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13

MINIMUM DISTANCE ESTIMATION 
AND THE GENERALIZED METHOD 

OF MOMENTS

§
13.1 INTRODUCTION

The maximum likelihood estimator presented in Chapter 14 is fully efficient among 
consistent and asymptotically normally distributed estimators in the context of the 
specified parametric model. The possible shortcoming in this result is that to attain 
that efficiency, it is necessary to make possibly strong, restrictive assumptions about the 
distribution, or data-generating process. The generalized method of moments (GMM) 
estimators discussed in this chapter move away from parametric assumptions, toward 
estimators that are robust to some variations in the underlying data-generating process.

This chapter will present a number of fairly general results on parameter estimation. 
We begin with perhaps the oldest formalized theory of estimation, the classical theory 
of the method of moments. This body of results dates to the pioneering work of Fisher 
(1925). The use of sample moments as the building blocks of estimating equations is 
fundamental in econometrics. GMM is an extension of this technique that, as will be 
clear shortly, encompasses nearly all the familiar estimators discussed in this book. 
Section 13.2 will introduce the estimation framework with the method of moments. The 
technique of minimum distance estimation is developed in Section 13.3. Formalities of 
the GMM estimator are presented in Section 13.4. Section 13.5 discusses hypothesis 
testing based on moment equations. Major applications, including dynamic panel data 
models, are described in Section 13.6.

Example 13.1  Euler Equations and Life Cycle Consumption
One of the most often cited applications of the GMM principle for estimating econometric 
models is Hall’s (1978) permanent income model of consumption. The original form of the 
model (with some small changes in notation) posits a hypothesis about the optimizing behavior 
of a consumer over the life cycle. Consumers are hypothesized to act according to the model,

Maximize Et J a
T - t

t = 0
a 1

1 + d
b
t

U(ct + t) � �tR  subject to a
T - t

t = 0
a 1

1 + r
b
t

(ct + t - wt + t) = At.

The information available at time t is denoted �t so that Et denotes the expectation formed 
at time t based on the information set �t. The maximand is the expected discounted stream 
of future utility from consumption from time t until the end of life at time T. The individual’s 
subjective rate of time preference is b = 1/(1 + d). The real rate of interest, r Ú d, is assumed 
to be constant. The utility function U(ct) is assumed to be strictly concave and time separable 
(as shown in the model). One period’s consumption is ct. The intertemporal budget constraint 
states that the present discounted excess of ct over earnings, wt, over the lifetime equals 

M13_GREE1366_08_SE_C13.indd   488 2/24/17   1:18 PM



 CHAPTER 13  ✦  Minimum Distance Estimation and the Generalized Method of Moments 489

total assets At not including human capital. In this model, it is claimed that the only source 
of uncertainty is wt. No assumption is made about the stochastic properties of wt except that 
there exists an expected future earnings, Et[wt + t � �t]. Successive values are not assumed to 
be independent and wt is not assumed to be stationary.

Hall’s major theorem in the paper is the solution to the optimization problem, which states

Et[U′(ct + 1) � �t] =
1 + d

1 + r
 U′(ct).

For our purposes, the major conclusion of the paper is “Corollary 1,” which states, “No information 
available in time t apart from the level of consumption, ct, helps predict future consumption, ct + 1, 
in the sense of affecting the expected value of marginal utility. In particular, income or wealth 
in periods t or earlier are irrelevant once ct is known.” We can use this as the basis of a model 
that can be placed in the GMM framework. To proceed, it is necessary to assume a form of 
the utility function. A common (convenient) form of the utility function is U(ct) = ct

1 - a/(1 - a), 
which is monotonic, U′ = ct

-a 7 0 and concave, U″/U′ = -a/ct 6 0. Inserting this form into 
the solution, rearranging the terms, and reparameterizing it for convenience, we have

Et J (1 + r)a 1
1 + d

b ¢ct + 1

ct
≤-a

- 1 � �tR = Et[b(1 + r)Rt + 1
l - 1 � �t] = 0,

where Rt + 1 = ct + 1/ct and l = -a.
Hall assumed that r was constant over time. Other applications of this modeling framework 

modified the framework so as to involve a forecasted interest rate, rt + 1.1 How one proceeds 
from here depends on what is in the information set. The unconditional mean does not identify 
the two parameters. The corollary states that the only relevant information in the information 
set is ct. Given the form of the model, the more natural instrument might be Rt. This assumption 
exactly identifies the two parameters in the model,

Et J (b(1 + rt + 1)Rt + 1
l - 1)¢ 1

Rt
≤ R = J0

0
R .

As stated, the model has no testable implications. These two moment equations would 
exactly identify the two unknown parameters. Hall hypothesized several models involving 
income and consumption, which would overidentify and thus place restrictions on the model.

13.2 CONSISTENT ESTIMATION: THE METHOD OF MOMENTS

Sample statistics, such as the mean and variance, can be treated as simple descriptive 
measures. In our discussion of estimation in Appendix C, however, we argue that, in 
general, sample statistics each have a counterpart in the population, for example, the 
correspondence between the sample mean and the population expected value. The 
natural (perhaps obvious) next step in the analysis is to use this analogy to justify using 
the sample moments as estimators of these population parameters. What remains to 
establish is whether this approach is the best, or even a good way, to use the sample data 
to infer the characteristics of the population.

The basis of the method of moments is as follows: In random sampling, under 
generally benign assumptions, a sample statistic will converge in probability to some 
constant. For example, with i.i.d. random sampling, m2

= = (1/n)a n
i = 1yi

2 will converge in 
mean square to the variance plus the square of the mean of the random variable, y. This 

1For example, Hansen and Singleton (1982).
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490 PART III  ✦   Estimation Methodology

constant will, in turn, be a function of the unknown parameters of the distribution. To 
estimate K parameters, u1, c, uK, we can compute K such statistics, m1, c, mK, whose 
probability limits are known functions of the parameters. These K moments are equated 
to the K functions, and the functions are inverted to express the parameters as functions 
of the moments. The moments will be consistent by virtue of a law of large numbers 
(Theorems D.4–D.9). They will be asymptotically normally distributed by virtue of the 
Lindeberg–Levy central limit theorem (D.18). The derived parameter estimators will 
inherit consistency by virtue of the Slutsky theorem (D.12) and asymptotic normality by 
virtue of the delta method (Theorem D.21, sometimes called the law of propagated error).

This section will develop this technique in some detail, partly to present it in its own 
right and partly as a prelude to the discussion of the generalized method of moments, or 
GMM, estimation technique, which is treated in Section 13.4.

13.2.1  RANDOM SAMPLING AND ESTIMATING THE PARAMETERS OF DISTRIBUTIONS

Consider independent, identically distributed random sampling from a distribution 
f(y � u1, c uK) with finite moments up to E[y2K]. The random sample consists 
of n observations, y1, c, yn. The kth “raw” or uncentered moment is

mk
= =

1
n a

n

i = 1
yi

k.

By Theorem D.4,

E[mk
= ] = mk

= = E[yi
k],

and

Var[mk
= ] =

1
n

 Var[yi
k] =

1
n

 (m2k
= - mk

=2).

By convention, m1
= = E[yi] = m. By the Khinchine theorem, D.5,

plim mk
= = mk

= = E[yi
k].

Finally, by the Lindeberg–Levy central limit theorem,2n(mk
= - mk

= ) ¡d
N[0, m2k

= - mk
=2].

In general, mk
=  will be a function of the underlying parameters. By computing K 

raw moments and equating them to these functions, we obtain K equations that can (in 
principle) be solved to provide estimates of the K unknown parameters.

Example 13.2  Method of Moments Estimator for N[M, S2]
In random sampling from N[m, s2], 

plim 
1
n a

n

i = 1
 yi = plim m1

= = E[y] = m, 

and 

plim 
1
n a

n

i = 1
 yi

2 = plim m2
= = Var[y] + m2 = s2 + m2. 

Equating the right- and left-hand sides of the probability limits gives moment estimators 

mn = m1
= = y, 

and 
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sn 2 = m2
= - m1

′2 = a1
n a

n

i = 1
yi

2b - a1
n a

n

i = 1
yib

2

=
1
n a

n

i = 1
(yi - y)2. 

Note that sn 2 is biased, although both estimators are consistent.

Although the moments based on powers of y provide a natural source of information 
about the parameters, other functions of the data may also be useful. Let mk( # ) be a 
continuous and differentiable function not involving the sample size n, and let

mk =
1
n a

n

i = 1
mk(yi), k = 1, 2, c, K.

These are also moments of the data. It follows from Theorem D.4 and the corollary, 
(D-5), that

plim mk = E[mk(yi)] = mk(u1, c, uK).

We assume that mk( # ) involves some or all of the parameters of the distribution. With 
K parameters to be estimated, the K moment equations,

m1 - m1(u1, c, uK) = 0,
m2 - m2(u1, c, uK) = 0,

g
mK - mK(u1, c, uK) = 0,

provide K equations in K unknowns, u1, c, uK. If the equations are continuous and 
functionally independent, then method of moments estimators can be obtained by 
solving the system of equations for

unk = unk[m1, c, mK].

As suggested, there may be more than one set of moments that one can use for estimating 
the parameters, or there may be more moment equations available than are necessary.

Example 13.3  Inverse Gaussian (Wald) Distribution
The inverse Gaussian distribution is used to model survival times, or elapsed times, from 
some beginning time until some kind of transition takes place. The standard form of the 
density for this random variable is

f(y) = A l

2py3 expJ -
l(y - m)2

2m2y
R , y 7 0, l 7 0, m 7 0.

The mean is m while the variance is m3/l. The efficient maximum likelihood estimators of 
the two parameters are based on (1/n)a n

i = 1yi and (1/n)a n
i = 1(1/yi). Because the mean and 

variance are simple functions of the underlying parameters, we can also use the sample mean 
and sample variance as moment estimators of these functions. Thus, an alternative pair of 
method of moments estimators for the parameters of the Wald distribution can be based on 
(1/n)a n

i = 1yi and (1/n)a n
i = 1yi

2. The precise formulas for this pair of moment estimators are 
left as an exercise.

Example 13.4  Mixture of Normal Distributions
Quandt and Ramsey (1978) analyzed the problem of estimating the parameters of a mixture 
of two normal distributions. Suppose that each observation in a random sample is drawn 
from one of two different normal distributions. The probability that the observation is drawn 
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492 PART III  ✦   Estimation Methodology

from the first distribution, N[m1, s1
2], is l and the probability that it is drawn from the second is 

(1 - l). The density for the observed y is f(y) = l N[m1, s1
 2] + (1 - l)N[m2, s2

 2], 0 6 l 6 1. 
Inserting the definitions gives

f(y) =
l

(2ps1
2)1/2  e-1/2[(y - m1)/s1]2 +

1 - l

(2ps2
2)1/2  e-1/2[(y - m2)/s2]2.

Before proceeding, we note that this density is precisely the same as the finite mixture model 
described in Section 14.15.1. Maximum likelihood estimation of the model using the method 
described there would be simpler than the method of moment generating functions developed 
here.

The sample mean and second through fifth central moments,

mk =
1
n a

n

i = 1
(yi - y)k, k = 2, 3, 4, 5,

provide five equations in five unknowns that can be solved (via a ninth-order polynomial) for 
consistent estimators of the five parameters. Because y converges in probability to E[yi] = m, 
the theorems given earlier for mk

=  as an estimator of mk
=  apply as well to mk as an estimator of

mk = E[(yi - m)k].

For the mixed normal distribution, the mean and variance are

m = E[y] = lm1 + (1 - l)m2

and

s2 = Var[y] = ls1
2 + (1 - l)s2

2 + 2l(1 - l)(m1 - m2)2,

which suggests how complicated the familiar method of moments is likely to become. An 
alternative method of estimation proposed by the authors is based on

E[ety] = letm1 + t2s1
2/2 + (1 - l)etm2 + t2s2/2

2 = Λt,

where t is any value not necessarily an integer. Quandt and Ramsey (1978) suggest choosing 
five values of t that are not too close together and using the statistics

Mt =
1
n a

n

i = 1
etyi

to estimate the parameters. The moment equations are Mt - Λt(m1, m2, s1
2, s2

2, l) = 0. They 
label this procedure the method of moment generating functions. (See Section B.6 for the 
definition of the moment generating function.)

In most cases, method of moments estimators are not efficient. The exception is in 
random sampling from exponential families of distributions.

DEFINITION 13.1 Exponential Family
An exponential (parametric) family of distributions is one whose log-likelihood 
is of the form

ln L(U � data) = a(data) + b(U) + a
K

k = 1
ck(data)sk(U),

where a( # ), b( # ), ck( # ), and sk( # ) are functions. The members of the “family” 
are distinguished by the different parameter values. The normal distribution and 
the Wald distribution in Example 13.3 are examples.
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 CHAPTER 13  ✦  Minimum Distance Estimation and the Generalized Method of Moments 493

If the log-likelihood function is of this form, then the functions ck( # ) are called 
sufficient statistics.2 When sufficient statistics exist, method of moments estimator(s) can 
be functions of them. In this case, the method of moments estimators will also be the 
maximum likelihood estimators, so, of course, they will be efficient, at least asymptotically. 
We emphasize, in this case, the probability distribution is fully specified. Because the 
normal distribution is an exponential family with sufficient statistics m1

=  and m2
= , the 

estimators  described in Example 13.2 are fully efficient. (They are the maximum 
likelihood estimators.) The mixed normal distribution is not an exponential family. We 
leave it as an exercise to show that the Wald distribution in Example 13.3 is an exponential 
family. You should be able to show that the sufficient statistics are the ones that are 
suggested in Example 13.3 as the bases for the MLEs of m and l.

Example 13.5  Gamma Distribution
The gamma distribution (see Section B.4.5) is

f(y) =
l p

Γ(P)
 e-lyyP - 1, y Ú 0, P 7 0, l 7 0.

The log-likelihood function for this distribution is

1
n

 ln L = [P ln l - ln Γ(P)] - l 
1
n a

n

i = 1
yi + (P - 1) 

1
n a

n

i = 1
 ln yi.

This function is an exponential family with a(data) = 0, b(U) = n[P ln l - ln Γ(P)] and two 
sufficient statistics, 1

n a n
i = 1yi and 1

n a n
i = 1 ln yi. The method of moments estimators based 

on 1n a n
i = 1yi and 1n a n

i = 1 ln yi would be the maximum likelihood estimators. But we also have

plim 
1
n a

n

i = 1
D yi

yi
2

ln yi

1/yi

T = D P/l
P(P + 1)/l2

Ψ(P) - ln l
l/(P - 1)

T .

(The functions Γ(P) and Ψ(P) = d ln Γ(P)/dP are discussed in Section E.2.3.) Any two of these 
can be used to estimate l and P.

For the income data in Example C.1, the four moments listed earlier are

(m1
= , m2

= , m*
= , m -1

= ) =
1
n a

n

i = 1
(yi, y i

2, ln yi,1/ yi) = (31.278, 1453.96, 3.22139, 0.050014).

The method of moments estimators of U = (P, l) based on the six possible pairs of these 
moments are as follows:

(Pn, ln) = D  m1
= m2

= m-1
=

m2
= 2.05682, 0.065759

m-1
= 2.77198, 0.0886239 2.60905, 0.080475

m*
= 2.4106, 0.0770702 2.26450, 0.071304 3.03580, 0.1018202

T .

The maximum likelihood estimates are Un(m1
= , m*

= ) = (2.4106, 0.0770702).

13.2.2  ASYMPTOTIC PROPERTIES OF THE METHOD OF MOMENTS ESTIMATOR

In a few cases, we can obtain the exact distribution of the method of moments estimator. 
For example, in sampling from the normal distribution, mn  has mean m and variance 

2Stuart and Ord (1989, pp. 1–29) give a discussion of sufficient statistics and exponential families of distributions. 
A result that we will use in Chapter 17 is that if the statistics, ck(data), are sufficient statistics, then the conditional 
density, f [y1, c, yn � ck(data), k = 1, c, K], is not a function of the parameters.
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494 PART III  ✦   Estimation Methodology

s2/n and is normally distributed, while sn 2 has mean [(n - 1)/n]s2 and variance 
[(n - 1)/n]22s4/(n - 1) and is exactly distributed as a multiple of a chi-squared variate 
with (n - 1) degrees of freedom. If sampling is not from the normal distribution, the 
exact variance of the sample mean will still be Var[y]/n, whereas an asymptotic variance 
for the moment estimator of the population variance could be based on the leading term 
in (D-27), in Example D.10, but the precise distribution may be intractable.

There are cases in which no explicit expression is available for the variance of 
the underlying sample moment. For instance, in Example 13.4, the underlying sample 
statistic is

Mt =
1
n a

n

i = 1
etyi =

1
n a

n

i = 1
Mit.

The exact variance of Mt is known only if t is an integer. But if sampling is random, and 
if Mt is a sample mean, we can estimate its variance with 1/n times the sample variance 
of the observations on Mit. We can also construct an estimator of the covariance of Mt 
and Ms with

Est.Asy.Cov[Mt, Ms] =
1
n

 b 1
n a

n

i = 1
[(etyi - Mt)(esyi - Ms)] r .

In general, when the moments are computed as

mn,k =
1
n a

n

i = 1
mk(yi), k = 1, c, K,

where yi is an observation on a vector of variables, an appropriate estimator of the 
asymptotic covariance matrix of mn = [mn, 1, c, mn,k] can be computed using

1
n

 Fjk =
1
n

 b 1
n a

n

i = 1
[(mj(yi) - mj)(mk(yi) - mk)] r , j, k = 1, c, K.

(One might divide the inner sum by n - 1 rather than n. Asymptotically it is the same.) 
This estimator provides the asymptotic covariance matrix for the moments used in 
computing the estimated parameters. Under the assumption of i.i.d. random sampling 
from a distribution with finite moments, F will converge in probability to the appropriate 
covariance matrix of the normalized vector of moments, � = Asy.Var[2n  m n(U)]. 
Finally, under our assumptions of random sampling, although the precise distribution is 
likely to be unknown, we can appeal to the Lindeberg–Levy central limit theorem (D.18) 
to obtain an asymptotic approximation.

To formalize the remainder of this derivation, refer back to the moment equations, 
which we will now write as

mn,k(u1, u2, c, uK) = 0, k = 1, c, K.

The subscript n indicates the dependence on a data set of n observations. We have also 
combined the sample statistic (sum) and function of parameters, m(u1, c, uK) in this 
general form of the moment equation. Let Gn(U) be the K * K matrix whose kth row 
is the vector of partial derivatives,

Gn,k
= =

0mn,k

0U′
.
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Now, expand the set of solved moment equations around the true values of the 
parameters U0 in a linear Taylor series. The linear approximation is

0 ≈ [mn(U0)] + Gn
= (U0)(Un - U0).

Therefore,

 2n(Un - U0) ≈ -[Gn(U0)]-12n[mn(U0)]. (13-1)

(We have treated this as an approximation because we are not dealing formally with 
the higher-order term in the Taylor series. We will make this explicit in the treatment 
of the GMM estimator in Section 13.4.) The argument needed to characterize the 
large sample behavior of the estimator, Un, is discussed in Appendix D. We have from 
Theorem D.18 (the central limit theorem) that 2n mn(U0) has a limiting normal 
distribution with mean vector 0 and covariance matrix equal to �. Assuming that the 
functions in the moment equation are continuous and functionally independent, we can 
expect Gn(U0) to converge to a nonsingular matrix of constants, Γ(U0). Under general 
conditions, the limiting distribution of the right-hand side of (13-1) will be that of a 
linear function of a normally distributed vector. Jumping to the conclusion, we expect 
the asymptotic distribution of Un to be normal with mean vector U0 and covariance matrix 
(1/n) * {-[�(U0)]-1}�{-[�′(U0)]-1}. Thus, the asymptotic covariance matrix for the 
method of moments estimator may be estimated with

Est.Asy.Var[Un] =
1
n

 [Gn
= (Un)F-1Gn(Un)]-1.

Example 13.5  (Continued)
Using the estimates Un(m1

= , m*
= ) = (2.4106, 0.0770702),

GQ
n

= J -1/ ln Pn/ ln2

-Ψn ′ 1/ ln
R = J -12.97515 405.8353

-0.51241 12.97515
R .

[The function Ψ′(P) is d2 ln Γ(P)/dP2 = (ΓΓ″ - Γ′)/Γ2. With Pn = 2.4106, Γn = 1.250832,
Ψn = 0.658347, and Ψn ′ = 0.512408].3 The matrix F is the sample covariance matrix of y and 
ln y (using 19 as the divisor),

F = J500.68 14.31
14.31 0.47746

R .

The product is

1
n

 [Gn ′F-1Gn ]-1 = J 0.38978 0.014605
0.014605 0.00068747

R .

For the maximum likelihood estimator, the estimate of the asymptotic covariance matrix 
based on the expected (and actual) Hessian is

[-H]-1 =
1
n

 JΨ′ -1/l
-1/l P/l2 R -1

= J0.51243 0.01638
0.01638 0.00064654

R .

The Hessian has the same elements as G because we chose to use the sufficient statistics 
for the moment estimators, so the moment equations that we differentiated are, apart from 

3Ψ′ is the trigamma function. Values for Γ(P), Ψ(P), and Ψ′(P) are tabulated in Abramovitz and Stegun (1971). 
The values given were obtained using the IMSL computer program library.
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496 PART III  ✦   Estimation Methodology

a sign change, also the derivatives of the log-likelihood. The estimates of the two variances 
are 0.51203 and 0.00064654, respectively, which agrees reasonably well with the method 
of moments estimates. The difference would be due to sampling variability in a finite sample 
and the presence of F in the first variance estimator.

13.2.3  SUMMARY—THE METHOD OF MOMENTS

In the simplest cases, the method of moments is robust to differences in the specification 
of the data-generating process (DGP). A sample mean or variance estimates its population 
counterpart (assuming it exists), regardless of the underlying process. It is this freedom from 
unnecessary distributional assumptions that has made this method so popular in recent years. 
However, this comes at a cost. If more is known about the DGP, its specific distribution for 
example, then the method of moments may not make use of all of the available information. 
Thus, in Example 13.3, the natural estimators of the parameters of the distribution based on 
the sample mean and variance turn out to be inefficient. The method of maximum likelihood, 
which remains the foundation of much work in econometrics, is an alternative approach 
which utilizes this out of sample information and is, therefore, more efficient.

13.3 MINIMUM DISTANCE ESTIMATION

The preceding analysis has considered exactly identified cases. In each example, there were 
K parameters to estimate and we used K moments to estimate them. In Example 13.5, we 
examined the gamma distribution, a two-parameter family, and considered different pairs 
of moments that could be used to estimate the two parameters. The most efficient estimator 
for the parameters of this distribution will be based on (1/n)Σiyi and (1/n)Σi ln yi. This 
does raise a general question: How should we proceed if we have more moments than we 
need? It would seem counterproductive to simply discard the additional information. In 
this case, logically, the sample information provides more than one estimate of the model 
parameters, and it is now necessary to reconcile those competing estimators.

We have encountered this situation in several earlier examples: In Example 11.23, 
in Passmore et al.’s (2005) study of Fannie Mae, we have four independent estimators 
of a single parameter, an j, each with estimated asymptotic variance Vn j, j = 1, c, 4. The 
estimators were combined using a criterion function,

minimize with respect to a : q = a
4

j = i

(an j - a)2

Vn j

.

The solution to this minimization problem is a minimum distance estimator,

an MDE = a
4

j = 1
wjan j, wj =

1/Vn j

a 4
s = 1(1/Vn s)

, j = 1, c, 4 and a
4

j = 1
wj = 1.

In forming the two-stage least squares estimator of the parameters in a dynamic 
panel data model in Section 11.10.3, we obtained T - 2 instrumental variable estimators 
of the parameter vector U by forming different instruments for each period for which we 
had sufficient data. The T - 2 estimators of the same parameter vector are UnIV(t). The 
Arellano–Bond estimator of the single parameter vector in this setting is

 UnIV = ¢ aT
t = 3

W(t)≤-1¢ aT
t = 3

W(t)U
n

IV(t)≤ = a
T

t = 3
R(t)U

n

IV(t),
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where

W(t) = ¢X∼n (t)
= X∼n (t)≤, R(t) = ¢ aT

t = 3
W(t)≤-1

W(t) and a
T

t = 3
R(t) = I.

Finally, Carey’s (1997) analysis of hospital costs that we examined in Example 11.13 
involved a seemingly unrelated regressions model that produced multiple estimates of 
several of the model parameters. We will revisit this application in Example 13.6.

A minimum distance estimator (MDE) is defined as follows: Let mn,l denote a 
sample statistic based on n observations such that

plim mn,l = gl(U0), l = 1, c, L,

where U0 is a vector of K … L parameters to be estimated. Arrange these moments and 
functions in L * 1 vectors mn and g(U0) and further assume that the statistics are jointly 
asymptotically normally distributed with plim mn = g(U) and Asy.Var[mn] = (1/n)�. 
Define the criterion function

q = [mn - g(U)]′W[mn - g(U)]

for a positive definite weighting matrix, W. The minimum distance estimator is the 
UnMDE that minimizes q. Different choices of W will produce different estimators, but 
the estimator has the following properties for any W:

Proofs may be found in Malinvaud (1970) and Amemiya (1985). For our purposes, we 
note that the MDE is an extension of the method of moments presented in the preceding 
section. One implication is that the estimator is consistent for any W, but the asymptotic 
covariance matrix is a function of W. This suggests that the choice of W might be made 
with an eye toward the size of the covariance matrix and that there might be an optimal 
choice. That does, indeed, turn out to be the case. For minimum distance estimation, the 
weighting matrix that produces the smallest variance is

 optimal weighting matrix: W* = [Asy.Var.2n{mn - g(U)}]-1 = �-1.

THEOREM 13.1 Asymptotic Distribution of the Minimum Distance 
Estimator
Under the assumption that 2n[mn - g(U0)] ¡d

N[0, �], the asymptotic 
 properties of the minimum distance estimator are as follows:

plim UnMDE = U0,

Asy.Var[UMDE] =
1
n

 [�(U0)′W�(U0)]-1[�(U0)′W�W�(U0)][�(U0)′W�(U0)]-1 =
1
n

 V,

where

�(U0) = plim G(UnMDE) = plim 
0g(UnMDE)

0UnMDE
=

,

and

UnMDE ¡a
N cU0, 

1
n

 V d .
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[See Hansen (1982) for discussion.] With this choice of W,

Asy.Var[UnMDE] =
1
n

 [�(U0)′�-1�(U0)]-1,

which is the result we had earlier for the method of moments estimator.
The solution to the MDE estimation problem is found by locating the UnMDE such that

0 q

0UnMDE

= -G(UnMDE)′W[mn - g(UnMDE)] = 0.

An important aspect of the MDE arises in the exactly identified case. If K equals L, 
and if the functions gl(U) are functionally independent, that is, G(U) has full row rank, 
K, then it is possible to solve the moment equations exactly. That is, the minimization 
problem becomes one of simply solving the K moment equations, mn,l = gl(U0) in the K 
unknowns, UnMDE. This is the method of moments estimator examined in the preceding 
section. In this instance, the weighting matrix, W, is irrelevant to the solution, because 
the MDE will now satisfy the moment equations

[mn - g(UnMDE)] = 0.

For the examples listed earlier, which are all for overidentified cases, the minimum 
distance estimators are defined by

q = ((an 1 - a)(an 2 - a)(an 3 - a)(an 4 - a))DVn1 0 0 0
0 Vn2 0 0
0 0 Vn3 0
0 0 0 Vn4

T -1§ (an 1 - a)
(an 2 - a)
(an 3 - a)
(an 4 - a)

¥
for Passmore’s analysis of Fannie Mae, and

q = ((bIV(3) - U) c(bIV(T) - U))′C (X∼n (3)
= X∼n (3)

= ) c 0
f f f
0 c (X∼n (T)

= X∼n (T))
S -1£ (bIV(3) - U)

f
(bIV(T) - U)

≥
for the Arellano–Bond estimator of the dynamic panel data model.

Example 13.6  Minimum Distance Estimation of a Hospital Cost Function
In Carey’s (1997) study of hospital costs in Example 11.13, Chamberlain’s (1984) seemingly 
unrelated regressions (SUR) approach to a panel data model produces five period-specific 
estimates of a parameter vector, Ut. Some of the parameters are specific to the year while 
others (it is hypothesized) are common to all five years. There are two specific parameters of 
interest, bD and bO, that are allowed to vary by year, but are each estimated multiple times by 
the SUR model. We focus on just these parameters. The model states

yit = ai + Ait + bD,t DISit + bO,t OUTit + eit,

where

ai = Bi + ΣtgD,t DISit + ΣtgO,t OUTit + ui, t = 1987, c, 1991.

DISit is patient discharges, and OUTit is outpatient visits. (We are changing Carey’s notation 
slightly and suppressing parts of the model that are extraneous to the development here. 
The terms Ait and Bi contain those additional components.) The preceding model is 
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estimated by inserting the expression for ai in the main equation, then fitting an unrestricted 
seemingly unrelated regressions model by FGLS. There are five years of data, hence five 
sets of estimates. Note, however, with respect to the discharge variable, DIS, although 
each equation provides separate estimates of (gD,1, c, (bD,t + gD,t), c, gD,5), a total of 
five parameter estimates in each equation (year), there are only 10, not 25 parameters to be 
estimated in total. The parameters on OUTit are likewise overidentified. Table 13.1 reproduces 
the estimates in Table 11.7 for the discharge coefficients and adds the estimates for the 
outpatient variable.

Coefficient on Variable in the Equation

Equation DIS87 DIS88 DIS89 DIS90 DIS91

SUR87 bD,87 + gD,87 gD,88 gD,89 gD,90 gD,91

1.76 0.116 -0.0881 0.0570 -0.0617
SUR88 gD,87 bD,88 + gD,88 gD,89 gD,90 gD,91

0.254 1.61 -0.0934 0.0610 -0.0514
SUR89 gD,87 gD,88 bD,89 + gD,89 gD,90 gD,91

0.217 0.0846 1.51 0.0454 -0.0253
SUR90 gD,87 gD,88 gD,89 bD,90 + gD,90 gD,91

0.179 0.0822 0.0295 1.57 0.0244
SUR91 gD,87 gD,88 gD,89 gD,90 bD,91 + gD,91

0.153 0.0363 -0.0422 0.0813 1.70
MDE b = 1.50 b = 1.58 b = 1.54 b = 1.57 b = 1.63

g = 0.219 g = 0.0666 g = -0.0539 g = 0.0690 g = -0.0213

TABLE 13.1a Coefficient Estimates for DIS in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation OUT87 OUT88 OUT89 OUT90 OUT91

SUR87 bO,87 + gD,87 gO,88 gO,89 gO,90 gO,91

0.0139 0.00292 0.00157 0.000951 0.000678
SUR88 gO,87 bO,88 + gO,88 gO,89 gO,90 gO,91

0.00347 0.0125 0.00501 0.00550 0.00503
SUR89 gO,87 gO,88 bO,89 + gO,89 gO,90 gO,91

0.00118 0.00159 0.00832 -0.00220 -0.00156
SUR90 gO,87 gO,88 gO,89 bO,90 + gO,90 gO,91

-0.00226 -0.00155 0.000401 0.00897 0.000450
SUR91 gO,87 gO,88 gO,89 gO,90 bO,91 + gO,91

0.00278 0.00255 0.00233 0.00305 0.0105
MDE b = 0.0112 b = 0.00999 b = 0.0100 b = 0.00915 b = 0.00793

g = 0.00177 g = 0.00408 g = -0.00011 g = -0.00073 g = 0.00267

TABLE 13.1b Coefficient Estimates for OUT in SUR Model for Hospital Costs
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Looking at the tables we see that the SUR model provides four direct estimates of gD,87, 
based on the 1988–1991 equations. It also implicitly provides four estimates of bD,87 because 
any of the four estimates of gD,87 from the last four equations can be subtracted from the 
coefficient on DIS in the 1987 equation to estimate bD,87. There are 50 parameter estimates 
of different functions of the 20 underlying parameters,

u = (bD,87, c, bD,91), (gD,87, c, gD,91), (bO,87, c, bO,91), (gO,87, c, gO,91),

and, therefore, 30 constraints to impose in finding a common, restricted estimator. An MDE 
was used to reconcile the competing estimators.

Let Bnt denote the 10 * 1 period-specific estimator of the model parameters. Unlike the 
other cases we have examined, the individual estimates here are not uncorrelated. In the SUR 
model, the estimated asymptotic covariance matrix is the partitioned matrix given in (10-7). 
For the estimators of two equations,

Est.Asy.Cov[Bnt, Bns] = the t, s block of Dsn 11X1
=X1 sn 12X1

=X2 c sn 15X1
=X5

sn 21X2
=X1 sn 22X2

=X2 c sn 25X2
=X5

f f f f
sn 51X5

=X1 sn 52X5
=X2 c sn 55X5

=X5

T -1

= Vn ts ,

where sn ts is the t,s element of �n -1. (We are extracting a submatrix of the relevant matrices 
here because Carey’s SUR model contained 26 other variables in each equation in addition 
to the five periods of DIS and OUT). The 50 * 50 weighting matrix for the MDE is

W = EVn87,87 Vn87,88 Vn87,89 Vn87,90 Vn87,91

Vn88,87 Vn88,88 Vn88,89 Vn88,90 Vn88,91

Vn89,87 Vn89,88 Vn89,89 Vn89,90 Vn89,91

Vn90,87 Vn90,88 Vn90,89 Vn90,90 Vn90,91

Vn91,87 Vn91,88 Vn91,89 Vn91,90 Vn91,91

U -1

= [Vn ts].

The vector of the quadratic form is a stack of five 10 * 1 vectors; the first is

mn,87 - g87(U)

= J {bnD,87
87 - (bD,87 + gD,87)}, {bnD,88

87 - gD,88}, {bnD,89
87 - gD,89}, {bnD,90

87 - gD,90}, {bnD,91
87 - gD,90},

{bnO,87
87 - (bO,87 + gO,87)}, {bnO,88

87 - gO,88}, {bnO,89
87 - gO,89}, {bnO,90

87 - gO,90}, {bnO,91
87 - gO,90}

R =

for the 1987 equation and likewise for the other four equations. The MDE criterion function 
for this model is

q = a
1991

t = 1987
a

1991

s = 1987
[mt - gt(U)]=Vn ts[ms - gs(U)].

Note there are 50 estimated parameters from the SUR equations (those are listed in Table 13.1) 
and 20 unknown parameters to be calibrated in the criterion function. The reported minimum 
distance estimates are shown in the last row of each table.

13.4 THE GENERALIZED METHOD OF MOMENTS (GMM) ESTIMATOR

A large proportion of the recent empirical work in econometrics, particularly in 
macroeconomics and finance, has employed GMM estimators. As we shall see, this broad 
class of estimators, in fact, includes most of the estimators discussed elsewhere in this book.
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The GMM estimation technique is an extension of the minimum distance estimator 
described in Section 13.3.4 In the following, we will extend the generalized method of 
moments to other models beyond the generalized linear regression, and we will fill in 
some gaps in the derivation in Section 13.2.

13.4.1  ESTIMATION BASED ON ORTHOGONALITY CONDITIONS

Consider the least squares estimator of the parameters in the classical linear regression 
model. An important assumption of the model is

E[xiei] = E[xi(yi - xi
=B)] = 0.

The sample analog is

1
n a

n

i = 1
xieni =

1
n a

n

i = 1
xi(yi - xi

=Bn) = 0.

The estimator of B is the one that satisfies these moment equations, which are just the 
normal equations for the least squares estimator. So we see that the OLS estimator is a 
method of moments estimator.

For the instrumental variables estimator of Chapter 8, we relied on a large sample 
analog to the moment condition,

plim a 1
n a

n

i = 1
zieib = plim a 1

n a
n

i = 1
zi(yi - xi

=B)b = 0.

We resolved the problem of having more instruments than parameters by solving the 
equations

a 1
n

 X′Zb a 1
n

 Z′Zb
-1

a 1
n

 Z′En b =
1
n

 Xn ′En =
1
n a

n

i = 1
xnieni = 0,

where the columns of Xn  are the fitted values in regressions on all the columns of Z (that 
is, the projections of these columns of X into the column space of Z). (See Section 8.3.4 
for further details.)

The nonlinear least squares estimator was defined similarly, although in this case 
the normal equations are more complicated because the estimator is only implicit. The 
population orthogonality condition for the nonlinear regression model is E[xi

0ei] = 0. 
The empirical moment equation is

1
n a

n

i = 1
¢ 0E[yi � xi, B]

0B
≤(yi - E[yi � xi, B]) = 0.

Maximum likelihood estimators are obtained by equating the derivatives of a  
log-likelihood to zero. The scaled log-likelihood function is

1
n

 ln L =
1
n a

n

i = 1
 ln f(yi � xi, U),

4Formal presentation of the results required for this analysis are given by Hansen (1982); Hansen and Singleton 
(1988); Chamberlain (1987); Cumby, Huizinga, and Obstfeld (1983); Newey (1984, 1985a,b); Davidson and 
MacKinnon (1993); and Newey and McFadden (1994). Useful summaries of GMM estimation are provided 
by Pagan and Wickens (1989) and Matyas (1999). An application of some of these techniques that contains 
useful summaries is Pagan and Vella (1989). Some further discussion can be found in Davidson and MacKinnon 
(2004). Ruud (2000) provides many of the theoretical details. Hayashi (2000) is another extensive treatment of 
estimation centered on GMM estimators.
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where f( # ) is the density function and U is the parameter vector. For densities that satisfy 
the regularity conditions [see Section 14.4.1],

EJ 0 ln f(yi � xi, U)

0U
R = 0.

The maximum likelihood estimator is obtained by equating the sample analog to zero:

1
n

 
0 ln L

0Un
=

1
n a

n

i = 1

0 ln f(yi � xi, Un)

0Un
= 0.

(Dividing by n to make this result comparable to our earlier ones does not change the 
solution.) The upshot is that nearly all the estimators we have discussed and will encounter 
later can be construed as method of moments estimators. [Manski’s (1992) treatment of 
analog estimation provides some interesting extensions and methodological discourse.]

As we extend this line of reasoning, it will emerge that most of the estimators 
defined in this book can be viewed as generalized method of moments estimators.

13.4.2  GENERALIZING THE METHOD OF MOMENTS

The preceding examples all have a common aspect. In each case listed, save for the 
general case of the instrumental variable estimator, there are exactly as many moment 
equations as there are parameters to be estimated. Thus, each of these are exactly 
identified cases. There will be a single solution to the moment equations, and at that 
solution, the equations will be exactly satisfied.5 But there are cases in which there are 
more moment equations than parameters, so the system is overdetermined.

In Example 13.5, we defined four sample moments,

g =
1
n a

n

i = 1
Jyi, yi

2, 
1
yi

, ln yiR ,

with probability limits P/l, P(P + 1)/l2, l/(P - 1), and c(P) - ln l, respectively. Any 
pair could be used to estimate the two parameters, but as shown in the earlier example, 
the six pairs produce six somewhat different estimates of U = (P, l).

In such a case, to use all the information in the sample it is necessary to devise a way 
to reconcile the conflicting estimates that may emerge from the overdetermined system. 
More generally, suppose that the model involves K parameters, U = (u1, u2, c, uK)′, 
and that the theory provides a set of L 7 K moment conditions,

E[ml(yi, xi, zi, U)] = E[mil(U)] = 0,

where yi, xi, and zi are variables that appear in the model and the subscript i on mil(U) 
indicates the dependence on (yi, xi, zi). Denote the corresponding sample means as

ml(y, X, Z, U) =
1
n a

n

i = 1
ml(yi, xi, zi, U) =

1
n a

n

i = 1
mil(U).

Unless the equations are functionally dependent, the system of L equations in K 
unknown parameters,

ml(U) =
1
n a

n

i = 1
ml(yi, xi, zi, U) = 0, l = 1, c, L,

5That is, of course if there is any solution. In the regression model with multicollinearity, there are K parameters 
but fewer than K independent moment equations.
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will not have a unique solution.6 For convenience, the moment equations are defined 
implicitly here as opposed to equalities of moments to functions as in Section 13.3. It 
will be necessary to reconcile the (K

L) different sets of estimates that can be produced. 
One possibility is to minimize a criterion function, such as the sum of squares,7

 q = a
L

l = 1
ml

2 = m(U)′m(U). (13-2)

It can be shown that under the assumptions we have made so far, specifically that plim 
m(U) = E[m(U)] = 0, the minimizer of q in (13-2) produces a consistent, though 
possibly inefficient, estimator of U.8 We can use as the criterion a weighted sum of 
squares,

q = m(U)′Wn m(U),

where Wn is any positive definite matrix that may depend on the data but is not a 
function of U, such as I in (13-2), to produce a consistent estimator of U.9 For example, 
we might use a diagonal matrix of weights if some information were available about the 
importance (by some measure) of the different moments. We do make the additional 
assumption that plim Wn = a positive definite matrix, W.

By the same logic that makes generalized least squares preferable to ordinary 
least squares, it should be beneficial to use a weighted criterion in which the weights 
are inversely proportional to the variances of the moments. Let W be a diagonal 
matrix whose diagonal elements are the reciprocals of the variances of the individual 
moments,

wll =
1

Asy.Var[2nml]
=

1
fll

.

(We have written it in this form to emphasize that the right-hand side involves the 
variance of a sample mean which is of order (1/n).) Then, a weighted least squares 
estimator would minimize

 q = m(U)′�-1m(U). (13-3)

In general, the L elements of m are freely correlated. In (13-3), we have used a diagonal W 
that ignores this correlation. To use generalized least squares, we would define the full 
matrix,

 W = {Asy.Var[2n m]}-1 = �-1. (13-4)

The estimators defined by choosing U to minimize

q = m(U)′Wn m(U)

6It may if L is greater than the sample size, n. We assume that L is strictly less than n.
7This approach is one that Quandt and Ramsey (1978) suggested for the problem in Example 13.4.
8See, for example, Hansen (1982).
9In principle, the weighting matrix can be a function of the parameters as well. See Hansen, Heaton, and Yaron 
(1996) for discussion. Whether this provides any benefit in terms of the asymptotic properties of the estimator 
seems unlikely. The one payoff the authors do note is that certain estimators become invariant to the sort of 
normalization that is discussed in Example 14.1. In practical terms, this is likely to be a consideration only in a 
fairly small class of cases.
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are minimum distance estimators as defined in Section 13.3. The general result is that if 
Wn is a positive definite matrix and if

plim m(U) = 0,

then the minimum distance (GMM) estimator of U is consistent.10 Because the OLS 
criterion in (13-2) uses I, this method produces a consistent estimator, as does the 
weighted least squares estimator and the full GLS estimator. What remains to be decided 
is the best W to use. Intuition might suggest (correctly) that the one defined in (13-4) 
would be optimal, once again based on the logic that motivates generalized least squares. 
This result is the now-celebrated one of Hansen (1982).

The asymptotic covariance matrix of this generalized method of moments (GMM) 
estimator is

 VGMM =
1
n

 [�′W�]-1 =
1
n

 [�′�-1�]-1, (13-5)

where � is the matrix of derivatives with jth row equal to

�j = plim 
0mj(U)

0U
,

and � = Asy.Var[2n m]. Finally, by virtue of the central limit theorem applied to the 
sample moments and the Slutsky theorem applied to this manipulation, we can expect 
the estimator to be asymptotically normally distributed. We will revisit the asymptotic 
properties of the estimator in Section 13.4.3.

Example 13.7  GMM Estimation of a Nonlinear Regression Model
In Example 7.6, we  examined a nonlinear regression model for income using the German 
Socioeconomic Panel Data set. The regression model was

Income = h(1, Age, Education, Female, G) + e,

where h(.) is an exponential function of the variables. In the example, we used several interaction 
terms. In this application, we will simplify the conditional mean function somewhat, and use

Income = exp(g1 + g2Age + g3Education + g4Female) + e,

which, for convenience, we will write yi = exp(xi
=G) + ei = mi + ei.11 The sample consists of 

the 1988 wave of the panel, less two observations for which Income equals zero. The resulting 
sample contains 4,481 observations. Descriptive statistics for the sample data are given in 
Table 7.2. We will first consider nonlinear least squares estimation of the parameters. The 
normal equations for nonlinear least squares will be

(1/n)Σ i[(yi - mi)mixi] = (1/n)Σ i[eimixi] = 0.

Note that the orthogonality condition involves the pseudoregressors, 0mi/0g = xi
0 = mixi. The 

implied population moment equation is E[ei(mixi)] = 0. Computation of the nonlinear least squares 
estimator is discussed in Section 7.2.8. The estimator of the asymptotic covariance matrix is

Est.Asy.Var[GnNLSQ] =
Σ i = 1

n (yi - mn i)2

(4,481 - 4)
 J a

4,481

i = 1
(mn ixi)(mn ixi)= R -1

, where mn i = exp(xi
=Gn ).

10In the most general cases, a number of other subtle conditions must be met so as to assert consistency and the 
other properties we discuss. For our purposes, the conditions given will suffice. Minimum distance estimators are 
discussed in Malinvaud (1970), Hansen (1982), and Amemiya (1985).
11We note that in this model, it is likely that Education is endogenous. It would be straightforward to accommodate 
that in the GMM estimator. However, for purposes of a straightforward numerical example, we will proceed 
assuming that Education is exogenous.
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A simple method of moments estimator might be constructed from the hypothesis that xi (not 
xi

0) is orthogonal to ei. Then,

E[eixi] = ED ei§ 1
Agei

Educationi

Femalei

¥ T = 0

implies four moment equations. The sample counterparts will be

mk(G) =
1
n a

n

i = 1
(yi - mi) xik =

1
n a

n

i = 1
eixik.

In order to compute the method of moments estimator, we will minimize the sum of squares,

m′(G) m(G) = a
4

k = 1
mk

2(G).

This is a nonlinear optimization problem that must be solved iteratively using the methods 
described in Section E.3.

With the first-step estimated parameters, Gn 0. in hand, the covariance matrix is estimated 
using (13-5).

 �n = b 1
4,481 a

4,481

i = 1
mi(Gn 0)mi

=(Gn 0) r = b 1
4,481 a

4,481

i = 1
(en i

0xi)(en i
0xi)′ r

 G = e 1
4,481 a

n

i = 1
xi(-mi

0xi)′ f .

The asymptotic covariance matrix for the MOM estimator is computed using (13-5),

Est.Asy.Var[GnMOM] =
1
n

 [G�n -1G′]-1.

Suppose we have in hand additional variables, Health Satisfaction and Marital Status, such 
that although the conditional mean function remains as given previously, we will use them to 
form a GMM estimator. This provides two additional moment equations,

EJei¢Health Satisfactioni

Marital Statusi
≤ R ,

for a total of six moment equations for estimating the four parameters. We constuct the 
generalized method of moments estimator as follows: The initial step is the same as before, 
except the sum of squared moments, m′(G)m(G), is summed over six rather than four terms. 
We then construct

� = b 1
4,481 a

4,481

i = 1
mi(Gn )mi

=(Gn) r = b 1
4,481 a

4,481

i = 1
(en izi)(en izi)′ r ,

where now zi in the second term is the six exogenous variables, rather than the original four 
(including the constant term). Thus, �n  is now a 6 * 6 moment matrix. The optimal weighting 
matrix for estimation (developed in the next section) is �n -1. The GMM estimator is computed 
by minimizing with respect to G

q = m′(G)�n -1m(G).

The asymptotic covariance matrix is computed using (13-5) as it was for the simple method 
of moments estimator.
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Table 13.2 presents four sets of estimates, nonlinear least squares, method of moments, 
first-step GMM, and GMM using the optimal weighting matrix. Two comparisons are noted. 
The method of moments produces slightly different results from the nonlinear least squares 
estimator. This is to be expected because they are different criteria. Judging by the standard 
errors, the GMM estimator seems to provide a very slight improvement over the nonlinear 
least squares and method of moments estimators. The conclusion, though, would seem to be 
that the two additional moments (variables) do not provide very much additional information 
for estimation of the parameters.

13.4.3  PROPERTIES OF THE GMM ESTIMATOR

We will now examine the properties of the GMM estimator in some detail. Because the 
GMM estimator includes other familiar estimators that we have already encountered, 
including least squares (linear and nonlinear) and instrumental variables, these results will 
extend to those cases. The discussion given here will only sketch the elements of the formal 
proofs. The assumptions we make here are somewhat narrower than a fully general treatment 
might allow, but they are broad enough to include the situations likely to arise in practice. 
More detailed and rigorous treatments may be found in, for example, Newey and McFadden 
(1994), White (2001), Hayashi (2000), Mittelhammer et al. (2000), or Davidson (2000).

The GMM estimator is based on the set of population orthogonality conditions,

E[mi(U0)] = 0,

where we denote the true parameter vector by U0. The subscript i on the term on the 
left-hand side indicates dependence on the observed data, (yi, xi, zi). Averaging this over 
the sample observations produces the sample moment equation

E[mn(U0)] = 0,
where

mn(U0) =
1
n a

n

i = 1
mi(U0).

This moment is a set of L equations involving the K parameters. We will assume that this 
expectation exists and that the sample counterpart converges to it. The definitions are 
cast in terms of the population parameters and are indexed by the sample size. To fix the 
ideas, consider, once again, the empirical moment equations that define the instrumental 
variable estimator for a linear or nonlinear regression model.

Estimate Nonlinear  
Least Squares

Method of  
Moments

First Step  
GMM

GMM

Constant -1.69331 -1.62969 -1.45551 -1.61192
(0.04408) (0.04214) (0.10102) (0.04163)

Age 0.00207 0.00178 -0.00028 0.00092
(0.00061) (0.00057) (0.00100) (0.00056)

Education 0.04792 0.04861 0.03731 0.04647
(0.00247) (0.00262) (0.00518) (0.00262)

Female -0.00658 0.00070 -0.02205 -0.01517
(0.01373) (0.01384) (0.01445) (0.01357)

TABLE 13.2 Nonlinear Regression Estimates (Standard errors in parentheses)
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Example 13.8  Empirical Moment Equation for Instrumental Variables
For the IV estimator in the linear or nonlinear regression model, we assume

E [mn(B)] = EJ1
n a

n

i = 1
zi[yi - h(xi, B)]R = 0.

There are L instrumental variables in zi and K parameters in B. This statement defines L 
moment equations, one for each instrumental variable.

We make the following assumptions about the model and these empirical moments:

The laws of large numbers that we examined in Appendix D accommodate cases 
of independent observations. Cases of dependent or correlated observations can be 
gathered under the Ergodic theorem (20.1). For this more general case, then, we would 
assume that the sequence of observations m(U) constitutes a jointly (L * 1) stationary 
and ergodic process.

The empirical moments are assumed to be continuous and continuously 
differentiable functions of the parameters. For our earlier example, this would mean 
that the conditional mean function, h(xi, B) is a continuous function of B (although not 
necessarily of xi). With continuity and differentiability, we will also be able to assume 
that the derivatives of the moments,

Gn(U0) =
0mn(U0)

0U0
= =

1
n a

n

i = 1

0mi,n(U0)

0U0
=

,

converge to a probability limit, say, plim Gn(U0) = G(U0). [See (13-1), (13-5), and 
Theorem 13.1.] For sets of independent observations, the continuity of the functions and 
the derivatives will allow us to invoke the Slutsky theorem to obtain this result. For the 
more general case of sequences of dependent observations, Theorem 20.2, Ergodicity of 
Functions, will provide a counterpart to the Slutsky theorem for time-series data. In sum, 
if the moments themselves obey a law of large numbers, then it is reasonable to assume 
that the derivatives do as well.

ASSUMpTION 13.1 Convergence of the Empirical Moments
The data-generating process is assumed to meet the conditions for a law of large 
numbers to apply, so that we may assume that the empirical moments converge in 
probability to their expectation. Appendix D lists several different laws of large 
numbers that increase in generality. What is required for this assumption is that

mn(U0) =
1
n a

n

i = 1
mi(U0) ¡p

0.

ASSUMpTION 13.2 Identification
For any n Ú K, if U1 and U2 are two different parameter vectors, then there exist 
data sets such that mn(U1) ≠ mn(U2). Formally, in Section 12.5.3, identification 
is defined to imply that the probability limit of the GMM criterion function is 
uniquely minimized at the true parameters, u0.
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Assumption 13.2 is a practical prescription for identification. More formal conditions 
are discussed in Section 12.5.3. We have examined two violations of this crucial 
assumption. In the linear regression model, one of the assumptions is full rank of the 
matrix of exogenous variables—the absence of multicollinearity in X. In our discussion 
of the maximum likelihood estimator, we will encounter a case (Example 14.1) in which 
a normalization is needed to identify the vector of parameters.12 Both of these cases are 
included in this assumption. The identification condition has three important 
implications:

1. Order condition. The number of moment conditions is at least as large as the number 
of parameters, L Ú K. This is necessary, but not sufficient, for identification.

2. Rank condition. The L * K matrix of derivatives, Gn(U0), will have row rank equal 
to K. (Again, note that the number of rows must equal or exceed the number of 
columns.)

3. Uniqueness. With the continuity assumption, the identification assumption implies 
that the parameter vector that satisfies the population moment condition is unique. 
We know that at the true parameter vector, plim mn(U0) = 0. If U1 is any parameter 
vector that satisfies this condition, then U1 must equal U0.

Assumptions 13.1 and 13.2 characterize the parameterization of the model. Together 
they establish that the parameter vector will be estimable. We now make the statistical 
assumption that will allow us to establish the properties of the GMM estimator.

The underlying requirements on the data for this assumption to hold will vary and will be 
complicated if the observations comprising the empirical moment are not independent. 
For samples of independent observations, we assume the conditions underlying the 
Lindeberg–Feller (D.19) or Liapounov central limit theorem (D.20) will suffice. For 
the more general case, it is once again necessary to make some assumptions about the 
data. We have assumed that E[mi(U0)] = 0. If we can go a step further and assume 
that the functions mi(U0) are an ergodic, stationary martingale difference sequence, 
E[mi(U0) � mi - 1(U0), mi - 2(U0) c] = 0, then we can invoke Theorem 20.3, the central 
limit theorem for the martingale difference series. It will generally be fairly complicated 
to verify this assumption for nonlinear models, so it will usually be assumed outright. On 
the other hand, the assumptions are likely to be fairly benign in a typical application. 
For regression models, the assumption takes the form

E[ziei � zi - 1ei - 1, c] = 0,

which will often be part of the central structure of the model.

12See Hansen et al. (1996) for discussion of this case.

ASSUMpTION 13.3 Asymptotic Distribution of Empirical Moments
We assume that the empirical moments obey a central limit theorem. This assumes 
that the moments have a finite asymptotic covariance matrix, (1/n)�, so that 2n mn(U0) ¡d

N[0, �].
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With the assumptions in place, we have

We will now sketch a proof of Theorem 13.2. The GMM estimator is obtained by 
minimizing the criterion function,

qn(U) = mn(U)′Wn mn(U),

where Wn is the weighting matrix used. Consistency of the estimator that minimizes 
this criterion can be established by the same logic that will be used for the maximum 
likelihood estimator. It must first be established that qn(U) converges to a value q0(U). 
By our assumptions of strict continuity and Assumption 13.1, qn(U0) converges to 0. 
(We could apply the Slutsky theorem to obtain this result.) We will assume that qn(U) 
converges to q0(U) for other points in the parameter space as well. Because Wn is positive 
definite, for any finite n, we know that

 0 … qn(UnGMM) … qn(U0). (13-7)

That is, in the finite sample, UnGMM actually minimizes the function, so the sample value of 
the criterion is not larger at UnGMM than at any other value, including the true parameters. 
But, at the true parameter values, qn(U0) ¡p

0. So, if (13-7) is true, then it must 
follow that qn(UnGMM) ¡p

0 as well because of the identification assumption, 13.2. As 
n S ∞ , qn(UnGMM) and qn(U) converge to the same limit. It must be the case, then, that as 
n S ∞ , mn(UnGMM) S mn(U0), because the function is quadratic and W is positive definite. 
The identification condition that we assumed earlier now assures that as n S ∞ , UnGMM 
must equal U0. This establishes consistency of the estimator.

We will now sketch a proof of the asymptotic normality of the estimator. The first-
order conditions for the GMM estimator are

 
0qn(UnGMM)

0UnGMM

= 2Gn(UnGMM)′Wn mn(UnGMM) = 0. (13-8)

(The leading 2 is irrelevant to the solution, so it will be dropped at this point.) The 
orthogonality equations are assumed to be continuous and continuously differentiable. 
This allows us to employ the mean value theorem as we expand the empirical moments 
in a linear Taylor series around the true value, U0,

 mn(UnGMM) = mn(U0) + Gn(U)(UnGMM - U0), (13-9)

where U is a point between UnGMM and the true parameters, U0. Thus, for each element 
uk = wku

n

k,GMM + (1 - wk)u0,k for some wk such that 0 6 wk 6 1. Insert (13-9) in (13-8) 
to obtain

Gn(UnGMM)′Wn mn(U0) + Gn(UnGMM)′WnGn(U)(UnGMM - U0) = 0.

THEOREM 13.2 Asymptotic Distribution of the GMM Estimator
Under the preceding assumptions,

 UnGMM ¡p
U0, 

 UnGMM
a  N[U0, VGMM], (13-6)

where VGMM is defined in (13-5).

M13_GREE1366_08_SE_C13.indd   509 2/24/17   1:18 PM
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Solve this equation for the estimation error and multiply by 2n. This produces2n(UnGMM - U0) = -[Gn(UnGMM)′WnGn(U)]-1Gn(UnGMM)′Wn2n mn(U0).

Assuming that they have them, the quantities on the left- and right-hand sides have the 
same limiting distributions. By the consistency of UnGMM, we know that UnGMM and U both 
converge to U0. By the strict continuity assumed, it must also be the case that

Gn(Un) ¡p
G(U0) and Gn(UnGMM) ¡p

G(U0).

We have also assumed that the weighting matrix, Wn, converges to a matrix of 
constants, W. Collecting terms, we find that the limiting distribution of the vector on 
the left-hand side must be the same as that on the right-hand side in (13-10),

 2n(UnGMM - U0) ¡d
{-[G(U0)′WG(U0)]-1G(U0)′W}2n mn(U0). (13-10)

We now invoke Assumption 13.3. The matrix in curled brackets is a set of constants. The 
last term has the normal limiting distribution given in Assumption 13.3. The mean and 
variance of this limiting distribution are zero and �, respectively. Collecting terms, we 
have the result in Theorem 13.2, where

 VGMM =
1
n

 [G(U0)′WG(U0)]-1 G(U0)′W�WG(U0)[G(U0)′WG(U0)]-1. (13-11)

The final result is a function of the choice of weighting matrix, W. If the optimal weighting 
matrix, W = �-1, is used, then the expression collapses to

 VGMM,optimal =
1
n

 [G(U0)′�-1G(U0)]-1. (13-12)

Returning to (13-11), there is a special case of interest. If we use least squares or 
instrumental variables with W = I, then

VGMM =
1
n

 (G′G)-1G′�G(G′G)-1.

This equation prescribes essentially the White or Newey–West estimator, which returns 
us to our departure point and provides a neat symmetry to the GMM principle. We will 
formalize this in Section 13.6.1.

13.5 TESTING HYPOTHESES IN THE GMM FRAMEWORK

The estimation framework developed in the previous section provides the basis for a 
convenient set of statistics for testing hypotheses. We will consider three groups of tests. 
The first is a pair of statistics that is used for testing the validity of the restrictions that 
produce the moment equations. The second is a trio of tests that correspond to the familiar 
Wald, LM, and LR tests. The third is a class of tests based on the theoretical underpinnings 
of the conditional moments that we used earlier to devise the GMM estimator.

13.5.1  TESTING THE VALIDITY OF THE MOMENT RESTRICTIONS

In the exactly identified cases we examined earlier (least squares, instrumental variables, 
maximum likelihood), the criterion for GMM estimation,

q = m(U)′Wm(U),

M13_GREE1366_08_SE_C13.indd   510 2/24/17   1:18 PM



 CHAPTER 13  ✦  Minimum Distance Estimation and the Generalized Method of Moments 511

would be exactly zero because we can find a set of estimates for which m(U) is exactly 
zero. Thus, in the exactly identified case when there are the same number of moment 
equations as there are parameters to estimate, the weighting matrix W is irrelevant to the 
solution. But if the parameters are overidentified by the moment equations, then these 
equations imply substantive restrictions. As such, if the hypothesis of the model that led to 
the moment equations in the first place is incorrect, at least some of the sample moment 
restrictions will be systematically violated. This conclusion provides the basis for a test of 
the overidentifying restrictions. By construction, when the optimal weighting matrix is used,

nq = [2n m(Un)′]{Est.Asy.Var[2n m(Un)]}-1[2n m(Un)],

so nq is a Wald statistic. Therefore, under the hypothesis of the model,

nq ¡d
x2[L - K].

(For the exactly identified case, there are zero degrees of freedom and q = 0.)

Example 13.9  Overidentifying Restrictions
In Hall’s consumption model, two orthogonality conditions noted in Example 13.1 exactly 
identify the two parameters. But his analysis of the model suggests a way to test the 
specification. The conclusion, “No information available in time t apart from the level of 
consumption, ct, helps predict future consumption, ct + 1, in the sense of affecting the expected 
value of marginal utility. In particular, income or wealth in periods t or earlier are irrelevant once 
ct is known,” suggests how one might test the model. If lagged values of income (Yt might 
equal the ratio of current income to the previous period’s income) are added to the set of 
instruments, then the model is now overidentified by the orthogonality conditions,

Et D (b(1 + rt + 1)Rt + 1
l - 1) * § 1

Rt

Yt - 1

Yt - 2

¥ T = J0
0
R .

A simple test of the overidentifying restrictions would be suggestive of the validity of the 
corollary. Rejecting the restrictions casts doubt on the original model. Hall’s proposed tests 
to distinguish the life cycle–permanent income model from other theories of consumption 
involved adding two lags of income to the information set. Hansen and Singleton (1982) 
operated directly on this form of the model. Other studies, for example, Campbell and 
Mankiw’s (1989) as well as Hall’s, used the model’s implications to formulate more 
conventional instrumental variable regression models.

The preceding is a specification test, not a test of parametric restrictions. However, 
there is a symmetry between the moment restrictions and restrictions on the parameter 
vector. Suppose U is subjected to J restrictions (linear or nonlinear) that restrict the number 
of free parameters from K to K - J. (That is, reduce the dimensionality of the parameter 
space from K to K - J.) The nature of the GMM estimation problem we have posed is 
not changed at all by the restrictions. The constrained problem may be stated in terms of

qR = m(UR)′Wm(UR).

Note that the weighting matrix, W, is unchanged. The precise nature of the solution 
method may be changed—the restrictions mandate a constrained optimization. However, 
the criterion is essentially unchanged. It follows then that

nqR ¡d
x2[L - (K - J)].
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This result suggests a method of testing the restrictions, although the distribution theory 
is not obvious. The weighted sum of squares with the restrictions imposed, nqR, must 
be larger than the weighted sum of squares obtained without the restrictions, nq. The 
difference is

 (nqR - nq) ¡d
x2[J]. (13-13)

The test is attributed to Newey and West (1987b). This provides one method of testing 
a set of restrictions. (The small-sample properties of this test will be the central focus 
of the application discussed in Section 13.6.5.) We now consider several alternatives.

13.5.2  GMM COUNTERPARTS TO THE WALD, LM, AND LR TESTS

Section 14.6 describes a trio of testing procedures that can be applied to a hypothesis 
in the context of maximum likelihood estimation. To reiterate, let the hypothesis to 
be tested be a set of J possibly nonlinear restrictions on K parameters U in the form 
H0: r(U) = 0. Let c1 be the maximum likelihood estimates of U estimated without the 
restrictions, and let c0 denote the restricted maximum likelihood estimates, that is, the 
estimates obtained while imposing the null hypothesis. The three statistics, which are 
asymptotically equivalent, are obtained as follows:

LR = likelihood ratio = -2(ln L0 - ln L1),

where

ln Lj = log@likelihood function evaluated at cj, j = 0, 1.

The likelihood ratio statistic requires that both estimates be computed. The Wald 
statistic is

 W = Wald = [r(c1)]′{Est.Asy.Var[r(c1)]}-1[r(c1)]. (13-14)

The Wald statistic is the distance measure for the degree to which the unrestricted 
estimator fails to satisfy the restrictions. The usual estimator for the asymptotic 
covariance matrix would be

 Est.Asy.Var[r(c1)] = R1{Est.Asy.Var[c1]}R1
= , (13-15)

where

R1 = 0r(c1)/0c1
= (R1 is a J * K matrix).

The Wald statistic can be computed using only the unrestricted estimate. The LM statistic is

 LM = Lagrange multiplier = g1
=(c0){Est.Asy.Var[g1(c0)]}-1g1(c0), (13-16)

where

g1(c0) = 0 ln L1(c0)/0c0,

that is, the first derivatives of the unconstrained log-likelihood computed at the restricted 
estimates. The term Est.Asy.Var[g1(c0)] is the inverse of any of the usual estimators 
of the asymptotic covariance matrix of the maximum likelihood estimators of the 
parameters, computed using the restricted estimates. The most convenient choice is 
usually the BHHH estimator. The LM statistic is based on the restricted estimates.
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Newey and West (1987b) have devised counterparts to these test statistics for the 
GMM estimator. The Wald statistic is computed identically, using the results of GMM 
estimation rather than maximum likelihood.13 That is, in (13-14), we would use the 
unrestricted GMM estimator of U. The appropriate asymptotic covariance matrix is 
(13-12). The computation is exactly the same. The counterpart to the LR statistic is the 
difference in the values of nq in (13-13). It is necessary to use the same weighting matrix, 
W, in both restricted and unrestricted estimators. Because the unrestricted estimator is 
consistent under both H0 and H1, a consistent, unrestricted estimator of U is used to 
compute W. Label this �1

-1 = {Asy.Var[2n m1(c1)]}-1. In each occurrence, the 
subscript 1 indicates reference to the unrestricted estimator. Then q is minimized without 
restrictions to obtain q1 and then subject to the restrictions to obtain q0. The statistic is 
then (nq0 - nq1).14 Because we are using the same W in both cases, this statistic is 
necessarily nonnegative. (This is the statistic discussed in Section 13.5.1.)

Finally, the counterpart to the LM statistic would be

LMGMM = n[m1(c0)′�n 1
-1Gn 1(c0)][G1(c0)′�n 1

-1G1(c0)]-1[G1(c0)′�n 1
-1m1(c0)].

The logic for this LM statistic is the same as that for the MLE. The derivatives of the 
minimized criterion q in (13-3) evaluated at the restricted estimator are

g1(c0) =
0q

0c0
= 2G1(c0)′�n 1

-1m(c0).

The LM statistic, LMGMM, is a Wald statistic for testing the hypothesis that this vector 
equals zero under the restrictions of the null hypothesis. From our earlier results, we 
would have

Est.Asy.Var[g1(c0)] =
4
n

 G1(c0)′�n 1
-1{Est.Asy.Var[2n m(c0)]}�n 1

-1G1(c0).

The estimated asymptotic variance of 2n m(c0) is �n 1, so

Est.Asy.Var[g1(c0)] =
4
n

 G1(c0)′�n 1
-1G1(c0).

The Wald statistic would be

 Wald = g1(c0)′{Est.Asy.Var[g1(c0)]}-1g1(c0)

  = n m1
=(c0)�n 1

-1G1(c0){G1(c0)′�n 1
-1G1(c0)}-1G1(c0)′�n 1

-1m1(c0). (13-17)

13.6 GMM ESTIMATION OF ECONOMETRIC MODELS

The preceding has suggested that the GMM approach to estimation broadly encompasses 
most of the estimators we will encounter in this book. We have implicitly examined least 
squares and the general method of instrumental variables in the process. In this section, 

13See Burnside and Eichenbaum (1996) for some small-sample results on this procedure. Newey and McFadden 
(1994) have shown the asymptotic equivalence of the three procedures.
14Newey and West label this test the D test.
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we will formalize more specifically the GMM estimators for several of the estimators 
that appear in the earlier chapters. Section 13.6.1 examines the generalized regression 
model of Chapter 9. Section 13.6.2 describes a relatively minor extension of the GMM/
IV estimator to nonlinear regressions. Section 13.6.3 describes the GMM estimators 
for our models of systems of seemingly unrelated regression (SUR) model. Finally, 
in Section 13.6.4, we develop one of the major applications of GMM estimation, the 
Arellano–Bond–Bover estimator for dynamic panel data models.

13.6.1  SINGLE-EQUATION LINEAR MODELS

It is useful to confine attention to the instrumental variables case, as it is fairly general 
and we can easily specialize it to the simpler regression models if that is appropriate. 
Thus, we depart from the usual linear model  (8-1), but we no longer require that 
E[ei � xi] = 0. Instead, we adopt the instrumental variables formulation in Chapter 8. 
That is, the model is

 yi = xi
=B + ei

 E[ziei] = 0

for K variables in xi and for some set of L instrumental variables, zi, where L Ú K. 
The earlier case of the generalized regression model arises if zi = xi, and the classical 
regression results if we add � = I as well, so this is a convenient encompassing model 
framework.

In Chapter 9 on generalized least squares estimation, we considered two cases, first 
one with a known �, then one with an unknown � that must be estimated. In estimation 
by the generalized method of moments, neither of these approaches is relevant because 
we begin with much less (assumed) knowledge about the data-generating process. We 
will consider three cases:

●● Classical regression: Var[ei � X, Z] = s2,
●● Heteroscedasticity: Var[ei � X, Z] = si

2,
●● Generalized model: Cov[et, es � X, Z] = s2vts,

where Z and X are the n * L and n * K observed data matrices, respectively. (We 
assume, as will often be true, that the fully general case will apply in a time-series 
setting. Hence the change in the subscripts.) No specific distribution is assumed for the 
disturbances, conditional or unconditional.

The assumption E[ziei] = 0 implies the following orthogonality condition,

Cov[zi, ei] = 0, or E[zi(yi - xi
=B)] = 0.

By summing the terms, we find that this further implies the population moment equation,

 E c 1
n a

n

i = 1
zi(yi - xi

=B) d = E[m(B)] = 0. (13-18)

This relationship suggests how we might now proceed to estimate B. Note, in fact, that if 
zi = xi, then this is just the population counterpart to the least squares normal equations. 
So, as a guide to estimation, this would return us to least squares. Suppose we now 
translate this population expectation into a sample analog and use that as our guide for 
estimation. That is, if the population relationship holds for the true parameter vector, B, 
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suppose we attempt to mimic this result with a sample counterpart, or empirical moment 
equation,

 J 1
n a

n

i = 1
zi(yi - xi

=Bn) R = J 1
n a

n

i = 1
mi(Bn) R = m(Bn) = 0. (13-19)

In the absence of other information about the data-generating process, we can use the 
empirical moment equation as the basis of our estimation strategy.

The empirical moment condition is L equations (the number of variables in Z) in K 
unknowns (the number of parameters we seek to estimate). There are three possibilities 
to consider:

1. Underidentified. L 6 K. If there are fewer moment equations than there are 
parameters, then it will not be possible to find a solution to the equation system 
in (13-19). With no other information, such as restrictions that would reduce the 
number of free parameters, there is no need to proceed any further with this case.

For the identified cases, it is convenient to write (13-19) as

 m(Bn) = a 1
n

 Z′yb - a 1
n

 Z′XbBn . (13-20)

2. Exactly identified. If L = K, then you can easily show (we leave it as an exercise) 
that the single solution to our equation system is the familiar instrumental variables 
estimator from Section 8.3.2,

 Bn = (Z′X)-1Z′y. (13-21)

3. Overidentified. If L 7 K, then there is no unique solution to the equation system 
m(Bn) = 0. In this instance, we need to formulate some strategy to choose an 
estimator. One intuitively appealing possibility which has served well thus far is 
least squares. In this instance, that would mean choosing the estimator based on the 
criterion function,

MinB q = m(Bn)′m(Bn).

We do keep in mind that we will only be able to minimize this at some positive 
value; there is no exact solution to (13-19) in the overidentified case. Also, you can 
verify that if we treat the exactly identified case as if it were overidentified, that is, 
use least squares anyway, we will still obtain the IV estimator shown in (13-21) for 
the solution to case (2). For the overidentified case, the first-order conditions are

  
0q

0Bn
= 2¢ 0m′(Bn)

0Bn
≤m(Bn) = 2G(Bn)′m(Bn)

 = 2a 1
n

 X′Zb a 1
n

 Z′y -
1
n

 Z′XBn b = 0. (13-22)

We leave as exercise to show that the solution in both cases (2) and (3) is now

 Bn = [(X′Z)(Z′X)]-1(X′Z)(Z′y). (13-23)

The estimator in (13-23) is a hybrid that we have not encountered before, though if 
L = K, then it does reduce to the earlier one in (13-21). (In the overidentified case, 
(13-23) is not an IV estimator, it is, as we have sought, a method of moments estimator.)

M13_GREE1366_08_SE_C13.indd   515 2/24/17   1:19 PM



516 PART III  ✦   Estimation Methodology

It remains to establish consistency and to obtain the asymptotic distribution 
and an asymptotic covariance matrix for the estimator. The intermediate results we 
need are Assumptions 13.1, 13.2, and 13.3 in Section 13.4.3:

●● Convergence of the moments. The sample moment converges in probability 
to its population counterpart. That is, m(B) S 0. Different circumstances will 
produce different kinds of convergence, but we will require it in some form. For 
the simplest cases, such as a model of heteroscedasticity, this will be convergence 
in mean square. Certain time-series models that involve correlated observations 
will necessitate some other form of convergence. But, in any of the cases we 
consider, we will require the general result: plim m(B) = 0.

●● Identification. The parameters are identified in terms of the moment equations. 
Identification means, essentially, that a large enough sample will contain 
sufficient information for us actually to estimate B consistently using the sample 
moments. There are two conditions which must be met—an order condition, 
which we have already assumed (L Ú K), and a rank condition, which states 
that the moment equations are not redundant. The rank condition implies the 
order condition, so we need only formalize it:

●● Identification condition for GMM estimation. The L * K matrix,

�(B) = E[G(B)] = plim G(B) = plim 
0m
0B′

= plim 
1
n a

n

i = 1

0mi

0B′
,

must have row rank equal to K.15 Because this requires L Ú K, this implies the 
order condition. This assumption means that this derivative matrix converges 
in probability to its expectation. Note that we have assumed, in addition, that 
the derivatives, like the moments themselves, obey a law of large numbers—they 
converge in probability to their expectations.

●● Limiting Normal Distribution for the Sample Moments. The population moment 
obeys a central limit theorem. Because we are studying a generalized regression 
model, Lindeberg–Levy (D.18) will be too narrow—the observations will have 
different variances. Lindeberg–Feller (D.19.A) suffices in the heteroscedasticity 
case, but in the general case, we will ultimately require something more general. 
See Section 13.4.3.

It will follow from Assumptions 13.1–13.3 (again, at this point we do this without proof) 
that the GMM estimators that we obtain are, in fact, consistent. By virtue of the Slutsky 
theorem, we can transfer our limiting results to the empirical moment equations.

To obtain the asymptotic covariance matrix we will simply invoke the general result 
for GMM estimators in Section 13.4.3. That is,

Asy.Var[Bn] =
1
n

 [�′�]-1�′{Asy.Var[2n m(B)]}�[�′�]-1.

For the particular model we are studying here,

 m(B) = (1/n)(Z′y - Z′XB),

 G(B) = (1/n)Z′X,
 �(B) = QZX (see Section 8.3.2)

15We require that the row rank be at least as large as K. There could be redundant, that is, functionally dependent, 
moments, so long as there are at least K that are functionally independent.
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(You should check in the preceding expression that the dimensions of the particular 
matrices and the dimensions of the various products produce the correctly configured 
matrix that we seek.) The remaining detail, which is the crucial one for the model we 
are examining, is for us to determine,

V = Asy.Var[2n m(B)].

Given the form of m(B),

V =
1
n

 Var c a
n

i = 1
ziei d =

1
n a

n

i = 1
a
n

j = 1
s2vijziz

=
j = s2 

Z′�Z
n

for the most general case. Note that this is precisely the expression that appears in (9-9), 
so the question that arose there arises here once again. That is, under what conditions 
will this converge to a constant matrix? We take the discussion there as given. The only 
remaining detail is how to estimate this matrix. The answer appears  in Section 9.2, 
where we pursued this same question in connection with robust estimation of the 
asymptotic covariance matrix of the least squares estimator. To review then, what we 
have achieved to this point is to provide a theoretical foundation for the instrumental 
variables estimator. As noted earlier, this specializes to the least squares estimator. The 
estimators of V for our three cases will be

●● Classical regression:

Vn =
(e′e/n)

n a
n

i = 1
zizi

= =
(e′e/n)

n
 Z′Z.

●● Heteroscedastic regression:

 Vn =
1
n a

n

i = 1
ei

2zizi
=. (13-24)

●● Generalized regression:

Vn =
1
n

 Jan
t = 1

et
2ztzt

= + a
p

/ = 1
¢1 -

/
(p + 1)

≤ a
n

t = / + 1
etet - /(ztzt - /

= + zt - /zt
=) R .

We should observe that in each of these cases, we have actually used some information 
about the structure of �. If it is known only that the terms in m(B) are uncorrelated, 

then there is a convenient estimator available, Vn =
1
n a

n

i = 1
mi(Bn)mi(Bn)′, that is, the natural, 

empirical variance estimator. Note that this is what is being used in the heteroscedasticity 
case in (13-24).

Collecting all the terms so far, then, we have

 Est.Asy.Var[Bn] =
1
n

 [G(Bn)′G(Bn)]-1G(Bn)′Vn G(Bn)[G(Bn)′G(Bn)]-1

  = n[(X′Z)(Z′X)]-1(X′Z)Vn (Z′X)[(X′Z)(Z′X)]-1. 
(13-25)

The preceding might seem to endow the least squares or method of moments 
estimators with some degree of optimality, but that is not the case. We have only 
provided them with a different statistical motivation (and established consistency). We 
now consider the question of whether, because this is the generalized regression model, 
there is some better (more efficient) means of using the data.

M13_GREE1366_08_SE_C13.indd   517 2/24/17   1:19 PM



518 PART III  ✦   Estimation Methodology

The class of minimum distance estimators for this model is defined by the solutions 
to the criterion function, MinB q = m(B)′Wm(B), where W is any positive definite 
weighting matrix. Based on the assumptions just made, we can invoke Theorem 13.1 to 
obtain

Asy.Var[BnMD] =
1
n

 [G′WG]-1G′WVWG[G′WG]-1.

Note that our entire preceding analysis was of the simplest minimum distance estimator, 
which has W = I. The obvious question now arises, if any W produces a consistent 
estimator, is any W better than any other one, or is it simply arbitrary? There is a firm 
answer, for which we have to consider two cases separately:

●● Exactly identified case. If L = K; that is, if the number of moment conditions is 
the same as the number of parameters being estimated, then W is irrelevant to the 
solution, so on the basis of simplicity alone, the optimal W is I.

●● Overidentified case. In this case, the “optimal” weighting matrix, that is, the W that 
produces the most efficient estimator, is W = V-1. The best weighting matrix is the 
inverse of the asymptotic covariance of the moment vector. In this case, the MDE 
will be the GMM estimator with

BnGMM = [(X′Z)Vn -1(Z′X)]-1(X′Z)Vn -1(Z′y),

and

 Asy.Var[BnGMM] =
1
n

 [G′V-1G]-1

 = n[(X′Z)V-1(Z′X)]-1.

We conclude this discussion by tying together what should seem to be a loose end. 
The GMM estimator is computed as the solution to

MinB q = m(B)′{Asy.Var[2n m(B)}-1m(B),

which might suggest that the weighting matrix is a function of the thing we are trying 
to estimate. The process of GMM estimation will have to proceed in two steps: Step 
1 is to obtain an estimate of V; Step 2 will consist of using the inverse of this V as the 
weighting matrix in computing the GMM estimator. The following is a common two-
step strategy:

Step 1. Use W = I to obtain a consistent estimator of B. Then, in the heteroscedasticity 

case (i.e., the White estimator), estimate V with Vn = (1/n)a
n

i = 1
ei

2zizi
=. For the more general 

case, use the Newey–West estimator.

Step 2. Use W = Vn -1 to compute the GMM estimator.

By this point, the observant reader should have noticed that in all of the preceding, 
we have never actually encountered the two-stage least squares estimator  that we 
introduced in Section 8.4.1. To obtain this estimator, we must revert back to the classical, 
that is, homoscedastic and nonautocorrelated disturbances case. In that instance, the 
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weighting matrix in Theorem 13.2 will be W = (Z′Z)-1 and we will obtain the apparently 
missing result.

The GMM estimator in the heteroscedastic regression model is produced by the 
empirical moment equations

 
1
n a

n

i = 1
xi(yi - xi

=BnGMM) =
1
n

 X′En(BnGMM) = m(BnGMM) = 0. (13-26)

The estimator is obtained by minimizing

q = m(BnGMM)Wm(BnGMM),

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {Asy.Var[2n m(B)]}-1,

which is the inverse of

Asy.Var[2n m(B)] = Asy.Var c 12n
a
n

i = 1
xiEi d = plim

nS ∞

1
n a

n

i = 1
s2vixixi

= = s2Q*.

(See Section 9.4.1.) The optimal weighting matrix would be [s2Q*]-1. But recall that this 
minimization problem is an exactly identified case, so the weighting matrix is irrelevant 
to the solution. You can see the result in the moment equation—that equation is simply 
the normal equation for ordinary least squares. We can solve the moment equations 
exactly, so there is no need for the weighting matrix. Regardless of the covariance 
matrix of the moments, the GMM estimator for the heteroscedastic regression model 
is ordinary least squares. We can use the results we have already obtained to find its 
asymptotic covariance matrix. The implied estimator is the White estimator in (9-5). 
(Once again, see Theorem 13.2.) The conclusion to be drawn at this point is that until we 
make some specific assumptions about the variances, we do not have a more efficient 
estimator than least squares, but we do have to modify the estimated asymptotic 
covariance matrix.

13.6.2  SINGLE-EQUATION NONLINEAR MODELS

Suppose that the theory specifies a relationship, yi = h(xi, B) + ei, where B is a K * 1 
parameter vector that we wish to estimate. This may not be a regression relationship, 
because it is possible that Cov[ei, h(xi, B)] ≠ 0, or even Cov[ei, xj] ≠ 0 for all i and j. 
Consider, for example, a model that contains lagged dependent variables and 
autocorrelated disturbances.  (See Section 20.9.3.) For the present, we assume that 
E[E � X] ≠ 0, and E[EE′ � X] = s2� = � where Σ is symmetric and positive definite but 
otherwise unrestricted. The disturbances may be heteroscedastic and/or autocorrelated. 
But for the possibility of correlation between regressors and disturbances, this model 
would be a generalized, possibly nonlinear, regression model. Suppose that at each 
observation i we observe a vector of L variables, zi, such that zi is uncorrelated with 
Ei. You will recognize zi as a set of instrumental variables. The assumptions thus far 
have implied a set of orthogonality conditions, E[ziei] = 0, which may be sufficient to 
identify (if L = K) or even overidentify (if L 7 K) the parameters of the model. (See 
Section 8.3.4.)
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520 PART III  ✦   Estimation Methodology

For convenience, define

e(X, Bn) = yi - h(xi, Bn), i = 1, c, n,

and

Z = n * L matrix whose ith row is zi
=.

By a straightforward extension of our earlier results, we can produce a GMM estimator 
of B. The sample moments will be

mn(B) =
1
n a

n

i = 1
zie(xi, B) =

1
n

 Z′e(X, B).

The minimum distance estimator will be the Bn  that minimizes

 q = mn(Bn)′Wmn(Bn) = a 1
n

 [e(X, Bn)′Z]bWa 1
n

 [Z′e(X, Bn)]b  (13-27)

for some choice of W that we have yet to determine. The criterion given earlier produces 
the nonlinear instrumental variable estimator. If we use W = (Z′Z)-1, then we have 
exactly the estimation criterion we used in Section 8.9, where we defined the nonlinear 
instrumental variables estimator. Apparently (13-27) is more general, because we are 
not limited to this choice of W. For any given choice of W, as long as there are enough 
orthogonality conditions to identify the parameters, estimation by minimizing q is, at 
least in principle, a straightforward problem in nonlinear optimization. The optimal 
choice of W for this estimator is

 WGMM = {Asy.Var[2n mn(B)]}-1

 = bAsy.Var c 12n
a
n

i = 1
ziei d r -1

= bAsy.Var c 12n
 Z′e(X, B) d r -1

. (13-28)

For our model, this is

W = c 1
n a

n

i = 1
a
n

j = 1
 Cov[ziei, zjej] d

-1

= c 1
n a

n

i = 1
a
n

j = 1
sijzizj

= d
-1

= c Z′�Z
n

d
-1

.

If we insert this result in (13-27), we obtain the criterion for the GMM estimator,

q = J a 1
n
be(X, Bn)′Z R aZ′�Z

n
b

-1J a 1
n
bZ′e(X, Bn) R .

There is a possibly difficult detail to be considered. The GMM estimator involves

1
n

 Z′�Z =
1
n a

n

i = 1
a
n

j = 1
zizj

= Cov[ei, ej] =
1
n a

n

i = 1
a
n

j = 1
zizj

= Cov[(yi - h(xi, B)),(yj - h(xj, B))].

The conditions under which such a double sum might converge to a positive definite 
matrix are sketched in Section 9.3.2. Assuming that they do hold, estimation appears 
to require that an estimate of B be in hand already, even though it is the object of 
estimation. It may be that a consistent but inefficient estimator of B is available. Suppose 
for the present that one is. If observations are uncorrelated, then the cross-observation 
terms may be omitted, and what is required is
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1
n

 Z′�Z =
1
n a

n

i = 1
zizi

= Var[(yi - h(xi, B))].

We can use a counterpart to the White (1980) estimator discussed in Section 9.2 for 
this case,

 S0 =
1
n a

n

i = 1
zizi

=(yi - h(xi, Bn))2. (13-29)

If the disturbances are autocorrelated but the process is stationary, then Newey and 
West’s (1987a) estimator is available (assuming that the autocorrelations are sufficiently 
small at a reasonable lag, p),

 S = cS0 +
1
n a

p

/ = 1
w(/) a

n

i = / + 1
(eiei - /)(zizi - /

= + zi - /zi
=) d = a

p

/ = 0
w(/)S/, (13-30)

where w(/) = 1 - //(p + 1). (This is the Bartlett weight.) The maximum lag length p 
must be determined in advance. We will require that observations that are far apart in 
time—that is, for which � i - / �  is large—must have increasingly smaller covariances for 
us to establish the convergence results that justify OLS, GLS, and now GMM estimation. 
The choice of p is a reflection of how far back in time one must go to consider the 
autocorrelation negligible for purposes of estimating (1/n)Z′�Z. Current practice 
suggests using the smallest integer greater than or equal to n1/4.

Still left open is the question of where the initial consistent estimator should be 
obtained. One possibility is to obtain an inefficient but consistent GMM estimator by using 
W = I in (13-27). That is, use a nonlinear (or linear, if the equation is linear) instrumental 
variables estimator. This first-step estimator can then be used to construct W, which, 
in turn, can then be used in the GMM estimator. Another possibility is that B may be 
consistently estimable by some straightforward procedure other than GMM.

Once the GMM estimator has been computed, its asymptotic covariance matrix and 
asymptotic distribution can be estimated based on Theorem 13.2. Recall that

mn(B) =
1
n a

n

i = 1
ziei,

which is a sum of L * 1 vectors. The derivative, 0mn(B)/0B′, is a sum of L * K 
matrices, so

 G(B) = 0m(B)/0B′ =
1
n a

n

i = 1
Gi(B) =

1
n a

n

i = 1
ziJ 0ei

0B′
d . (13-31)

In the model we are considering here, 
0ei

0B′
=

-0h(xi, B)

0B′
. The derivatives are the 

pseudoregressors in the linearized regression model that we examined in Section 7.2.3. 

Using the notation defined there, 
0ei

0B
= -xi

0, so

 G(B) =
1
n a

n

i = 1
Gi(B) =

1
n a

n

i = 1
-zixi

0′ = -
1
n

 Z′X0. (13-32)
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With this matrix in hand, the estimated asymptotic covariance matrix for the GMM 
estimator is

 Est.Asy.Var[Bn] =
1
n

 JG(Bn)′¢ 1
n

 Z′�n Z≤-1

G(Bn) R -1

= [(X0=
Z)(Z′�n Z)-1(Z′X0)]-1.

 (13-33)

(The two minus signs, a 1/n2, and an n2 all fall out of the result.)
If the � that appears in (13-33) were s2I, then (13-33) would be precisely the 

asymptotic covariance matrix  that appears in Theorem 8.1 for linear models and 
Theorem 8.2 for nonlinear models. But there is an interesting distinction between this 
estimator and the IV estimators discussed earlier. In the earlier cases, when there were 
more instrumental variables than parameters, we resolved the overidentification by 
specifically choosing a set of K instruments, the K projections of the columns of X 
or X0 into the column space of Z. Here, in contrast, we do not attempt to resolve the 
overidentification; we simply use all the instruments and minimize the GMM criterion. 
You should be able to show that when � = s2I and we use this information, the same 
parameter estimates will be obtained when all is said and done. But, if we use a weighting 
matrix that differs from W = (Z′Z/n)-1, then they are not.

13.6.3  SEEMINGLY UNRELATED REGRESSION EQUATIONS

In Section 10.2.3, we considered  FGLS estimation of the equation system

 y1 = h1(X, B) + E1,
 y2 = h2(X, B) + E2,

 f
 yM = hM(X, B) + EM.

The development there extends backward to the linear system as well. However, none 
of the estimators considered is consistent if the pseudoregressors, xtm

0 , or the actual 
regressors, xtm, for the linear model, are correlated with the disturbances, etm. Suppose 
we allow for this correlation both within and across equations. (If it is, in fact, absent, 
then the GMM estimator developed here will remain consistent.) For simplicity in this 
section, we will denote observations with subscript t and equations with subscripts i and j. 
Suppose, as well, that there are a set of instrumental variables, zt, such that

 E[ztetm] = 0, t = 1, c, T and m = 1, c, M. (13-34)

(We could allow a separate set of instrumental variables for each equation, but it would 
needlessly complicate the presentation.)

Under these assumptions, the nonlinear FGLS and ML estimators given earlier will 
be inconsistent. But a relatively minor extension of the instrumental variables technique 
developed for the single-equation case in Section 8.4 can be used instead. The sample 
analog to (13-34) is

1
T a

T

t = 1
zt[yti - hi(Xt, B)] = 0, i = 1, c, M.

If we use this result for each equation in the system, one at a time, then we obtain exactly 
the GMM estimator discussed in Section 13.6.2. But, in addition to the efficiency loss 
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that results from not imposing the cross-equation constraints in B, we would also neglect 
the correlation between the disturbances. Let

 
1
T

 Z′�ijZ = EJZ′EiEj
=Z

T
R . (13-35)

The GMM criterion for estimation in this setting is

  q = a
M

i = 1
a
M

j = 1
[(yi - hi(X, B))′Z/T][Z′�ijZ/T]ij[Z′(yj - hj(X, B))/T]

 = a
M

i = 1
a
M

j = 1
[Ei(B)′Z/T][Z′�ijZ/T]ij[Z′Ej(B)/T],

 (13-36)

where [Z′�ijZ/T]ij denotes the ijth block of the inverse of the matrix with the ijth block 
equal to Z′�ijZ/T.

GMM estimation would proceed in several passes. To compute any of the variance 
parameters, we will require an initial consistent estimator of B. This step can be done 
with equation-by-equation nonlinear instrumental variables—see Section 8.9—although 
if equations have parameters in common, then a choice must be made as to which to use. 
At the next step, the familiar White or Newey–West technique is used to compute, block 
by block, the matrix in (13-35). Because it is based on a consistent estimator of B (we 
assume), this matrix need not be recomputed. Now, with this result in hand, an iterative 
solution to the maximization problem in (13-36) can be sought, for example, using the 
methods of Appendix E. The first-order conditions are

 
0q

0B
= -2a

M

i = 1
a
M

j = 1
[Xi

0(B)′Z/T][Z′WijZ/T]ij[Z′Ej(B)/T] = 0. (13-37)

Note again that the blocks of the inverse matrix in the center are extracted from the 
larger constructed matrix after inversion.16 At completion, the asymptotic covariance 
matrix for the GMM estimator is estimated with

VGMM =
1
T

 JaM
i = 1

a
M

j = 1
[Xi

0(B)′Z/T][Z′WijZ/T]ij[Z′Xj
0(B)/T] d

-1

.

13.6.4  GMM ESTIMATION OF DYNAMIC PANEL DATA MODELS

Panel data are well suited for examining dynamic effects, as in the first-order model,

 yit = xit
=B + dyi,t - 1 + ci + eit

 = wit
=U + ai + eit,

where the set of right-hand-side variables, wit, now includes the lagged dependent 
variable, yi,t - 1. Adding dynamics to a model in this fashion creates a major change in the 
interpretation of the equation. Without the lagged variable, the independent variables 
represent the full set of information that produce observed outcome yit. With the lagged 
variable, we now have in the equation the entire history of the right-hand-side variables, 
so that any measured influence is conditioned on this history; in this case, any impact of xit 

16This brief discussion might understate the complexity of the optimization problem in (13-36), but that is inherent 
in the procedure.
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524 PART III  ✦   Estimation Methodology

represents the effect of new information. Substantial complications arise in estimation of 
such a model. In both the fixed and random effects settings, the difficulty is that the lagged 
dependent variable is correlated with the disturbance, even if it is assumed that eit is not 
itself autocorrelated. For the moment, consider the fixed effects model as an ordinary 
regression with a lagged dependent variable that is dependent across observations. In 
that dynamic regression model, the estimator based on T observations is biased in finite 
samples, but it is consistent in T. The finite sample bias is of order 1/T. The same result 
applies here, but the difference is that whereas before we obtained our large sample 
results by allowing T to grow large, in this setting, T is assumed to be small and fixed, 
and large-sample results are obtained with respect to n growing large, not T. The fixed 
effects estimator of U = [B, d] can be viewed as an average of n such estimators. Assume 
for now that T Ú K + 1 where K is the number of variables in xit. Then, from (11-14),

 Un = Jan
i = 1

Wi
=M0WiR -1Jan

i = 1
Wi

=M0yiR
 = Jan

i = 1
Wi

=M0WiR -1Jan
i = 1

Wi
=M0WidiR

 = a
n

i = 1
Fidi,

where the rows of the T * (K + 1) matrix Wi are wit
=  and M0 is the T * T matrix that 

creates deviations from group means [see (11-14)]. Each group-specific estimator, di, is 
inconsistent, as it is biased in finite samples and its variance does not go to zero as 
n  increases. This matrix weighted average of n inconsistent estimators will also be 
inconsistent. (This analysis is only heuristic. If T 6 K + 1, then the individual coefficient 
vectors cannot be computed.17)

The problem is more transparent in the random effects model. In the model

yit = xit
=B + dyi,t - 1 + ui + eit,

the lagged dependent variable is correlated with the compound disturbance in the model 
because the same ui enters the equation for every observation in group i.

Neither of these results renders the model inestimable, but they do make necessary 
some technique other than our familiar LSDV or FGLS estimators. The general 
approach, which has been developed in several stages in the literature,18 relies on 
instrumental variables estimators and, most recently, on a GMM estimator. For example, 
in either the fixed or random effects cases, the heterogeneity can be swept from the 
model by taking first differences, which produces

yit - yi,t - 1 = (xit - xi,t - 1)′B + d(yi,t - 1 - yi,t - 2) + (eit - ei,t - 1).

This model is still complicated by correlation between the lagged dependent variable and 
the disturbance (and by its first-order moving average disturbance). But without the 

17Further discussion is given by Nickell (1981), Ridder and Wansbeek (1990), and Kiviet (1995).
18The model was first proposed in this form by Balestra and Nerlove (1966). See, for example, Anderson and 
Hsiao (1981, 1982), Bhargava and Sargan (1983), Arellano (1989), Arellano and Bond (1991), Arellano and Bover 
(1995), Ahn and Schmidt (1995), and Nerlove (1971a,b).
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group effects, there is a simple instrumental variables estimator available. Assuming that 
the time series is long enough, one could use the lagged differences, (yi,t - 2 - yi,t - 3), or 
the lagged levels, yi,t - 2 and yi,t - 3, as one or two instrumental variables for (yi,t - 1 - yi,t - 2). 
(The other variables can serve as their own instruments.) This is the Anderson and Hsiao 
estimator developed for this model in Section 11.8.3. By this construction, then, the 
treatment of this model is a standard application of the instrumental variables 
technique that we developed in Section 11.8.19  This illustrates the flavor of an instrumental 
variables approach to estimation. But, as Arellano et al. and Ahn and Schmidt (1995) have 
shown, there is still more information in the sample that can be brought to bear on 
estimation, in the context of a GMM estimator, which we now consider.

We can extend the Hausman and Taylor (HT) formulation of the random effects 
model in Section 11.8.2 to include the lagged dependent variable,

 yit = dyi,t - 1 + x1it
= B1 + x2it

= B2 + z1i
= A1 + z2i

= A2 + eit + ui

 = U′wit + eit + ui

 = U′wit + hit,

where

wit = [yi,t - 1, x1it
= , x2it

= , z1i
= , z2i

= ]′

is now a (1 + K1 + K2 + L1 + L2) * 1 vector. The terms in the equation are the 
same as in the Hausman and Taylor model. Instrumental variables estimation of the 
model without the lagged dependent variable is discussed in Section 11.8.1 on the 
HT estimator. Moreover, by just including yi,t - 1 in x2it, we see that the HT approach 
extends to this setting as well, essentially without modification. Arellano et al. suggest 
a GMM estimator and show that efficiency gains are available by using a larger set of 
moment conditions. In the previous treatment, we used a GMM estimator constructed 
as follows: the set of moment conditions we used to formulate the instrumental 
variables were

E D §x1it

x2it

z1i

x1i.

¥(hit - hi) T = ED §x1it

x2it

z1i

x1i.

¥(eit - ei) T = 0.

This moment condition is used to produce the instrumental variable estimator. We 
could ignore the nonscalar variance of hit and use simple instrumental variables at 
this point. However, by accounting for the random effects formulation and using 
the counterpart to feasible GLS, we obtain the more efficient estimator in Section 
11.8.4. As usual, this can be done in two steps. The inefficient estimator is computed 
to obtain the residuals needed to estimate the variance components. This is Hausman 
and Taylor’s steps 1 and 2. Steps 3 and 4 are the GMM estimator based on these 
estimated variance components.

19There is a question as to whether one should use differences or levels as instruments. Arellano (1989) and Kiviet 
(1995) give evidence that the latter is preferable.
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Arellano et al. suggest that the preceding does not exploit all the information in the 
sample. In simple terms, within the T observations in group i, we have not used the fact that

E D §x1it

x2it

z1i

x1i.

¥(his - hi) T = 0 for some s ≠ t.

Thus, for example, not only are disturbances at time t uncorrelated with these variables 
at time t, arguably, they are uncorrelated with the same variables at time t - 1, t - 2, 
possibly t + 1, and so on. In principle, the number of valid instruments is potentially 
enormous. Suppose, for example, that the set of instruments listed above is strictly 
exogenous with respect to hit in every period including current, lagged, and future. Then, 
there are a total of [T(K1 + K2) + L1 + K1)] moment conditions for every observation. 
Consider, for example, a panel with two periods. We would have for the two periods,

 E F ¶x1i1

x2i1

x1i2

x2i2

z1i

x1i.

∂(hi1 - hi) V = 0  and  E F ¶x1i1

x2i1

x1i2

x2i2

z1i

x1i.

∂(hi2 - hi) V = 0. (13-38)

How much useful information is brought to bear on estimation of the parameters is 
uncertain, as it depends on the correlation of the instruments with the included exogenous 
variables in the equation. The farther apart in time these sets of variables become, the less 
information is likely to be present. (The literature on this subject contains reference to 
strong versus weak instrumental variables.20) To proceed, as noted, we can include the 
lagged dependent variable in x2i. This set of instrumental variables can be used to construct 
the estimator, actually whether the lagged variable is present or not. We note, at this point, 
that on this basis, Hausman and Taylor’s estimator did not actually use all the information 
available in the sample. We now have the elements of the Arellano et al. estimator in hand; 
what remains is essentially the (unfortunately, fairly involved) algebra, which we now 
develop.

Let

Wi = D wi1
=

wi2
=

f
wiT

=

T = the full set of rhs data for group i, and yi = D yi1

yi2

f
yiT

T .

Note that Wi is assumed to be a T * (1 + K1 + K2 + L1 + L2) matrix. Because there 
is a lagged dependent variable in the model, it must be assumed that there are actually 
T + 1 observations available on yit. To avoid cumbersome, cluttered notation, we will 
leave this distinction embedded in the notation for the moment. Later, when necessary, 

20See West (2001).
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we will make it explicit. It will reappear in the formulation of the instrumental variables. 
A total of T observations will be available for constructing the IV estimators. We now 
form a matrix of instrumental variables.21 We will form a matrix Vi consisting of Ti - 1 
rows constructed the same way for Ti - 1 observations and a final row that will be 
different, as discussed later.22 The matrix will be of the form

 Vi = Dvi1
= 0′ g 0′

0′ vi2
= g 0′

f f f f
0′ 0′ g ai

=

T . (13-39)

The instrumental variable sets contained in vit
=  which have been suggested might include 

the following from within the model:

xit and xi,t - 1 (i.e., current and one lag of all the time-varying variables),
xi1, c, xiT  (i.e., all current, past, and future values of all the time-varying variables),
xi1, c, xit   (i.e., all current and past values of all the time-varying variables).

The time-invariant variables that are uncorrelated with ui, that is, z1i, are appended at 
the end of the nonzero part of each of the first T - 1 rows. It may seem that including 
x2 in the instruments would be invalid. However, we will be converting the disturbances 
to deviations from group means which are free of the latent effects—that is, this set of 
moment conditions will ultimately be converted to what appears in (13-38). While the 
variables are correlated with ui by construction, they are not correlated with eit - ei. The 
final row of Vi is important to the construction. Two possibilities have been suggested:

ai
= = [z1i

=  xi1] (produces the Hausman and Taylor estimator),
ai
= = [z1i

=  x1i1
= , x1i2

= , c, x1iT] (produces Amemiya and MaCurdy’s estimator).

Note that the a variables are exogenous time-invariant variables, z1i and the exogenous 
time-varying variables, either condensed into the single group mean or in the raw form, 
with the full set of T observations.

To construct the estimator, we will require a transformation matrix, H, constructed 
as follows. Let M01 denote the first T - 1 rows of M0, the matrix that creates deviations 
from group means. Then,

H = CM01

1
T

 iT
= S .

Thus, H replaces the last row of M0 with a row of 1/T. The effect is as follows: if q is T 
observations on a variable, then Hq produces q* in which the first T - 1 observations 
are converted to deviations from group means and the last observation is the group 
mean. In particular, let the T * 1 column vector of disturbances,

hi = [hi1, hi2, c, hiT] = [(ei1 + ui), (ei2 + ui), c, (eiT + ui)]′,

21Different approaches to this have been considered by Hausman and Taylor (1981), Arellano et al. (1991, 1995, 
1999), Ahn and Schmidt (1995), and Amemiya and MaCurdy (1986), among others.
22This is to exploit a useful algebraic result discussed by Arellano and Bover (1995).
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then

HH = D hi1 - hi

f
hi,T - 1 - hi

hi

T .

We can now construct the moment conditions. With all this machinery in place, we have 
the result that appears in (13-40), that is,

E[Vi
=HHi] = E[gi] = 0.

It is useful to expand this for a particular case. Suppose T = 3 and we use as instruments 
the current values in period 1, and the current and previous values in period 2 and the 
Hausman and Taylor form for the invariant variables. Then the preceding is

 E I ©x1i1 0 0
x2i1 0 0
z1i 0 0
0 x1i1 0
0 x2i1 0
0 x1i2 0
0 x2i2 0
0 z1i 0
0 0 z1i

0 0 x1i

π£hi1 - hi

hi2 - hi

hi

≥ Y = 0. (13-40)

This is the same as (13-38).23 The empirical moment condition that follows from this is

 plim 
1
n a

n

i = 1
Vi

=HHi

 = plim 
1
n a

n

i = 1
Vi

=H § yi1 - dyi0 - x1i1
= B1 - x2i1

= B2 - z1i
= A1 - z2i

= A2

yi2 - dyi1 - x1i2
= B1 - x2i2

= B2 - z1i
= A1 - z2i

= A2

f
yiT - dyi,T - 1 - x1iT

= B1 - x2iT
= B2 - z1i

= A1 - z2i
= A2

¥ = 0.

Write this as

plim 
1
n a

n

i = 1
mi = plim m = 0.

The GMM estimator Un is then obtained by minimizing q = m′Am with an appropriate 
choice of the weighting matrix, A. The optimal weighting matrix will be the inverse of 

23In some treatments—for example, Blundell and Bond (1998)—an additional condition is assumed for the initial 
value, yi0, namely E[yi0 � exogenous data] = m0. This would add a row at the top of the matrix in (13-40) containing 
[(yi0 - m0), 0, 0].
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the asymptotic covariance matrix of 2n m. With a consistent estimator of U in hand, 
this can be estimated empirically using

Est.Asy.Var[2n m] =
1
n a

n

i = 1
mn imn i

= =
1
n a

n

i = 1
Vi

=Hhn ihn i
=H′Vi.

This is a robust estimator that allows an unrestricted T * T covariance matrix for the T 
disturbances, eit + ui. But we have assumed that this covariance matrix is the � defined 
in (11-31) for the random effects model. To use this information we would, instead, use 
the residuals in

Hn i = yi - WiU
n

to estimate su
2 and se

2 and then �, which produces

Est.Asy.Var[2n m] =
1
n a

n

i = 1
Vi

=H′�n H′Vi.

We now have the full set of results needed to compute the GMM estimator. The solution 
to the optimization problem of minimizing q with respect to the parameter vector U is

  UnGMM = J ¢ an
i = 1

Wi
=HVi≤ ¢ an

i = 1
Vi

=H′�n HVi≤-1¢ an
i = 1

Vi
=H′Wi≤ R -1

 * ¢ an
i = 1

Wi
=HVi≤ ¢ an

i = 1
Vi

=H′�n HVi≤-1¢ an
i = 1

Vi
=H′yi≤. (13-41)

The estimator of the asymptotic covariance matrix for UnGMM is the inverse matrix in 
brackets.

The remaining loose end is how to obtain the consistent estimator of Un to compute �n  
Recall that the GMM estimator is consistent with any positive definite weighting 
matrix, A, in our preceding expression. Therefore, for an initial estimator, we can set 
A = I and use the simple instrumental variables estimator,

UnIV = J ¢ an
i = 1

Wi
=HVi≤ ¢ an

i = 1
Vi

=H′Wi≤ R -1¢ an
i = 1

Wi
=HVi≤ ¢ an

i = 1
Vi

=H′yi≤.

It is more common to proceed directly to the 2SLS estimator (see Sections 8.3.4 and 
11.8.2), which uses

A = a 1
n a

n

i = 1
Vi

=H′HVib
-1

.

The estimator is, then, the one given earlier in (13-41) with �n  replaced by IT. Either 
estimator is a function of the sample data only and provides the initial estimator we need.

Ahn and Schmidt (among others) observed that the IV estimator proposed here, 
as extensive as it is, still neglects quite a lot of information and is therefore (relatively) 
inefficient. For example, in the first differenced model,

E[yis(eit - ei,t - 1)] = 0, s = 0, c, t - 2, t = 2, c, T.
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That is, the level of yis is uncorrelated with the differences of disturbances that are at 
least two periods subsequent.24 (The differencing transformation, as the transformation 
to deviations from group means, removes the individual effect.) The corresponding 
moment equations that can enter the construction of a GMM estimator are

1
n a

n

i = 1
yis[(yit - yi,t - 1) - d(yi,t - 1 - yi,t - 2) - (xit - xi,t - 1)′B] = 0

s = 0, c, t - 2, t = 2, c, T.

Altogether, Ahn and Schmidt identify T(T - 1)/2 + T - 2 such equations that involve 
mixtures of the levels and differences of the variables. The main conclusion that they 
demonstrate is that in the dynamic model, there is a large amount of information to be 
gleaned not only from the familiar relationships among the levels of the variables, but 
also from the implied relationships between the levels and the first differences. The issue 
of correlation between the transformed yit and the deviations of eit is discussed in the 
papers cited.25

The number of orthogonality conditions (instrumental variables) used to estimate 
the parameters of the model is determined by the number of variables in vit and ai in  
(13-39). In most cases, the model is vastly overidentified—there are far more 
orthogonality conditions than parameters. As usual in GMM estimation, a test of the 
overidentifying restrictions can be based on q, the estimation criterion. At its minimum, 
the limiting distribution of nq is chi squared with degrees of freedom equal to the 
number of instrumental variables in total minus

(1 + K1 + K2 + L1 + L2).26

Example 13.10   GMM Estimation of a Dynamic Panel Data Model of Local 
Government Expenditures

Dahlberg and Johansson (2000) estimated a model for the local government expenditure of 
several hundred municipalities in Sweden observed over the nine-year period t = 1979 to 
1987. The equation of interest is

Si,t = at + a
m

j = 1
bjSi,t - j + a

m

j = 1
gjRi,t - j + a

m

j = 1
djGi,t - j + fi + eit,

for i = 1, c, n = 265, and t = m + 1, c, 9. (We have changed their notation slightly 
to make it more convenient.) Si,t, Ri,t, and Gi,t are municipal spending, receipts (taxes and 
fees), and central government grants, respectively. Analogous equations are specified for the 
current values of Ri,t and Gi,t. The appropriate lag length, m, is one of the features of interest 
to be determined by the empirical study. The model contains a municipality specific effect, fi, 

24This is the approach suggested by Holtz-Eakin (1988) and Holtz-Eakin, Newey, and Rosen (1988).
25As Ahn and Schmidt show, there are potentially huge numbers of additional orthogonality conditions in this 
model owing to the relationship between first differences and second moments. We do not consider those. The 
matrix Vi could be huge. Consider a model with 10 time-varying, right-hand-side variables and suppose Ti is 15. 
Then, there are 15 rows and roughly 15 * (10 * 15) or 2,250 columns. The Ahn and Schmidt estimator, which 
involves potentially thousands of instruments in a model containing only a handful of parameters may become 
a bit impractical at this point. The common approach is to use only a small subset of the available instrumental 
variables. The order of the computation grows as the number of parameters times the square of T.
26This is true generally in GMM estimation. It was proposed for the dynamic panel data model by Bhargava and 
Sargan (1983).
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which is not specified as being either fixed or random. To eliminate the individual effect, the 
model is converted to first differences. The resulting equation is

∆Si,t = lt + a
m

j = 1
bj∆Si,t - j + a

m

j = 1
gj∆Ri,t - j + a

m

j = 1
dj∆Gi,t - j + uit,

or

yi,t = xi,t
= U + ui,t,

where ∆Si,t = Si,t - Si,t - 1 and so on and ui,t = ei,t - ei,t - 1. This removes the group effect 
and leaves the time effect. Because the time effect was unrestricted to begin with, ∆at = lt 
remains an unrestricted time effect, which is treated as fixed and modeled with a time-specific 
dummy variable. The maximum lag length is set at m = 3. With nine years of data, this leaves 
usable observations from 1983 to 1987 for estimation, that is, t = m + 2, c, 9. Similar 
equations were fit for Ri,t and Gi,t.

The orthogonality conditions claimed by the authors are

E[Si,sui,t] = E[Ri,sui,t] = E[Gi,sui,t] = 0, s = 1, c, t - 2.

The orthogonality conditions are stated in terms of the levels of the financial variables and 
the differences of the disturbances. The issue of this formulation as opposed to, for example, 
E[∆Si,s∆ei,t] = 0 (which is implied) is discussed by Ahn and Schmidt (1995). As we shall 
see, this set of orthogonality conditions implies a total of 80 instrumental variables. The 
authors use only the first of the three sets listed, which produces a total of 30. For the five 
observations, using the formulation developed in Section 13.6.5, we have the following matrix 
of instrumental variables for the orthogonality conditions,

Zi = ES81 - 79 d83 0′ 0 0′ 0 0′ 0 0′ 0
0′ 0 S82 - 79 d84 0′ 0 0′ 0 0′ 0
0′ 0 0′ 0 S83 - 79 d85 0′ 0 0′ 0
0′ 0 0′ 0 0′ 0 S84 - 79 d86 0′ 0
0′ 0 0′ 0 0′ 0 0′ 0 S85 - 79 d87

U  

1983
1984
1985
1986
1987

,

where the notation St1 - t0 indicates the range of years for that variable. For example, S83 - 79 
denotes [Si,1983, Si,1982, Si,1981, Si,1980, Si,1979] and dyear denotes the year-specific dummy variable. 
Counting columns in Zi we see that using only the lagged values of the dependent variable and 
the time dummy variables, we have (3 + 1) + (4 + 1) + (5 + 1) + (6 + 1) + (7 + 1) = 30 
instrumental variables. Using the lagged values of the other two variables in each equation 
would add 50 more, for a total of 80 if all the orthogonality conditions suggested earlier were 
employed. Given the preceding construction, the orthogonality conditions are now E [Zi

=ui] = 0, 
where ui = [ui,1983, ui,1984, ui,1985, ui,1986, ui,1987]′. The empirical moment equation is

plim c 1
n a

n

i = 1
Zi

=ui d = plim m(U) = 0.

The parameters are vastly overidentified. Using only the lagged values of the dependent 
variable in each of the three equations estimated, there are 30 moment conditions and 
14 parameters being estimated when m = 3, 11 when m = 2, 8 when m = 1, and 5 
when m = 0. (As we do our estimation of each of these, we will retain the same matrix of 
instrumental variables in each case.) GMM estimation proceeds in two steps. In the first step, 
basic, unweighted instrumental variables is computed using

UnIV
= = J ¢an

i = 1
Xi
=Zi≤ ¢an

i = 1
Zi

=Zi≤ ¢an
i = 1

Zi
=Xi≤ R -1¢an

i = 1
Xi
=Zi≤ ¢an

i = 1
Zi

=Zi≤-1¢an
i = 1

Zi
=yi≤,
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where

yi
= = (∆S83 ∆S84 ∆S85 ∆S86 ∆S87),

and

Xi = E ∆S82 ∆S81 ∆S80 ∆R82 ∆R81 ∆R80 ∆G82 ∆G81 ∆G80 1 0 0 0 0
∆S83 ∆S82 ∆S81 ∆R83 ∆R82 ∆R81 ∆G83 ∆G82 ∆G81 0 1 0 0 0
∆S84 ∆S83 ∆S82 ∆R84 ∆R83 ∆R82 ∆G84 ∆G83 ∆G82 0 0 1 0 0
∆S85 ∆S84 ∆S83 ∆R85 ∆R84 ∆R83 ∆G85 ∆G84 ∆G83 0 0 0 1 0
∆S86 ∆S85 ∆S84 ∆R86 ∆R85 ∆R84 ∆G86 ∆G85 ∆G84 0 0 0 0 1

U .

The second step begins with the computation of the new weighting matrix,

�n = Est.Asy.Var[2n m ] =
1
N a

n

i = 1
Zi

=un iun i
=Zi.

After multiplying and dividing by the implicit (1/n) in the outside matrices, we obtain the estimator,

 UGMM
= = J ¢an

i = 1
Xi
=Zi≤ ¢an

i = 1
Zi

=un iun i
=Zi≤-1¢an

i = 1
Zi

=Xi≤ R -1

 * ¢an
i = 1

Xi
=Zi≤ ¢an

i = 1
Zi

=un iun i
=Zi≤-1¢an

i = 1
Zi

=yi≤
 = J ¢an

i = 1
Xi
=Zi≤W¢an

i = 1
Zi

=Xi≤ R -1¢an
i = 1

Xi
=Zi≤W¢an

i = 1
Zi

=yi≤.

The estimator of the asymptotic covariance matrix for the estimator is the inverse matrix in 
square brackets in the first line of the result.

The primary focus of interest in the study was not the estimator itself, but the lag length and 
whether certain lagged values of the independent variables appeared in each equation. These 
restrictions would be tested by using the GMM criterion function, which in this formulation 
would be

nq = ¢an
i = 1

un i
=Zi≤W¢an

i = 1
Zi

=un i≤
based on recomputing the residuals after GMM estimation. Note that the weighting matrix 
is not (necessarily) recomputed. For purposes of testing hypotheses, the same weighting 
matrix should be used.

At this point, we will consider the appropriate lag length, m. The specification can be reduced 
simply by redefining X to change the lag length. To test the specification, the weighting matrix 
must be kept constant for all restricted versions (m = 2 and m = 1) of the model.

The Dahlberg and Johansson data may be downloaded from the Journal of Applied 
Econometrics Web site—see Appendix Table F13.1. The authors provide the summary 
statistics for the raw data that are given in Table 13.1. Kroner, deflated by a municipality-
specific price index, then converted to per capita values. Descriptive statistics for the raw 
data appear in Table 13.3.27 Equations were estimated for all three variables, with maximum 
lag lengths of m = 1, 2, and 3. (The authors did not provide the actual estimates.) Estimation 
is done using the methods developed by Ahn and Schmidt (1995), Arellano and Bover (1995), 
and Holtz-Eakin, Newey, and Rosen (1988), as described. The estimates of the first 
specification provided are given in Table 13.4.

27 The data provided on the Web site and used in our computations were further transformed by dividing by 100,000.
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Variable Mean Std. Deviation Minimum Maximum

Spending 18478.51 3174.36 12225.68 33883.25
Revenues 13422.56 3004.16 6228.54 29141.62
Grants 5236.03 1260.97 1570.64 12589.14

TABLE 13.3 Descriptive Statistics for Local Expenditure Data

Table 13.5 contains estimates of the model parameters for each of the three equations, and 
for the three lag lengths, as well as the value of the GMM criterion function for each model 
estimated. The base case for each model has m = 3. There are three restrictions implied by 
each reduction in the lag length. The critical chi-squared value for three degrees of freedom 
is 7.81 for 95% significance, so at this level, we find that the two-level model is just barely 
accepted for the spending equation, but clearly appropriate for the other two—the difference 
between the two criteria is 7.62. Conditioned on m = 2, only the revenue model rejects the 
restriction of m = 1. As a final test, we might ask whether the data suggest that perhaps no 
lag structure at all is necessary. The GMM criterion value for the three equations with only 
the time dummy variables are 45.840, 57.908, and 62.042, respectively. Therefore, all three 
zero lag models are rejected.

Among the interests in this study were the appropriate critical values to use for the 
specification test of the moment restriction. With 16 degrees of freedom, the critical chi-
squared value for 95% significance is 26.3, which would suggest that the revenues equation 
is misspecified. Using a bootstrap technique, the authors find that a more appropriate critical 
value leaves the specification intact. Finally, note that the three-equation model in the m = 3 
columns of Table 13.5 imply a vector autoregression of the form

yt = �1yt - 1 + �2yt - 2 + �3yt - 3 + vt,

where yt = (∆St, ∆Rt, ∆Gt)′.

Variable Estimate Standard Error t Ratio

Year 1983 -0.0036578 0.0002969 -12.32
Year 1984 -0.00049670 0.0004128 -1.20
Year 1985 0.00038085 0.0003094 1.23
Year 1986 0.00031469 0.0003282 0.96
Year 1987 0.00086878 0.0001480 5.87
Spending (t - 1) 1.15493 0.34409 3.36
Revenues (t - 1) -1.23801 0.36171 -3.42
Grants (t - 1) 0.016310 0.82419 0.02
Spending (t - 2) -0.0376625 0.22676 -0.17
Revenues (t - 2) 0.0770075 0.27179 0.28
Grants (t - 2) 1.55379 0.75841 2.05
Spending (t - 3) -0.56441 0.21796 -2.59
Revenues (t - 3) 0.64978 0.26930 2.41
Grants (t - 3) 1.78918 0.69297 2.58

TABLE 13.4 Estimated Spending Equation
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13.7 SUMMARY AND CONCLUSIONS

The generalized method of moments provides an estimation framework that includes 
least squares, nonlinear least squares, instrumental variables, maximum likelihood, 
and a general class of estimators that extends beyond these. But it is more than just a 
theoretical umbrella. The GMM provides a method of formulating models and implied 
estimators without making strong distributional assumptions. Hall’s model of household 
consumption is a useful example that shows how the optimization conditions of an 
underlying economic theory produce a set of distribution-free estimating equations. In 
this chapter, we first examined the classical method of moments. GMM as an estimator 
is an extension of this strategy that allows the analyst to use additional information 
beyond that necessary to identify the model, in an optimal fashion. After defining and 
establishing the properties of the estimator, we then turned to inference procedures. It 
is convenient that the GMM procedure provides counterparts to the familiar trio of test 
statistics: Wald, LM, and LR. In the final section, we specialized the GMM estimator for 
linear and nonlinear equations and multiple-equation models. We then developed an 
example that appears at many points in the recent applied literature, the dynamic panel 
data model with individual specific effects, and lagged values of the dependent variable.

Key Terms and Concepts

•	Analog estimation
•	Central limit theorem
•	Criterion function
•	Empirical moment 

equation
•	Ergodic theorem
•	Exactly identified cases
•	Exponential family
•	Generalized method of 

moments (GMM) estimator

•	Instrumental variables
•	Likelihood ratio statistic
•	LM statistic
•	Martingale difference series
•	Maximum likelihood 

estimator 
•	Mean value theorem
•	Method of moment 

generating functions
•	Method of moments

•	Method of moments 
estimators

•	Minimum distance 
estimator (MDE)

•	Moment equation
•	Newey–West estimator
•	Nonlinear instrumental 

variable estimator
•	Order condition
•	Orthogonality conditions

Expenditure Model Revenue Model Grant Model

m = 3 m = 2 m = 2 m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

St - 1 1.155 0.8742 0.5562 -0.1715 -0.3117 -0.1242 -0.1675 -0.1461 -0.1958
St - 2 -0.0377 0.2493 — 0.1621 0.0773 — -0.0303 -0.0304 —
St - 3 -0.5644 — — -0.1772 — — -0.0955 — —
Rt - 1 -0.2380 -0.8745 -0.5328 -0.0176 0.1863 -0.0245 0.1578 0.1453 0.2343
Rt - 2 0.0770 -0.2776 — -0.0309 0.1368 — -0.0485 0.0175 —
Rt - 3 0.6497 — — 0.0034 — — 0.0319 — —
Gt - 1 0.0163 -0.4203 0.1275 -0.3683 0.5425 0.0808 -0.2381 -0.2066 -0.0559
Gt - 2 1.5538 0.1866 — 2.7152 2.4621 — -0.0492 -0.0804 —
Gt - 3 1.7892 — — 0.0948 — — 0.0598 — —

nq 22.8287 30.4526 34.4986 30.5398 34.2590 53.2506 17.5810 20.5416 27.5927

TABLE 13.5 Estimated Lag Equations for Spending, Revenue, and Grants
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Exercises

1. For the normal distribution m2k = s2k(2k)!/(k!2k) and m2k + 1 = 0, k = 0, 1, c. 
Use this result to analyze the two estimators,2b1 =

m3

m2
3/2 and b2 =

m4

m2
2,

  where mk = 1
n a n

i = 1(xi - x)k. The following result will be useful:

Asy.Cov[2nmj, 2nmk] = mj + k - mjmk + jkm2mj - 1mk - 1 - jmj - 1mk + 1 - kmk - 1mj + 1.

Use the delta method to obtain the asymptotic variances and covariance of these 
two functions, assuming the data are drawn from a normal distribution with mean 
m and variance s2. (Hint: Under the assumptions, the sample mean is a consistent 
estimator of m, so for purposes of deriving asymptotic results, the difference 
between x and m may be ignored. As such, no generality is lost by assuming the 
mean is zero, and proceeding from there.) Obtain V, the 3 * 3 covariance matrix 
for the three moments, and then use the delta method to show that the covariance 
matrix for the two estimators is

JVJ′ = J6/n 0
0 24/n

R ,

where J is the 2 * 3 matrix of derivatives.
2. Using the results in Example 13.5, estimate the asymptotic covariance matrix of 

the method of moments estimators of P and l based on m1
=  and m2

= . [Note: You will 
need to use the data in Example C.1 to estimate V.]

3. Exponential Families of Distributions. For each of the following distributions, 
determine whether it is an exponential family by examining the log-likelihood 
function. Then identify the sufficient statistics.
a. Normal distribution with mean m and variance s2.
b. The Weibull distribution in Exercise 4 in Chapter 14.
c. The mixture distribution in Exercise 3 in Chapter 14.

4. For the Wald distribution discussed in Example 13.3,

f(y) = A l

2py3 expJ -
l(y - m)2

2m2y
R , y 7 0, l 7 0, m 7 0,

  we have the following results: E[y] = m, Var[y] = s2 = m3/l, E[1/y] = 1/m + 1/l, 
Var[1/y] = 1/(lm) + 2/l2, E[y3] = m3 = E[(y - m)3/s3 = 3m5/l2.
a. Derive the maximum likelihood estimators of m and l and an estimator of the 

asymptotic variances of the MLEs. (Hint: Expand the quadratic in the exponent 
and use the three terms in the derivation.)

•	Overidentified cases
•	Overidentifying restrictions
•	Population moment equation
•	Probability limit
•	Random sample

•	Rank condition
•	Slutsky theorem
•	Specification test
•	Sufficient statistic
•	Taylor series

•	Uncentered moment
•	Wald statistic
•	Weighted least squares
•	Weighting matrix
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b. Derive the method of moments estimators using the three different pairs of 
moments listed above, E[y], E[1/y] and E[y3].

c. Using a random number generator, I generated a sample of 1,000 draws from 
the inverse Gaussian population with parameters m and l. I computed the 
following statistics:

Mean Standard Deviation

y 1.039892 1.438691
1/y 2.903571 2.976183

y3 = (y - m)3/s3 4.158523 38.01372

[For the third variable, I used the known (to me) true values of the parameters.] 
Using the sample data, compute the maximum likelihood estimators of m and 
l and the estimates of the asymptotic standard errors. Compute the method of 
moments estimators using the means of 1/y and y3.

5. In the classical regression model with heteroscedasticity, which is more efficient, 
ordinary least squares or GMM? Obtain the two estimators and their respective 
asymptotic covariance matrices, then prove your assertion.

6. Consider the probit model analyzed in Chapter 17. The model states that for given 
vector of independent variables,

Prob[yi = 1 � xi] = Φ[xi
=B], Prob[yi = 0 � xi] = 1 - Prob[yi = 1 � xi].

  Consider a GMM estimator based on the result that

E[yi � xi] = Φ(xi
=B).

This suggests that we might base estimation on the orthogonality conditions

E[(yi - Φ(xi
=B))xi] = 0.

Construct a GMM estimator based on these results. Note that this is not the 
nonlinear least squares estimator. Explain—what would the orthogonality 
conditions be for nonlinear least squares estimation of this model?

7. Consider GMM estimation of a regression model as shown at the beginning of 
Example 13.8. Let W1 be the optimal weighting matrix based on the moment 
equations. Let W2 be some other positive definite matrix. Compare the asymptotic 
covariance matrices of the two proposed estimators. Show conclusively that the 
asymptotic covariance matrix of the estimator based on W1 is not larger than that 
based on W2.
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