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Systems of Regression Equations

§
10.1	 INTRODUCTION

There are many settings in which the single-equation models of the previous chapters 
apply to a group of related variables. In these contexts, we will want to consider the 
several models jointly. Here are example:

1.	 Set of Regression Equations. Munnell’s (1990) model for output by the 48 contiguous 
states in the U.S., m, at time t is

 ln GSPmt = b1m + b2m ln pcmt + b3m ln hwymt + b4m ln watermt + b5m ln utilmt

 + b6m ln empmt + b7m unempmt + emt,

where the variables are labor and public capital. Taken one state at a time, this 
provides a set of 48 linear regression models. The application develops a model 
in which the observations are correlated across time (t,s) within a state. It would 
be natural as well for observations at a point in time to be correlated across states 
(m,n), at least for some states. An important question is whether it is valid to assume 
that the coefficient vector is the same for all states in the sample.

2.	 Identical Regressors. The capital asset pricing model of finance specifies that, for 
a given security,

rit - rft = ai + bi(rmt - rft) + eit,

where rit is the return over period t on security i, rft is the return on a risk-free security, 
rmt is the market return, and bi is the security’s beta coefficient. The disturbances 
are obviously correlated across securities. The knowledge that the return on security 
i exceeds the risk-free rate by a given amount provides some information about 
the excess return of security j, at least for some j’s. It may be useful to estimate the 
equations jointly rather than ignore this connection. The fact that the right-hand 
side, [constant, rmt - rft], is the same for all i makes this model an interesting special 
case of the more general set of regressions.

3.	 Dynamic Linear Equations. Pesaran and Smith (1995) proposed a dynamic model 
for wage determination in 38 UK industries. The central equation is of the form

ymt = am + xmt
= Bm + gmym,t - 1 + emt.

Nair-Reichert and Weinhold’s (2001) cross-country analysis of growth in developing 
countries takes the same form. In both cases, each group (industry, country) 
could be analyzed separately. However, the connections across groups and the 
interesting question of “poolability”—that is, whether it is valid to assume identical 
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coefficients—is a central part of the analysis. The lagged dependent variable in the 
model produces a substantial complication.

4.	 System of Demand Equations. In a model of production, the optimization conditions 
of economic theory imply that, if a firm faces a set of factor prices p, then its set of 
cost-minimizing factor demands for producing output Q will be a set of M equations 
of the form xm = fm(Q, p). The empirical model is

x1 = f1(Q, p �U) + e1,
x2 = f2(Q, p �U) + e2,

g
xM = fM(Q, p �U) + eM,

where U is a vector of parameters that are part of the technology and em represents 
errors in optimization. Once again, the disturbances should be correlated. In 
addition, the same parameters of the production technology will enter all the 
demand equations, so the set of equations has cross-equation restrictions. Estimating 
the equations separately will waste the information that the same set of parameters 
appears in all the equations.

5.	 Vector Autoregression. A useful formulation that appears in many macroeconomics 
applications is the vector autoregression, or VAR. In Chapter 13, we will examine a 
model of Swedish municipal government fiscal activities in the form

 Sm,t = a1 + g11Sm,t - 1 + g12Rm,t - 1 + g13Gm,t - 1 + eS,m,t,

 Rm,t = a2 + g21Sm,t - 1 + g22Rm,t - 1 + g23Gm,t - 1 + eR,m,t,

 Gm,t = a3 + g31Sm,t - 1 + g32Rm,t - 1 + g33Gm,t - 1 + eG,m,t,

where S, R, and G are spending, tax revenues, and grants, respectively, for 
municipalities m in period t. VARs without restrictions are similar to Example 2 
above. The dynamic equations can be used to trace the influences of shocks in a 
system as they exert their influence through time.

6.	 Linear panel data model. In Chapter 11, we will examine models for panel data
– t = 1, c, T repeated observations on individuals m, of the form

ymt = xmt
 =B + emt.

In Example 11.1, we consider a wage equation,

ln Wagemt =  b1 + b2 Experiencemt + c + xmt
 =B + emt.

For some purposes, it is useful to consider this model as a set of T regression 
equations, one for each period. Specification of the model focuses on correlations 
of the unobservables in emt across periods and with dynamic behavior of ln Wagemt.

7.	 Simultaneous Equations System. A common form of a model for equilibrium in a 
market would be

 QDemand = a1 + a2 Price + a3 Income + d′A + eDemand,

 QSupply = b1 + b2 Price + b3 FactorPrice + s′B + eSupply,

 QEquilibrium = QDemand = QSupply,
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328	 Part II  ✦   Generalized Regression Model and Equation Systems

where d and s are exogenous variables that influence the equilibrium through their 
impact on the demand and supply curves, respectively. This model differs from 
those suggested thus far because the implication of the third equation is that Price 
is not exogenous in the equation system. The equations of this model fit into the 
endogenous variables framework developed in Chapter 8. The multiple equations 
framework developed in this chapter provides additional results for estimating 
“simultaneous equations models” such as this.

This chapter will develop the essential theory for sets of related regression 
equations. Section 10.2 examines the general model in which each equation has its 
own set of parameters and examines efficient estimation techniques and the special 
case in which the coefficients are the same in all equations. Production and consumer 
demand models are special cases of the general model in which the equations obey 
an adding-up constraint that has implications for specification and estimation. Such 
demand systems are examined in Section 10.3. This section examines an application of 
the seemingly unrelated regressions model that illustrates the interesting features of 
empirical demand studies. The seemingly unrelated regressions model is also extended 
to the translog specification, which forms the platform for many microeconomic studies 
of production and cost. Finally, Section 10.4 combines the results of Chapter 8 on models 
with endogenous variables with the development in this chapter of multiple equation 
systems. In this section, we will develop simultaneous equations models. The supply and 
demand model suggested in Example 6 above, of equilibrium in which price and quantity 
in a market are jointly determined, is an application.

10.2	 THE SEEMINGLY UNRELATED REGRESSIONS MODEL

All the examples suggested in the Introduction have a common structure, which we 
may write as

y1 = X1B1 + E1,
y2 = X2B2 + E2,

c
yM = XMBM + EM.

There are M equations and T observations in the sample.1 The seemingly unrelated 
regressions (SUR) model is

	 ym = XmBm + Em, m = 1, c, M.	 (10-1)

The equations are labeled “seemingly unrelated” because they are linked by the possible 
correlation of the unobserved disturbances, emt and ent.2 By stacking the sets of 
observations, we obtain

1The use of T is not meant to imply any connection to time series. For instance, in the fourth example, above, the 
data might be cross sectional.
2See Zellner (1962) who coined the term.
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	 D y1

y2

f
yM

T = DX1 0 0 0
0 X2 0 0
f f f f
0 0 0 XM

T § B1

B2

f
BM

¥ + § E1

E2

f
EM

¥ = XB + E.	 (10-2)

The MT * 1 vector of disturbances is

E = [E1
= , E2

= , c, EM
= ]′.

We assume strict exogeneity of Xi,

E[E � X1, X2, c, XM] = 0,

and homoscedasticity and nonautocorrelation within each equation,

E[EmEm
= � X1, X2, c, XM] = smmIT.

The strict exogeneity assumption is a bit stronger than necessary for present purposes. 
We could allow more generality by assuming only E[Em � Xm] = 0—that is, allowing the 
disturbances in equation n to be correlated with the regressors in equation m but not 
equation n. But that extension would not arise naturally in an application. A total of T 
observations are to be used in estimating the parameters of the M equations. Each equation 
involves Km regressors, for a total of K = aM

m= 1Km in (10-2). We will require T 7 Km 
(so that, if desired, we could fit each equation separately). The data are assumed to be well 
behaved,as described in Section 4.4.1, so we shall not treat the issue separately here. For the 
present, we also assume that disturbances are not correlated across periods (or individuals) 
but may be correlated across equations (at a point in time or for a given individual). Therefore,

E[emtens � X1, X2, c, XM] = smn, if t = s and 0 if t ≠ s.

The disturbance formulation for the entire model is

 E[EE′ � X1, X2, c, XM] = � = D s11I s12I g s1MI
s21I s22I g s2MI

f
sM1I sM2I g sMMI

T
 = � ⊗ I, �

(10-3)

where

� = D s11 s12 g s1M

s21 s22 g s2M

f
sM1 sM2 g sMM

T
is the M * M covariance matrix of the disturbances for the t  th observation, Et.

The SUR model thus far assumes that each equation obeys the assumptions of the 
linear model of Chapter 2—no heteroscedasticity or autocorrelation (within or across 
equations). Bartels and Fiebig (1992), Bartels and Aigner (1991), Mandy and Martins-
Filho (1993), and Kumbhakar (1996) suggested extensions that involved heteroscedasticity 
within each equation. Autocorrelation of the disturbances of regression models is usually 
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330	 Part II  ✦   Generalized Regression Model and Equation Systems

not the focus of the investigation, though Munnell’s application to aggregate statewide 
data might be a natural application.3 (It might also be a natural candidate for the “spatial 
autoregression” model of Section 11.7.) All of these extensions are left for more advanced 
treatments and specific applications.

10.2.1    ORDINARY LEAST SQUARES AND ROBUST INFERENCE

For purposes of developing effective estimation methods, there are two ways to visualize 
the arrangement of the data. Consider the model in Example 10.2, which examines a 
cost function for electricity generation. The three equations are

 ln(C/Pf) = a1 + a2 ln Q + a3 ln(Pk/Pf) + a4 ln(Pl/Pf) + ec,

 sk = b1 + ek,
 sl = g1 + el,

where C is total cost, Pk, Pl, and Pf  are unit prices for capital, labor, and fuel, Q is 
output, and sk and sl are cost shares for capital and labor. (The fourth equation, for sf, is 
obtained from sk + sl + sf = 1.) There are T = 145 observations for each of the M = 3 
equations. The data may be stacked by equations as in the following,

 C ln(C/Pf)
sk

sl

S = C i ln Q ln(Pk/Pf) ln(Pl/Pf) 0 0
0 0 0 0 i 0
0 0 0 0 0 i

S ¶a1

a2

a3

a4

b1

g1

∂ + C Ec

Ek

El

S ,

 C yc

yk

yl

S = CXc 0 0
0 Xk 0
0 0 Xl

S £Bc

Bk

Bl

≥ + C Ec

Ek

El

S .

	(10-4)

Each block of data in the bracketed matrices contains the T observations for equation m. 
The covariance matrix for the MT * 1 vector of disturbances appears in (10-3). The data 
may instead be stacked by observations by reordering the rows to obtain

	 y = G £ ln(C/Pf)
sk

sl
≥ i = firm 1

c£ ln(C/Pf)
sk

sl
≥ i = firm T

W , E = G £ ec

ek

sl
≥ i = firm 1

c£ ec

ek

el
≥ i = firm T

W  and X likewise.	 (10-5)

3Dynamic SUR models are proposed by Anderson, and Blundell (1982). Other applications are examined in Kiviet, 
Phillips, and Schipp (1995), DesChamps (1998), and Wooldridge (2010, p. 194). The VAR models are an important 
group of applications, but they come from a different analytical framework. Related results may be found in 
Guilkey and Schmidt (1973), Guilkey (1974), Berndt and Savin (1977), Moschino and Moro (1994), McLaren 
(1996), and Holt (1998).

M10_GREE1366_08_SE_C10.indd   330 2/24/17   12:52 PM



	 CHAPTER 10  ✦  Systems of Regression Equations	 331

By this arrangement,

	 E[EE′ � X] = D � 0 c 0
0 � g 0
0 0 f 0
0 0 g �

T = I ⊗ �.	 (10-6)

The arrangement in (10-4) will be more convenient for formulating the applications, 
as in Example 10.4. The format in (10-5) will be more convenient for formulating the 
estimator and examining its properties.

From (10-2), we can see that with no restrictions on B, ordinary least squares 
estimation of B will be equation by equation OLS,

b = (X′X)-1X′y 1 bm = (Xm
 =Xm)-1Xm

 =ym.

Therefore,

bm = Bm + (Xm
 =Xm)-1Xm

 =Em.

Because this is a simple regression model with homoscedastic and nonautocorrelated 
disturbances, the familiar estimator of the asymptotic covariance matrix for (bm, bn) is

	 Vn = est.asy.Cov[bm, bn] = smn(Xm
 =Xm)-1Xm

 =Xn (Xn
 =Xn)-1,	 (10-7)

where smn = em
 =en/T. There is a small ambiguity about the degrees of freedom in smn. 

For the diagonal elements, (T - Km) would be appropriate. One suggestion for the off-
diagonal elements that seems natural, but does not produce an unbiased estimator, is 
[(T - Km)(T - Kn)]1/2.4

For inference purposes, equation (10-7) relies on the two assumptions of 
homoscedasticity and nonautocorrelation. We can see in (10-6) what features are 
accommodated and what are not. The estimator does allow a form of heteroscedasticity 
across equations, in that smm ≠ snn when m ≠ n. This is not a real generality, however. 
For example, in the cost-share equation, it allows the variance of the cost disturbance 
to be different from the share disturbance, but that would be expected. It does assume 
that observations are homoscedastic within each equation, in that e[EmEm

 = � X] = smmI. 
It allows observations to be correlated across equations, in that smn ≠ 0, but it does not 
allow observations at different times (or different firms in our example) to be correlated. 
So, the estimator thus far is not generally robust. Robustness to autocorrelation would be 
the case of lesser interest, save for the panel data models considered in the next chapter. 
An extension to more general heteroscedasticity might be attractive. We can allow the 
diagonal matrices in (10-6) to vary arbitrarily or to depend on Xm. The common � in 
(10-6) would be replaced with �m. The estimator in (10-7) would be replaced by

	 VnRobust = est.asy.Var[b] = ¢ a T
t= 1Xt

=Xt≤-1¢ a T
t= 1(Xt

=et)(et
=Xt)≤ ¢ a T

t= 1Xt
=Xt≤-1

.

� (10-8)

4See Srivastava and Giles (1987).
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Note Xt is M rows and Σm= 1
M Km columns corresponding to the tth observations for all M 

equations, while et is an M * 1 vector of OLS residuals based on (10-5). For example, 
in (10-5), X1 is the 3 * 6 matrix,

X1 = C1 ln Q ln(Pk/Pf) ln(Pl/Pf)
0 0 0 0
0 0 0 0

 
0 0
1 0
0 1

S
firm 1

.

Then, (10-8) would be a multiple equation version of the White estimator for arbitrary 
heteroscedasticity shown in Section 9.4.4.

For testing hypotheses, either within or across equations, of the form H0: RB = q, 
we can use the Wald statistic,

W = (RBn - q)′[RVn R′]-1(RBn - q),

which has a limiting chi-squared distribution with degrees of freedom equal to the number 
of restrictions. For simple hypotheses involving one coefficient, such as H0: bk = 0, we 
would report the square root of W as the “asymptotic t ratio,” zk = bnk/asy.S.e.(bnk) where 
the asymptotic standard error would be the square root of the diagonal element of Vn . This 
would have a standard normal distribution in large samples under the null hypothesis.

10.2.2    GENERALIZED LEAST SQUARES

Each equation is, by itself, a linear regression. Therefore, the parameters could be 
estimated consistently, if not efficiently, one equation at a time, by ordinary least squares. 
The generalized regression model applies to the stacked model in (10-2). In (10-3), where 
the I matrix is T * T, the MT * MT covariance matrix for all of the disturbances is 
� = � ⊗ I and

	 �-1 = �-1 ⊗ I.5	 (10-9)

The efficient estimator is generalized least squares.6 The GLS estimator is

Bn = [X′�-1X]-1X′�-1y = [X′(�-1 ⊗ I)X]-1X′(�-1 ⊗ I)y.

Denote the mnth element of �-1 by smn. Expanding the Kronecker products produces

	Bn = D s11X1
=X1 s12X1

=X2 g s1MX1
=XM

s21X2
=X1 s22X2

=X2 g s2MX2
=XM

f
sM1XM

= X1 sM2XM
= X2 g sMMXM

= XM

T -1G aM
m= 1s

1mX1
=ym

aM
m= 1s

2mX2
=ym

f

aM
m= 1s

MmXM
= ym

W .	 (10-10)

5See Appendix Section A.5.5.
6See Zellner (1962).
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The asymptotic covariance matrix for the GLS estimator is the bracketed inverse matrix 
in (10-10).7 All the results of Chapter 9 for the generalized regression model extend to 
this model.

This estimator is obviously different from ordinary least squares. At this point, 
however, the equations are linked only by their disturbances—hence the name seemingly 
unrelated regressions model—so it is interesting to ask just how much efficiency is gained 
by using generalized least squares instead of ordinary least squares. Zellner (1962) and 
Dwivedi and Srivastava (1978) have noted two important special cases:

1.	 If the equations are actually unrelated—that is, if smn = 0 for m ≠ n—then there 
is obviously no payoff to GLS estimation of the full set of equations. Indeed, full 
GLS is equation by equation OLS.8

2.	 If the equations have identical explanatory variables—that is, if Xm = Xn = X—
then generalized least squares (GLS) is identical to equation by equation ordinary 
least squares (OLS). This case is common, notably in the capital asset pricing model 
in empirical finance (see the chapter Introduction) and in VAR models. A proof is 
considered in the exercises. This general result is lost if there are any restrictions on B, 
either within or across equations. (The application in Example 10.2 is one of these cases.) 
The X matrices are identical, but there are cross-equation restrictions on the parameters, 
for example, in (10-4), b1 = a3 and g1 = a4. Also, the asymptotic covariance matrix 
of Bn  for this case is given by the large inverse matrix in brackets in (10-10), which 
would be estimated by est.asy.Cov [Bnm, Bnn] = snmn(X′X)-1, m, n = 1, c, M, 
where snmn = em

= en/T. For the full set of estimators, est.asy.Cov[Bn] = �n ⊗ (X′X)-1.

In the more general case, with unrestricted correlation of the disturbances and 
different regressors in the equations, the extent to which GLS provides an improvement 
over OLS is complicated and depends on the data. Two propositions that apply generally 
are as follows:

1.	 The greater the correlation of the disturbances, the greater the efficiency gain 
obtained by using GLS.

2.	 The less correlation there is between the X matrices, the greater the gain in efficiency 
in using GLS.9

10.2.3    FEASIBLE GENERALIZED LEAST SQUARES

The computation in (10-10) assumes that � is known, which, as usual, is unlikely to be 
the case. FGLS estimators based on the OLS residuals may be used.10 A first step to 
estimate the elements of � uses

	 snmn = smn = em
= en/T.	 (10-11)

7A robust covariance matrix along the lines of (10-8) could be constructed. However, note that the structure 
of � = e[EtEt

=] has been used explicitly to construct the GLS estimator. The greater generality would be 
accommodated by assuming that e[EtEt

= � Xt] = �t is not restricted, again, a form of heteroscedasticity robust 
covariance matrix. This extension is not standard in applications, however. [See Wooldridge (2010, pp. 173–176) 
for further development.]
8See also Kruskal (1968), Baltagi (1989), and Bartels and Fiebig (1992) for other cases where OLS equals GLS.
9See Binkley (1982) and Binkley and Nelson (1988).
10See Zellner (1962) and Zellner and Huang (1962). The FGLS estimator for this model is also labeled Zellner’s 
efficient estimator, or ZEF, in reference to Zellner (1962), where it was introduced.
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With

	 S = D s11 s12 g s1M

s21 s22 g s2M

f
sM1 sM2 g sMM

T 	 (10-12)

in hand, FGLS can proceed as usual.
The FGLS estimator requires inversion of the matrix S where the mnth element is given 

by (10-11). This matrix is M * M. It is computed from the least squares residuals using

	 S =
1
T a

T

t= 1
etet

= =
1
T

 E′E,	 (10-13)

where et
= is a 1 * M vector containing all M residuals for the M equations at time t, 

placed as the tth row of the T * M matrix of residuals, E. The rank of this matrix cannot 
be larger than T. Note what happens if M 7 T. In this case, the M * M matrix has 
rank T, which is less than M, so it must be singular, and the FGLS estimator cannot be 
computed. In Example 10.1, we aggregate the 48 states into M = 9 regions. It would not 
be possible to fit a full model for the M = 48 states with only T = 17 observations. The 
data set is too short to obtain a positive definite estimate of �.

10.2.4    TESTING HYPOTHESES

For testing a hypothesis about B, a statistic analogous to the F ratio in multiple regression 
analysis is

	 F[J, MT - K] =
(RBn - q)′[R(X′�-1X)-1R′]-1(RBn - q)/J

En ′�-1En/(MT - K)
.	 (10-14)

The computation uses the the unknown �. If we insert the estimator �n  based on (10-11) 
and use the result that the denominator in (10-14) converges to one in T (M is fixed) then, 
in large samples, the statistic will behave the same as

	 Fn =
1
J

 ¢RBn
n - q≤ bR est.asy.Var.JBnn RR′ r -1¢RBn

n - q≤.	 (10-15)

This can be referred to the standard F table. Because it uses the estimated �, even 
with normally distributed disturbances, the F distribution is only valid approximately. In 
general, the statistic F[J, n] converges to 1/J times a chi-squared [J] as n S ∞ . Therefore, 
an alternative test statistic that has a limiting chi-squared distribution with J degrees of 
freedom when the null hypothesis is true is

	 JFn = ¢RBn
n - q≤ ′bR est.asy.Var.JBnn RR′ r -1¢RBn

n - q≤.	 (10-16)

This is a Wald statistic that measures the distance between RBn
n

 and q.
One hypothesis of particular interest is the homogeneity or pooling restriction of equal 

coefficient vectors in (10-2). The pooling restriction is that Bm = BM, i = 1, c, M - 1. 
Consistent with (10-15) and (10-16), we would form the hypothesis as
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	 RB = D I 0 g 0 - I
0 I g 0 - I

g
0 0 g I - I

T § B1

B2

g
BM

¥ = § B1 - BM

B2 - BM

g
BM - 1 - BM

¥ = 0.	 (10-17)

This specifies a total of (M - 1)K restrictions on the MK * 1 parameter vector. Denote 

the estimated asymptotic covariance for ¢Bnnm, Bn
n

n≤ as Vnmn. The matrix in braces in (10-16) 

would have the typical K * K block,bR est.asy.Var.JBnn RR′ r
mn

= Vn mn - VnmM - Vn Mn + Vn MM.

It is also of interest to assess statistically whether the off-diagonal elements of � 
are zero. If so, then the efficient estimator for the full parameter vector, absent within 
group heteroscedasticity or autocorrelation, is equation-by-equation ordinary least 
squares. There is no standard test for the general case of the SUR model unless the 
additional assumption of normality of the disturbances is imposed in (10-1) and (10-2). 
With normally distributed disturbances, the standard trio of tests, Wald, likelihood ratio, 
and Lagrange multiplier, can be used. The Wald test is likely to be quite cumbersome. 
The likelihood ratio statistic for testing the null hypothesis that the matrix � in (10-3) 
is a diagonal matrix against the alternative that Σ is simply an unrestricted positive 
definite matrix would be

	 lLR = T[ln � S0 � - ln � S1 � ],	 (10-18)

where S1 is the residual covariance matrix defined in (10-12) (without a degrees of 
freedom correction). The residuals are computed using maximum likelihood estimates 
of the parameters, not FGLS.11 Under the null hypothesis, the model would be efficiently 
estimated by individual equation OLS, so

ln � S0 � = a
M

m= 1
ln(em

= em/T).

The statistic would be used for a chi-squared test with M(M - 1)/2 degrees of freedom. 
The Lagrange multiplier statistic developed by Breusch and Pagan (1980) is

	 lLM = T a
M

m= 2
a

m - 1

n = 1
rmn

2 ,	 (10-19)

based on the sample correlation matrix of the M sets of T OLS residuals. This has the 
same large sample distribution under the null hypothesis as the likelihood ratio statistic, 
but is obviously easier to compute, as it only requires the OLS residuals. Alternative 
approaches that have been suggested, such as the LR test in (10-18), are based on the 
“excess variation,” (�n 0 - �n 1).12

11In the SUR model of this chapter, the MLE for normally distributed disturbances can be computed by iterating 
the FGLS procedure, back and forth between (10-10) and (10-12), until the estimates are no longer changing.
12See, for example, Johnson and Wichern (2005, p. 424).
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10.2.5    THE POOLED MODEL

If the variables in Xm are all the same and the coefficient vectors in (10-2) are assumed 
all to be equal, then the pooled model,

ymt = xmt
= B + emt,

results. Collecting the T observations for group m, we obtain

ym = XmB + Em.

For all M groups,

	 D y1

y2

f
yM

T = D X1

X2

f
XM

TB + D E1

E2

f
EM

T = XB + E,	 (10-20)

where

E[Ei � X] = 0,

	 E[EmEn
= � X] = smnI,	

(10-21)

or

E[EE′] = � ⊗ I.

The generalized least squares estimator under this assumption is

 Bn = [X′(� ⊗ I)-1X]-1[X′(� ⊗ I)-1y]

	  = J a
M

m= 1
a
M

n = 1
smnXm

= Xn R -1J a
M

m= 1
a
M

n = 1
smnXm

= yn R .	
(10-22)

The FGLS estimator can be computed using (10-11), where em would be a subvector of 
the pooled OLS residual vector using all MT observations.

Example 10.1    A Regional Production Model for Public Capital
Munnell (1990) proposed a model of productivity of public capital at the state level. The central 
equation of the analysis that we will extend here is a Cobb–Douglas production function,

 ln gspmt = am + b1m ln pcmt + b2m ln hwymt + b3m ln watermt + b4m ln utilmt

 + b5m ln empmt + b6m unempmt + emt,

where

gsp  = gross state product,

pc  = private capital,

hwy  = highway capital,

water  = water utility capital,

util  = utility capital,

emp  = employment (labor),

 unemp = unemployment rate.
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The data, measured for the 48 contiguous states in the U.S. (excluding Alaska and Hawaii) 
and years 1970–1986 are given in Appendix Table F10.1. We will aggregate the data for the 48 
states into nine regions consisting of the following groups of states (the state codes appear 
in the data file):

Gulf States  = GF = AL, FL, LA, MS,

Southwest  = SW = AZ, NV, NM, TX, UT,

West Central = WC = CA, OR, WA,

Mountain  = MT = CO, ID, MT, ND, SD, WY,

Northeast  = NE = CT, ME, MA, NH, RI, VT,

Mid Atlantic  = MA = DE, MD, NJ, NY, PA, VA,

South  = SO = GA, NC, SC, TN, WV, AR,

Midwest  = MW = IL, IN, KY, MI, MN, OH, WI,

Central  = CN = IA, KS, MO, NE, OK.

This defines a nine-equation model. Note that with only 17 observations per state, it is not 
possible to fit the unrestricted 48-equation model. This would be a case of the short rank 
problem noted at the end of Section 10.2.2. The calculations for the data setup are are 
described in Application 1 at the end of this chapter, where the reader is invited to replicate 
the computations and fill in the omitted parts of Table 10.3.

We initially estimated the nine equations of the regional productivity model separately by 
OLS. The OLS estimates are shown in Table 10.1. (For brevity, the estimated standard errors 
are not shown.)

The correlation matrix for the OLS residuals is shown in Table 10.2.

Region A B1 B2 B3 B4 B5 B6 R2

GF OLS 11.570 0.002 -2.028 0.101 1.358 0.805 -0.007 0.997
FGLS 12.310 -0.201 -1.886 0.178 1.190 0.953 -0.003

SW OLS 3.028 0.164 -0.075 -0.169 0.637 0.362 -0.017 0.998
FGLS 4.083 0.077 -0.131 -0.136 0.522 0.539 -0.156

WC OLS 3.590 0.295 0.174 -0.226 -0.215 0.917 -0.008 0.994
FGLS 1.960 0.170 0.132 -0.347 0.895 1.070 -0.006

MT OLS 6.378 -0.153 -0.123 0.306 -0.533 1.344 0.005 0.999
FGLS 3.463 -0.115 0.180 0.262 -0.330 1.079 -0.002

NE OLS -13.730 -0.020 0.661 -0.969 -0.107 3.380 0.034 0.985
FGLS -12.294 -0.118 0.934 -0.557 -0.290 2.494 0.020

MA OLS -22.855 -0.378 3.348 -0.264 -1.778 2.637 0.026 0.986
FGLS -18.616 -0.311 3.060 -0.109 -1.659 2.186 0.018

SO OLS 3.922 0.043 -0.773 -0.035 0.137 1.665 0.008 0.994
FGLS 3.162 -0.063 -0.641 -0.081 0.281 1.620 0.008

MW OLS -9.111 0.233 1.604 0.717 -0.356 -0.259 -0.034 0.989
FGLS -9.258 0.096 1.612 0.694 -0.340 -0.062 -0.031

CN OLS -5.621 0.386 1.267 0.546 -0.108 -0.475 -0.313 0.995
FGLS -3.405 0.295 0.934 0.539 0.003 -0.321 -0.030

TABLE 10.1  Estimates of Seemingly Unrelated Regression Equations
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The correlations are large enough to suggest that there is substantial correlation of the 
disturbances across regions. The LM statistic in (10-19) for testing the hypothesis that the 
covariance matrix of the disturbances is diagonal equals 103.1 with 8(9)/2 = 36 degrees 
of freedom. The critical value from the chi-squared table is 50.998, so the null hypothesis 
that smn = 0 (or rmn = 0) for all m ≠ n, that is, that the seemingly unrelated regressions 
are actually unrelated, is rejected on this basis. Table 10.1 also presents the FGLS estimates 
of the model parameters. These are computed in two steps, with the first-step OLS results 
producing the estimate of � for FGLS. The correlations in Table 10.2 suggest that there is likely 
to be considerable benefit to using FGLS in terms of efficiency of the estimator. The individual 
equation OLS estimators are consistent, but they neglect the cross-equation correlation and 
heteroscedasticity. A comparison of some of the estimates for the main capital and labor 
coefficients appears in Table 10.3. The estimates themselves are comparable. But the estimated 
standard errors for the FGLS coefficients are roughly half as large as the corresponding OLS 
values. This suggests a large gain in efficiency from using GLS rather than OLS.

The pooling restriction is formulated as

H0: B1 = B2 = g = BM,
H1: Not H0.

GF SW WC MT NE MA SO MW CN

GF � 1
SW � 0.173 1
WC � 0.447 0.697 1
MT � -0.547 -0.290 -0.537 1
NE � 0.525 0.489 0.343 -0.241 1
MA � 0.425 0.132 0.130 -0.322 0.259 1
SO � 0.763 0.314 0.505 -0.351 0.783 0.388 1
MW � 0.167 0.565 0.574 -0.058 0.269 -0.037 0.366 1
CN � 0.325 0.119 0.037 0.091 0.200 0.713 0.350 0.298 1

TABLE 10.2  Correlations of OLS Residuals

B1 B5

Region OLS FGLS OLS FGLS

GF 0.002 (0.301) -0.201 (0.142) 0.805 (0.159) 0.953 (0.085)
SW 0.164 (0.166) 0.077 (0.086) 0.362 (0.165) 0.539 (0.085)
WC 0.295 (0.205) 0.170 (0.092) 0.917 (0.377) 1.070 (0.171)
MT -0.153 (0.084) -0.115 (0.048) 1.344 (0.188) 1.079 (0.105)
NE -0.020 (0.286) -0.118 (0.131) 3.380 (1.164) 2.494 (0.479)
MA -0.378 (0.167) -0.311 (0.081) 2.673 (1.032) 2.186 (0.448)
SO 0.043 (0.279) -0.063 (0.104) 1.665 (0.414) 1.620 (0.185)
MW 0.233 (0.206) 0.096 (0.102) -0.259 (0.303) -0.062 (0.173)
CN 0.386 (0.211) 0.295 (0.090) -0.475 (0.259) -0.321 (0.169)
Pooled 0.260 (0.017) 0.254 (0.006) 0.330 (0.030) 0.343 (0.001)

*Estimates of Capital (b1) and Labor (b5) coefficients. Estimated standard errors in parentheses.

TABLE 10.3  Comparison of OLS and FGLS Estimates*
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The R matrix for this hypothesis is shown in (10-17). The test statistic is in (10-16). For 
our model with nine equations and seven parameters in each, the null hypothesis imposes 
(9@1)7 = 56 restrictions. The computed test statistic is 6092.5, which is far larger than the 
critical value from the chi-squared table, 74.468. So, the hypothesis of homogeneity is 
rejected. Part of the pooled estimator is shown in Table 10.3. The benefit of the restrictions 
on the estimator can be seen in the much smaller standard errors in every case compared 
to the separate estimators. If the hypothesis that all the coefficient vectors were the same 
were true, the payoff to using that information would be obvious. Because the hypothesis is 
rejected, that benefit is less clear, as now the pooled estimator does not consistently estimate 
any of the individual coefficient vectors.

10.3	 SYSTEMS OF DEMAND EQUATIONS: SINGULAR SYSTEMS

Many of the applications of the seemingly unrelated regression model have estimated 
systems of demand equations, either commodity demands, factor demands, or factor 
share equations in studies of production. Each is merely a particular application of the 
model of Section 10.2. But some special problems arise in these settings. First, the 
parameters of the systems are usually constrained across the equations. This usually 
takes the form of parameter equality constraints across the equations, such as the 
symmetry assumption in production and cost models—see (10-32) and (10-33).13 
A second feature of many of these models is that the disturbance covariance matrix � 
is singular, which would seem to preclude GLS (or FGLS).

10.3.1    COBB–DOUGLAS COST FUNCTION

Consider a Cobb–Douglas production function,

Q = a0 q
M

m= 1
xm
am.

Profit maximization with an exogenously determined output price calls for the firm to 
maximize output for a given cost level C (or minimize costs for a given output Q). The 
Lagrangean for the maximization problem is

Λ = a0 q
M

m= 1
xm
am + l(C - p′x),

where p is the vector of M factor prices. The necessary conditions for maximizing this 
function are

0Λ
0xm

=
amQ
xm

- lpm = 0 and 
0Λ
0l

= C - p′x = 0.

The joint solution provides xm(Q, p) and l(Q, p). The total cost of production is then

a
M

m= 1
pmxm = a

M

m= 1

amQ

l
.

The cost share allocated to the mth factor is

13See Silver and Ali (1989) for a discussion of testing symmetry restrictions.
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pmxm

aM
m= 1pmxm

=
am

aM
m= 1am

= bm.	 (10-23)

The full model is14

 ln C = b0 + bq ln Q + a
M

m= 1
bm ln pm + ec,

 sm = bm + em, m = 1, c, M.  �

(10-24)

Algebraically, aM
m= 1bm = 1 and aM

m= 1sm = 1. (This is the cost function analysis begun 
in Example 6.17. We will return to that application below.) The cost shares will also sum 
identically to one in the data. It therefore follows that aM

m= 1em = 0 at every data 
point so the system is singular. For the moment, ignore the cost function. Let the M * 1 
disturbance vector from the shares be E = [e1, e2, c, eM]′. Because E′i = 0, where 
i is a column of 1s, it follows that E[EE′i] = �i = 0, which implies that � is singular. 
Therefore, the methods of the previous sections cannot be used here. (You should verify 
that the sample covariance matrix of the OLS residuals will also be singular.)

The solution to the singularity problem appears to be to drop one of the equations, 
estimate the remainder, and solve for the last parameter from the other M - 1. The 
constraint aM

m= 1bm = 1 states that the cost function must be homogeneous of degree 
one in the prices. If we impose the constraint

	 bM = 1 - b1 - b2 - g - bM - 1,	 (10-25)

then the system is reduced to a nonsingular one,

 ln¢ C
pM

≤ = b0 + bq ln Q + a
M - 1

m= 1
bm ln¢ pm

pM
≤ + ec,

 sm = bm + em, m = 1, c, M - 1.

This system provides estimates of b0, bq, and b1, c, bM - 1. The last parameter is 
estimated using (10-25). It is immaterial which factor is chosen as the numeraire; FGLS 
will be invariant to which factor is chosen.

Example 10.2    Cobb–Douglas Cost Function
Nerlove’s (1963) study of the electric power industry that we examined in Example 6.6 provides 
an application of the Cobb–Douglas cost function model. His ordinary least squares estimates 
of the parameters were listed in Example 6.6. Among the results are (unfortunately) a negative 
capital coefficient in three of the six regressions. Nerlove also found that the simple Cobb–
Douglas model did not adequately account for the relationship between output and average 
cost. Christensen and Greene (1976) further analyzed the Nerlove data and augmented the 
data set with cost share data to estimate the complete demand system. Appendix Table F6.2 
lists Nerlove’s 145 observations with Christensen and Greene’s cost share data. Cost is the 
total cost of generation in millions of dollars, output is in millions of kilowatt-hours, the capital 
price is an index of construction costs, the wage rate is in dollars per hour for production and 
maintenance, the fuel price is an index of the cost per BTU of fuel purchased by the firms, and 
the data reflect the 1955 costs of production. The regression estimates are given in Table 10.4.

14We leave as an exercise the derivation of b0, which is a mixture of all the parameters, and bq, which equals 1/Σmam.

M10_GREE1366_08_SE_C10.indd   340 2/24/17   12:52 PM



	 CHAPTER 10  ✦  Systems of Regression Equations	 341

Least squares estimates of the Cobb–Douglas cost function are given in the first column. 
The coefficient on capital is negative. Because bm = bq0 ln Q/0 ln xm—that is, a positive 
multiple of the output elasticity of the mth factor—this finding is troubling. The third column 
presents the constrained FGLS estimates. To obtain the constrained estimator, we set up the 
model in the form of the pooled SUR estimator in (10-20),

y = C ln(C/Pf)
sk

sl

S = C i ln Q ln(Pk/Pf) ln(Pl/Pf)
0 0 i 0
0 0 0 i

S §b0

bq

bk

bl

¥ + CEc

Ek

El

S .

Note this formulation imposes the restrictions b1 = a3 and g1 = a4 on (10-4). There are 
3(145) = 435 observations in the data matrices. The estimator is then FGLS, as shown in 
(10-22). An additional column is added for the log quadratic model. Two things to note are the 
dramatically smaller standard errors and the now positive (and reasonable) estimate of the 
capital coefficient. The estimates of economies of scale in the basic Cobb–Douglas model are 
1/bq = 1.39 (column 1) and 1.31 (column 3), which suggest some increasing returns to scale. 
Nerlove, however, had found evidence that at extremely large firm sizes, economies of scale 
diminished and eventually disappeared. To account for this (essentially a classical U-shaped 
average cost curve), he appended a quadratic term in log output in the cost function. The 
single equation and FGLS estimates are given in the second and fourth sets of results.

The quadratic output term gives the average cost function the expected U-shape. We 
can determine the point where average cost reaches its minimum by equating 0 ln C/0 ln Q 
to 1. This is Q* = exp[(1 - bq)/(2bqq)]. Using the FGLS estimates, this value is Q* = 4,669. 
(Application 5 considers using the delta method to construct a confidence interval for Q*.) 
About 85% of the firms in the sample had output less than this, so by these estimates, most 
firms in the sample had not yet exhausted the available economies of scale. Figure 10.1 shows 
predicted and actual average costs for the sample. (To obtain a reasonable scale, the smallest 
one third of the firms are omitted from the figure.) Predicted average costs are computed 
at the sample averages of the input prices. The figure does reveal that that beyond a quite 
small scale, the economies of scale, while perhaps statistically significant, are economically 
quite small.

Ordinary Least Squares Constrained Feasible GLS

Constant b0 -4.686 -3.764 -7.069 -5.707
(0.885) (0.702) (0.107) (0.165)

ln Output bq 0.721 0.153 0.766 0.239
(0.0174) (0.0618) (0.0154) (0.0587)

ln2 Output bqq 0.0505 0.0451

(0.0054) (0.00508)
ln Pcapital bk -0.0085 0.0739 0.424 0.425

(0.191) (0.150) (0.00946) (0.00943)
ln Plabor bl 0.594 0.481 0.106 0.106

(0.205) (0.161) (0.00386) (0.00380)
ln Pfuel bf 0.414 0.445 0.470 0.470

(0.0989) (0.0777) (0.0101) (0.0100)

TABLE 10.4  Cost Function Estimates (Estimated standard errors in parentheses)
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10.3.2    FLEXIBLE FUNCTIONAL FORMS: THE TRANSLOG COST FUNCTION

The classic paper by Arrow et al. (1961) called into question the inherent restriction of 
the popular Cobb–Douglas model that all elasticities of factor substitution are equal to 
one. Researchers have since developed numerous flexible functions that allow substitution 
to be unrestricted.15 Similar strands of literature have appeared in the analysis of 
commodity demands.16 In this section, we examine in detail a specific model of production.

Suppose that production is characterized by a production function, Q = f(x). 
The solution to the problem of minimizing the cost of producing a specified output 
rate given a set of factor prices produces the cost-minimizing set of factor demands 
xm* = xm(Q, p). The total cost of production is given by the cost function,

	 C = a
M

m= 1
pmxm(Q, p) = C(Q, p).	 (10-26)

If there are constant returns to scale, then it can be shown that C = Qc(p) or C/Q = c(p), 
where c(p) is the per unit or average cost function.17 The cost-minimizing factor demands 
are obtained by applying Shephard’s lemma (1970), which states that if C(Q, p) gives 
the minimum total cost of production, then the cost-minimizing set of factor demands 
is given by

	 xm* =
0C(Q, p)

0pm

.	 (10-27)

15See, in particular, Berndt and Christensen (1973).
16See, for example, Christensen, Jorgenson, and Lau (1975) and two surveys, Deaton and Muellbauer (1980) and 
Deaton (1983). Berndt (1990) contains many useful results.
17The Cobb–Douglas function of the previous section gives an illustration. The restriction of constant returns to 
scale is bq = 1, which is equivalent to C = Qc(p). Nerlove’s more general version of the cost function allows 
nonconstant returns to scale. See Christensen and Greene (1976) and Diewert (1974) for some of the formalities 
of the cost function and its relationship to the structure of production.

Figure 10.1    Predicted Average Costs.
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Alternatively, by differentiating logarithmically, we obtain the cost-minimizing factor 
cost shares,

	 sm* =
0 ln C(Q, p)

0 ln pm
=

pm

C
 
0C(Q, p)

0pm
=

pmxm*
C

.	 (10-28)

With constant returns to scale, ln C(Q, p) = ln Q + ln c(p), so

	 sm* =
0 ln c(p)

0 ln pm

.	 (10-29)

In many empirical studies, the objects of estimation are the elasticities of factor 
substitution and the own price elasticities of demand, which are given by

umn =
c(02c/0pm0pn)

(0c/0pm)(0c/0pn)
and

hm = smumm.

By suitably parameterizing the cost function (10-26) and the cost shares (10-29), we obtain 
an M or M + 1 equation econometric model that can be used to estimate these quantities.

The transcendental logarithmic or translog function is the most frequently used 
flexible function in empirical work.18 By expanding ln c(p) in a second-order Taylor 
series about the point ln(p) = 0, we obtain

	 ln c ≈ b0 + a
M

m= 1
a 0 ln c

0 ln pm
≤ log pm +

1
2 a

M

m= 1
a
M

n = 1
¢ 02 ln c

0 ln pm 0 ln pn
b  ln pm ln pn,	 (10-30)

where all derivatives are evaluated at the expansion point. If we treat these derivatives 
as the coefficients, then the cost function becomes

	  ln c = b0 + b1 ln p1 + g + bM ln pM + d11a 1
2

 ln2 p1b + d12 ln p1 ln p2

 + d22a 1
2

 ln2 p2b + g + dMMa 1
2

 ln2 pMb .	 (10-31)

This is the translog cost function. If dmn equals zero, then it reduces to the Cobb–Douglas 
function in Section 10.3.1. The cost shares are given by

 s1 =
0 ln c
0 ln p1

= b1 + d11 ln p1 + d12 ln p2 + g + d1M ln pM,

 s2 =
0 ln c
0 ln p2

= b2 + d21 ln p1 + d22 ln p2 + g + d2M ln pM,

 f

	  sM =
0 ln c

0 ln pM
= bM + dM1 ln p1 + dM2 ln p2 + g + dMM ln pM.	

(10-32)

18The function was proposed in a series of papers by Berndt, Christensen, Jorgenson, and Lau, including Berndt 
and Christensen (1973) and Christensen et al. (1975).
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The theory implies a number of restrictions on the parameters. The matrix of second 
derivatives must be symmetric (by Young’s theorem for continuous functions). 
The cost function must be linearly homogeneous in the factor prices. This implies 
Σm= 1

M (0 ln c(p)/0 ln pm) = 1. This implies the adding-up restriction, Σm= 1
M sm = 1. 

Together, these imply the following set of cross-equation restrictions:

 dmn = dnm     (symmetry),

 a
M

m= 1
bm = 1      (linear homogeneity),

 a
M

m= 1
dmn = a

M

n = 1
dmn = 0.�

(10-33)

The system of share equations in (10-32) produces a seemingly unrelated regressions 
model that can be used to estimate the parameters of the model.19 To make the model 
operational, we must impose the restrictions in (10-33) and solve the problem of 
singularity of the disturbance covariance matrix of the share equations. The first is 
accomplished by dividing the first M - 1 prices by the Mth, thus eliminating the last 
term in each row and column of the parameter matrix. As in the Cobb–Douglas model, 
we obtain a nonsingular system by dropping the Mth share equation. For the translog 
cost function, the elasticities of substitution are particularly simple to compute once the 
parameters have been estimated,

	 umn =
dmn + smsn

smsn
, umm =

dmm + sm(sm - 1)

sm
2

.	 (10-34)

These elasticities will differ at every data point. It is common to compute them at some 
central point such as the means of the data.20 The factor-specific demand elasticities are 
then computed using hm = smumm.

Example 10.3    A Cost Function for U.S. Manufacturing
A number of studies using the translog methodology have used a four-factor model, with 
capital K, labor L, energy E, and materials M, the factors of production. Among the studies to 
employ this methodology was Berndt and Wood’s (1975) estimation of a translog cost function 
for the U.S. manufacturing sector. The three factor shares used to estimate the model are

 sK = bK + dKK ln¢ pK

pM
≤ + dKL ln¢ pL

pM
≤ + dKE ln¢ pE

pM
≤,

 sL = bL + dKL ln¢ pK

pM
≤ + dLL ln¢ pL

pM
≤ + dLE ln¢ pE

pM
≤,

 sE = bE + dKE ln¢ pK

pM
≤ + dLE ln¢ pL

pM
≤ + dEE ln¢ pE

pM
≤.

19The system of factor share equations estimates all of the parameters in the model except for the overall constant 
term, b0. The cost function can be omitted from the model. Without the assumption of constant returns to scale, 
however, the cost function will contain parameters of interest that do not appear in the share equations. In this 
case, one would want to include it in the equation system. See Christensen and Greene (1976) for an application.
20They will also be highly nonlinear functions of the parameters and the data. A method of computing asymptotic 
standard errors for the estimated elasticities is presented in Anderson and Thursby (1986). Krinsky and Robb 
(1986, 1990, 1991). (See also Section 15.3.) proposed their method as an alternative approach to this computation.
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Berndt and Wood’s data are reproduced in Appendix Table F10.2. Constrained FGLS 
estimates of the parameters presented in Table 10.4 were obtained by constructing the pooled 
regression in (10-20) with data matrices

 y = CsK

sL

sE

S ,

 X = C i 0 0 ln PK/PM ln PL/PM ln PE/PM 0 0 0
0 i 0 0 ln PK/PM 0 ln PL/PM ln PK/PM 0
0 0 i 0 0 ln PK/PM 0 ln PL/PM ln PE/PM

S ,

 B′ = (bK, bL, bE, dKK, dKL, dKE, dLL, dLE, dEE).�

(10-35)

Estimates are then obtained by iterating the two-step procedure in (10-11) and (10-22).21 The 
parameters not estimated directly in (10-35) are computed using (10-33). The implied 
estimates of the elasticities of substitution and demand elasticities for 1959 (the central year 
in the data) are given in TABLE 10.5 using the fitted cost shares and the estimated parameters 
in (10-34). The departure from the Cobb–Douglas model with unit elasticities is substantial. 
For example, the results suggest almost no substitutability between energy and labor and 
some complementarity between capital and energy.

The underlying theory requires that the cost function satisfy three regularity conditions, 
homogeneity of degree one in the input prices, monotonicity in the prices, and quasiconcavity. 
The first of these is imposed by (10-33), which we built into the model. The second is obtained 
if all of the fitted cost shares are positive, which we have verified at every observation. The 
third requires that the matrix,

Ft = � - diag(st) + stst
=,

21The estimates do not match those reported by Berndt and Wood. To purge their data of possible correlation 
with the disturbances, they first regressed the prices on 10 exogenous macroeconomic variables, such as U.S. 
population, government purchases of labor services, real exports of durable goods and U.S. tangible capital stock, 
and then based their analysis on the fitted values. The estimates given here are, in general, quite close to theirs. For 
example, their estimates of the constants in Table 10.5 are 0.60564, 0.2539, 0.0442, and 0.6455. Berndt and Wood’s 
estimate of uEL for 1959 is 0.64 compared to ours in Table 10.5 of 0.60564.

Constant Capital Labor Energy Materials

Capital 0.05689 0.02949 -0.00005 -0.01067 -0.01877*
(0.00135) (0.00580) (0.00385) (0.00339) (0.00971)

Labor 0.25344 0.07543 -0.00476 -0.07063*
(0.00223) (0.00676) (0.00234) (0.01060)

Energy 0.04441 0.01835 -0.00294*
(0.00085) (0.00499) (0.00800)

Materials 0.64526* 0.09232*
(0.00330) (0.02247)

*Derived using (10-33).

TABLE 10.5  �Parameter Estimates for Aggregate Translog Cost Function (Standard errors in 
parentheses)
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be negative semidefinite, where � is the symmetric matrix of coefficients on the quadratic 
terms in Table 10.5 and st is the vector of factor shares. This condition can be checked at 
each observation by verifying that the characteristic roots of Ft are all nonpositive. For the 
1959 data, the four characteristic roots are (0, -0.00152, -0.06277, -0.23514). The results 
for the other years are similar. The estimated cost function satisfies the theoretical regularity 
conditions.

10.4	 SIMULTANEOUS EQUATIONS MODELS

The seemingly unrelated regression model,

ymt = xmt
= Bm + emt,

derives from a set of regression equations that are related through the disturbances. The 
regressors, xmt, are exogenous and can vary for reasons that are not explained within the 
model. Thus, the coefficients are directly interpretable as partial or causal effects and 
can be estimated by least squares or other methods that are based on the conditional 
mean functions, E[ymt � xmt] = xmt

= B. In the market equilibrium model suggested in the 
Introduction,

QDemand  = a1 + a2Price + a3Income + d′A + eDemand,

QSupply  = b1 + b2Price + b3FactorPrice + s′B + eSupply,

QEquilibrium = QDemand = QSupply,

neither of the two market equations is a conditional mean. The partial equilibrium 
experiment of changing the equilibrium price and inducing a change in the equilibrium 
quantity in the hope of eliciting an estimate of the demand elasticity, a2 (or supply 
elasticity, b2), makes no sense. The model is of the joint determination of quantity and 
price. Price changes when the market equilibrium changes, but that is induced by changes 
in other factors, such as changes in incomes or other variables that affect the supply 
function. Nonetheless, the elasticities of demand and supply, a2 and b2, are of interest, 
and do have a causal interpretation in the context of the model. This section considers the 
theory and methods that apply for estimation and analysis of systems of interdependent 
equations.

Capital Labor Energy Materials

Cost Shares for 1959
Fitted 0.05640 0.27452 0.04389 0.62519
Actual 0.06185 0.27303 0.04563 0.61948

Implied Elasticities of Substitution, 1959
Capital -7.4612
Labor 0.99691 -1.64179
Energy -3.31133 0.60533 -12.2566
Materials 0.46779 0.58848 0.89334 -0.36331

Implied Own Price Elasticities
-0.420799 -0.45070 -0.53793 -0.22714

TABLE 10.6  Estimated Elasticities
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As we saw in Example 8.4, least squares regression of observed equilibrium quantities 
on price and the other factors will compute an ambiguous mixture of the supply and 
demand functions. The result follows from the endogeneity of Price in either equation. 
Simultaneous equations models arise in settings such as this one, in which the set of 
equations are interdependent. Simultaneous equations models will fit in the framework 
developed in Chapter 8, where we considered equations in which some of the right-hand-
side variables are endogenous—that is, correlated with the disturbances. The substantive 
difference at this point is the source of the endogeneity. In our treatments in Chapter 
8, endogeneity arose, for example, in the models of omitted variables, measurement 
error, or endogenous treatment effects, essentially as an unintended deviation from the 
assumptions of the linear regression model. In the simultaneous equations framework, 
endogeneity is a fundamental part of the specification. This section will consider the 
issues of specification and estimation in systems of simultaneous equations. We begin 
in Section 10.4.1 with a development of a general framework for the analysis and a 
statement of some fundamental issues. Section 10.4.2 presents the simultaneous equations 
model as an extension of the seemingly unrelated regressions model in Section 10.2. The 
ultimate objective of the analysis will be to learn about the model coefficients. The issue 
of whether this is even possible is considered in Section 10.4.3, where we develop the 
issue of identification. Once the identification question is settled, methods of estimation 
and inference are presented in Sections 10.4.4 and 10.4.5.

Example 10.4.    Reverse Causality and Endogeneity in Health
As we examined in Chapter 8, endogeneity arises from several possible sources. The case 
considered in this chapter is simultaneity, sometimes labeled reverse causality. Consider 
a familiar modeling framework in health economics, the “health production function” (see 
Grossman (1972)), in which we might model health outcomes as

Health = f(income, Education, Health Care, Age, c, eH = other factors).

It is at least debatable whether this can be treated as a regression. For any individual, 
arguably, lower incomes are associated with lower results for health. But which way does 
the “causation run?” It may also be that variation in health is a driver of variation in income. 
A natural companion might appear

income = g(Health, Education, c, eI = labor market factors).

The causal effect of income on health could, in principle, be examined through the experiment 
of varying income, assuming that external factors such as labor market conditions could be 
driving the change in income. But, in the second equation, we could likewise be interested 
in how variation in health outcomes affect incomes. The idea is similarly complicated at the 
aggregate level. Deaton’s (2003) updated version of the “Preston Curve” (1978) in Figure 10.2 
suggests covariation between health (life expectancy) and income (per capita GDP) for a group 
of countries. Which variable is driving which is part of a longstanding discussion.

10.4.1    SYSTEMS OF EQUATIONS

Consider a simplified version of the equilibrium model,

 demand equation: qd,t = a1pt + a2xt + ed,t,

 supply equation: qs,t = b1pt + es,t,

 equilibrium condition: qd,t = qs,t = qt.
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These equations are structural equations in that they are derived from theory and each 
purports to describe a particular aspect of the economy. Because the model is one of 
the joint determination of price and quantity, they are labeled jointly dependent or 
endogenous variables. Income, x, is assumed to be determined outside of the model, 
which makes it exogenous. The disturbances are added to the usual textbook description 
to obtain an econometric model. All three equations are needed to determine the 
equilibrium price and quantity, so the system is interdependent. Finally, because an 
equilibrium solution for price and quantity in terms of income and the disturbances 
is, indeed, implied (unless a1 equals b1), the system is said to be a complete system 
of equations. As a general rule, it is not possible to estimate all the parameters of 
incomplete systems. (It may be possible to estimate some of them, as will turn out to be 
the case with this example).

Suppose that interest centers on estimating the demand elasticity a1. For simplicity, 
assume that ed and es are well behaved, classical disturbances with

 E[ed,t � xt] = E[es,t � xt] = 0,

 E[ed,t
2 � xt] = sd

2,

 E[es,t
2 � xt] = ss

2,

 E[ed,tes,t � xt] = 0.

All variables are mutually uncorrelated with observations at different time periods. 
Price, quantity, and income are measured in logarithms in deviations from their sample 

Figure 10.2    Updated Preston Curve.
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means. Solving the equations for p and q in terms of x, ed, and es produces the reduced 
form of the model,

 p =
a2x

b1 - a1
+

ed - es

b1 - a1
= p1x + v1,

 q =
b1a2x

b1 - a1
+

b1ed - a1es

b1 - a1
= p2x + v2.	

(10-36)

(Note the role of the “completeness” requirement that a1 not equal b1. This means 
that the two lines are not parallel.) It follows that Cov[p, ed] = sd

2/(b1 - a1) and 
Cov[p, es] = -ss

2/(b1 - a1) so neither the demand nor the supply equation satisfies 
the assumptions of the classical regression model. The price elasticity of demand 
cannot be consistently estimated by least squares regression of q on x and p. This 
result is characteristic of simultaneous equations models. Because the endogenous 
variables are all correlated with the disturbances, the least squares estimators of the 
parameters of equations with endogenous variables on the right-hand side are 
inconsistent.22

Suppose that we have a sample of T observations on p, q, and x such that

plim(1/T)x′x = sx
2.

Because least squares is inconsistent, we might instead use an instrumental variable 
estimator. (See Section 8.3.) The only variable in the system that is not correlated with the 
disturbances is x. Consider, then, the IV estimator, bn1 = (x′p)-1x′q. This estimator has

plim bn1 = plim 
x′q/T

x′p/T
=

sx
2b1a2/(b1 - a1)

sx
2a2/(b1 - a1)

= b1.

Evidently, the parameter of the supply curve can be estimated by using an instrumental 
variable estimator. In the least squares regression of p on x, the predicted values are 
pn = (x′p/x′x)x. It follows that in the instrumental variable regression the instrument 
is pn . That is,

bn1 =
pn ′q
pn ′p

.

Because pn ′p = pn ′pn , bn1 is also the slope in a regression of q on these predicted values. 
This interpretation defines the two-stage least squares estimator.

It would seem natural to use a similar device to estimate the parameters of the 
demand equation, but unfortunately, we have already used all of the information in the 
sample. Not only does least squares fail to estimate the demand equation consistently, 
but without some further assumptions, the sample contains no other information that 
can be used. This example illustrates the problem of identification alluded to in the 
introduction to this section.

22This failure of least squares is sometimes labeled simultaneous equations bias.
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10.4.2    A GENERAL NOTATION FOR LINEAR SIMULTANEOUS EQUATIONS MODELS23

The structural form of the model is

 g11yt1 + g21yt2 + g + gM1ytM + b11xt1 + g + bK1xtK = et1,

 g12yt1 + g22yt2 + g + gM2ytM + b12xt1 + g + bK2xtK = et2,

 f
 g1Myt1 + g2Myt2 + g + gMMytM + b1Mxt1 + g + bKMxtK = etM.
�

(10-37)

There are M equations and M endogenous variables, denoted y1, c, yM. There are K 
exogenous variables, x1, c, xK, that may include predetermined values of y1, c, yM 
as well.24 The first element of xt will usually be the constant, 1. Finally, et1, c, etM are 
the structural disturbances. The subscript t will be used to index observations, 
t = 1, c, T.

In matrix terms, the system may be written

[y1 y2 g yM]t D g11 g12 g g1M

g21 g22 g g2M

f
gM1 gM2 g gMM

T
+ [x1 x2 g xK]t D b11 b12 g b1M

b21 b22 g b2M

f
bK1 bK2 g bKM

T = [e1 e2 g eM]t,

or

yt
=� + xt

=B = Et
=.

Each column of the parameter matrices is the vector of coefficients in a particular 
equation. The underlying theory will imply a number of restrictions on � and B. One of 
the variables in each equation is labeled the dependent variable so that its coefficient 
in the model will be 1. Thus, there will be at least one “1” in each column of �. This 
normalization is not a substantive restriction. The relationship defined for a given 
equation will be unchanged if every coefficient in the equation is multiplied by the same 
constant. Choosing a dependent variable simply removes this indeterminacy. If there are 
any identities, then the corresponding columns of � and B will be completely known, 
and there will be no disturbance for that equation. Because not all variables appear in 
all equations, some of the parameters will be zero. The theory may also impose other 
types of restrictions on the parameter matrices.

If � is an upper triangular matrix, then the system is said to be a triangular system. 
In this case, the model is of the form

23We will be restricting our attention to linear models. Nonlinear systems bring forth numerous complications that 
are beyond the scope of this text. Gallant (1987), Gallant and Holly (1980), Gallant and White (1988), Davidson 
and MacKinnon (2004), and Wooldridge (2010) provide further discussion.
24For the present, it is convenient to ignore the special nature of lagged endogenous variables and treat them the 
same as strictly exogenous variables.
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yt1 = f1(xt) + et1,
yt2 = f2(yt1,xt) + et2,

f
ytM = fM(yt1, yt2, c, yt,M - 1, xt) + etM.

The joint determination of the variables is a recursive model. The first is completely 
determined by the exogenous factors. Then, given the first, the second is likewise 
determined, and so on.

The solution of the system of equations that determines yt in terms of xt and Et is 
the reduced form of the model,

 yt
= = [x1 x2 g xK]t D p11 p12 g p1M

p21 p22 g p2M

f
pK1 pK2 g pKM

T + [v1 g vM]t

 = -xt
=B�-1 + Et

=�-1

 = xt
=� + vt

=.

For this solution to exist, the model must satisfy the completeness condition for 
simultaneous equations systems: � must be nonsingular.

Example 10.5    Structure and Reduced Form in a Small Macroeconomic 
Model

Consider the model

 consumption: ct = a0 + a1yt + a2ct - 1 + et,c,

 investment: it = b0 + b1rt + b2(yt - yt - 1) + et,i,

 demand: yt = ct + it + gt.

The model contains an autoregressive consumption function based on output, yt, and one 
lagged value, an investment equation based on interest, rt, and the growth in output, and an 
equilibrium condition. The model determines the values of the three endogenous variables 
ct, it, and yt. This model is a dynamic model. In addition to the exogenous variables rt and 
government spending, gt, it contains two predetermined variables, ct - 1 and yt - 1. These are 
obviously not exogenous, but with regard to the current values of the endogenous variables, 
they may be regarded as having already been determined. The deciding factor is whether or 
not they are uncorrelated with the current disturbances, which we might assume. The reduced 
form of this model is

 ct = [a0(1 - b2) + b0a1 + a1b1rt + a1gt + a2(1 - b2)ct - 1 - a1b2yt - 1 + (1 - b2)et,c + a1et,i]/Λ,

 it = [a0b2 + b0(1 - a1) + b1(1 - a1)rt + b2gt + a2b2ct -1 - b2(1 - a1)yt -1 + b2et,c + (1 - a1)et,i]/Λ,

 yt = [a0 + b0 + b1rt + gt + a2ct - 1 - b2yt - 1 + et,c + et,i]/Λ,

where Λ = 1 - a1 - b2. The completeness condition is that a1 + b2 not equal one. 
Note that the reduced form preserves the equilibrium condition, yt = ct + it + gt. Denote 
y′ = [c, i, y], x′ = [1, r, g, c-1, y-1] and
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� = C 1 0 -1
0 1 -1

-a1 -b2 1
S , B = E -a0 -b0 0

0 -b1 0
0 0 -1

-a2 0 0
0 b2 0

U , �-1 =
1
Λ

 C1 - b2 b2 1
a1 1 - a1 1
a1 b2 1

S .

Then, the reduced form coefficient matrix is

�′ =
1
Λ

 Ca0(1 - b2) + b0a1 a1b1 a1 a2(1 - b2) -b2a1

a0b2 + b0(1 - a1) b1(1 - a1) b2 a2b2 -b2(1 - a1)
a0 + b0 b1 1 a2 -b2

S .

There is an ambiguity in the interpretation of coefficients in a simultaneous equations model. 
The effects in the structural form of the model would be labeled “causal,” in that they are 
derived directly from the underlying theory. However, in order to trace through the effects 
of autonomous changes in the variables in the model, it is necessary to work through the 
reduced form. For example, the interest rate does not appear in the consumption function. But 
that does not imply that changes in rt would not “cause” changes in consumption, because 
changes in rt change investment, which impacts demand which, in turn, does appear in 
the consumption function. Thus, we can see from the reduced form that ∆ct/∆rt = a1b1/Λ. 
Similarly, the “experiment,” ∆ct/∆yt is meaningless without first determining what caused 
the change in yt. If the change were induced by a change in the interest rate, we would find 
(∆ct/∆rt)/(∆yt/∆rt) = (a1b1/Λ)/(b1/Λ) = a1.

The structural disturbances are assumed to be randomly drawn from an M-variate 
distribution with

E[Et � xt] = 0 and E[EtEt
= � xt] = �.

For the present, we assume that

E[EtEs
= � xt, xs] = 0, 5t, s.

It will occasionally be useful to assume that Et has a multivariate normal distribution, 
but we shall postpone this assumption until it becomes necessary. It may be convenient 
to retain the identities without disturbances as separate equations. If so, then one way 
to proceed with the stochastic specification is to place rows and columns of zeros in the 
appropriate places in �. It follows that the reduced-form disturbances, vt

= = Et
=�-1, have

 E[vt � xt] = (�-1)′0 = 0,

 E[vtvt
= � xt] = (�-1)′��-1 = �.

This implies that

� = �′��.

The preceding formulation describes the model as it applies to an observation [y′, x′, E′]t 
at a particular point in time or in a cross section. In a sample of data, each joint 
observation will be one row in a data matrix,
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[Y X E] = D y1
= x1

= E1
=

y2
= x2

= E2
=

f
yT
= xT

= ET
=

T .

In terms of the full set of T observations, the structure is

Y� + XB = E,

with

E[E � X] = 0 and E[(1/T)E′E � X] = �.

Under general conditions, we can strengthen this to plim[(1/T)E′E] = �. For 
convenience in what follows, we will denote a statistic consistently estimating a quantity, 
such as this one, with

(1/T)E′E S �.

An important assumption is

	 (1/T)X′X S Q, a finite positive definite matrix.	 (10-38)

We also assume that

	 (1/T)X′E S 0.� (10-39)

This assumption is what distinguishes the predetermined variables from the endogenous 
variables. The reduced form is

Y = X� + V, where V = E�-1.

Combining the earlier results, we have

	
1
T

 CY′
X′
V′

S [Y X V] S C�′Q� + � �′Q �
Q� Q 0′
� 0 �

S .	 (10-40)

10.4.3    THE IDENTIFICATION PROBLEM

Solving the identification problem precedes estimation. We have in hand a certain 
amount of information to use for inference about the underlying structure consisting 
of the sample data and theoretical restrictions on the model such as what variables do 
and do not appear in each of the equations. The issue is whether the information is 
sufficient to produce estimates of the parameters of the specified model. The case of 
measurement error that we examined in Section 8.5 is about identification. The sample 
regression coefficient, b, converges to a function of two underlying parameters, b and 
su

2; b = x′y/x′x S b/[1 + su
2/Q], where (x′x/T) S Q. With no further information 

about su
2, we cannot infer a unique b from the sample information, b and Q—there are 

different pairs of b and su
2 that are consistent with the same information (b,Q). If there 

were some nonsample information available, such as Q = su
2, then there would be a 

unique solution for b, in particular, b S b/2.
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Identification is a theoretical exercise. It arises in all econometric settings in which 
the parameters of a model are to be deduced from the combination of sample information 
and nonsample (theoretical) information. The crucial issue is whether it is possible to 
deduce the values of structural parameters uniquely from the sample information and 
nonsample information provided by theory, mainly restrictions on parameter values. 
The issue of identification is the subject of a lengthy literature including Working (1927), 
Bekker and Wansbeek (2001), and continuing through the contemporary discussion of 
natural experiments [Section 8.8 and Angrist and Pischke (2010), with commentary], 
instrumental variable estimation in general, and “identification strategies.”

The structural model consists of the equation system

y′� + x′B = E′.

Each column in � and B are the parameters of a specific equation in the system. The 
information consists of the sample information, (Y, X), and other nonsample information 
in the form of restrictions on parameter matrices. The sample data provide sample 
moments, X′X/T, X′Y/T, and Y′Y/T. For purposes of identification, suppose we could 
observe as large a sample as desired. Then, based on our sample information, we could 
observe [from (10-40)]

(1/T)X′X S Q,
(1/T)X′Y = (1/T)X′(X� + V) S Q�,
(1/T)Y′Y = (1/T)(X� + V)′(X� + V) S �′Q� + �.

Therefore, �, the matrix of reduced-form coefficients, is observable

[(1/T)X′X]-1[(1/T)X′Y] S �.

This estimator is simply the equation-by-equation least squares regression of Y on X. 
Because � is observable, � is also,

[(1/T)Y′Y] - [(1/T)Y′X][(1/T)X′X]-1[(1/T)X′Y] S �.

This result is the matrix of least squares residual variances and covariances. Therefore,

� and � can be estimated consistently by least squares regression of Y on X.

The information in hand, therefore, consists of �, �, and whatever other nonsample 
information we have about the structure. The question is whether we can deduce 
(�, B, �) from (�, �). A simple counting exercise immediately reveals that the answer 
is no—there are M2 parameters in �, M(M + 1)/2 in � and KM in B, to be deduced. 
The sample data contain KM elements in � and M(M + 1)/2 elements in �. By simply 
counting equations and unknowns, we find that our data are insufficient by M2 pieces 
of information. We have (in principle) used the sample information already, so these 
M2 additional restrictions are going to be provided by the theory of the model. The 
M2 additional restrictions come in the form of normalizations—one coefficient in each 
equation equals one—most commonly exclusion restrictions, which set coefficients 
to zero and other relationships among the parameters, such as linear relationships, or 
specific values attached to coefficients. In some instances, restrictions on �, such as 
assuming that certain disturbances are uncorrelated, will provide additional information. 
A small example will help fix ideas.
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Example 10.6    Identification of a Supply and Demand Model
Consider a market in which q is quantity of Q, p is price, and z is the price of Z, a related good. 
We assume that z enters both the supply and demand equations. For example, Z might be 
a crop that is purchased by consumers and that will be grown by farmers instead of Q if its 
price rises enough relative to p. Thus, we would expect a2 7 0 and b2 6 0. So,

 qd = a0 + a1p + a2z + ed  (demand),

 qs = b0 + b1p + b2z + es  (supply),

 qd = qs = q      (equilibrium).

The reduced form is

 q =
a1b0 - a0b1

a1 - b1
+

a1b2 - a2b1

a1 - b1
 z +

a1es - b1ed

a1 - b1
= p11 + p21z + nq,

 p =
b0 - a0

a1 - b1
+

b2 - a2

a1 - b1
 z +

es - ed

a1 - b1
 = p12 + p22z + np.

With only four reduced-form coefficients and six structural parameters, that there will not 
be a complete solution for all six structural parameters in terms of the four reduced form 
parameters. This model is unidentified. There is insufficient information in the sample and the 
theory to deduce the structural parameters.

Suppose, though, that it is known that b2 = 0 (farmers do not substitute the alternative 
crop for this one). Then the solution for b1 is p21/p22. After a bit of manipulation, we also obtain 
b0 = p11 - p12p21/p22. The exclusion restriction identifies the supply parameters; b2 = 0 
excludes z from the supply equation. But this step is as far as we can go. With this restriction, 
the model becomes partially identified. Some, but not all, of the parameters can be estimated.

Now, suppose that income x, rather than z, appears in the demand equation. The revised 
model is

 q = a0 + a1p + a2x + e1,

 q = b0 + b1p + b2z + e2.

Note that one variable is now excluded from each equation. The structure is now

[q p]J 1 1
-a1 -b1

R + [1 x z]C -a0 -b0

-a2 0
0 -b2

S = [e1 e2].

The reduced form is

[q p] = [1 x z]C (a1b0 - a0b1) /Λ (b0 - a0) /Λ
-a2b1/Λ -a2 /Λ
a1b2 /Λ b2 /Λ

S + [n1 n2],

where Λ = (a1 - b1). The unique solutions for the structural parameters in terms of the 
reduced-form parameters are now

 a0 = p11 - p12¢p31

p32
≤,   b0 = p11 - p12¢p21

p22
≤,

 a1 =
p31

p32
,      b1 =

p21

p22
,

 a2 = p22¢p21

p22
-

p31

p32
≤,  b2 = p32¢p31

p32
-

p21

p22
≤.

M10_GREE1366_08_SE_C10.indd   355 2/24/17   12:52 PM



356	 Part II  ✦   Generalized Regression Model and Equation Systems

With this formulation, all of the parameters are identified. This is an example of an exactly 
identified model. An additional variation is worth a look. Suppose that a second variable, w 
(weather), appears in the supply equation,

 q = a0 + a1p + a2x + e1,

 q = b0 + b1p + b2z + b3w + e2.

You can easily verify that, the reduced form matrix is the same as the previous one, save 
for an additional row that contains [a1b3/Λ, b3/Λ]. This implies that there is now a second 
solution for a1, p41/p42. The two solutions, this and p31/p32, will be different. This model is 
overidentified. There is more information in the sample and theory than is needed to deduce 
the structural parameters.

Some equation systems are identified and others are not. The formal mathematical 
conditions under which an equation in a system is identified turns on two results known 
as the rank and order conditions. The order condition is a simple counting rule. It 
requires that the number of exogenous variables that appear elsewhere in the equation 
system must be at least as large as the number of endogenous variables in the equation. 
(Other specific restrictions on the parameters will be included in this count—note that 
an “exclusion restriction” is a type of linear restriction.) We used this rule when we 
constructed the IV estimator in Chapter 8. In that setting, we required our model to be 
at least identified by requiring that the number of instrumental variables not contained 
in X be at least as large as the number of endogenous variables. The correspondence 
of that single equation application with the condition defined here is that the rest 
of the equation system is the source of the instrumental variables. One simple order 
condition for identification of an equation system is that each equation contain “its own” 
exogenous variable that does not appear elsewhere in the system.

The order condition is necessary for identification; the rank condition is sufficient. 
The equation system in (10-37) in structural form is y′� = -x′B + E′. The reduced 
form is y′ = x′(-B �-1) + E′�-1 = x′� + v′. The way we are going to deduce the 
parameters in (�, B, �) is from the reduced form parameters (�, �). For the jth 
equation, the solution is contained in ��j = -Bj, where �j contains all the coefficients 
in the jth equation that multiply endogenous variables. One of these coefficients will 
equal one, usually some will equal zero, and the remainder are the nonzero coefficients 
on endogenous variables in the equation, Yj [these are denoted gj in (10-41) following]. 
Likewise, Bj contains the coefficients in equation j on all exogenous variables in the 
model—some of these will be zero and the remainder will multiply variables in Xj, 
the exogenous variables that appear in this equation [these are denoted Bj in (10-
41) following]. The empirical counterpart will be Pcj = bj, where P is the estimated 
reduced form, (X′X)-1X′Y, and cj and bj will be the estimates of the jth columns of � 
and B. The rank condition ensures that there is a solution to this set of equations. In 
practical terms, the rank condition is difficult to establish in large equation systems. 
Practitioners typically take it as a given. In small systems, such as the two-equation 
systems that dominate contemporary research, it is trivial, as we examine in the next 
example. We have already used the rank condition in Chapter 8, where it played a 
role in the relevance condition for instrumental variable estimation. In particular, 
note after the statement of the assumptions for instrumental variable estimation, we 
assumed plim(1/T)Z′X is a matrix with rank K. (This condition is often labeled the 
rank condition in contemporary applications. It not identical, but it is sufficient for the 
condition mentioned here.)
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Example 10.7    The Rank Condition and a Two-Equation Model
The following two-equation recursive model provides what is arguably the platform for much 
of contemporary econometric analysis. The main equation of interest is

y = gf + bx + e.

The variable f is endogenous (it is correlated with e.); x is exogenous (it is uncorrelated with e).  
The analyst has in hand an instrument for f, z. The instrument, z, is relevant, in that in the 
auxiliary equation,

f = lx + dz + w,

d is not zero. The exogeneity assumption is E[ez] = E[wz] = 0. Note that the source of the 
endogeneity of f is the assumed correlation of w and e. For purposes of the exercise, assume 
that E[xz] = 0 and the data satisfy x′z = 0—this actually loses no generality. In this two-
equation model, the second equation is already in reduced form; x and z are both exogenous. 
It follows that l and d are estimable by least squares. The estimating equations for (g, b) are

PG1 = Jx′x x′z
z′x z′z

R -1Jx′y x′f
z′y z′f

R ¢ 1
-g

≤ = Jx′y/x′x x′f/x′x
z′y/z′z z′f/z′z

R ¢ 1
-g

≤ = Bj = ¢b
0
≤.

The solutions are g = (z′y/z′f) and b = (x′y/x′x - (z′y/z′f)x′f/x′x). Because x′x cannot 
equal zero, the solution depends on (z′f/z′z) not equal to zero—formally that this part of the 
reduced form coefficient matrix have rank M = 1, which would be the rank condition. Note 
that the solution for g is the instrumental variable estimator, with z as instrument for f. (The 
simplicity of this solution turns on the assumption that x′z = 0. The algebra gets a bit more 
complicated without it, but the conclusion is the same.)

The rank condition is based on the exclusion restrictions in the model—whether the 
exclusion restrictions provide enough information to identify the coefficients in the jth equation. 
Formally, the idea can be developed thusly. With the jth equation written as in (10-41), we 
call Xj the included exogenous variables. The remaining excluded exogenous variables are 
denoted Xj*. The Mj variables Yj in (10-41) are the included endogenous variables. With this 

distinction, we can write the Mj reduced forms for Yj as �j = J �j

�j*
R . The rank condition (which 

we state without proof) is that the rank of the lower part of the Mj * (Kj + Kj*) matrix, �j, equal 
Mj. In the preceding example, in the first equation, Yj is f, Mj = 1, Xj is x, Xj* is z, and �j is 
estimated by the regression of f on x and z; �j is the coefficient on x and �j* is the coefficient 
on z. The rank condition we noted earlier is that what is estimated by z′f/z′z, which would 
correspond to �j* not equal zero, meaning that it has rank 1.

Casual statements of the rank condition based on an IV regression of a variable yiV 
on (Mj + Kj) endogenous and exogeneous variables in XiV, using Kj + Kj* exogenous and 
instrumental variables in ZiV (in the most familiar cases, Mj = Kj* = 1), state that the rank 
requirement is that (ZIV′XiV/T) be nonsingular. In the notation we are using here, ZiV would 
be X = (Xj, Xj*) and Xiv would be (Xj, Yj). This nonsingularity would correspond to full rank 
of plim(X′X/T) times plim[(X′X*/T,X′Yj/T)] because plim(X′X/T) = Q, which is nonsingular 
[see (10-40)]. The first Kj columns of this matrix are the last Kj columns of an identity matrix, 
which have rank Kj. The last Mj columns are estimates of Q�j, which we require to have rank 
Mj, so the requirement is that �j have rank Mj. But, if Kj* Ú Mj (the order condition), then all 
that is needed is rank(�j*) = Mj, so, in practical terms, the casual statement is correct. It is 
stronger than necessary; the formal mathematical condition is only that the lower half of the 
matrix must have rank Mj, but the practical result is much easier to visualize.

It is also easy to verify that the rank condition requires that the predictions of Yj using 
(Xj, Xj*)�j be linearly independent. Continuing this line of thinking, if we use 2SLS, the rank 
condition requires that the predicted values of the included endogenous variables not be 
collinear, which makes sense.
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10.4.4    SINGLE EQUATION ESTIMATION AND INFERENCE

For purposes of estimation and inference, we write the model in the way that the 
researcher would typically formulate it,

 yj = XjBj + YjGj + Ej

	  = ZjDj + Ej, 	
(10-41)

where yj is the “dependent variable” in the equation, Xj is the set of exogenous variables 
that appear in the jth equation—note that this is not all the variables in the model—and 
Zj = (Xj, Yj). The full set of exogenous variables in the model, including Xj and variables 
that appear elsewhere in the model (including a constant term if any equation includes 
one), is denoted X. For example, in the supply/demand model in Example 10.6, the full 
set of exogenous variables is X = (1, x, z), while XDemand = (1, x) and XSupply = (1, z). 
Finally, Yj is the endogenous variables that appear on the right-hand side of the jth 
equation. Once again, this is likely to be a subset of the endogenous variables in the full 
model. In Example 10.6, Yj = (price) in both cases.

There are two approaches to estimation and inference for simultaneous equations 
models. Limited information estimators are constructed for each equation individually. 
The approach is analogous to estimation of the seemingly unrelated regressions model 
in Section 10.2 by least squares, one equation at a time. Full information estimators 
are used to estimate all equations simultaneously. The counterpart for the seemingly 
unrelated regressions model is the feasible generalized least squares estimator 
discussed in Section 10.2.3. The major difference to be accommodated at this point is 
the endogeneity of Yj in (10-41).

The equation in (10-41) is precisely the model developed in Chapter 8. Least squares 
will generally be unsuitable as it is inconsistent due to the correlation between Yj and Ej. The 
usual approach will be two-stage least squares as developed in Sections 8.3.2 through 8.3.4. 
The only difference between the case considered here and that in Chapter 8 is the source of 
the instrumental variables. In our general model in Chapter 8, the source of the instruments 
remained somewhat ambiguous; the overall rule was “outside the model.” In this setting, 
the instruments come from elsewhere in the model—that is, “not in the jth equation.” For 
estimating the linear simultaneous equations model, the most common estimator is

 Dnj, 2 SLS = [Zn j
=Zn j]

-1Zn j
=yj

	  = [(Zj
=X)(X′X)-1(X′Zj)]-1(Zj

=X)(X′X)-1X′yj,	
(10-42)

where all columns of Zn j
= are obtained as predictions in a regression of the corresponding 

column of Zj on X. This equation also results in a useful simplification of the estimated 
asymptotic covariance matrix,

est.asy.Var[Dnj, 2 SLS] = snjj(Zn j
=Zn j)

-1.

It is important to note that sjj is estimated by

	 snjj =
(yj - ZjD

n

j)′(yj - ZjD
n

j)

T
,	 (10-43)

using the original data, not Zn j.
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Note the role of the order condition for identification in the two-stage least squares 
estimator. Formally, the order condition requires that the number of exogenous variables 
that appear elsewhere in the model (not in this equation) be at least as large as the 
number of endogenous variables that appear in this equation. The implication will be that 
we are going to predict Zj = (Xj, Yj) using X = (Xj, Xj*). In order for these predictions 
to be linearly independent, there must be at least as many variables used to compute the 
predictions as there are variables being predicted. Comparing (Xj, Yj) to (Xj, Xj*), we see 
that there must be at least as many variables in Xj* as there are in Yj, which is the order 
condition. The practical rule of thumb that every equation have at least one variable in 
it that does not appear in any other equation will guarantee this outcome.

Two-stage least squares is used nearly universally in estimation of linear simultaneous 
equation models—for precisely the reasons outlined in Chapter 8. However, some 
applications (and some theoretical treatments) have suggested that the limited 
information maximum likelihood (LIML) estimator based on the normal distribution 
may have better properties. The technique has also found recent use in the analysis of 
weak instruments. A result that emerges from the derivation is that the LIML estimator 
has the same asymptotic distribution as the 2SLS estimator, and the latter does not rely 
on an assumption of normality. This raises the question why one would use the LIML 
technique given the availability of the more robust (and computationally simpler) 
alternative. Small sample results are sparse, but they would favor 2SLS as well.25 One 
significant virtue of LIML is its invariance to the normalization of the equation. Consider 
an example in a system of equations,

y1 = y2g2 + y3g3 + x1b1 + x2b2 + e1.

An equivalent equation would be

 y2 = y1(1/g2) + y3(-g3/g2) + x1(-b1/g2) + x2(-b2/g2) + e1(-1/g2)

 = y1g
∼

1 + y3g
∼

3 + x1b
∼

1 + x2b
∼

2 + e∼1.

The parameters of the second equation can be manipulated to produce those of the first. 
But, as you can easily verify, the 2SLS estimator is not invariant to the normalization 
of the equation—2SLS would produce numerically different answers. LIML would give 
the same numerical solutions to both estimation problems suggested earlier. A second 
virtue is LIML’s better performance in the presence of weak instruments.

The LIML, or least variance ratio estimator, can be computed as follows.26

Let

	 Wj
0 = Ej

0=
Ej

0,	 (10-44)

where

Yj
0 = [yj, Yj],

and

	 Ej
0 = MjYj

0 = [I - Xj(Xj
=Xj)

-1Xj
=]Yj

0.	 (10-45)

25See Phillips (1983).
26The LIML estimator was derived by Anderson and Rubin (1949, 1950). [See, also, Johnston (1984).] The much 
simpler and equally efficient two-stage least squares estimator remains the estimator of choice.
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Each column of Ej
0 is a set of least squares residuals in the regression of the corresponding 

column of Yj
0 on Xj, that is, only the exogenous variables that appear in the jth equation. 

Thus, Wj
0 is the matrix of sums of squares and cross products of these residuals. Define

	 Wj
1 = Ej

1′Ej
1 = Yj

0′[I - X(X′X)-1X′]Yj
0.	 (10-46)

That is, Wj
1 is defined like Wj

0 except that the regressions are on all the x’s in the model, 
not just the ones in the jth equation. Let

	 l1 = smallest characteristic root of (Wj
1)-1Wj

0.	 (10-47)

This matrix is asymmetric, but all its roots are real and greater than or equal to 1. 
[Depending on the available software, it may be more convenient to obtain the identical 
smallest root of the symmetric matrix D = (Wj

1)-1/2Wj
0(Wj

1)-1/2.] Now partition Wj
0 into 

Wj
0 = Jwjj

0 wj
0′

wj
0 Wjj

0 R  corresponding to [yj, Yj], and partition Wj
1 likewise. Then, with these 

parts in hand,

Gn j, LimL = [Wjj
0 - l1Wjj

1]-1(wj
0 - l1wj

1)� (10-48)

and

Bnj, LimL = (Xj
=Xj)

-1Xj
=(yj - YjGn j, LimL).

Note that Bj is estimated by a simple least squares regression.[See (3-18).] The asymptotic 
covariance matrix for the LIML estimator is identical to that for the 2SLS estimator.

Example 10.8    Simultaneity in Health Production
Example 7.1 analyzed the incomes of a subsample of Riphahn, Wambach, and Million’s 
(2003) data on health outcomes in the German Socioeconomic Panel. Here we continue 
Example 10.4 and consider a Grossman (1972) style model for health and incomes. Our 
two-equation model is

 Health Satisfaction = a1 + g1 ln income + a2 Female + a3 Working + a4 Public + a5 Add On

+ a6 Age + eH,

 ln income = b1 + g2 Health Satisfaction + b2 Female + b3 Education + b4 Married

 + b5HHKids + b6Age + ei.

For purposes of this application, we avoid panel data considerations by examining only 
the 1994 wave (cross section) of the data, which contains 3,377 observations. The health 
outcome variable is Self Assessed Health Satisfaction (HSAT). Whether this variable actually 
corresponds to a commonly defined objective measure of health outcomes is debateable. We 
will treat it as such. Second, the variable is a scale variable, coded in this data set 0 to 10. 
[In more recent versions of the GSOEP data, and in the British (BHPS) and Australian (HILDA) 
counterparts, it is coded 0 to 4.] We would ordinarily treat such a variable as a discrete ordered 
outcome, as we do in Examples 18.14 and 18.15. We will treat it as if it were continuous in 
this example, and recognize that there is likely to be some distortion in the measured effects 
that we are interested in. Female, Working, Married, and HHkids are dummy variables, the 
last indicating whether there are children living in the household. Education and Age are in 
years. Public and AddOn are dummy variables that indicate whether the individual takes 
up the public health insurance and, if so, whether he or she also takes up the additional 
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AddOn insurance, which covers some additional costs. Table 10.7 presents OLS and 2SLS 
estimates of the parameters of the two-equation model. The differences are striking. In the 
health outcome equation, the OLS coefficient on ln income is quite large (0.42) and highly 
significant (t = 5.17). However, the effect almost doubles in the 2SLS results. The strong 
negative effect of having the public health insurance might make one wonder if the insurance 
takeup is endogenous in the same fashion as ln Income. (In the original study from which 
these data were borrowed, the authors were interested in whether takeup of the add on 
insurance had an impact on usage of the health care system (number of doctor visits). The 
2SLS estimates of the ln Income equation are also distinctive. Now, the extremely small effect 
of health estimated by OLS (0.020) becomes the dominant effect, with marital status, in the 
2SLS results.

Both equations are overidentified—each has three excluded exogenous variables. 
Regression of the 2SLS residuals from the HSAT equation on all seven exogenous variables 
(and the constant) gives an R2 of 0.0005916, so the chi-squared test of the overidentifying 
restrictions is 3,337(.0005916) = 1.998. With two degrees of freedom, the critical value is 
5.99, so the restrictions would not be rejected. For the ln Income equation, the R2 in the 
regression of the residuals on all of the exogenous variables is 0.000426, so the test statistic 
is 1.438, which is not significant. On this basis, we conclude that the specification of the 
model is adequate.

Health Equation ln Income Equation

OLS 2SLS LIML OLS 2SLS LIML

Constant 8.903 9.201 9.202 -1.817 -5.379 -5.506
(40.67) (30.31) (30.28) (30.81) (8.65) (8.46)

ln Income 0.418 0.710 0.712
(5.17) (3.20) (3.20)

Health 0.020 0.497 0.514
(5.83) (6.12) (6.04)

Female -0.211 -0.218 -0.218 -0.011 0.126 0.131
(2.76) (2.85) (2.85) (0.70) (2.78) (2.79)

Working 0.339 0.259 0.259
(3.76) (2.43) (2.43)

Public -0.472 -0.391 -0.391
(4.10) (3.05) (3.04)

Add On 0.204 0.140 0.139
(0.80) (0.54) (0.54)

Education 0.055 0.017 0.016
(17.00) (1.65) (1.46)

Married 0.352 0.263 0.260
(18.11) (5.08) (4.86)

Age -0.038 -0.039 -0.039 -0.002 0.017 0.018
(11.55) (11.60) (11.60) (2.58) (4.53) (4.51)

HHKids -0.062 -0.061 -0.061
(3.45) (1.32) (1.28)

TABLE 10.7  Estimated Health Production Model (absolute t ratios in parentheses)
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10.4.5    SYSTEM METHODS OF ESTIMATION

We may formulate the full system of equations as

	 D y1

y2

f
yM

T = DZ1 0 g 0
0 Z2 g 0
f f f f
0 0 g ZM

T D D1

D2

f
DM

T + D E1

E2

f
EM

T 	 (10-49)

or

y = ZD + E,

where

	 E[E � X] = 0, and E[EE′ � X] = � = � ⊗ I.	 (10-50)

[See (10-3).] The least squares estimator,

d = (Z′Z)-1Z′y,

is equation-by-equation ordinary least squares and is inconsistent. But even if ordinary 
least squares were consistent, we know from our results for the seemingly unrelated 
regressions model that it would be inefficient compared with an estimator that makes use 
of the cross-equation correlations of the disturbances. For the first issue, we turn once again 
to an IV estimator. For the second, as we did Section 10.2.1, we use a generalized least 
squares approach. Thus, assuming that the matrix of instrumental variables, W, satisfies 
the requirements for an IV estimator, a consistent though inefficient estimator would be

	 DniV = (W′Z)-1W′y.	 (10-51)

Analogous to the seemingly unrelated regressions model, a more efficient estimator 
would be based on the generalized least squares principle,

	 DniV, gLS = [W′(�-1 ⊗ I)Z]-1 W′(�-1 ⊗ I)y,	 (10-52)

or, where Wj is the set of instrumental variables for the jth equation,

DniV, gLS = D s11W1
=Z1 s12W1

=Z2 g s1MW1
=ZM

s21W2
=Z1 s22W2

=Z2 g s2MW2
=ZM

f
sM1WM

= Z1 sM2WM
= Z2 g sMMWM

= ZM

T -1D aM
n = 1s

1nW1
=yn

aM
n = 1s

2nW2
=yn

f

aM
n = 1s

MnWM
= yn

T .

Three IV techniques are generally used for joint estimation of the entire system of 
equations: three-stage least squares, GMM, and full information maximum likelihood 
(FIML). In the small minority of applications that use a system estimator, 3SLS is usually 
the estimator of choice. For dynamic models, GMM is sometimes preferred. The FIML 
estimator is generally of theoretical interest, as it brings no advantage over 3SLS, but is 
much more complicated to compute.

Consider the IV estimator formed from
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W = Zn = diag[X(X′X)-1X′Z1, c, X(X′X)-1X′ZM] = DZn 1 0 g 0
0 Zn 2 g 0
f f f f
0 0 g Zn M

T .

The IV estimator,

DniV = [Zn ′Z]-1Zn ′y,

is simply equation-by-equation 2SLS. We have already established the consistency of 
2SLS. By analogy to the seemingly unrelated regressions model of Section 10.2, however, 
we would expect this estimator to be less efficient than a GLS estimator. A natural 
candidate would be

Dn3SLS = [Zn =(�-1 ⊗ I)Z]-1Zn ′(�-1 ⊗ I)y.

For this estimator to be a valid IV estimator, we must establish that

plim 
1
T

 Zn ′(�-1 ⊗ I)E = 0,

which is M sets of equations, each one of the form

plim 
1
T a

M

j= 1
sijZn i

=Ej = 0.

Each is the sum of vectors, all of which converge to zero, as we saw in the development 
of the 2SLS estimator. The second requirement, that

plim 
1
T

 Zn ′(�-1 ⊗ I)Z ≠ 0,

and that the matrix be nonsingular, can be established along the lines of its counterpart 
for 2SLS. Identification of every equation by the rank condition is sufficient.

Once again, using the idempotency of I - M, we may also interpret this estimator 
as a GLS estimator of the form

	 Dn3SLS = [Zn ′(�-1 ⊗ I)Zn )-1Zn ′(�-1 ⊗ I)]y.	 (10-53)

The appropriate asymptotic covariance matrix for the estimator is

	 asy.Var[Dn3SLS] = (Z′(�-1 ⊗ I)Z)-1,	 (10-54)

where Z = diag[X�j, Xj]. This matrix would be estimated with the bracketed inverse 
matrix in (10-53).

Using sample data, we find that Z may be estimated with Zn . The remaining difficulty 
is to obtain an estimate of �. In estimation of the seemingly unrelated regressions model, 
for efficient estimation, any consistent estimator of � will do. The designers of the 3SLS 
method, Zellner and Theil (1962), suggest the natural choice arising out of the two-stage 
least estimates. The three-stage least squares (3SLS) estimator is thus defined as follows:

1.	 Estimate � by ordinary least squares and compute Ynm for each equation.
2.	 Compute Dnm, 2SLS for each equation; then
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	 snmn =
(ym - ZmD

n

m)(yn - ZnD
n

n)

T
.� (10-55)

3.	 Compute the GLS estimator according to (10-53) and an estimate of the asymptotic 
covariance matrix according to (10-54) using Zn  and �n .

By showing that the 3SLS estimator satisfies the requirements for an IV estimator, 
we have established its consistency. The question of asymptotic efficiency remains. It can 
be shown that of all IV estimators that use only the sample information embodied in the 
system, 3SLS is asymptotically efficient.

Example 10.9    Klein’s Model I
A widely used example of a simultaneous equations model of the economy is Klein’s (1950) 
Model I. The model may be written

 Ct = a0 + a1Pt + a2Pt - 1 + a3(Wt
p + Wt

g) + e1t  (consumption),

 it = b0 + b1Pt + b2Pt - 1 + b3Kt - 1   + e2t  (investment),

 Wt
p = g0 + g1Xt + g2Xt - 1 + g3At   + e3t  (private wages),

 Xt = Ct + it + Gt      (equilibrium demand),

 Pt = Xt - Tt - Wt
p      (private profits),

 Kt = Kt - 1 + it       (capital stock).

The endogenous variables are each on the left-hand side of an equation and are labeled on the 
right. The exogenous variables are Gt = government nonwage spending, Tt = indirect business 
taxes plus net exports, Wt

g = government wage bill, At = time trend measured as years from 
1931, and the constant term. There are also three predetermined variables: the lagged values 
of the capital stock, private profits, and total demand. The model contains three behavioral 
equations, an equilibrium condition, and two accounting identities. This model provides an 
excellent example of a small, dynamic model of the economy. It has also been widely used as a 
test ground for simultaneous equations estimators. Klein estimated the parameters using yearly 
aggregate data for the U.S. for 1921 to 1941. The data are listed in Appendix Table F10.3. Table 
10.8 presents limited and full information estimates for Klein’s Model I based on the original data.

It might seem, in light of the entire discussion, that one of the structural estimators 
described previously should always be preferred to ordinary least squares, which alone 
among the estimators considered here is inconsistent. Unfortunately, the issue is not so 
clear. First, it is often found that the OLS estimator is surprisingly close to the structural 
estimator. It can be shown that, at least in some cases, OLS has a smaller variance about 
its mean than does 2SLS about its mean, leading to the possibility that OLS might 
be more precise in a mean-squared-error sense. But this result must be tempered by 
the finding that the OLS standard errors are, in all likelihood, not useful for inference 
purposes. Obviously, this discussion is relevant only to finite samples. Asymptotically, 
2SLS must dominate OLS, and in a correctly specified model, any full information 
estimator (3SLS) must dominate any limited information one (2SLS). The finite sample 
properties are of crucial importance. Most of what we know is asymptotic properties, but 
most applications are based on rather small or moderately sized samples.

Although the system methods of estimation are asymptotically better, they have two 
problems. First, any specification error in the structure of the model will be propagated 
throughout the system by 3SLS. The limited information estimators will, by and large, 
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confine a problem to the particular equation in which it appears. Second, in the same 
fashion as the SUR model, the finite-sample variation of the estimated covariance 
matrix is transmitted throughout the system. Thus, the finite-sample variance of 3SLS 
may well be as large as or larger than that of 2SLS.27

10.5	 SUMMARY AND CONCLUSIONS

This chapter has surveyed the specification and estimation of multiple equations models. 
The SUR model is an application of the generalized regression model introduced in 
Chapter 9. The advantage of the SUR formulation is the rich variety of behavioral 
models that fit into this framework. We began with estimation and inference with the 
SUR model, treating it essentially as a generalized regression. The major difference 
between this set of results and the single-equation model in Chapter 9 is practical. While 
the SUR model is, in principle, a single equation GR model with an elaborate covariance 
structure, special problems arise when we explicitly recognize its intrinsic nature as a set 
of equations linked by their disturbances. The major result for estimation at this step is 
the feasible GLS estimator. In spite of its apparent complexity, we can estimate the SUR 
model by a straightforward two-step GLS approach that is similar to the one we used 
for models with heteroscedasticity in Chapter 9. We also extended the SUR model to 
autocorrelation and heteroscedasticity. Once again, the multiple equation nature of the 
model complicates these applications. Section 10.4 presented a common application of 
the seemingly unrelated regressions model, the estimation of demand systems. One of the 
signature features of this literature is the seamless transition from the theoretical models 
of optimization of consumers and producers to the sets of empirical demand equations 
derived from Roy’s identity for consumers and Shephard’s lemma for producers.

27See Cragg (1967) and the many related studies listed by Judge et al. (1985, pp. 646–653).

2SLS 3SLS

C 16.6 0.017 0.216 0.810 16.4 0.125 0.163 0.790
(1.32) (0.118) (0.107) (0.040) (1.30) (0.108) (0.100) (0.038)

I 20.3 0.150 0.616 -0.158 28.2 -0.013 0.756 -0.195
(7.54) (0.173) (0.162) (0.036) (6.79) (0.162) (0.153) (0.033)

WP 1.50 0.439 0.147 0.130 1.80 0.400 0.181 0.150

(1.15) (0.036) (0.039) (0.029) (1.12) (0.032) (0.034) (0.028)

LIML OLS

C 17.1 -0.222 0.396 0.823 16.2 0.193 0.090 0.796
(1.84) (0.202) (0.174) (0.055) (1.30) (0.091) (0.091) (0.040)

I 22.6 0.075 0.680 -0.168 10.1 0.480 0.333 -0.112
(9.24) (0.219) (0.203) (0.044) (5.47) (0.097) (0.101) (0.027)

WP 1.53 0.434 0.151 0.132 1.50 0.439 0.146 0.130

(2.40) (0.137) (0.135) (0.065) (1.27) (0.032) (0.037) (0.032)

TABLE 10.8  �Estimates of Klein’s Model I (Estimated asymptotic standard errors in 
parentheses)
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The multiple equations models surveyed in this chapter involve most of the issues 
that arise in analysis of linear equations in econometrics. Before one embarks on the 
process of estimation, it is necessary to establish that the sample data actually contain 
sufficient information to provide estimates of the parameters in question. This is the 
question of identification. Identification involves both the statistical properties of 
estimators and the role of theory in the specification of the model. Once identification 
is established, there are numerous methods of estimation. We considered three single-
equation techniques, least squares, instrumental variables, and maximum likelihood. 
Fully efficient use of the sample data will require joint estimation of all the equations in 
the system. Once again, there are several techniques-these are extensions of the single-
equation methods including three-stage least squares-and full information maximum 
likelihood. In both frameworks, this is one of those benign situations in which the 
computationally simplest estimator is generally the most efficient one.

Key Terms and Concepts

•	Behavioral equation
•	Cobb–Douglas model
•	Complete system of 

equations
•	Completeness condition
•	Constant returns to scale
•	Demand system
•	Dynamic model
•	Econometric model
•	Equilibrium condition
•	Exclusion restrictions
•	Exogenous
•	Flexible functional
•	Full information estimator
•	Full information maximum 

likelihood (FIML)
•	Generalized regression 

model
•	Homogeneity restriction
•	Identical explanatory 

variables

•	Identification
•	Instrumental variable 

estimator
•	Interdependent
•	Invariance
•	Jointly dependent
•	Kronecker product
•	Least variance ratio
•	Likelihood ratio test
•	Limited information 

estimator
•	Limited information 

maximum likelihood 
(LIML) estimator

•	Nonsample information
•	Normalization
•	Order condition
•	Pooled model
•	Predetermined variable
•	Problem of identification
•	Rank condition

•	Reduced form
•	Reduced-form disturbance
•	Restrictions
•	Seemingly unrelated 

regressions (SUR)
•	Share equations
•	Shephard’s lemma
•	Singular disturbance 

covariance matrix
•	Simultaneous equations 

bias
•	Structural disturbance
•	Structural equation
•	Structural form
•	Systems of demand 

equations
•	Three-stage least squares 

(3SLS) estimator
•	Translog function
•	Triangular system

Exercises

1.	 A sample of 100 observations produces the following sample data:

y1 = 1, y2 = 2, y1
=y1 = 150, y2

=y2 = 550, y1
=y2 = 260.

The underlying seemingly unrelated regressions model is

 y1 = m + e1,

 y2 = m + e2.
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a.	 Compute the OLS estimate of m, and estimate the sampling variance of this 
estimator.

b.	 Compute the FGLS estimate of m and the sampling variance of the estimator.
2.	 Consider estimation of the following two-equation model:

 y1 = b1 + e1,
 y2 = b2x + e2.

A sample of 50 observations produces the following moment matrix:

1  y1  y2 x

1
y1

y2

x

 D 50
150 500
50 40 90

100 60 50 100

T .

a.	 Write the explicit formula for the GLS estimator of [b1, b2]. What is the 
asymptotic covariance matrix of the estimator?

b.	 Derive the OLS estimator and its sampling variance in this model.
c.	 Obtain the OLS estimates of b1 and b2, and estimate the sampling covariance 

matrix of the two estimates. Use n instead of (n - 1) as the divisor to compute 
the estimates of the disturbance variances.

d.	 Compute the FGLS estimates of b1 and b2 and the estimated sampling covariance 
matrix.

e.	 Test the hypothesis that b2 = 1.
3.	 The model

 y1 = b1x1 + e1,
 y2 = b2x2 + e2

satisfies all the assumptions of the seemingly unrelated regressions model. All 
variables have zero means. The following sample second-moment matrix is obtained 
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2

 D20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

T .

a.	 Compute the FGLS estimates of b1 and b2.
b.	 Test the hypothesis that b1 = b2.
c.	 Compute the maximum likelihood estimates of the model parameters.
d.	 Use the likelihood ratio test to test the hypothesis in part b.

4.	 Prove that in the model

 y1 = X1B1 + E1,
 y2 = X2B2 + E2,

generalized least squares is equivalent to equation-by-equation ordinary least 
squares if X1 = X2. The general case is considered in Exercise 14.
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5.	 Consider the two-equation system

 y1 = b1x1 + e1,

 y2 = b2x2 + b3x3 + e2.

Assume that the disturbance variances and covariance are known. Now suppose 
that the analyst of this model applies GLS but erroneously omits x3 from the second 
equation. What effect does this specification error have on the consistency of the 
estimator of b1?

6.	 Consider the system

 y1 = a1 + bx + e1,

 y2 = a2 + e2.

The disturbances are freely correlated. Prove that GLS applied to the system leads 
to the OLS estimates of a1 and a2 but to a mixture of the least squares slopes in the 
regressions of y1 and y2 on x as the estimator of b. What is the mixture? To simplify 
the algebra, assume (with no loss of generality) that x = 0.

7.	 For the model

 y1 = a1 + bx + e1,

 y2 = a2 + e2,

 y3 = a3 + e3,

assume that yi2 + yi3 = 1 at every observation. Prove that the sample covariance 
matrix of the least squares residuals from the three equations will be singular, 
thereby precluding computation of the FGLS estimator. How could you proceed 
in this case?

8.	 Consider the following two-equation model:

 y1 = g1y2 + b11x1 + b21x2 + b31x3 + e1,

 y2 = g2y1 + b12x1 + b22x2 + b32x3 + e2.

a.	 Verify that, as stated, neither equation is identified.
b.	 Establish whether or not the following restrictions are sufficient to identify (or 

partially identify) the model:
(1)	 b21 = b32 = 0,
(2)	 b12 = b22 = 0,
(3)	 g1 = 0,
(4)	 g1 = g2 and b32 = 0,
(5)	 s12 = 0 and b31 = 0,
(6)	 g1 = 0 and s12 = 0,
(7)	 b21 + b22 = 1,
(8)	 s12 = 0, b21 = b22 = b31 = b32 = 0,
(9)	 s12 = 0, b11 = b21 = b22 = b31 = b32 = 0.
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9.	 Obtain the reduced form for the model in Exercise 8 under each of the assumptions 
made in parts a and in parts b(1) and b(9).

10.	 The following model is specified:

 y1 = g1y2 + b11x1 + e1,

 y2 = g2y1 + b22x2 + b32x3 + e2.

All variables are measured as deviations from their means. The sample of 25 
observations produces the following matrix of sums of squares and cross products:

 y1 y2 x1 x2 x3

 

y1

y2

x1

x2

x3

 E20 6 4 3 5
6 10 3 6 7
4 3 5 2 3
3 6 2 10 8
5 7 3 8 15

U .

a.	 Estimate the two equations by OLS.
b.	 Estimate the parameters of the two equations by 2SLS. Also estimate the 

asymptotic covariance matrix of the 2SLS estimates.
c.	 Obtain the LIML estimates of the parameters of the first equation.
d.	 Estimate the two equations by 3SLS.
e.	 Estimate the reduced form coefficient matrix by OLS and indirectly by using 

your structural estimates from part b.
11.	 For the model

 y1 = g1y2 + b11x1 + b21x2 + e1,

 y2 = g2y1 + b32x3 + b42x4 + e2

show that there are two restrictions on the reduced form coefficients. Describe a 
procedure for estimating the model while incorporating the restrictions.

12.	 Prove that

plim 
Ym

= Em

T
= Vm - �mmGm.

13.	 Prove that an underidentified equation cannot be estimated by 2SLS.
14.	 Prove the general result in point 2 in Section 10.2.2, if the X matrices in (10-1) 

are identical, then full GLS is equation-by-equation OLS. Hints: If all the Xm 
matrices are identical, then the inverse matrix in (10-10) is [�-1 ⊗ X′X]-1. Also, 
Xm′ym = X′ym = X′Xbm. Use these results to show that for the first equation,

Bn1 = a
M

n = 1
s1na

M

l= 1
snlbl = b1¢ a

M

n = 1
s1ns

n1≤ + b2¢ a
M

n = 1
s1ns

n2≤ + g

+ bM¢ a
M

n = 1
s1ns

nM≤,

and likewise for the others.
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Applications

Some of these applications will require econometric software for the computations. The 
calculations are standard, and are available as commands in, for example, Stata, SAS, 
E-Views or LIMDEP, or as existing programs in R.
1.	 Statewide aggregate production function. Continuing Example 10.1, data on output, 

the capital stocks, and employment are aggregated by summing the values for the 
individual states (before taking logarithms). The unemployment rate for each 
region, m, at time t is determined by a weighted average of the unemployment 
rates for the states in the region, where the weights are

wnt = empnt/aMm

j= 1 empjt,

where Mm is the number of states in region m. Then, the unemployment rate for 
region m at time t is the following average of the unemployment rates of the states 
(n) in region (m) at time t:

unempmt = Σjwnt(j)unempnt(j).

2.	 Continuing the analysis of Section 10.3.2, we find that a translog cost function for 
one output and three factor inputs that does not impose constant returns to scale is

 ln C = a + b1 ln p1 + b2 ln p2 + b3 ln p3 + d11 12 ln2 p1 + d12 ln p1 ln p2

 + d13 ln p1 ln p3 + d22 12 ln2 p2 + d23 ln p2 ln p3 + d33 12 ln2 p3

 + gq1 ln Q ln p1 + gq2 ln Q ln p2 + gq3 ln Q ln p3

 + bq ln Q + bqq 12 ln2 Q + ec.

The factor share equations are

 S1 = b1 + d11 ln p1 + d12 ln p2 + d13 ln p3 + gq1 ln Q + e1,

 S2 = b2 + d12 ln p1 + d22 ln p2 + d23 ln p3 + gq2 ln Q + e2,

 S3 = b3 + d13 ln p1 + d23 ln p2 + d33 ln p3 + gq3 ln Q + e3.

[See Christensen and Greene (1976) for analysis of this model.]
a.	 The three factor shares must add identically to 1. What restrictions does this 

requirement place on the model parameters?
b.	 Show how the adding-up condition in (10-33) can be imposed directly on the 

model by specifying the translog model in (C/p3), (p1/p3), and (p2/p3) and 
dropping the third share equation. (See Example 10.3.) Notice that this reduces 
the number of free parameters in the model to 10.

c.	 Continuing part b, the model as specified with the symmetry and equality 
restrictions has 15 parameters. By imposing the constraints, you reduce this 
number to 10 in the estimating equations. How would you obtain estimates of 
the parameters not estimated directly?

d.	 Estimate each of the three equations you obtained in part b by ordinary least 
squares. Do the estimates appear to satisfy the cross-equation equality and 
symmetry restrictions implied by the theory?
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e.	 Using the data in Section 10.3.1, estimate the full system of three equations (cost 
and the two independent shares), imposing the symmetry and cross-equation 
equality constraints.

f.	 Using your parameter estimates, compute the estimates of the elasticities in  
(10-34) at the means of the variables.

g.	 Use a likelihood ratio statistic to test the joint hypothesis that gqi = 0, i = 1, 2, 3. 
[Hint: Just drop the relevant variables from the model.]

3.	 The Grunfeld investment data in Appendix Table 10.4 constitute a classic data set 
that has been used for decades to develop and demonstrate estimators for seemingly 
unrelated regressions.28 Although somewhat dated at this juncture, they remain an 
ideal application of the techniques presented in this chapter. The data consist of 
time series of 20 yearly observations on 10 firms. The three variables are

Iit = gross investment,

Fit = market value of the firm at the end of the previous year,

Cit = value of the stock of plant and equipment at the end of the previous year.

The main equation in the studies noted is

Iit = b1 + b2Fit + b3Cit + eit.

a.	 Fit the 10 equations separately by ordinary least squares and report your results.
b.	 Use a Wald (Chow) test to test the “aggregation” restriction that the 10 coefficient 

vectors are the same.
c.	 Use the seemingly unrelated regressions (FGLS) estimator to reestimate the 

parameters of the model, once again, allowing the coefficients to differ across 
the 10 equations. Now, use the pooled model and, again, FGLS, to estimate the 
constrained equation with equal parameter vectors, and test the aggregation 
hypothesis.

d.	 Using the OLS residuals from the separate regressions, use the LM statistic in 
(10-17) to test for the presence of cross-equation correlation.

e.	 An alternative specification to the model in part c that focuses on the variances 
rather than the means is a groupwise heteroscedasticity model. For the current 
application, you can fit this model using (10-20), (10-21), and (10-22), while 
imposing the much simpler model with sij = 0 when i ≠ j. Do the results of 
the pooled model differ in the two cases considered, simple OLS and groupwise 
heteroscedasticity?

4.	 The data in Appendix Table F5.2 may be used to estimate a small macroeconomic 
model. Use these data to estimate the model in Example 10.5. Estimate the 
parameters of the two equations by two-stage and three-stage least squares.

5.	 Using the cost function estimates in Example 10.2, we obtained an estimate of 
the efficient scale, Q* = exp[(1 - bq)/(2bqq)]. We can use the delta method in 
Section 4.5.4 to compute an asymptotic standard error for the estimator of Q* 
and a confidence interval. The estimators of the two parameters are bq = 0.23860 
and bqq = 0.04506. The estimates of the asymptotic covariance matrix are 

28See Grunfeld (1958), Grunfeld and Griliches (1960), Boot and de Witt (1960), and Kleiber and Zeileis (2010).
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vq = 0.00344554, vqq = 0.0000258021, cq,qq = -0.000291067. Use these results to 
form a 95% confidence interval for Q*. (Hint: 0Q*/0bj = Q*0 ln Q*/0bj.)

6.	 Using the estimated health outcomes model in Example 10.8, determine the expected 
values of ln Income and Health Satisfaction for a person with the following characteristics: 
Female = 1, Working = 1, Public = 1, AddOn = 0, Education = 14, Married = 1,
HHKids = 1, Age = 35. Now, repeat the calculation with the same person but 
with Age = 36. Likewise, with Female = 0 (and Age = 35). Note, the sample range 
of Income is 0 – 3.0, with sample mean approximately 0.4. The income data are in 
10,000DM units (pre-Euro). In both cases, note how the health satisfaction outcome 
changes when the exogenous variable (Age or Female) changes (by one unit).
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