + b3 Industry + b4 Ability + e.

Ability is unobserved, but suppose that an indicator, say, IQ, is. if we suppose that IQ is 
related to Ability through a relationship such as

IQ = a1 + a2 Ability + v,

then we may solve the second equation for Ability and insert it in the first to obtain the 
reduced form equation,

Earnings = (b1 - b4a1/a2) + b2 Experience + b3 Industry + (b4/a2)IQ + (e - vb4/a2).

this equation is intrinsically linear and can be estimated by least squares. We do not 
have consistent estimators of b1 and b4, but we do have them for the coefficients 
of interest, b2 and b3. this would appear to solve the problem. We should note the 
essential ingredients; we require that the indicator, IQ, not be related to the other 
variables in the model, and we also require that v not be correlated with any of 
the variables. (a perhaps obvious additional requirement is that the proxy not 
provide information in the regression that would not be provided by the missing 
variable if it were observed. in the context of the example, this would require that 
E [Earnings � Experience,  Industry,  Ability,  IQ] = E [Earnings � Experience,  Industry,
Ability].) in this instance, some of the parameters of the structural model are identified 
in terms of observable data. note, though, that IQ is not a proxy variable; it is an 

M08_GREE1366_08_SE_C08.indd   285 2/24/17   12:46 PM



286 PART I  ✦   The Linear Regression Model

indicator of the latent variable, Ability. this form of modeling has figured prominently 
in the education and educational psychology literature. Consider in the preceding small 
model how one might proceed with not just a single indicator, but say with a battery of 
test scores, all of which are indicators of the same latent ability variable.

it is to be emphasized that a proxy variable is not an instrument (or the reverse). 
thus, in the instrumental variables framework, it is implied that we do not regress y on 
Z to obtain the estimates. to take an extreme example, suppose that the full model was

 y = X*B + E,

 X = X* + U,

 Z = X* + W.

that is, we happen to have two badly measured estimates of X*. the parameters of this 
model can be estimated without difficulty if W is uncorrelated with U and X*, but not 
by regressing y on Z. the instrumental variables technique is called for.

When the model contains a variable such as education or ability, the question that 
naturally arises is, if interest centers on the other coefficients in the model, why not just 
discard the problem variable?27 this method produces the familiar problem of an omitted 
variable, compounded by the least squares estimator in the full model being inconsistent 
anyway. Which estimator is worse? mcCallum (1972) and Wickens (1972) show that the 
asymptotic bias (actually, degree of inconsistency) is worse if the proxy is omitted, even 
if it is a bad one (has a high proportion of measurement error). this proposition neglects, 
however, the precision of the estimates. aigner (1974) analyzed this aspect of the 
problem and found, as might be expected, that it could go either way. He concluded, 
however, that “there is evidence to broadly support use of the proxy.”

Example 8.12  Income and Education in a Study of Twins
The traditional model used in labor economics to study the effect of education on income is 
an equation of the form

yi = b1 + b2 agei + b3 agei
2 + b4 educationi + xi

=B5 + ei,

where yi is typically a wage or yearly income (perhaps in log form) and xi contains other 
variables, such as an indicator for sex, region of the country, and industry. The literature 
contains discussion of many possible problems in estimation of such an equation by least 
squares using measured data. Two of them are of interest here:

1. Although “education” is the variable that appears in the equation, the data available to 
researchers usually include only “years of schooling.” This variable is a proxy for education, 
so an equation fit in this form will be tainted by this problem of measurement error. 
Perhaps surprisingly so, researchers also find that reported data on years of schooling 
are themselves subject to error, so there is a second source of measurement error. For the 
present, we will not consider the first (much more difficult) problem.

2. Other variables, such as “ability”—we denote these mi—will also affect income and are 
surely correlated with education. If the earnings equation is estimated in the form shown 
above, then the estimates will be further biased by the absence of this “omitted variable.” 
For reasons we will explore in Chapter 19, this bias has been called the selectivity effect 
in recent studies.

27this discussion applies to the measurement error and latent variable problems equally.
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Simple cross-section studies will be considerably hampered by these problems. But, in a 
study of twins, Ashenfelter and Krueger (1994) analyzed a data set that allowed them, with a 
few simple assumptions, to ameliorate these problems.28

Annual “twins festivals” are held at many places in the United States. The largest is held 
in Twinsburg, Ohio. The authors interviewed about 500 individuals over the age of 18 at the 
August 1991 festival. Using pairs of twins as their observations enabled them to modify their 
model as follows: Let (yij, Aij) denote the earnings and age for twin j, j = 1, 2, for pair i. For 
the education variable, only self-reported “schooling” data, Sij, are available. The authors 
approached the measurement problem in the schooling variable, Sij, by asking each twin 
how much schooling he or she had and how much schooling his or her sibling had. Denote 
reported schooling by sibling m of sibling j by Sij (m). So, the self-reported years of schooling 
of twin 1 is Si1 (1). When asked how much schooling twin 1 has, twin 2 reports Si1 (2). The 
measurement error model for the schooling variable is

Sij (m) = Sij + uij (m), j, m = 1, 2, where Sij = “true’ schooling for twin j of pair i.

We assume that the two sources of measurement error, uij (m), are uncorrelated and they 
and Sij have zero means. Now, consider a simple bivariate model such as the one in (8-26),

yij = bSij + eij.

As we saw earlier, a least squares estimate of b using the reported data will be attenuated,

plim b =
b * Var[Sij]

Var[Sij] + Var[uij( j )]
= bq.

(Because there is no natural distinction between twin 1 and twin 2, the assumption that the 
variances of the two measurement errors are equal is innocuous.) The factor q is sometimes 
called the reliability ratio. In this simple model, if the reliability ratio were known, then b could 
be consistently estimated. In fact, the construction of this model allows just that. Because 
the two measurement errors are uncorrelated,

 Corr[Si1 (1), Si1 (2)] = Corr[Si2 (1), Si2 (2)]

 =
Var[Si1]

{{Var[Si1] + Var[ui1(1)]} * {Var[Si1] + Var[ui1(2)]}}1/2 = q.

In words, the correlation between the two reported education attainments measures the 
reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of identical twins 
and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick assessment of the 
extent of measurement error in their schooling data.

The earnings equation is a multiple regression, so this result is useful for an overall 
assessment of the problem, but the numerical values are not sufficient to undo the overall 
biases in the least squares regression coefficients. An instrumental variables estimator was 
used for that purpose. The estimating equation for yij = ln Wageij with the least squares (OLS) 
and instrumental variable (IV) estimates is as follows:

yij = b1 + b2 agei + b3 agei
2 + b4 Sij( j ) + b5 Sim(m) + b6 sexi + b7 racei + eij

LS (0.088) (-0.087) (0.084) (0.204) (-0.410)
IV (0.088) (-0.087) (0.116) (-0.037) (0.206) (-0.428).

28other studies of twins and siblings include bound, Chorkas, Haskel, Hawkes, and spector (2003). ashenfelter 
and rouse (1998), ashenfelter and Zimmerman (1997), behrman and rosengweig (1999), isacsson (1999), miller, 
mulvey, and martin (1995), rouse (1999), and taubman (1976).
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In the equation, Sij ( j)  is the person’s report of his or her own years of schooling and Sim (m) is 
the sibling’s report of the sibling’s own years of schooling. The problem variable is schooling. 
To obtain a consistent estimator, the method of instrumental variables was used, using each 
sibling’s report of the other sibling’s years of schooling as a pair of instrumental variables. 
The estimates reported by the authors are shown below the equation. (The constant term 
was not reported, and for reasons not given, the second schooling variable was not included 
in the equation when estimated by LS.) This preliminary set of results is presented to give 
a comparison to other results in the literature. The age, schooling, and gender effects 
are comparable with other received results, whereas the effect of race is vastly different, 
-  40%, here compared with a typical value of +  9% in other studies. The effect of using the 
instrumental variable estimator on the estimates of b4 is of particular interest. Recall that the 
reliability ratio was estimated at about 0.9, which suggests that the IV estimate would be 
roughly 11% higher (1/0.9). Because this result is a multiple regression, that estimate is only 
a crude guide. The estimated effect shown above is closer to 38%.

The authors also used a different estimation approach. Recall the issue of selection bias 
caused by unmeasured effects. The authors reformulated their model as

yij = b1 + b2 agei + b3 agei
2 + b4 Sij( j) + b6 sexi + b7 racei + mi + eij.

Unmeasured latent effects, such as “ability,” are contained in mi. Because mi is not observable 
but is, it is assumed, correlated with other variables in the equation, the least squares 
regression of yij on the other variables produces a biased set of coefficient estimates.29 The 
difference between the two earnings equations is

yi1 - yi2 = b4[Si1(1) - Si2(2)] + ei1 - ei2.

This equation removes the latent effect but, it turns out, worsens the measurement error 
problem. As before, b4 can be estimated by instrumental variables. There are two instrumental 
variables available, Si2(1) and Si1(2). (It is not clear in the paper whether the authors used the 
two separately or the difference of the two.) The least squares estimate is 0.092, which is 
comparable to the earlier estimate. The instrumental variable estimate is 0.167, which is nearly 
82% higher. The two reported standard errors are 0.024 and 0.043, respectively. With these 
figures, it is possible to carry out Hausman’s test,

H =
(0.167 - 0.092)2

0.0432 - 0.0242 = 4.418.

The 95% critical value from the chi-squared distribution with one degree of freedom is 3.84, 
so the hypothesis that the LS estimator is consistent would be rejected. The square root of 
H, 2.102, would be treated as a value from the standard normal distribution, from which the 
critical value would be 1.96. The authors reported a t statistic for this regression of 1.97.

8.9 NONLINEAR INSTRUMENTAL VARIABLES ESTIMATION

in section 8.2, we extended the linear regression model to allow for the possibility that 
the regressors might be correlated with the disturbances. the same problem can arise in 
nonlinear models. the consumption function estimated in Example 7.4 is almost surely 

29this is a “fixed effects model”—see section 11.4. the assumption that the latent effect, ability, is common 
between the twins and fully accounted for is a controversial assumption that ability is accounted for by nature 
rather than nurture. a search of the internet on the subject of the “nature versus nurture debate” will turn up 
millions of citations. We will not visit the subject here.
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a case in point. in this section, we will extend the method of instrumental variables to 
nonlinear regression models.

in the nonlinear model,

yi = h(xi, B) + ei,

the covariates xi may be correlated with the disturbances. We would expect this effect 
to be transmitted to the pseudoregressors, xi

0 = 0h(xi, B)/0B. if so, then the results that 
we derived for the linearized regression would no longer hold. suppose that there is a 
set of variables [z1, c, zL] such that

 plim(1/n)Z′E = 0 (8-35)

and

plim(1/n)Z′X0 = Qzx
0 ≠ 0,

where X0 is the matrix of pseudoregressors in the linearized regression, evaluated at the 
true parameter values. if the analysis that we used for the linear model in section 8.3 can be 
applied to this set of variables, then we will be able to construct a consistent estimator for 
B using the instrumental variables. as a first step, we will attempt to replicate the approach 
that we used for the linear model. the linearized regression model is given in (7-30),

y = h(X, B) + E ≈ h0 + X0(B - B0) + E,

or

y0 ≈ X0B + E,

where

y0 = y - h0 + X0B0.

For the moment, we neglect the approximation error in linearizing the model. in (8-35), 
we have assumed that

 plim(1/n)Z′y0 = plim(1/n)Z′X0B. (8-36)

suppose, as we assumed before, that there are the same number of instrumental variables 
as there are parameters, that is, columns in X0. (Note: this number need not be the 
number of variables.) then the “estimator” used before is suggested,

 biV = (Z′X0)-1Z′y0. (8-37)

the logic is sound, but there is a problem with this estimator. the unknown parameter 
vector B appears on both sides of (8-36). We might consider the approach we used for 
our first solution to the nonlinear regression model, that is, with some initial estimator 
in hand, iterate back and forth between the instrumental variables regression and 
recomputing the pseudoregressors until the process converges to the fixed point that 
we seek. once again, the logic is sound, and in principle, this method does produce the 
estimator we seek.

if we add to our preceding assumptions

12n
 Z′E ¡d

N[0, S2Qzz],
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then we will be able to use the same form of the asymptotic distribution for this estimator 
that we did for the linear case. before doing so, we must fill in some gaps in the preceding. 
First, despite its intuitive appeal, the suggested procedure for finding the estimator is 
very unlikely to be a good algorithm for locating the estimates. second, we do not wish to 
limit ourselves to the case in which we have the same number of instrumental variables 
as parameters. so, we will consider the problem in general terms. the estimation criterion 
for nonlinear instrumental variables is a quadratic form,

 
minB S(B) = 1

2 {[y - h(X, B)]′Z}(Z′Z)-1{Z′[y - h(X, B)]}
= 1

2 E(B)′Z(Z′Z)-1Z′E(B).30  (8-38)

the first-order conditions for minimization of this weighted sum of squares are

 
0S(B)

0B
= -X0′Z(Z′Z)-1Z′E(B) = 0. (8-39)

this result is the same one we had for the linear model with X0 in the role of X. this 
problem, however, is highly nonlinear in most cases, and the repeated least squares 
approach is unlikely to be effective. but it is a straightforward minimization problem 
in the frameworks of appendix E, and instead, we can just treat estimation here as a 
problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator more 
or less strategically. However, there is a more structured approach. the orthogonality 
condition,

plim(1/n)Z′E = 0,

defines a gmm estimator. With the homoscedasticity and nonautocorrelation 
assumption, the resultant minimum distance estimator produces precisely the criterion 
function suggested above. We will revisit this estimator in this context in Chapter 13.

With well-behaved pseudoregressors and instrumental variables, we have the general 
result for the nonlinear instrumental variables estimator; this result is discussed at length 
in davidson and macKinnon (2004).

THEOREM 8.2  Asymptotic Distribution of the Nonlinear Instrumental 
 Variables Estimator

With well-behaved instrumental variables and pseudoregressors,

biV ∼
a

N[B, (S2/n)(Qxz
0 (Qzz)

-1Qzx
0 )-1].

We estimate the asymptotic covariance matrix with

Est.asy.Var[biV] = sn 2[Xn 0′Z(Z′Z)-1Z′Xn 0]-1,

where Xn 0 is X0 computed using biV.

30Perhaps the more natural point to begin the minimization would be S0(B) = [E(B)′Z][Z′E(B)]. We have 
bypassed this step because the criterion in (8-38) and the estimator in (8-39) will turn out (following and in 
Chapter 13) to be a simple yet more efficient gmm estimator.
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as a final observation, note that the 2sls interpretation of the instrumental variables 
estimator for the linear model still applies here, with respect to the iV estimator. that is, 
at the final estimates, the first-order conditions (normal equations) imply that

X0′Z(Z′Z)-1Z′y = X0′Z(Z′Z)-1Z′X0B,

which says that the estimates satisfy the normal equations for a linear regression 
of y (not y0) on the predictions obtained by regressing the columns of X0 on Z. the 
interpretation is not quite the same here, because to compute the predictions of X0, we 
must have the estimate of B in hand. thus, this two-stage least squares approach does 
not show how to compute biV; it shows a characteristic of biV.

Example 8.13  Instrumental Variables Estimates of the Consumption Function
The consumption function in Example 7.4 was estimated by nonlinear least squares without 
accounting for the nature of the data that would certainly induce correlation between X0 and E.  
As done earlier, we will reestimate this model using the technique of instrumental variables. 
For this application, we will use the one-period lagged value of consumption and one- and 
two-period lagged values of income as instrumental variables. Table 8.6 reports the nonlinear 
least squares and instrumental variables estimates. Because we are using two periods of 
lagged values, two observations are lost. Thus, the least squares estimates are not the same 
as those reported earlier.

The instrumental variable estimates differ considerably from the least squares estimates. 
The differences can be deceiving, however. Recall that the MPC in the model is bgYg - 1. The 
2000.4 value for DPI that we examined earlier was 6634.9. At this value, the instrumental 
variables and least squares estimates of the MPC are 1.1543 with an estimated standard error 
of 0.01234 and 1.08406 with an estimated standard error of 0.008694, respectively. These 
values do differ a bit, but less than the quite large differences in the parameters might have 
led one to expect. We do note that the IV estimate is considerably greater than the estimate 
in the linear model, 0.9217 (and greater than one, which seems a bit implausible).

8.10 NATURAL EXPERIMENTS AND THE SEARCH FOR CAUSAL EFFECTS

Econometrics and statistics have historically been taught, understood, and operated 
under the credo that “correlation is not causation.” but, much of the still-growing field 
of microeconometrics and some of what we have done in this chapter have been 
advanced as “causal modeling.”31 in the contemporary literature on treatment effects 

31see, for example, Chapter 2 of Cameron and trivedi (2005), which is entitled “Causal and noncausal models” and, 
especially, angrist, imbens, and rubin (1996), angrist and Krueger (2001), and angrist and Pischke (2009, 2010).

Instrumental Variables Least Squares

Parameter Estimate Standard Error Estimate Standard Error

a 627.031 26.6063 468.215 22.788
b 0.040291 0.006050 0.0971598 0.01064
g 1.34738 0.016816 1.24892 0.1220
s 57.1681 – 49.87998 –
e′e 650,369.805 – 495,114.490 –

TABLE 8.6 Nonlinear Least Squares and Instrumental Variable Estimates
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and program evaluation, the point of the econometric exercise really is to establish more 
than mere statistical association—in short, the answer to the question “does the program 
work?” requests an econometric response more committed than “the data seem to be 
consistent with that hypothesis.” a cautious approach to econometric modeling has 
nonetheless continued to base its view of “causality” essentially on statistical grounds.32

an example of the sort of causal model considered here is an equation such as 
Krueger and dale’s (1999) model for earnings attainment and elite college attendance,

ln Earnings = x′B + dT + e,

in which d is the “causal effect” of attendance at an elite college. in this model, T cannot 
vary autonomously, outside the model. Variation in T is determined partly by the same 
hidden influences that determine lifetime earnings. though a causal effect can be 
attributed to T, measurement of that effect, d, cannot be done with multiple linear 
regression. the technique of linear instrumental variables estimation has evolved as a 
mechanism for disentangling causal influences. as does least squares regression, the 
method of instrumental variables must be defended against the possibility that the 
underlying statistical relationships uncovered could be due to “something else.” but, when 
the instrument is the outcome of a “natural experiment,” true exogeneity can be claimed. 
it is this purity of the result that has fueled the enthusiasm of the most strident advocates 
of this style of investigation. the power of the method lends an inevitability and stability 
to the findings. this has produced a willingness of contemporary researchers to step 
beyond their cautious roots.33 Example 8.14 describes a controversial contribution to this 
literature. on the basis of a natural experiment, the authors identify a  cause- and-effect 
relationship that would have been viewed as beyond the reach of regression modeling 
under earlier paradigms.34

Example 8.14  Does Television Watching Cause Autism?
The following is the abstract of economists Waldman, Nicholson, and Adilov’s (2008) study 
of autism.35

An extensive literature in medicine investigates the health consequences of early childhood 
television watching. However, this literature does not address the issue of reverse 
causation, i.e., does early childhood television watching cause specific health outcomes 
or do children more likely to have these health outcomes watch more television? This 
paper uses a natural experiment to investigate the health consequences of early childhood 
television watching and so is not subject to questions concerning reverse causation. 
Specifically, we use repeated cross-sectional data from 1972 through 1992 on county-
level mental retardation rates, county-level autism rates, and county-level children’s cable-
television subscription rates to investigate how early childhood television watching affects 
the prevalence of mental retardation and autism. We find a strong negative correlation 

32see, among many recent commentaries on this line of inquiry, Heckman and Vytlacil (2007).
33see, e.g., angrist and Pischke (2009, 2010). in reply, Keane (2010, p. 48) opines “What has always bothered me about 
the ‘experimentalist’ school is the false sense of certainty it conveys. the basic idea is that if we have a ‘really good 
instrument,’ we can come up with ‘convincing’ estimates of ‘causal effects’ that are not ‘too sensitive to assumptions.”
34see the symposium in the spring 2010 Journal of Economic Perspectives, angrist and Pischke (2010), leamer 
(2010), sims (2010), Keane (2010), stock (2010), and nevo and Whinston (2010).
35Extracts from Waldman, m., nicholson, s. and adilov, n., “Positive and negative mental Health Consequences 
of Early Childhood television Watching,” Working Paper w17786, national bureau of Economic research, 
Cambridge, 2012.
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between average county-level cable subscription rates when a birth cohort is below three 
and subsequent mental retardation diagnosis rates, but a strong positive correlation 
between the same cable subscription rates and subsequent autism diagnosis rates. Our 
results thus suggest that early childhood television watching has important positive and 
negative health consequences.

The authors continue (at page 19),

“We next examine the role of precipitation on autism diagnoses. One possibility 
concerning the autism results in Table 5 is that the positive coefficients on the main cable 
variable may not be due to early childhood television watching being a trigger for autism 
but rather to some other factor positively associated with precipitation being a trigger. 
That is, Waldman et al. (2008)36 find a positive correlation between the precipitation a 
cohort experiences prior to age three and the cohort’s subsequent autism diagnosis rate, 
where the interpretation put forth in that paper is that there is an environmental trigger 
for autism positively correlated with precipitation that drives up the autism diagnosis rate 
when precipitation prior to age three is high. Possibilities include any potential trigger 
positively associated with indoor activity such as early childhood television watching, 
which is the focus here, vitamin D deficiency which could be more common when 
children are indoors more and not exposed to the sun, and any indoor chemical where 
exposure will be higher when the child spends more time indoors. So one possibility 
concerning the results in Table 5 is that cable and precipitation are positively correlated 
and early childhood television watching is not a trigger for autism. In this scenario the 
positive and statistically significant cable coefficients found in the table would not be 
due to the positive correlation between cable and early childhood television watching, 
but rather to one of these other factors being the trigger and the positive coefficients 
arise because cable, through a correlation with precipitation, is also correlated with this 
unknown ‘other’ trigger.”

They conclude (on p 30): “We believe our results are sufficiently suggestive of early 
childhood television watching decreasing mental retardation and increasing autism that 
clinical studies focused on the health effects of early childhood television watching are 
warranted. Only a clinical study can show definitively the health effects of early childhood 
television watching.”

the authors add (at page 3), “although consistent with the hypothesis that early 
childhood television watching is an important trigger for autism, our first main finding 
is also consistent with another possibility. specifically, because precipitation is likely 
correlated with young children spending more time indoors generally, not just young 
children watching more television, our first main finding could be due to any indoor 
toxin. Therefore, we also employ a second instrumental variable or natural experiment, 
that is correlated with early childhood television watching but unlikely to be substantially 
correlated with time spent indoors.” (Emphasis added.) they conclude (on pp. 39–40): 
“using the results found in table 3’s pooled cross-sectional analysis of California, 
oregon, and Washington’s county-level autism rates, we find that if early childhood 
television watching is the sole trigger driving the positive correlation between autism and 
precipitation then thirty-eight percent of autism diagnoses are due to the incremental 
television watching due to precipitation.”

36Waldman, m., s. nicholson, n. adilov, and J. Williams, “autism Prevalence and Precipitation rates in California, 
oregon, and Washington Counties,” Archives of Pediatrics & Adolescent Medicine, 162, 2008, pp. 1026–1034.
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Waldman, nicholson, and adilov’s (2008)37 study provoked an intense and widespread 
response among academics, autism researchers, and the public. Whitehouse (2007), writing 
in the Wall Street Journal (http://www.wsj.com/articles/sb117131554110006323), surveyed 
some of the discussion, which touches upon the methodological implications of the search 
for “causal effects” in econometric research. the author lamented that the power of 
techniques involving instrumental variables and natural experiments to uncover causal 
relationships had emboldened economists to venture into areas far from their traditional 
expertise, such as the causes of autism [Waldman et al. (2008)].38

Example 8.15  Is Season of Birth a Valid Instrument?
Buckles and Hungerman (BH, 2008) list more than 20 studies of long-term economic 
outcomes that use season of birth as an instrumental variable, beginning with one of the 
earliest and best-known papers in the “natural experiments” literature, Angrist and Krueger 
(1991). The assertion of the validity of season of birth as a proper instrument is that family 
background is unrelated to season of birth, but it is demonstrably related to long-term 
outcomes such as income and education. The assertion justifies using dummy variables for 
season of birth as instrumental variables in outcome equations. If, on the other hand, season 
of birth is correlated with family background, then it will “fail the exclusion restriction in most 
IV settings where it has been used” (BH, page 2). According to the authors, the randomness 
of quarter of birth over the population39 has been taken as a given, without scientific 
investigation of the claim. Using data from live birth certificates and census data, BH found 
a numerically modest, but statistically significant relationship between birth dates and family 
background. They found “women giving birth in the winter look different from other women; 
they are younger, less educated, and less likely to be married . . . . The fraction of children 
born to women without a high school degree is about 10% higher (2 percentage points) in 
January than in May . . . We also document a 10% decline in the fraction of children born to 
teenagers from January to May.” Precisely why there should be such a relationship remains 
uncertain. Researchers differ (of course) on the numerical implications of BH’s finding.40 But, 
the methodological implication of their finding is consistent with the observation in 
Whitehouse’s article, that bad instruments can produce misleading results.

8.11 SUMMARY AND CONCLUSIONS

the instrumental variable (iV) estimator, in various forms, is among the most fundamental 
tools in econometrics. broadly interpreted, it encompasses most of the estimation 
methods that we will examine in this book. this chapter has developed the basic results 
for iV estimation of linear models. the essential departure point is the exogeneity and 
relevance assumptions that define an instrumental variable. We then analyzed linear 
iV estimation in the form of the two-stage least squares estimator. With only a few 
special exceptions related to simultaneous equations models with two variables, almost 
no finite-sample properties have been established for the iV estimator. (We temper that, 

37Published as nbEr working paper 12632 in 2006.
38Whitehouse criticizes the use of proxy variables, e.g., Waltman’s use of rainfall patterns for tV viewing. as we 
have examined in this chapter, an instrumental variable is not a proxy and this mischaracterizes the technique. 
it remains true, as emphasized by some prominent researchers quoted in the article, that a bad instrument can 
produce misleading results.
39see, for example, Kleibergen (2002).
40see lahart (2009).
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however, with the results in section 8.7 on weak instruments, where we saw evidence 
that whatever the finite-sample properties of the iV estimator might be, under some 
well-discernible circumstances, these properties are not attractive.) We then examined 
the asymptotic properties of the iV estimator for linear and nonlinear regression models. 
Finally, some cautionary notes about using iV estimators when the instruments are only 
weakly relevant in the model are examined in section 8.7.

Key Terms and Concepts

•	attenuationasymptotic 
covariance matrix

•	asymptotic distribution
•	attenuation bias
•	attrition bias
•	attrition
•	Consistent estimator
•	Effect of the treatment 

on the treated
•	Endogenous treatment effect
•	Endogenous
•	Exogenous
•	identification
•	indicator
•	instrumental variable 

estimator

•	instrumental variables (iV)
•	limiting distribution
•	minimum distance estimator
•	moment equations
•	natural experiment
•	nonrandom sampling
•	omitted parameter 

heterogeneity
•	omitted variable bias
•	omitted variables
•	orthogonality conditions
•	overidentification
•	Panel data
•	Proxy variable
•	random effects
•	reduced form equation

•	relevance
•	reliability ratio
•	sample selection bias
•	selectivity effect
•	simultaneous equations bias
•	simultaneous equations
•	smearing
•	structural equation system
•	structural model
•	structural specification
•	survivorship bias
•	truncation bias
•	two-stage least squares 

(2sls)
•	Variable addition test
•	Weak instruments

Exercises

1. in the discussion of the instrumental variable estimator, we showed that the least 
squares estimator, bls, is biased and inconsistent. nonetheless, bls does estimate 
something—plim b = U = B + Q-1G. derive the asymptotic covariance matrix of 
bls and show that bls is asymptotically normally distributed.

2. For the measurement error model in (8-26) and (8-27), prove that when only x 
is measured with error, the squared correlation between y and x is less than that 
between y* and x*. (note the assumption that y* = y.) does the same hold true if 
y* is also measured with error?

3. derive the results in (8-32a) and (8-32b) for the measurement error model. note 
the hint in Footnote 4 in section 8.5.1 that suggests you use result (a-66) when you 
need to invert

[Q* + �uu] = [Q* + (sue1)(sue1)′].

4. at the end of section 8.7, it is suggested that the ols estimator could have a smaller 
mean squared error than the 2sls estimator. using (8-4), the results of Exercise 1, 
and theorem 8.1, show that the result will be true if

QXX - QXZQZZ
-1 QZX W

1

(s2/n) + g′QXX
-1 G

 GG′.
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How can you verify that this is at least possible? the right-hand side is a rank one, 
nonnegative definite matrix. What can be said about the left-hand side?

5. Consider the linear model, yi = a + bxi + ei, in which Cov[xi, ei] = g ≠ 0. let 
z be an exogenous, relevant instrumental variable for this model. assume, as well, 
that z is binary—it takes only values 1 and 0. show the algebraic forms of the ls 
estimator and the iV estimator for both a and b.

6. this is easy to show. in the expression for Xn , if the kth column in X is one of 
the columns in Z, say the lth, then the kth column in (Z′Z)-1Z′X will be the lth 
column of an L * L identity matrix. this result means that the kth column in 
Xn = Z(Z′Z)-1Z′X will be the lth column in Z, which is the kth column in X.

7. Prove that the control function approach in (8-16) produces the same estimates as 
2sls.

8. Prove that in the control function estimator in (8-16), you can use the predictions, 
z′p, instead of the residuals to obtain the same results apart from the sign on the 
control function itself, which will be reversed.

Applications

1. in Example 8.5, we have suggested a model of a labor market. From the “reduced 
form” equation given first, you can see the full set of variables that appears in 
the model—that is the “endogenous variables,” ln Wageit, and Wksit, and all other 
exogenous variables. the labor supply equation suggested next contains these 
two variables and three of the exogenous variables. From these facts, you can 
deduce what variables would appear in a labor “demand” equation for ln Wageit. 
assume (for purpose of our example) that ln Wageit is determined by Wksit and 
the remaining appropriate exogenous variables. (We should emphasize that this 
exercise is purely to illustrate the computations—the structure here would not 
provide a theoretically sound model for labor market equilibrium.)
a. What is the labor demand equation implied?
b. Estimate the parameters of this equation by ols and by 2sls and compare the 

results. (ignore the panel nature of the data set. Just pool the data.)
c. are the instruments used in this equation relevant? How do you know?
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