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18

MultinoMial ChoiCes 
and event Counts

§
18.1 INTRODUCTION

Chapter 17 presented most of the econometric issues that arise in analyzing discrete 
dependent variables, including specification, estimation, inference, and a variety of 
variations on the basic model. all of these were developed in the context of a model of 
binary choice, the choice between two alternatives. this chapter will use those results in 
extending the choice model to three specific settings:

Multinomial Choice: the individual chooses from more than two choices, once again, 
making the choice that provides the greatest utility. applications include the choices 
of political candidates, how to commute to work, which energy supplier to use, what 
health care plan to choose, where to live, or what brand of car, appliance, or food 
product to buy.

Ordered Choice: the individual reveals the strength of his or her preferences with 
respect to a single outcome. Familiar cases involve survey questions about strength of 
feelings regarding a particular commodity such as a movie, a book, or a consumer product, 
or self-assessments of social outcomes such as health in general or self-assessed well-
being. although preferences will probably vary continuously in the space of individual 
utility, the expression of those preferences for purposes of analyses is given in a discrete 
outcome on a scale with a limited number of choices, such as the typical five-point scale 
used in marketing surveys.

Event Counts: the observed outcome is a count of the number of occurrences. in many 
cases, this is similar to the preceding settings in that the “dependent variable” measures 
an individual choice, such as the number of visits to the physician or the hospital, the 
number of derogatory reports in one’s credit history, or the number of visits to a particular 
recreation site. in other cases, the event count might be the outcome of some less focused 
natural process, such as prevalence of a disease in a population or the number of defects 
per unit of time in a production process, the number of traffic accidents that occur at a 
particular location per month, the number of customers that arrive at a service point per 
unit of time, or the number of messages that arrive at a switch per unit of time over the 
course of a day. in this setting, we will be doing a more familiar sort of regression modeling.

Most of the methodological underpinnings needed to analyze these cases were presented 
in Chapter 17. in this chapter, we will be able to develop variations on these basic model 
types that accommodate different choice situations. as in Chapter 17, we are focused on 
discrete outcomes, so the analysis is framed in terms of models of the probabilities attached 
to those outcomes.
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18.2 MODELS FOR UNORDERED MULTIPLE CHOICES

some studies of multiple-choice settings include the following:

1. hensher (1986, 1991), McFadden (1974), and many others have analyzed the travel 
mode of urban commuters. hensher and Greene (2007b) analyze commuting 
between sydney and Melbourne by a sample of individuals who choose from air, 
train, bus, and car as the mode of travel.

2. schmidt and strauss (1975a, b) and Boskin (1974) have analyzed occupational 
choice among multiple alternatives.

3. Rossi and allenby (1999, 2003) studied consumer brand choices in a repeated choice 
(panel data) model.

4. train (2009) studied the choice of electricity supplier by a sample of California 
electricity customers.

5. Michelsen and Madlener (2012) studied homeowners’ choice of type of heating 
appliance to install in a new home.

6. hensher, Rose, and Greene (2015) analyzed choices of automobile models by a 
sample of consumers offered a hypothetical menu of features.

7. lagarde (2013) examined the choice of different sets of guidelines for preventing 
malaria by a sample of individuals in Ghana.

in each of these cases, there is a single decision based on two or more alternatives. in 
this and the next section, we will encounter two broad types of multinomial choice sets, 
unordered choices and ordered choices. all of the choice sets listed above are unordered. 
in contrast, a bond rating or a preference scale is, by design, a ranking; that is its purpose. 
Quite different techniques are used for the two types of models. We will examine models 
for ordered choices in section 18.3. this section will examine models for unordered 
choice sets. General references on the topics discussed here include hensher, louviere, 
and swait (2000), train (2009), and hensher, Rose, and Greene (2015).

18.2.1  RANDOM UTILITY BASIS OF THE MULTINOMIAL LOGIT MODEL

unordered choice models can be motivated by a random utility model. For the ith 
consumer faced with J choices, suppose that the utility of choice j is

Uij = zij
=U + eij.

if the consumer makes choice j in particular, then we assume that Uij is the maximum 
among the J utilities. hence, the statistical model is driven by the probability that choice 
j is made, which is

Prob(Uij 7 Uik)  for all other k ≠ j.

the model is made operational by a particular choice of distribution for the disturbances. 
as in the binary choice case, two models are usually considered: logit and probit. 
Because of the need to evaluate multiple integrals of the normal distribution, the probit 
model has found rather limited use in this setting. the logit model, in contrast, has been 
widely used in many fields, including economics, market research, politics, finance, and 
transportation engineering. let Yi be a random variable that indicates the choice made. 
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828 PART IV  ✦   Cross Sections, Panel Data, and Microeconometrics

McFadden (1974a) has shown that if (and only if) the J disturbances are independent 
and identically distributed with Gumbel (type 1 extreme value) distributions,

 F(eij) = exp(-exp(-eij)), (18-1)

then

 Prob(Yi = j) =
exp(zij

=U)

a J
j = 1exp(zij

=U)
, (18-2)

which leads to what is called the conditional logit model. (lt is often labeled the 
multinomial logit model, but this wording conflicts with the usual name for the model 
discussed in the next section, which differs slightly. although the distinction turns out 
to be purely artificial, we will maintain it for the present.)

utility depends on zij, which includes aspects specific to the individual as well as to 
the choices. it is useful to distinguish them. let zij = [xij, wi] and partition U conformably 
into [B′, A′]′. then xij varies across the choices and possibly across the individuals as 
well. the components of xij are called the attributes of the choices. But wi contains 
the characteristics of the individual and is, therefore, the same for all choices. if we 
incorporate this fact in the model, then (18-2) becomes

 Prob(Yi = j) =
exp(xij

=B + wi
=A)

a J
j = 1exp(xij

=B + wi
=A)

=
exp(xij

=B) exp(wi
=A)Ja J

j = 1exp(xij
=B) R  exp(wi

=A)

. (18-3)

terms that do not vary across alternatives—that is, those specific to the individual—fall 
out of the probability. this is as expected in a model that compares the utilities of the 
alternatives.

Consider a model of shopping center choice by individuals in various cities that 
depends on the number of stores at the mall, Sij, the distance from the central business 
district, Dij, and the shoppers’ incomes, Ii, the utilities for three choices would be

Ui1 = Di1b1 + Si1b2 + a + gIi + ei1;

Ui2 = Di2b1 + Si2b2 + a + gIi + ei2;

Ui3 = Di3b1 + Si3b2 + a + gIi + ei3.

the choice of alternative 1, for example, reveals that

Ui1 - Ui2 = (Di1 - Di2)b1 + (Si1 - Si2)b2 + (ei1 - ei2) 7 0 and

Ui1 - Ui3 = (Di1 - Di3)b1 + (Si1 - Si3)b2 + (ei1 - ei3) 7 0.

the constant term and Income have fallen out of the comparison. the result follows 
from the fact that the random utility model is ultimately based on comparisons of 
pairs of alternatives, not the alternatives themselves. evidently, if the model is to allow 
individual specific effects, then it must be modified. one method is to create a set of 
dummy variables (alternative specific constants), Aj, for the choices and multiply each 
of them by the common w. We then allow the coefficients on these choice invariant 

M18_GREE1366_08_SE_C18.indd   828 2/24/17   1:49 PM



 CHAPTER 18 ✦ Multinomial Choices and Event Counts 829

characteristics to vary across the choices instead of the characteristics. analogously to 
the linear model, a complete set of interaction terms creates a singularity, so one of them 
must be dropped. For this example, the matrix of attributes and characteristics would be

Zi = CSi1 Di1 1 0 Ii 0
Si2 Di2 0 1 0 Ii

Si3 Di3 0 0 0 0
S .

the probabilities for this model would be

Prob(Yi = j � Zi) =

exp¢Storesij b1 + Distanceij b2 +
Ajaj + Aj Incomei gj

≤
a 3

j = 1exp¢Storesij b1 + Distanceij b2 +
Ajaj + Aj Incomeigj

≤ , a3 = g3 = 0.

18.2.2  THE MULTINOMIAL LOGIT MODEL

to set up the model that applies when data are individual specific, it will help to 
consider an example. schmidt and strauss (1975a, b) estimated a model of occupational 
choice based on a sample of 1,000 observations drawn from the Public use sample for 
three years: l960, 1967, and 1970. For each sample, the data for each individual in the 
sample consist of the following:

1. Occupation: 0 = menial, 1 = blue collar, 2 = craft, 3 = white collar, 4 = profes-
sional. (note the slightly different numbering convention, starting at zero, which is 
standard.)

2. Characteristics: constant, education, experience, race, sex.

the multinomial logit model1 for occupational choice is

 Prob(Yi = j � wi) =
exp(wi

=Aj)

a 4
j = 0exp(wi

=Aj)
, j = 0, 1, c, 4. (18-4)

(the binomial logit model in section 17.3 is conveniently produced as the special case 
of J = 1.) the estimated equations provide a set of probabilities for the J + 1 choices 
for a decision maker with characteristics wi. Before proceeding, we must remove 
an indeterminacy in the model. if we define Aj

* = Aj + q for any nonzero vector q, then 
recomputing the probabilities in (18-4) using Aj

* instead of Aj produces the identical set 
of probabilities because all the terms involving q drop out. a convenient normalization 
that solves the problem is A0 = 0. (this arises because the probabilities sum to one, so 
only J parameter vectors are needed to determine the J + 1 probabilities.) therefore, 
the probabilities are

 Prob(Yi = j � wi) = Pij =
exp(wi

=Aj)

1 + a J
k = 1exp(wi

=Ak)
, j = 0, 1, c, J. (18-5)

1nerlove and Press (1973) is a pioneering study in this literature, also about labor market choices.
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the form of the binary choice model examined in section 17.2 results if J = 1. the model 
implies that we can compute J log-odds,

lnJ Pij

Pik
R = wi

=(Aj - Ak) = wi
=Aj if k = 0.

From the point of view of estimation, it is useful that the odds ratio, Pij/Pik, does not 
depend on the other choices, which follows from the independence and identical 
distributions of the random terms in the original model. From a behavioral viewpoint, this 
fact turns out not to be very attractive. We shall return to this problem in section 18.2.4.

the log likelihood can be derived by defining, for each individual, dij = 1 if 
alternative j is chosen by individual i, and 0 if not, for the J + 1 possible outcomes. 
then, for each i, one and only one of the dij’s is 1. the log likelihood is a generalization 
of that for the binomial probit or logit model,

ln L = a
n

i = 1
a

J

j = 0
dij ln Prob(Yi = j � wi).

the derivatives have the characteristically simple form

0 ln L
0Aj

= a
n

i =
(dij - Pij)wi for j = 1, c, J.

the exact second derivatives matrix has J2 K * K blocks,2

02 ln L
0Aj 0Al

= = - a
n

i = 1
Pij[1(j = l) - Pil]wiwi

=,

where 1(j = l) equals 1 if j equals l and 0 if not. Because the hessian does not involve 
dij, these are the expected values, and newton’s method is equivalent to the method of 
scoring. it is worth noting that the number of parameters in this model proliferates with 
the number of choices, which is inconvenient because the typical cross section sometimes 
involves a fairly large number of characteristics.

the coefficients in this model are difficult to interpret. it is tempting to associate Aj 
with the jth outcome, but that would be misleading. note that all of the Aj’s appear in 
the denominator of Pij. By differentiating (18-5), we find that the partial effects of the 
characteristics on the probabilities are

 Dij =
0Pij

0wi
= PijJAj - a

J

k = 0
Pik Ak R = Pij[Aj - A]. (18-6)

therefore, every subvector of A enters every partial effect, both through the probabilities 
and through the weighted average that appears in Dij. these values can be computed 
from the parameter estimates. although the usual focus is on the coefficient estimates, 
equation (18-6) suggests that there is at least some potential for confusion. note, 
for example, that for any particular wik, 0Pij/0wik need not have the same sign as ajk. 

2if the data were in the form of proportions, such as market shares, then the appropriate log likelihood and 
derivatives are ΣiΣjni ln pij and ΣiΣjni(pij - Pij)wi, respectively. the terms in the hessian are multiplied by ni.
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standard errors can be estimated using the delta method. (see section 4.6.) For purposes 
of the computation, let A = [0, A1

= , A2
= , c, AJ

=]′. We include the fixed 0 vector for 
outcome 0 because although A0 = 0, Di0 = -Pi0A, which is not 0. note as well that 
asy.Cov[An0, An j] = 0 for j = 1, c, J. then

 asy.var[Dnij] = a
J

l = 0
 a

J

m = 0
¢ 0Dij

0Al
= ≤ asy.Cov[An l

=, An m
= ]¢ 0Dij

=

0Am
≤,

 
0Dij

0Al
= = [1(j = l) - Pil][PijI + Dijwi

=] - Pij[Dilwi
=].

Finding adequate fit measures in this setting presents the same difficulties as in the 
binomial models. as before, it is useful to report the log likelihood. if the model contains 
no covariates and no constant terms, then the log likelihood will be

ln Lc = a
J

j = 0
nj lna 1

J + 1
b ,

where nj is the number of individuals who choose outcome j. if the characteristic vector 
includes only a constant term, then the restricted log likelihood is

ln L0 = a
J

j = 0
nj ln¢nj

n
≤ = a

J

j = 0
nj ln pj,

where pj is the sample proportion of observations that make choice j. a useful table will 
give a listing of hits and misses of the prediction rule “predict Yi = j if Pn ij is the maximum 
of the predicted probabilities.”3

Example 18.1  Hollingshead Scale of Occupations
Fair’s (1977) study of extramarital affairs is based on a cross section of 601 responses to a 
survey by Psychology Today. One of the covariates is a category of occupations on a seven-
point scale, the Hollingshead (1975) scale.4 The Hollingshead scale is intended to be a 
measure on a prestige scale, a fact which we’ll ignore (or disagree with) for the present. The 
seven levels on the scale are, broadly,

1. Higher executives,
2. Managers and proprietors of medium-sized businesses,
3. Administrative personnel and owners of small businesses,
4. Clerical and sales workers and technicians,
5. Skilled manual employees,
6. Machine operators and semiskilled employees,
7. Unskilled employees.

Among the other variables in the data set are Age, Sex, and Education. The data are 
given in Appendix Table F18.1. Table 18.1 lists estimates of a multinomial logit model. (We 
emphasize that the data are a self-selected sample of Psychology Today readers in 1976, so 
it is unclear what contemporary population would be represented. The following serves as 
an uncluttered numerical example that readers could reproduce. Note, as well, that at least 

3it is common for this rule to predict all observations with the same value in an unbalanced sample or a model 
with little explanatory power. this is not a contradiction of an estimated model with many significant coefficients 
because the coefficients are not estimated so as to maximize the number of correct predictions.
4see, also Bornstein and Bradley (2003).
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by some viewpoint, the outcome for this experiment is ordered so the model in Section 18.3 
might be more appropriate.) The log likelihood for the model is -770.28141 while that for 
the model with only the constant terms is -982.20533. The likelihood ratio statistic for the 
hypothesis that all 18 coefficients of the model are zero is 423.85, which is far larger than the 
critical value of 28.87. In the estimated parameters, it appears that only gender is consistently 
statistically significant. However, it is unclear how to interpret the fact that Education is 
significant in some of the parameter vectors and not others. The partial effects give a similarly 
unclear picture, though in this case, the effect can be associated with a particular outcome. 
However, we note that the implication of a test of significance of a partial effect in this 
model is itself ambiguous. For example, Education is not significant in the partial effect for 
outcome 6, though the coefficient on Education in A6 is. This is an aspect of modeling with 
multinomial choice models that calls for careful interpretation by the model builder. Note 
that the rows of partial effects sum to zero. The interpretation of this result is that when a 
characteristic such as age changes, the probabilities change in turn. But they sum to one 
before and after the change.

Example 18.2  Home Heating Systems
Michelsen and Madlener (2012) studied the preferences of homeowners for adoption of 
innovative residential heating systems. The analysis was based on a survey of 2,240 German 
homeowners who installed one of four types of new heating systems: GAS@ST = gas@fired 
condensing boiler with solar thermal support, OIL@ST = oil@fired condensing boiler with 
solar thermal support, HEAT@P = heat pump, and PELLET = wood pellet-fired boiler. 
Variables in the model included sociodemographics such as age, income and gender; home 
characteristics such as size, age, and previous type of heating system; location and some 
specific characteristics, including preference for energy savings (on a five-point scale), 
preference for more independence from fossil fuels and, also on a five-point scale, preference 
for environmental protection. The authors reported only the average partial effects for the 
many variables (not the estimated coefficients). Two, in particular, were the survey data on 

A0 A1 A2 A3 A4 A5 A6

Parameters

Constant 0.0 3.1506 2.0156 -1.9849 -6.6539 -15.0779 -12.8919
(1.14) (1.28) (-1.38) (-5.49) (-9.18) (-4.61)

Age 0.0 -0.0244 -0.0361 -0.0123 0.0038 0.0225 0.0588
(-0.73) (-1.64) (-0.63) (0.25) (1.22) (1.92)

Sex 0.0 6.2361 4.6294 4.9976 4.0586 5.2086 5.8457
(5.08) (4.39) (4.82) (3.98) (5.02) (4.57)

Education 0.0 -0.4391 -0.1661 0.0684 0.4288 0.8149 0.4506
(-2.62) (-1.75) (0.79) (5.92) (8.56) (2.92)

Partial Effects

Age -0.0001 -0.0002 -0.0028 -0.0022 0.0006 0.0036 0.0011
(- .19) (-0.92) (-2.23) (-1.15) (0.23) (1.89) (1.90)

Sex -0.2149 0.0164 0.0233 0.1041 -0.1264 0.1667 0.0308
(-4.24) (1.98) (1.00) (2.87) (-2.15) (4.20) (2.35)

Education -0.0187 -0.0069 -0.0387 -0.0460 0.0278 0.0810 0.0015
(-2.22) (-2.31) (-6.29) (-5.1) (2.12) (8.61) (0.56)

TABLE 18.1 Estimated Multinomial Logit Model for Occupation (t ratios in parentheses)
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environmental protection and energy independence. They reported the following average 
partial effects for these two variables:

GAS-ST OIL-ST HEAT-P PELLET

environment 0.002 -0.003 -0.022 0.024
independence -0.150 -0.043 0.100 0.093

The precise meaning of the changes in the two variables are unclear, as they are five-point 
scales treated as if they were continuous. Nonetheless, the substitution of technologies away 
from fossil fuels is suggested in the results. The desire to reduce CO2 emissions is less 
obvious in the environmental protection results.5

18.2.3  THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of individual-specific 
characteristics, the natural model formulation would be

 Prob(Yi = j � xi1, xi2, c, xiJ) = Prob(Yi = j � Xi) = Pij =
exp(xij

=B)

a J
j = 1exp(xij

=B)
. (18-7)

here, in accordance with the convention in the literature, we let j = 1, 2, c, J for a 
total of J alternatives. the model is otherwise essentially the same as the multinomial 
logit. even more care will be required in interpreting the parameters, however. once 
again, an example will help focus ideas.

in this model, the coefficients are not directly tied to the marginal effects. the 
marginal effects for continuous variables can be obtained by differentiating (18-7) with 
respect to a particular xm to obtain

0Pij

0xim
= [Pij(1(j = m) - Pim)]B, m = 1, c, J.

it is clear that through its presence in Pij and Pim, every attribute set xm affects all the 
probabilities. hensher (1991) suggests that one might prefer to report elasticities of the 
probabilities. the effect of attribute k of choice m on Pij would be

0 ln Pij

0 ln xmk
=

xmk

Pij
 

0Pij

0xmk
= xmk[1(j = m) - Pim]bk.

Because there is no ambiguity about the scale of the probability itself, whether one 
should report the derivatives or the elasticities is largely a matter of taste. there is a 
striking result in the elasticity; 0 ln Pij/0 ln xmk is not a function of Pij. this is a strong 
implication of the particular functional form assumed at the outset. it implies the rather 
peculiar substitution pattern that can be seen in the top panel of table 18.8, below. We 
will explore this result in section 18.2.4. Much of the research on multinomial choice 
modeling over the past several decades has focused on more general forms (including 
several that we will examine here) that provide more realistic behavioral results. some 
applications are developed in example 18.3.

5the results were extracted from their table 6, p. 1279.
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estimation of the conditional logit model is simplest by newton’s method or the 
method of scoring. the log likelihood is the same as for the multinomial logit model. 
once again, we define dij = 1 if Yi = j and 0 otherwise. then

ln L = a
n

i = 1
a

J

j = 1
dij ln Prob(Yi = j).

Market share and frequency data are common in this setting. if the data are in this form, 
then the only change needed is, once again, to define dij as the proportion or frequency.

Because of the simple form of ln L, the gradient and hessian also have particularly 
convenient forms: let xi = a J

j = 1Pijxij. then,

 
0 ln L

0B
= a

n

i = 1
a

J

j = 1
dij(xij - xi),

 
02 ln L
0B0B′

= - a
n

i = 1
a

J

j = 1
Pij(xij - xi)(xij - xi)′. 

(18-8)

the usual problems of fit measures appear here. the log-likelihood ratio and tabulation 
of actual versus predicted choices will be useful. there are two possible constrained log 
likelihoods. the model cannot contain a constant term, so the constraint B = 0 renders 
all probabilities equal to 1/J. the constrained log likelihood for this constraint is then 
Lc = -n ln J. of course, it is unlikely that this hypothesis would fail to be rejected. 
alternatively, we could fit the model with only the J - 1 choice-specific constants, 
which makes the constrained log likelihood the same as in the multinomial logit model, 
ln L0

* = a jnj ln pj, where, as before, nj is the number of individuals who choose 
alternative j.

We have maintained a distinction between the multinomial logit model based on 
characteristics of the individual and the conditional logit model based on the attributes 
of the choices). the distinction is completely artificial. applications of multinomial 
choice modeling usually mix the two forms—our example below related to travel mode 
choice includes attributes of the modes as well as household income. the general form 
of the multinomial logit model that appears in applications, based on (18-3), would be

Prob(Yi = j) =
exp(xij

=B + wi
=Aj)

a J
m = 1exp(xim

= B + wi
=Am)

.

18.2.4  THE INDEPENDENCE FROM IRRELEVANT ALTERNATIVES ASSUMPTION

We noted earlier that the odds ratios in the multinomial logit or conditional logit models 
are independent of the other alternatives. this property is convenient for estimation, 
but it is not a particularly appealing restriction to place on consumer behavior. an 
additional consequence, also unattractive, is the peculiar pattern of substitution 
elasticities that is implied by the multinomial logit form. the property of the logit 
model whereby Pij/Pim is independent of the remaining probabilities, and 0 lnPij/0lnxim 
is not a function of Pij, is called the independence from irrelevant alternatives (IIA).
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the independence assumption follows from the initial assumption that the random 
components of the utility functions are independent and homoscedastic. later we will 
discuss several models that have been developed to relax this assumption. Before doing 
so, we consider a test that has been developed for testing the validity of the assumption. 
the unconditional probability of choice j in the Mnl model is

Prob(Yi = j) =
exp(xij

=B)

a J
m = 1exp(xim

= Bm)
.

Consider the probability of choice j in a reduced choice set, say in alternatives 1 to J - 1. 
this would be

 
Prob[Y = j and j ∈ (1, c, J - 1)]

Prob(j ∈ (1, c, J - 1))
=

exp(xij
=B)

a J
m = 1exp(xim

= Bm)
n a J - 1

j = 1exp(xij
=B)

a J
m = 1exp(xim

= Bm)

 =
exp(xij

=B)

a J - 1
m = 1exp(xim

= Bm)
.

this is the same model, with the denominator summed from 1 to J - 1, instead. the 
Mnl model survives the restriction of the choice set—that is, the parameters of the 
model would be the same. hausman and McFadden (1984) suggest that if a subset 
of the choice set truly is irrelevant, then omitting it from the model altogether will 
not change parameter estimates systematically. exclusion of these choices (and the 
observations that choose them) will be inefficient but will not lead to inconsistency. But 
if the remaining odds ratios are not truly independent from these alternatives, then the 
parameter estimators obtained when these choices are excluded will be inconsistent. 
this observation is the usual basis for hausman’s specification test. the statistic is

x2 = (Bns - Bnf)′[Vns - Vnf]
-1(Bns - Bnf),

where s indicates the estimators based on the restricted subset, f indicates the estimator 
based on the full set of choices, and Vns and Vnf  are the respective estimates of the 
asymptotic covariance matrices. the statistic has a limiting chi-squared distribution with 
K degrees of freedom. We will examine an application in example 18.3.

18.2.5  ALTERNATIVE CHOICE MODELS

the multinomial logit form imposes some unattractive restrictions on the pattern of 
behavior in the choice process. a large variety of alternative models in a long thread of 
research have been developed that relax the restrictions of the Mnl model.6 two 
specific restrictions are the homoscedasticity across choices and individuals of the utility 
functions and the lack of correlation across the choices. We consider three alternatives 
to the Mnl model. note it is not simply the distribution at work. Changing the model 
to a multinomial probit model based on the normal distribution, but still independent 
and homoscedastic, does not solve the problem.

6one of the earliest contributions to this literature is Gaudry and dagenais’s (1979) “doGit” model that 
“[d]odges the researcher’s dilemma of choosing a priori between a format which commits to iia restrictions and 
one which excludes them ….” (p. 105.) the doGit functional form is Pj = (Vj + ljΣmVm)/[(1 + Σmlm)ΣmVm], 
where Vj = exp(xij

=B) and lj Ú 0.
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18.2.5.a  Heteroscedastic Extreme Value Model 
the variance of eij in (18-1) is equal to p2/6. the heteroscedastic extreme value (hev) 
specification developed by Bhat (1995) allows a separate variance,

 sj
2 = p2/(6uj

2), (18-9)

for each eij in (18-1). one of the u’s must be normalized to 1.0 because we can only 
compare ratios of variances. We can allow heterogeneity across individuals as well as 
across choices by specifying

 uij = uj * exp(F′hi). (18-10)

[see salisbury and Feinberg (2010) and louviere and swait (2010) for applications of 
this type of hev model.] the heteroscedasticity alone interrupts the iia assumption.

18.2.5.b  Multinomial Probit Model 
a natural alternative model that relaxes the independence restrictions built into the 
multinomial logit (Mnl) model is the multinomial probit model (MNP). the structural 
equations of the MnP model are

Uij = xij
=B + eij, j = 1, c, J,[ei1, ei2, c, eiJ] ∼ N[0, �].

the term in the log likelihood that corresponds to the choice of alternative q is

Prob[choiceiq] = Prob[Uiq 7 Uij, j = 1, c, J, j ≠ q].

the probability for this occurrence is

Prob[choiceiq] = Prob[ei1 - eiq 6 (xiq - xi1)′B, c, eiJ - eiq 6 (xiq - xiJ)′B]

for the J - 1 other choices, which is a cumulative probability from a (J - 1)@variate 
normal distribution. Because we are only making comparisons, one of the variances 
in this J - 1 variate structure—that is, one of the diagonal elements in the reduced 
�—must be normalized to 1.0. Because only comparisons are ever observable in this 
model, for identification, J - 1 of the covariances must also be normalized, to zero. 
the MnP model allows an unrestricted (J - 1) * (J - 1) correlation structure and 
J - 2 free standard deviations for the disturbances in the model. (thus, a two-choice 
model returns to the univariate probit model of section 17.2.3.) For more than two 
choices, this specification is far more general than the Mnl model, which assumes that 
� = (p2/6)I. (the scaling is absorbed in the coefficient vector in the Mnl model.) it 
adds the unrestricted correlations to the heteroscedastic model of the previous section.

the greater generality of the multinomial probit is produced by the correlations 
across the alternatives (and, to a lesser extent, by the possible heteroscedasticity). the 
distribution itself is a lesser extension. an MnP model that simply substitutes a normal 
distribution with Σ = I will produce virtually the same results (probabilities and 
elasticities) as the multinomial logit model. an obstacle to implementation of the MnP 
model has been the difficulty in computing the multivariate normal probabilities for 
models with many alternatives.7 Results on accurate simulation of multinormal integrals 

7hausman and Wise (1978) point out that the probit model may not be as impractical as it might seem. First, for 
J choices, the comparisons implicit in Uij 7 Uim for m ≠ j involve the J - 1 differences, ej - em. thus, starting 
with a J-dimensional problem, we need only consider derivatives of (J - 1)@order probabilities. therefore, for 
example, a model with four choices requires only the evaluation of trivariate normal integrals, bivariate if only the 
derivatives of the log likelihood are needed.
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using the GhK simulator have made estimation of the MnP model feasible. 
(see section 15.6.2.b and a symposium in the november 1994 issue of the Review of 
Economics and Statistics.) Computation is exceedingly time consuming. it is also 
necessary to ensure that � remain a positive definite matrix. one way often suggested 
is to construct the Cholesky decomposition of �, LL′, where L is a lower triangular 
matrix, and estimate the elements of L. the normalizations and zero restrictions can be 
imposed by making the last row of the J * J matrix � equal (0, 0, . . . , 1) and using LL′ 
to create the upper (J - 1) * (J - 1) matrix. the additional normalization restriction 
is obtained by imposing L11 = 1.

the identification restrictions in Σ needed to identify the model can appear in 
different places. For example, it is arbitrary which alternative provides the numeraire, 
and any other row of � can be normalized. one consequence is that it is not possible 
to compare directly the estimated coefficient vectors, B, in the MnP and Mnl models. 
the substantive differences between estimated models are revealed by the predicted 
probabilities and the estimated elasticities.

18.2.5.c  The Nested Logit Model 
one way to relax the homoscedasticity assumption in the conditional logit model 
that also provides an intuitively appealing structure is to group the alternatives into 
subgroups that allow the variance to differ across the groups while maintaining the iia 
assumption within the groups. this specification defines a nested logit model. to fix 
ideas, it is useful to think of this specification as a two- (or more) level choice problem 
(although, once again, the model arises as a modification of the stochastic specification 
in the original conditional logit model, not necessarily as a model of behavior). suppose, 
then, that the J alternatives can be divided into B subgroups (branches) such that the 
choice set can be written

[c1, c, cJ] = [(c1�1, c, cJ1�1), (c1�2, c, cJ2�2) c, (c1�B, c, cJB�B)].

logically, we may think of the choice process as that of choosing among the B choice 
sets and then making the specific choice within the chosen set. this method produces 
a tree structure, which for two branches and, say, five choices (twigs) might look as 
follows:

Choice

Branch1 Branch 2

c1 ƒ ƒ ƒ ƒ ƒ1 c2 1 c1 2 c2 2 c3 2

suppose as well that the data consist of observations on the attributes of the choices xij�b 
and attributes of the choice sets zib.

to derive the mathematical form of the model, we begin with the unconditional 
probability

Prob[twigj, branchb] = Pijb =
exp(xij�b

= B + zib
= G)

aB
b = 1a Jb

j = 1exp(xij�b
= B + zib

= G)
.
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now write this probability as

 Pijb = Pij�bPb

 = § exp(xij�b
= B)

a Jb

j = 1exp(xij�b
= B)

¥§ exp(zib
= G)

aL
l = 1exp(zib

= G)
¥ 

¢ a Jb

j = 1exp(xij�b
= B)≤ ¢ aL

l = 1exp(zib
= G)≤¢ aL

l = 1a Jl

j = 1exp(xij�b
= B + zib

= G)≤ .

define the inclusive value for the lth branch as

IVib = ln¢ aJb

j = 1
exp(xij�b

= B)≤.

then, after canceling terms and using this result, we find

 Pij�b =
exp(xij�b

= B)

a Jb

j = 1exp(xij�b
= B)

 and Pb =
exp[tb(zib

= G + IVib)]

aB
b = 1exp[tb(zib

= G + IVib)]
, (18-11)

where the new parameters tl must equal 1 to produce the original Mnl model. therefore, 
we use the restriction tl = 1 to recover the conditional logit model, and the preceding 
equation just writes this model in another form. the nested logit model arises if this 
restriction is relaxed. the inclusive value coefficients, unrestricted in this fashion, allow 
the model to incorporate some degree of heteroscedasticity and cross alternative 
correlation. Within each branch, the iia restriction continues to hold. the equal variance 
of the disturbances within the jth branch are now8

 sb
2 =

p2

6tb

. (18-12)

With tj = 1, this reverts to the basic result for the multinomial logit model. the nested 
logit model is equivalent to a random utility model with block diagonal covariance 
matrix. For example, for the four-choice model examined in example 18.3, the model is 
equivalent to a RuM with

Σ = DsF
2 0 0 0

0 sG
2 sG

2 r sG
2 r

0 sG
2 r sG

2 sG
2 r

0 sG
2 r sG

2 r sG
2

T .

as usual, the coefficients in the model are not directly interpretable. the derivatives 
that describe covariation of the attributes and probabilities are

 
0 ln Prob[choice = m, branch = b]

0xk in choice M and branch B

 = {1(b = B)[1(m = M) - PM�B] + tB[1(b = B) - PB]PM � B}bk.

8see hensher, louviere, and swait (2000). see Greene and hensher (2002) for alternative formulations of the 
nested logit model.
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the nested logit model has been extended to three and higher levels. the complexity 
of the model increases rapidly with the number of levels. But the model has been 
found to be extremely flexible and is widely used for modeling consumer choice in the 
marketing and transportation literatures, to name a few.

there are two ways to estimate the parameters of the nested logit model. a limited 
information, two-step maximum likelihood approach can be done as follows:

1. estimate B by treating the choice within branches as a simple conditional logit model.
2. Compute the inclusive values for all the branches in the model. estimate G and the 

T parameters by treating the choice among branches as a conditional logit model 
with attributes zib and Iib.

Because this approach is a two-step estimator, the estimate of the asymptotic covariance 
matrix of the estimates at the second step must be corrected.9 For full information 
maximum likelihood (FiMl) estimation of the model, the log likelihood is10

ln L = a
n

i = 1
ln[Prob(twig � branch)i * Prob(branch)i].

the information matrix is not block diagonal in B and (G, T), so FiMl estimation will be 
more efficient than two-step estimation. the FiMl estimator is now available in several 
commercial computer packages. (it also solves the problem if efficiently mixing the B 
different estimators of B that are produced by reestimation with each branch.)

to specify the nested logit model, it is necessary to partition the choice set into 
branches. sometimes there will be a natural partition, such as in the example given by 
Maddala (1983) when the choice of residence is made first by community, then by dwelling 
type within the community. in other instances, however, the partitioning of the choice set 
is ad hoc and leads to the troubling possibility that the results might be dependent on the 
branches so defined. (Many studies in this literature present several sets of results based 
on different specifications of the tree structure.) there is no well-defined testing procedure 
for discriminating among tree structures, which is a problematic aspect of the model.

Example 18.3  Multinomial Choice Model for Travel Mode
Hensher and Greene11 report estimates of a model of travel mode choice for travel between 
Sydney and Melbourne, Australia. The data set contains 210 observations on choice among 
four travel modes, air, train, bus, and car. (See Appendix Table F18.2.) The attributes used 
for their example were: choice-specific constants; two choice-specific continuous measures; 
GC, a measure of the generalized cost of the travel that is equal to the sum of in-vehicle 
cost, INVC, and a wage-like measure times INVT, the amount of time spent traveling; 
and TTME, the terminal time (zero for car); and for the choice between air and the other 
modes, HINC, the household income. A summary of the sample data is given in Table 18.2. 
The sample is choice based so as to balance it among the four choices—the true population 
allocation, as shown in the last column of Table 18.2, is dominated by drivers.

The model specified is

Uij = aairdi, air + atraindi, train + abusdi, bus + bGGCij + bTTTMEij + gHdi, airHINCi + eij,

9see McFadden (1984).
10see hensher (1986, 1991) and Greene (2007b).
11see Greene (2016).
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where for each j, eij has the same independent, type 1 extreme value distribution,

Fe(eij) = exp(-exp(-eij)),

which has variance p2/6. The mean of -0.5772 is absorbed in the constants. Estimates 
of the conditional logit model are shown in Table 18.3. The model was fit with and without 
the corrections for choice-based sampling. (See Section 17.5.4.) Because the sample 
shares do not differ radically from the population proportions, the effect on the estimated 
parameters is fairly modest. Nonetheless, it is apparent that the choice-based sampling 
is not completely innocent. A cross tabulation of the predicted versus actual outcomes 
is given in Table 18.4. The predictions are generated by tabulating the integer parts of 
mjk = a 210

i = 1pn ijdik, j, k = air, train, bus, car, where pn ij is the predicted probability of outcome 
j for observation i and dik is the binary variable that indicates if individual i made choice k.

Are the odds ratios train/bus and car/bus really independent from the presence of the air 
alternative? To use the Hausman test, we would eliminate choice air from the choice set and 
estimate a three-choice model. Because 58 respondents chose this mode, we would lose 58 
observations. In addition, for every data vector left in the sample, the air-specific constant 

 
Unweighted Sample

Choice-Based Sample 
Weighting

Estimate t Ratio Estimate t Ratio

bG -0.01550 -3.517 -0.01333 -2.711
bT -0.09612 -9.207 -0.13405 -5.216
gH 0.01329 1.295 -0.00108 -0.097
aair 5.2074 6.684 6.5940 4.075
atrain 3.8690 8.731 3.6190 4.317
abus 3.1632 7.025 3.3218 3.822
log likelihood at B = 0 -291.1218 -291.1218
log likelihood (sample shares) -283.7588 -218.9929
log likelihood at convergence -199.1284 -147.5896

TABLE 18.3 Parameter Estimates for Multinomial Logit Model

GC TTME INVC INVT HINC
Number 

Choosing p
True 
Prop.

Air 102.648 61.010 85.522 133.710 34.548 58 0.28 0.14
113.522 46.534 97.569 124.828 41.274

Train 130.200 35.690 51.338 608.286 34.548 63 0.30 0.13
106.619 28.524 37.460 532.667 23.063

Bus 115.257 41.657 33.457 629.462 34.548 30 0.14 0.09
108.133 25.200 33.733 618.833 29.700

Car 94.414 0 20.995 573.205 34.548 59 0.28 0.64
89.095 0 15.694 527.373 42.22

Note: the upper figure in each cell is the average for all 210 observations. the lower figure is the mean for the 
observations that made that choice.

TABLE 18.2 Summary Statistics for Travel Mode Choice Data
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Air Train Bus Car Total (Actual)

Air 32 (30) 8 (3) 5 (3) 13 (23) 58
Train 7 (3) 37 (30) 5 (3) 14 (27) 63
Bus 3 (1) 5 (2) 15 (14) 6 (12) 30
Car 16 (5) 13 (5) 6 (3) 25 (45) 59
Total (Predicted) 58 (39) 63 (40) 30 (23) 59 (108) 210

TABLE 18.4  Predicted Choices Based on MNL Model Probabilities (predictions based on 
choice-based sampling in parentheses)

and the interaction, di, air * HINCi would be zero for every remaining individual. Thus, these 
parameters could not be estimated in the restricted model. We would drop these variables. 
The test would be based on the two estimators of the remaining four coefficients in the model, 
[bG, bT, atrain, abus]. The results for the test are as shown in Table 18.5. The hypothesis that 
the odds ratios for the other three choices are independent from air would be rejected based 
on these results, as the chi-squared statistic exceeds the critical value.

After IIA was rejected, the authors estimated a nested logit model of the following type:

Travel

FLY

AIR TRAIN BUS CAR

GROUND

Determinants

(Income)

(G cost, T time)

Note that one of the branches has only a single choice (this is called a “degenerate” branch), 
so the conditional probability, Pj�fly, = Pair�fly = 1. The estimates in Table 18.6 are the simple 
conditional (multinomial) logit (MNL) model for choice among the four alternatives that was 
reported earlier. Both inclusive value parameters are constrained (by construction) to equal 
1.0000. The FIML estimates are obtained by maximizing the full log likelihood for the nested 
logit model. In this model,

Prob(choice � branch)  = P(aairdair + atraindtrain + abusdbus + bGGC + bTTTME),
Prob(branch)  = P(gdairHINC + tflyIVfly + tgroundIVground),
Prob(choice, branch) = Prob(choice � branch) * Prob(branch).

Full-Choice Set Restricted-Choice Set

bG bT atrain abus bG bT atrain abus

estimate -0.0155 -0.0961 3.869 3.163 -0.0639 -0.0699 4.464 3.105

Estimated Asymptotic Covariance Matrix Estimated Asymptotic Covariance Matrix

bG 0.0000194 0.000101

bT -0.0000005 0.000109 -0.000013 0.000221
atrain -0.00060 -0.0038 0.196 -0.00244 -0.00759 0.410
abus -0.00026 -0.0038 0.161 0.203 -0.00113 -0.00753 0.336 0.371

H = 33.3367. Critical chi-squared[4] = 9.488.

TABLE 18.5 Results for IIA Test
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The likelihood ratio statistic for the nesting against the null hypothesis of homoscedasticity 
is -2[-199.1284 - (-193.6561)] = 10.945. The 95% critical value from the chi-squared 
distribution with two degrees of freedom is 5.99, so the hypothesis is rejected. We can also 
carry out a Wald test. The asymptotic covariance matrix for the two inclusive value parameters 
is [0.01977 / 0.009621, 0.01529]. The Wald statistic for the joint test of the hypothesis that 
tfly = tground = 1 is

W = (0.586 - 1.0 0.389 - 1.0)J 0.1977 0.009621
0.009621 0.01529

R -1¢0.586 - 1.0
0.389 - 1.0

≤ = 24.475.

The hypothesis is rejected, once again.
The choice model was reestimated under the assumptions of a heteroscedastic extreme 

value (HEV) specification. The simplest form allows a separate variance, sj
2 = p2/(6uj

2), for 
each eij in (18-1). (One of the us must be normalized to 1.0 because we can only compare 
ratios of variances.) The results for this model are shown in Table 18.7. This model is less 
restrictive than the nested logit model. To make them comparable, we note that we found 
that sair = p/(tfly26) = 2.1886 and strain = sbus = scar = p/(tground26) = 3.2974. The HEV 
model thus relaxes an additional restriction because it has three free variances whereas the 
nested logit model has two. But the important degree of freedom is that the HEV model 
does not impose the IIA assumptions anywhere in the choices, whereas the nested logit 
does, within each branch. Table 18.7 contains additional results for HEV specifications. In the 
“Restricted HEV Model,” the variance of ei,Air is allowed to differ from the others.

A primary virtue of the HEV model, the nested logit model, and other alternative models is 
that they relax the IIA assumption. This assumption has implications for the cross elasticities 
between attributes in the different probabilities. Table 18.8 lists the estimated elasticities of the 
estimated probabilities with respect to changes in the generalized cost variable. Elasticities 
are computed by averaging the individual sample values rather than computing them once 
at the sample means. The implication of the IIA assumption can be seen in the table entries. 
Thus, in the estimates for the multinomial logit (MNL) model, the cross elasticities for each 
attribute are all equal. In the nested logit model, the IIA property only holds within the branch. 
Thus, in the first column, the effect of GC of air affects all ground modes equally, whereas 
the effect of GC for train is the same for bus and car, but different from these two for air. All 
these elasticities vary freely in the HEV model.

Table 18.9 lists the estimates of the parameters of the multinomial probit and random 
parameters logit models. The multinomial probit model produces free correlations among 

Parameter Nested Logit Multinomial Logit

aair 6.0423 (1.1989) 5.2074 (0.7791)
abus 4.0963 (0.6152) 3.1632 (0.4503)
atrain 5.0646 (0.6620) 3.8690 (0.4431)
bGC -0.0316 (0.0082) -0.1550 (0.0044)
bTTME -0.1126 (0.0141) -0.0961 (0.0104)
gH 0.0153 (0.0094) 0.0133 (0.0103)
tfly 0.5860 (0.1406) 1.0000 (0.0000)
tground 0.3890 (0.1237) 1.0000 (0.0000)
sfly 2.1886 (0.5255) 1.2825 (0.0000)
sground 3.2974 (1.0487) 1.2825 (0.0000)
ln L -193.6561 -199.1284

TABLE 18.6 Estimates of a Nested Logit Model (standard errors in parentheses)
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Parameter HEV Model Restricted HEV Model

aair 2.228 (1.047) 1.622 (1.247)
atrain 3.412 (0.895) 3.942 (0.489)
abus 3.286 (0.836) 2.866 (0.418)
bGC -0.026 (0.009) -0.033 (0.006)
bTTME -0.071 (0.024) -0.075 (0.005)
g 0.028 (0.019) 0.039 (0.021)
uair 0.472 (0.199) 0.380 (0.095)
utrain 0.886 (0.460) 1.000 (0.000)
ubus 3.143 (3.551) 1.000 (0.000)
ucar 1.000 (0.000) 1.000 (0.000)

Implied Standard Deviations

sair 2.720 (1.149)
strain 1.448 (0.752)
sbus 0.408 (0.461)
scar 1.283 (0.000)
ln L -199.0306 -203.2679

TABLE 18.7  Estimates of a Heteroscedastic Extreme Value Model (standard 
errors in parentheses)

Cost Is That of Alternative

Effect on Air Train Bus Car

Multinomial Logit
Air -1.136 0.498 0.238 0.418
Train 0.456 -1.520 0.238 0.418
Bus 0.456 0.498 -1.549 0.418
Car 0.456 0.498 0.238 -1.061
Nested Logit
Air -1.377 0.523 0.523 0.523
Train 0.377 -2.955 1.168 1.168
Bus 0.196 0.604 -3.037 0.604
Car 0.337 1.142 1.142 -1.872
Heteroscedastic Extreme Value
Air -1.019 0.410 0.954 0.429
Train 0.395 -3.026 3.184 0.898
Bus 0.282 0.999 -8.161 1.326
Car 0.314 0.708 2.733 -2.589
Multinomial Probit
Air -1.092 0.606 0.530 0.290
Train 0.591 -4.078 3.187 1.043
Bus 0.245 1.294 -7.694 1.218
Car 0.255 1.009 2.942 -2.364

TABLE 18.8 Estimated Elasticities with Respect to Generalized Cost
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the choices, which implies an unrestricted 3 * 3 correlation matrix and two free standard 
deviations.

Table 18.9 reports a variant of the random parameters logit model in which the alternative 
specific constants are random and freely correlated. The variance for each utility function 
is sj

2 + uj
2 where sj

2 is the contribution of the logit model, which is p2/6 = 1.645, and uj
2 is 

the estimated constant specific variance estimated in the random parameters model. The 
estimates of the specific parameters, uj, are given in the table. The estimated model allows 
unrestricted variation and correlation among the three intercept parameters—this parallels 
the general specification of the multinomial probit model. The standard deviations and 
correlations shown for the multinomial probit model are parameters of the distribution of eij, 
the overall randomness in the model. The counterparts in the random parameters model apply 
to the distributions of the parameters. Thus, the full disturbance in the model in which only the 
constants are random is eiair + uair for air, and likewise for train and bus. It should be noted 
that in the random parameters model, the disturbances have a distribution that is that of a 
sum of an extreme value and a normal variable, while in the probit model, the disturbances 
are normally distributed. With these considerations, the models in each case are comparable 
and are, in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The likelihood 
values are not comparable, so a direct test is precluded. Both relax the IIA assumption, 
which is a crucial consideration. The random parameters model enjoys a significant practical 
advantage, as discussed earlier, and also allows a much richer specification of the utility 
function itself. But, the question still warrants additional study. Both models are making their 
way into the applied literature.

Parameter Multinomial Probit Random Parameters

aair 1.799 (1.705) 4.393 (1.698)
sair 4.638 (2.251) 4.267 (2.224) [4.455]a

atrain 4.347 (1.789) 5.649 (1.383
strain 1.877 (1.222) 1.097 (1.388) [1.688]a

abus 3.652 (1.421) 4.587 (1.260)
sbus 1.000b 0.677 (0.958) [1.450 ]a

acar 0.000b 0.000b

scar 1.000b 0.000b [1.283]a

bG -0.035 (0.134) -0.036 (0.014)
bT -0.081 (0.039) -0.118 (0.022)
gH 0.056 (0.038) 0.047 (0.035)
rAT 0.507 (0.491) -0.707 (1.268)c

rAB 0.457 (0.853) -0.696 (1.619)c

rBT 0.653 (0.346) -0.014 (2.923)c

rAC 0.000b 0.000b

rBC 0.000b 0.000b

rTC 0.000b 0.000b

ln L -196.927 -195.646

a Computed as the square root of (p2/6 + sj
2).

b Restricted to this fixed value. 
c Computed using the delta method.

TABLE 18.9 Parameter Estimates for Normal-Based Multinomial Choice Models
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18.2.6  MODELING HETEROGENEITY

Much of the recent development of choice models has been directed toward 
accommodating individual heterogeneity. We will consider a few of these, including the 
mixed logit, which has attracted most of the focus of recent research. the mixed logit 
model is the extension of the random parameters framework of sections 15.6–15.10 to 
multinomial choice models. We will also examine the latent class Mnl model.

18.2.6.a  The Mixed Logit Model 
the random parameters logit model (RPL) is also called the mixed logit model. [see 
Revelt and train (1996); Bhat (1996); Berry, levinsohn, and Pakes (1995); Jain, vilcassim, 
and Chintagunta (1994); hensher and Greene (2010a); and hensher, Rose and Greene 
(2015).] train’s (2009) formulation of the RPl model (which encompasses the others) 
is a modification of the Mnl model. the model is a random coefficients formulation. 
the change to the basic Mnl model is the parameter specification in the distribution 
of the parameters across individuals, i,

 bik = bk + zi
=Uk + skuik, (18-13)

where uik, k = 1, c, K, is multivariate normally distributed with correlation matrix 
R, sk is the standard deviation of the kth distribution, bk + zi

=Uk is the mean of the 
distribution, and zi is a vector of person-specific characteristics (such as age and income) 
that do not vary across choices. this formulation contains all the earlier models. For 
example, if Uk = 0 for all the coefficients and sk = 0 for all the coefficients except for 
choice-specific constants, then the original Mnl model with a normal-logistic mixture 
for the random part of the Mnl model arises (hence the name). (Most of the received 
applications have Uk = 0 – that is, homogeneous means of the random parameters.

the model is estimated by simulating the log-likelihood function rather than 
direct integration to compute the probabilities, which would be infeasible because the 
mixture distribution composed of the original eij and the random part of the coefficient 
is unknown. For any individual,

Prob[choice j � ui] = Mnl probability �bi(ui),

with all restrictions imposed on the coefficients. the appropriate probability is

Eu[Prob(choice j � u)] = Lu1, c,uk

 Prob[choice j � u]f(u)du,

which can be estimated by simulation, using

est. Eu[Prob(choice j � u)] =
1
R a

R

r = 1
Prob[choice j �Bi(uir)],

where uir is the rth of R draws for observation i. (there are nkR draws in total. the draws 
for observation i must be the same from one computation to the next, which can be 
accomplished by assigning to each individual his or her own seed for the random number 
generator and restarting it each time the probability is to be computed.) By this method, 
the log likelihood and its derivatives with respect to (bk, Uk, sk), k = 1, c, K and R 
are simulated to find the values that maximize the simulated log likelihood.

the mixed model enjoys two considerable advantages not available in any of the 
other forms suggested. in a panel data or repeated-choices setting (see section 18.2.8), 
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one can formulate a random effects model simply by making the variation in the 
coefficients time invariant. thus, the model is changed to

 Uijt = xijt
= Bi + eijt, i = 1, c, n, j = 1, c, J, t = 1, c, T,

 bi,k = bk + zi
=Uk + skui,k.

habit persistence is carried by the time-invariant random effect, uik. if only the constant 
terms vary and they are assumed to be uncorrelated, then this is logically equivalent to 
the familiar random effects model. But much greater generality can be achieved by 
allowing the other coefficients to vary randomly across individuals and by allowing 
correlation of these effects.12 a second degree of flexibility is in (18-13). the random 
components, ui, are not restricted to normality. other distributions that can be simulated 
will be appropriate when the range of parameter variation consistent with consumer 
behavior must be restricted, for example to narrow ranges or to positive values (such as 
based on the lognormal distribution). We will make use of both of these features in the 
application in example 18.8.

18.2.6.b  A Generalized Mixed Logit Model 
the development of functional forms for multinomial choice models begins with the 
conditional (now usually called the multinomial) logit model that we considered in section 
18.2.3. subsequent proposals including the multinomial probit and nested logit models (and 
a wide range of variations on these themes) were motivated by a desire to extend the model 
beyond the iia assumptions. these were achieved by allowing correlation across the utility 
functions or heteroscedasticity such as that in the heteroscedastic extreme value model 
in (18-10). that issue has been settled in the current generation of multinomial choice 
models, culminating with the mixed logit model that appears to provide all the flexibility 
needed to depart from the iia assumptions. [see McFadden and train (2000) for a strong 
endorsement of this idea.]

Recent research in choice modeling has focused on enriching the models to 
accommodate individual heterogeneity in the choice specification. to a degree, 
including observable characteristics, such as household income, serves this purpose. 
in this case, the observed heterogeneity enters the deterministic part of the utility 
functions. the heteroscedastic hev model shown in (18-10) moves the observable 
heterogeneity to the scaling of the utility function instead of the mean. the mixed logit 
model in (18-13) accommodates both observed and unobserved heterogeneity in the 
preference parameters. a recent thread of research including Keane (2006), Feibig, 
et al. (2009), and Greene and hensher (2010a) has considered functional forms that 
accommodate individual heterogeneity in both taste parameters (marginal utilities) and 
overall scaling of the preference structure. Feibig et al.’s generalized mixed logit model is

 Ui,j = xij
=Bi + eij,

 Bi = siB + [g + si(1 - g)]ui

 si = exp[s + twi],

where 0 … g … 1 and wi is an additional source of unobserved random variation in 
preferences along with ui. in this formulation, the weighting parameter, g, distributes the 

12a stated choice experiment in which consumers make several choices in sequence about automobile features 
appears in hensher, Rose, and Greene (2015).

M18_GREE1366_08_SE_C18.indd   846 2/24/17   1:49 PM



 CHAPTER 18 ✦ Multinomial Choices and Event Counts 847

individual heterogeneity in the preference weights, ui, and the overall scaling parameter, 
si. heterogeneity across individuals in the overall scaling of preference structures is 
introduced by a nonzero t while s is chosen so that Ew[si] = 1. Greene and hensher 
(2010a) proposed including the observable heterogeneity already in the mixed logit 
model, and adding it to the scaling parameter as well. also allowing the random 
parameters to be correlated (via the nonzero elements in �) produces a multilayered 
form of the generalized mixed logit model,

 Bi = si[B + �zi] + [g + si(1 - g)]�ui

 si = exp[s + D′hi + twi].

ongoing research has continued to produce refinements that can accommodate realistic 
forms of individual heterogeneity in the basic multinomial logit framework.

Example 18.4  Using Mixed Logit to Evaluate a Rebate Program
In 2005, Australia led OECD countries and most of the world in per capita greenhouse gas 
emissions. Among the many federal and state programs aimed at promoting energy efficiency 
was a water heater rebate program for the New South Wales residential sector. Wasi and 
Carson (2013) sought to evaluate the impact of the program on Sydney area homeowners’ 
demand for efficient water heaters. The study assessed the effect of the rebate program in 
shifting existing stocks of electric (primarily coal generated) heaters toward more climate-
friendly technologies. Two studies were undertaken: a “revealed preference” (RP) analysis 
of choices made by recent purchasers of new water heaters and a “stated preference” (SP) 
study of households that had not replaced their water heaters in the past ten years (and were 
likely to be in the market in the near future). Broad conclusions drawn from the study included:

Our results suggest that households who do not have access to natural gas are more 
responsive to the rebate program.Without incentive, these households are more likely to 
replace their electric heater with another electric heater. For those with access to natural 
gas, many of them would have chosen to replace their electric heater with a gas heater 
even if the rebate programs had not been in place. These findings are consistent in both 
ex-post and ex-ante evaluation. From actual purchase data, we also find that the rebate 
programs appear to work largely on households that deliberately set out to replace their 
water heater rather than on households that replaced their water heater on an emergency/
urgent basis. (p. 646.)

Data for the study were obtained through a web-based panel by a major survey research firm. 
A total of 3,322 respondents out of 9,400 invitees were interested in participating. Access to 
natural gas is a key determinant of the technology choices that households make. The RP 
(ex-post) sample included 408 with gas access and 504 without; the SP (ex-ante) sample 
included 547 with access and 354 without.

Modeling the RP respondents was complicated by the fact that many did not remember 
the available choice set or could not accurately provide data for the installation cost and 
running cost. The authors opted for a difference in differences approach based on a simple 
logit model, as shown in Table 18.10 (which is extracted from their Table 3).13 (Results are 
based on a binary logit model for households with no gas access and trinomial logit for those 
with gas access.)

The SP choice model was based on a mixed logit framework: Attributes of the choices 
included setup cost net of the rebate, running cost, and a dummy variable for a mail-in rebate. 

13Wasi and Carson (2013).
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The choice experiment included 16 repetitions. The choice set for new installations included 
electric, gas storage, gas instantaneous, solar, and heat pump. A variety of models were 
considered: multinomial logit (MNL), mixed logit (MXL), generalized mixed logit (GMXL), latent 
class logit (LCM), and a mixture of two normals (MM), which is a latent class model in which 
each class is defined by a mixed logit model. Based on the BIC values, it was determined 
that the GMXL and MM models were preferred. Some of the results are shown in Table 18.11, 
which is extracted from their Table 6.

Column 1 of Table 18.11 reports the estimates from the MNL model for the gas access 
sample.14 The two cost variables have negative coefficients as expected. The coefficient of 

14ibid.

Estimated SP Choice Models

MNL GMNL MM-MNL

Class 1 Class 2

Mean stddev Mean stddev Mean stddev
Cost after 
rebate/10000

-8.62** -27.13** 12.53** -27.3** 14.66** -16.93** 12.9**

1 if mail-in rebate 0.002 0.01 0.61** 0.01 0.07 -0.28 1.33**
annual running 
cost/1000

-3.99** -17.66** 9.21** -22.02** 15.42** -9.35** 6.94**

Class probability 0.66** 0.34**
t 0.75**
g -0.81

**,* = statistically significant at 1%, 5%, respectively.

TABLE 18.11 Results from Table 6

Estimated Policy Effects on Probability of Switching from Electric for Households with Gas 
Access

Probability of switching to Before Policy after Policy Change in shares
  Electric 0.28** 0.19** -0.09
  Gas 0.69** 0.55** -0.14**
  Solar/Heat Pump 0.03** 0.26** 0.23**
Probability of switching to Before Policy 2004-2005 2006-sep 2007 Change in shares
  Electric 0.39** 0.22** -0.17*
  Gas 0.61** 0.74** 0.13
  Solar/Heat Pump 0.00 0.04* 0.04*
effects of Policy on Probability of 
switching to

difference of Changes in shares

  Electric 0.08
  Gas -0.27**
  Solar/Heat Pump 0.19**

**,* = statistically significant at 1%, 5%, respectively.

TABLE 18.10 Results from Table 3
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the rebate dummy is positive but not statistically different from zero. The coefficient is large 
and negative in one of the two classes, suggesting that in this segment, there is substantial 
disutility attached to filing for the rebate. The average WTP for $1 saved annually 
is -3.99 * 10/-8.62 = 4.62. Assuming the durability of 15 years, this implies a discount rate 
of 20%. Column 2 presents the result from the GMNL (generalized mixed logit) model using 
the full covariance matrix version. The average WTP for $1 saved annually from this model is 
$6.55, implying a discount rate of 12.8%. Policy evaluations were carried out by simulating 
the market shares of the different water heater technologies and evaluating the implied impacts 
on emissions. For households with gas access, the share of electric and gas heaters would 
reduce by 8% and 11%, respectively. The share of solar/heat pump would increase by 19%. 
Households with no access to natural gas, while still possessing more electric heaters, are 
more responsive to the rebate policy (38% reduction in the share of electric heaters). The final 
step is the evaluation of the cost of the rebate for emission reduction. It was determined that 
the average costs of carbon reduction from the SP data are $254/ton using a gas access 
sample and $105/ton from a sample with no access to natural gas. These values were 
significantly higher than U.S results ($47/ton) but similar to other results from Mexico. Notably, 
they are much larger than provided for by the NSW climate change fund ($26/ton).

18.2.6.c  Latent Classes 
We examined the latent class model in sections 14.15 and 17.7.6. the framework has been 
used in a number of choice experiments to model heterogeneity semiparametrically. the 
base framework is

 Prob(choiceit = j � Xit, class = c) =
exp(xijt

= Bc)

Σm = 1
J  exp(ximt

= Bc)
,

 Prob(class = c)    = pc, c = 1, c, C.

the latent class model can usefully be cast as a random parameters specification in 
which the support of the parameter space is a finite set of points. By this hierarchical 
structure, the parameter vector, B, has a discrete distribution, such that

Prob(Bi = Bc) = pc, 0 … pc … 1, Σcpc = 1.

the unconditional choice probability is

Prob(choiceit = j � Xit) = a
C

c = 1
 pc 

exp(x=
ijtbc)

Σm = 1
J  exp(ximt

= bc)
.

Wasi and Carson (2013), in example 18.4, settled on a latent class specification in 
which each class defined a mixed logit model. (in Wasi and Carson’s specification, 
Bi�c ∼ n[Bc, �c].)

Example 18.5  Latent Class Analysis of the Demand for Green Energy
Ndebele and Marsh (2014) examined preferences for Green Energy among electricity 
consumers in New Zealand. The study was motivated by a New Zealand study by the 
Electricity Commission (2008) that reported that nearly 50% of respondents indicated 
that they would consider the environment when choosing an electricity retailer whilst 17% 
indicated they would “very seriously” consider switching to a retailer which promotes itself 
for using renewable resources.

Ndebele and Marsh used a latent class choice modeling framework in which the integration 
of Environmental Attitude (EA) with stated choices is either direct via the utility function as 
interactions with the attribute levels of alternatives or as a variable in the class membership 
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probability model. They identified three latent classes with different preferences for the 
attributes of electricity suppliers. A typical respondent with a high New Ecological Paradigm 
(NEP) scale score is willing to pay on average $12.80 more per month on his or her power bill 
to secure a 10% increase in electricity generated from renewable energy sources compared 
to respondents with low NEP scores.

An online survey questionnaire was developed to collect the data required for this research. 
The first part of the survey questionnaire elicited socio-demographic and EA. EA was 
measured using the 15 items of the NEP scale. The NEP scale is a measure of environmental 
attitude.15 The NEP scale is a five-point Likert-type scale consisting of 15 items or statements 
about the human-environment relationship. The design for the SP experiment is shown in 
Table 18.12, which is extracted from their Table 2.16

An online survey was administered by a market research company in January 2014 to 
a sample of 224 New Zealand residential electricity bill payers. Stratification was based 
on age group, gender, and income group. The NEP scores were obtained through online 
interview. As part of the debriefing, respondents were asked to state the attributes they 
ignored in choosing their preferred supplier. Attitudinal questions also included questions 
measuring awareness of the consequences (AC) of switching to a supplier that generates 
most of its electricity from renewables and how far they felt personally responsible—that is, 
ascription of responsibility (AR)—for reducing CO2 emissions by switching to a supplier that 
generates electricity from renewable energy sources. The authors report that “[t]o account for 
attribute non-attendance in model estimation we coded our data to reflect stated serial non-
attendance to specific attributes.” Attribute nonattendance is examined in Section 18.2.6d 
and Example 18.6.

Estimated models are shown in Table 18.13, which is extracted from their Table 13. 
Based on the MNL model, consumers with moderate NEP scale scores are willing to pay 
($10 * 0.0066/0.0255) ≈ $2.60 more per month to secure a 10% increase in electricity 
generated from renewable sources compared to consumers with a low NEP scale 
score or low EA. Consumers with strong EA (high NEP scale score) are willing to pay 
($10 * 0.0105/0.0255) ≈ $4.10 more per month to secure a 10% increase in electricity 
generated from renewables compared with customers with low EA. A supplier that is offering a 
10% higher prompt payment discount may charge $3.80 more per month than other suppliers 
ceteris paribus and still retain its customers.

15see (dunlap (2008) and hawcroft and Milfont (2010).
16From ndebele and Marsh (2014).

Attribute Description

Time = average wait time for customer service calls (minutes)
Fixed = amount of time prices are guaranteed (months)
Discount = Percent discount for paying bills on time
Rewards = Presence of a loyalty program (yes/no)
Renewable = Proportion of electricity generated by green technologies
Ownership = Proportion of supplier new Zealand owned
Supplier Type = new or well known company (yes/no)
Bill = average monthly bill

TABLE 18.12 Experimental Design: Attributes in Stated Choice Experiment
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Selected Estimates of MNL and Latent Class Model Parameters

Variables MNL Latent Class

Class 1 Class 2 Class 3
ASCQC 0.5766*** 0.5213*** 0.0953 3.2544***
Time (Minutes) -0.0430*** -0.0378*** -0.0340*** -0.0420
Fixed Term (Months) 0.0046** 0.0057 0.0103** -0.0033
Discount 0.0096*** 0.0054 0.0157*** 0.0516***
Loyalty Rewards 0.3691*** 0.2698* 0.3607*** 0.4891
%Renewable 0.0031 0.0019 0.0079 -0.0042
MNEP * Renewable 0.0066** 0.0075 0.0056 0.0230*
SNEP * Renewable 0.0105*** 0.0145* 0.0099** -0.0003
%NZ Ownership 0.0082*** 0.0135*** 0.0122*** 0.0057
Monthly Power Bill -0.0255*** -0.0572*** -0.0139*** -0.0147***
Class Probability 0.5374*** 0.3479*** 0.1147***
Log Likelihood -2153.4 -1748.41

*,**, *** significant at 0.10, 0.05, 0.01, respectively.

TABLE 18.13 Estimated Models

18.2.6.d  Attribute Nonattendance 
in the choice model,

Uijt = aj + b1xijt,1 + b2xijt,2 + c + eijt,

and the familiar multinomial logit probability, the presence of a nonzero part worth (b) 
on attribute k suggests a nonzero marginal utility (or disutility) of that attribute for 
individual i. one possible misspecification of the model would be an assumption of 
homogeneous attendance. in a given population, one form of heterogeneity might be 
attribute nonattendance for some (or all) of the attributes.17 Attribute nonattendance 
(ana) can represent a rational result of zero marginal utility or it can result from a 
deliberate strategy to simplify the choice process. these outcomes might be directly 
observable in a choice experiment in which respondents are specifically queried about 
them. in example 18.5, we noted that ndebele and Marsh solicited this information in the 
debriefing interview. nonattendance might only be indirectly observable by behavior that 
seems to suggest its presence. Consider, for example, a stated choice experiment in which 
large variation in an attribute such as price appears not to induce switching behavior.

attribute nonattendance represents a form of individual heterogeneity. Consider 
the utility function suggested above, which suggests full attendance of both attributes. in 
a heterogeneous population, there could be (at least) four types of individuals

 (type 1, 2) Uijt = aj + b1xijt,1 + b2xijt,2 + c + eijt,

 (type 0, 2) Uijt = aj + 0   + b2xijt,2 + c + eijt,

 (type 1, 0) Uijt = aj + b1xijt,1 +  0 + c + eijt,

 (type 0, 0) Uijt = aj + 0  +  0 + c + eijt.

17see, for example, alemu et al. (2013), hensher, Rose, and Greene (2005, 2012), hensher and Greene (2010), 
hess and hensher (2012), hole (2011), and scarpa, thiene, and hensher (2010). the first of these is an extensive 
survey of the subject.
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if the partitioning of the population is observed—ndebele and Marsh note “we coded 
our data to reflect stated serial non-attendance to specific attributes”—then the 
appropriate estimation strategy is to impose the implied zero constraints on B selectively, 
observation by observation. the indicator of which attributes are nonttended by each 
individual, dType, becomes part of the “coding” of the data. the log likelihood to be 
maximized would be

ln L(B) = a
n

i = 1
Jdi,Type1,2 ln Li¢b1

b2
≤ + di,Type0,2 ln Li¢ 0

b2
≤ + di,Type1,0 ln Li¢b1

0
≤

+ di,Type0,0 ln Li¢0
0
≤ R .

(only one of the indicators, di,Type, equals one.)
one framework for analyzing attribute nonattendance when it is only indirectly 

observed is a form of latent class model. if the analyst has not directly observed the 
types, then this suggests a latent class approach to modeling attribute nonattendance. in 
the model above, this case is simply a missing data application. since dType is unobserved, 
it is replaced in the log likelihood with the probabilities, ptype (which are to be estimated 
as well) and the model becomes a familiar latent class model,

ln L(B, P) = a
n

i = 1
JpType1,2 ln Li¢b1

b2
≤ + pType0,2 ln Li¢ 0

b2
≤ + pType1,0 ln Li¢b1

0
≤

+ pType0,0 ln Li¢0
0
≤ R .

For the example above, the latent class structure would have four classes. For reasons 
apparent in the listing above, hensher and Greene (2010) label this the “2K model.” note 
that the implied latent class model has two types of restrictions. there is only a single 
parameter vector in the model — there are cross-class restrictions on the parameters — 
and there are fixed zeros at different positions in the parameter vector.18 We will examine 
an application in example 18.6.

Example 18.6  Malaria Control During Pregnancy
Lagarde (2013) used the 2K approach to model attribute nonattendance in a choice 
experiment about adoption of guidelines for malaria control during pregnancy. The discrete 
choice experiment was administered to health care providers in Ghana to evaluate their 
potential resistance to changes in clinical guidelines. The choice task involved whether or 
not to accept a new set of clinical guidelines. Results showed that less than 3% of the 
respondents considered all six attributes when choosing between the two hypothetical 
scenarios proposed, with a majority looking at only one or two attributes. Accounting for 
ANA strategies affected the magnitude of some of the coefficients and willingness-to-pay 
estimates.

Guidelines involved six attributes, hence 64 combinations of attendance: The attributes were

1. Approach: preventive or curative,
2. Antimalarial drugs: SP (Fansidar) or SS-AQ Artesunate-amodiaquine,
3. Prevalence of anemia for mothers treated with protocol: 1% or 15%,

18a natural extension would be to relax the restriction of equal coefficients across the classes. this is testable.
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4. Prevalence of low birth weight among infants of mothers treated: 10% or 15%,
5. Staffing level for the SN clinic: Under-staffed or adequately staffed,
6. Salary supplement included in the protocol: GH. C10, GH. C20.

The author devised a stepwise simplification in the estimation strategy to allow analysis of 
the excessively large number of classes (64) in the base case model. Accounting for ANA 
produced fairly large changes in model estimates and estimates of WTP. For examples the 
estimated coefficients on Anemia Risk and Treatment changed from -0.127 (0.086) to -0.214 
(0.016) and from -0.096 (0.077) to -1.840 (0.540). The main results suggested that WTP 
measures were very sensitive to the presence of ANA. The estimated WTP for the SP drug 
rose from 8.75 to 24.59 when ANA was considered.19

18.2.7  ESTIMATING WILLINGNESS TO PAY

one of the standard applications of choice models is to estimate how much consumers 
value the attributes of the choices. Recall that we are not able to observe the scale of 
the utilities in the choice model. however, we can use the marginal utility of income, 
also scaled in the same unobservable way, to effect the valuation. in principle, we could 
estimate

 WtP = (Marginal utility of attribute/s)/(Marginal utility of income/s)

 = battribute/gIncome,

where s is the unknown scaling of the utility functions. note that s cancels out of the 
ratio. in our application, for example, we might assess how much consumers would be 
willing to pay to have shorter waits at the terminal for the public modes of transportation 
by using

WtP
¿

time = -bnTIME /gn Income.

(We use the negative because additional time spent waiting at the terminal provides 
disutility, as evidenced by its coefficient’s negative sign.) in settings in which income is not 
observed, researchers often use the negative of the coefficient on a cost variable as a proxy 
for the marginal utility of income. standard errors for estimates of WtP can be computed 
using the delta method or the method of Krinsky and Robb. (see sections 4.6 and 15.3.)

in the basic multinomial logit model, the estimator of WtP is a simple ratio of 
parameters. in our estimated model in table 18.3, for example, using the household 
income coefficient as the numeraire, the estimate of WtP for a shorter wait at the 
terminal is -(-0.09612)/0.01329 = 7.23. the units of measurement must be resolved 
in this computation, since terminal time is measured in minutes while income is in 
$1,000/year. Multiplying this result by 60 minutes/hour and dividing by the equivalent 
hourly income times 8,760/1,000 gives $49.52 per hour of waiting time. to compute the 
estimated asymptotic standard error, for convenience, we first rescaled the terminal 
time to hours by dividing it by 60 and the income variable to $/hour by multiplying it by 
1,000/8,760. the resulting estimated asymptotic distribution for the estimators is¢bnTTME

gnHINC
≤ ∼ NJ ¢ -5.76749

0.11639
≤, ¢ 0.392365 0.00193095

0.00193095 0.00808177
≤ R .

19Figures from lagarde (2013) tables iv and v.
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the derivatives of WtP
¿

TIME = -bnTIME/gnHINC are -1/gnHINC for bnTTME and -WtP
¿

/gnHINC 
for gnHINC. this provides an estimator of 38.8304 for the standard error. the confidence 
interval for this parameter would be -26.55 to +125.66. this seems extremely wide. We 
will return to this issue later.

in the mixed logit model, if either of the coefficients in the computation is random, 
then the preceding simple computation above will not reveal the heterogeneity 
in the result. in many studies of WtP using mixed logit models, it is common to 
allow the utility parameter on the attribute (numerator) to be random and treat the 
numeraire (income or cost coefficient) as nonrandom. (see example 18.8.) using our 
mode choice application, we refit the model with bnTTME,i = bnTTME + snTTMEvi and all 
other coefficients nonrandom. We then used the method described in section 15.10 
to estimate the mixed logit model and e[bnTTME,i � Xi, choicei]/gnH to estimate the 
expected WtP for each individual in the sample. income and terminal time were 
scaled as before. Figure 18.1 displays a kernel estimator of the estimates of WtPi by 
this method. the density estimator reveals the heterogeneity in the population of 
this parameter.

Willingness to pay measures computed as suggested above are ultimately based 
on a ratio of two asymptotically normally distributed parameter estimators. in general, 
ratios of normally distributed random variables do not have a finite variance. this often 
becomes apparent when using the delta method, as it seems previously. a number of 
writers, notably, daly, hess, and train (2009), have documented the problem of extreme 
results of WtP computations and why they should be expected. one solution suggested, 
for example, by train and Weeks (2005), sonnier, ainsle, and otter (2007), and scarpa, 
thiene, and train (2008), is to recast the original model in willingness to pay space. in 

FIGURE 18.1  Estimated Willingness to Pay for Decreased Terminal Time.
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the multinomial logit case, this amounts to a trivial reparameterization of the model. 
using our application as an example, we would write

 Uij = aj + bGCGCi + gHINC[(bTTME/gHINC)TTMEi + (AAIRHINCi)] + eij

 = aj + bGCGCi + gHINC[lTTMETTMEi + (AAIRHINCi)] + eij.

this obviously returns the original model, though in the process, it transforms a 
linear estimation problem into a nonlinear one. But, in principle, with the model 
reparameterized in WtP space, we have sidestepped the problem noted earlier; -lnTTME 
is the estimator of WtP with no further transformation of the parameters needed. as 
noted, this will return the numerically identical results for a multinomial logit model. 
it will not return the identical results for a mixed logit model, in which we write 
lnTTME,i = lnTTME + unTTMEvTTME,i. Greene and hensher (2010b) apply this method to 
the generalized mixed logit model in section 18.2.8.

Example 18.7  Willingness to Pay for Renewable Energy
Scarpa and Willis (2010) examined the willingness to pay for renewable energy in the UK 
with a stated choice experiment. A sample of 1,279 UK households were interviewed about 
their preferences for heating systems. One analysis in the study considered answers to the 
following question:

“Please imagine that your current heating system needs replacement. I would like you to 
think about some alternative heating systems for your home. All of the following systems 
would fully replace your current system. For example, if you had a gas boiler, it would be 
taken out and replaced by the new system. The rest of your heating system, such as the 
radiators, would not need to be changed.”

This primary experiment included alternative systems such as biomass boilers and 
supplementary heat pumps with their associated attributes (with space requirements for fuel 
storage and hot water storage tanks), compared to combi-gas boilers, which deliver central 
heating and hot water on-demand without the need for hot water storage or fuel storage or 
the inconvenience associated with tending solid fuel boilers. Notably, in this experiment, the 
authors did not suggest an opt-out choice. The experiment assumed that the heating system 
had failed and needed to be replaced. A second experiment, the one discussed below, was 
based on the discretionary case, “Now I would like you to imagine that your current heating 
system is functioning completely normally, and to think about supplementing your existing 
system with an additional system.”

Respondents were asked to choose the type of heating system they would prefer between 
two alternatives, in four different scenarios. Results for multinomial logit models estimated in 
preference space and WTP space are shown in Table 18.14 in the results extracted from their 
Table 5.20 In addition to the MNL models, they estimated a nested logit model (not shown) and 
a mixed logit model in WTP space. (We will examine a stated choice experiment based on a 
mixed logit model in the next application.) Note the two MNL models produce the same log 
likelihood and related statistics. This is a result of the fact that the WTP space model is a 1:1 
transformation of the preference space model. (This is an application of the invariance principle 
in Section 14.4.5.d.) We can deduce the second model from the first. For example, the 
numeraire coefficient is the capital cost, equal to -0.3288. Thus, in the WTP space model, 
the coefficient on solar energy is 0.9312/0.3288 = 2.8316. The coefficient on energy savings 
is 0.0973/0.3288 = 0.2957 (plus some rounding error) and likewise for the other coefficients 
in the WTP space model. (This leaves a loose end. The coefficient on capital costs should 

20scarpa and Willis (2009).
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be 1.0000. The authors do not make clear where the 1.1122 comes from.) By adjusting for the 
units of measurement, the 2.3816 for solar energy translates to a value of 2381.6 GBP. The 
average installation costs for a 2 kWh solar PV unit in 2008 was 10,638 GBP, 3,904 GBP for 
a 2 kWh solar hot water unit, and 4,998 GBP for a 1 kWh micro-wind unit. The implied WTP 
values from the model in Table 5 are 2,381 GBP, 2,903 GBP and 1,288 GBP, respectively. The 
estimates from the CE data also permitted the evaluation of the relative importance consumers 
attached to capital in relation to ongoing energy savings. Consumers were WTP 2.91 { 0.30 
GBP in capital costs to reduce annual fuel bills by 1 GBP. The authors conclude that “whilst 
renewable energy adoption is significantly valued by households, this value is not sufficiently 
large, for the vast majority of households, to cover the higher capital costs of micro-generation 
energy technologies, and in relation of annual savings in energy running costs.” (p. 135)

18.2.8  PANEL DATA AND STATED CHOICE EXPERIMENTS

the counterpart to panel data in the multinomial choice context is usually the “stated 
choice experiment,” such as the study discussed in example 18.7. in a stated choice 
experiment, the analyst (typically) hypothesizes several variations on a general scenario 
and requests the respondent’s preferences among several alternatives each time. in 
example 18.8, the sampled individuals are offered a choice of four different electricity 
suppliers. each alternative supplier is a specific bundle of rate structure types, contract 
length, familiarity, and other attributes. the respondent is presented with from 8 to 12 
such scenarios, and makes a choice each time. the panel data aspect of this setup is that 
the same individual makes the choice each time. any chooser-specific feature, including 
the underlying preference, is repeated and carried across from scenario to scenario. the 
Mnl model (whether analyzed in preference or WtP space) does not explicitly account 
for the common underlying characteristics of the individual. the analogous case in the 
regression and binary choice cases we have already examined would be the pooled 
model. several modeling approaches have been used to accommodate the underlying 
individual heterogeneity in the choice model. the mixed logit model is the most common. 
note the third set of results in Figure 18.2 is based on a mixed logit model,

Estimated Multiomial Logit Models (1,241 Individuals, 7,280 observations)

MNL Preference Space MNL WTP-Space

Coefficient � t � Coefficient Std. Error

Solar electricity 0.9312 11.01 2.8316 0.2441
Solar hot water 0.9547 10.84 2.90322 0.2555
Wind turbine 0.4236 5.15 1.2882 0.2408
Capital cost/mean ln(l) -0.3288 24.13 -1.1122 0.0415
Friend -0.0698 1.31 -0.2120 0.1627
Heating engineer 0.0864 1.43 0.2626 0.1834
Both 0.1820 3.52 0.5534 0.1575
Maintenance cost -0.0303 5.08 -0.0922 0.0184
Energy savings 0.0973 5.20 0.2957 0.0590
Log likelihood -7328.88 -7328.88
Rho-square 0.08091 0.08091

TABLE 18.14 Estimated Models
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FIGURE 18.2  WTP for Time of Day Rates.
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Prob(choiceit = j � Xit) =
exp(x=

ijtBi)

Σm = 1
J  exp(ximt

= Bi)
, Bi = B + ui; i = 1, c, n; t = 1, c, Ti.

the random elements in the coefficients are analogous to random effects in the settings 
we have already examined.

18.2.8.a  The Mixed Logit Model 
Panel data in the unordered discrete choice setting typically come in the form of 
sequential choices. train (2009, Chapter 6) reports an analysis of the site choices of 258 
anglers who chose among 59 possible fishing sites for a total of 962 visits. Rossi and 
allenby (1999) modeled brand choice for a sample of shoppers who made multiple store 
trips. the mixed logit model is a framework that allows the counterpart to a random 
effects model. the random utility model would appear

Uij,,t = xij,t
= Bi + eij,t,

where conditioned on Bi, a multinomial logit model applies. the random coefficients 
carry the common effects across choice situations. For example, if the random 
coefficients include choice-specific constant terms, then the random utility model 
becomes essentially a random effects model. a modification of the model that resembles 
Mundlak’s correction for the random effects model is

Bi = B0 + �zi + �ui,

where, typically, zi would contain demographic and socioeconomic information. the 
scaling matrix, �, allows the random elements of B to be correlated; a diagonal � returns 
the more familiar case.

the stated choice experiment is similar to the repeated choice situation, with a crucial 
difference. in a stated choice survey, the respondent is asked about his or her preferences 
over a series of hypothetical choices, often including one or more that are actually available 
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and others that might not be available (yet). hensher, Rose, and Greene (2015) describe 
a survey of australian commuters who were asked about hypothetical commutation 
modes in a choice set that included the one they currently took and a variety of proposed 
alternatives. Revelt and train (2000) analyzed a stated choice experiment in which 
California electricity consumers were asked to choose among alternative hypothetical 
energy suppliers. the advantage of the stated choice experiment is that it allows the analyst 
to study choice situations over a range of variation of the attributes or a range of choices 
that might not exist within the observed, actual outcomes. thus, the original work on the 
Mnl by McFadden et al. concerned survey data on whether commuters would ride a 
(then-hypothetical) underground train system to work in the san Francisco Bay area. the 
disadvantage of stated choice data is that they are hypothetical. Particularly when they are 
mixed with revealed preference data, the researcher must assume that the same preference 
patterns govern both types of outcomes. this is likely to be a dubious assumption. one 
method of accommodating the mixture of underlying preferences is to build different 
scaling parameters into the model for the stated and revealed preference components of 
the model. Greene and hensher (2007) suggested a nested logit model that groups the 
hypothetical choices in one branch of a tree and the observed choices in another.

18.2.8.b  Random Effects and the Nested Logit Model 
the mixed logit model in a stated choice experiment setting can be restricted to produce 
a random effects model. Consider the four-choice example below. the corresponding 
formulation would be

 Ui1,t = (a1 + ui1) + xi1,t
= b + ei1,t,

 Ui2,t = (a2 + ui2) + xi2,t
= b + ei2,t,

 Ui3,t = (a3 + ui3) + xi3,t
= b + ei3,t,

 Ui4,t = xi4,t
= b + ei4,t.

this is simply a restricted version of the random parameters model in which the constant 
terms are the random parameters. this formulation also provides a way to specify the 
nested logit model by imposing a further restriction. For example, the nested logit model 
in the mode choice in example 18.3 results from an error components model,

 Ui,air =           ui,fly         + xi,air
= B + ei,air,

 Ui,train = (atrain + ui,ground) + xi,train
= B + ei,train,

 Ui,bus = (abus + ui,ground)  +  xi,bus
= B + ei,bus,

 Ui,car = (acar + ui,ground)  + xi,car
= B + ei,car.

this is the model suggested after (18-12). the implied covariance matrix for the four 
utility functions would be

Σ = DsF
2 0 0 0

0 sG
2 sG

2 r sG
2 r

0 sG
2 r sG

2 sG
2 r

0 sG
2 r sG

2 r sG
2

T .

FiMl estimates of the nested logit model from table 18.6 in example 18.3 are reported 
in table 18.15 below. We have refit the model as an error components model with the two 
components shown above. this is a model with random constant terms. the estimated 
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FIML Nested Logit Mixed Logit

Estimate Std. Error Estimate Std. Error

Air 6.04234 (1.19888) 4.65134 ( 1.26475)
Train 5.06460 (0.66202) 5.13427 ( 0.67043)
Bus 4.09632 (0.61516) 4.15790 ( 0.62631)
GC -0.03159 (0.00816) -0.03228 ( 0.00689)
TTME -0.11262 (0.01413) -0.11423 ( 0.01183)
HINC 0.02616 (0.01761) 0.03571 ( 0.02468)
Fly 0.58601 (0.14062) 3.24032 ( 1.71679)
Ground 0.38896 (0.12367) 0.53580 (10.65887)
ln L -193.65615 -195.72711

TABLE 18.15 Estimated Nested Logit Models

parameters in table 18.15 are similar as would be expected. the estimated standard 
deviations for the FiMl estimated model are 2.1886 and 3.2974 for Fly and Ground, 
respectively. For the random parameters model, we would calculate these using 
v = (p2/6 + sb 

2 )1/2 = 3.48 for Fly and 1.3899 for Ground. the similarity of the results 
carries over to the estimated elasticities, some of which are shown in table 18.16.

18.2.8.c  A Fixed Effects Multinomial Logit Model 
a fixed effects multinomial logit model can be formulated as

Prob(yit = j) =
exp(aij + xit,j

= B)

Σm = 1
J  exp(aim + xit,m

= B)
.

Because the probabilities are based on comparisons, one of the utility functions must 
be normalized at zero. We take that to be the last (Jth) alternative, so the normalized 
model is

Prob(yit = j) =
exp(aij + xit,j

= B)

1 + Σm = 1
J - 1  exp(aim + xit,m

= B)
, j = 1, c, J - 1.

We examined the binary logit model with fixed effects in section 17.7.3. the model here 
is a direct extension. the Rasch/Chamberlain method for the fixed effects logit model 
can be used, in principle, for this multinomial logit case. [Chamberlain (1980) mentions 
this possibility briefly.] however, the amount of computation involved in doing so 
increases vastly with J. Part of the complexity stems from the difficulty of constructing 

AIR TRAIN BUS CAR

NL MXL NL MXL NL MXL NL MXL

AIR -1.3772 -1.1551 0.5228 0.4358 0.5228 0.4358 0.5228 0.4358
TRAIN 0.3775 0.4906 -2.9452 -3.0467 1.1675 1.1562 1.1675 1.1562
BUS 0.1958 0.2502 0.6039 0.5982 -3.0368 -3.1223 0.6039 0.5982
CAR 0.3372 0.3879 1.1424 1.1236 1.1424 1.1236 -1.8715 -1.9564

TABLE 18.16 Elasticities with Respect to Generalized Cost
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the denominator of the conditional probability. the terms in the sum are the different 
ways that the sequence of J * T outcomes can sum to T including the constraint that 
within each block of J, the outcomes sum to one. the amount of computation is potentially 
prohibitive. For our example below, with J = 4 and T = 12, the number of terms is 
roughly 6 * 1010. the Krailo and Pike algorithm is less useful here due to the need to 
impose the constraint that only one choice be made in each period. however, there is a 
much simpler approach available based on the minimum distance principle that uses the 
same information.21 (see section 13.3.) For each of outcomes 1 to  J - 1, the choice 
between observation j and the numeraire, alternative J, produces a fixed effects binary 
logit. For each of the J - 1 outcomes, then, the Σi = 1

n Ti observations that chose either 
outcome j or outcome J can be used to fit a binary logit model to estimate B. this 
produces J - 1 estimates, Bnj, each with estimated asymptotic covariance matrix Vj. the 
minimum distance estimator of the single B would then be

Bn = JaJ - 1

j = 1
 Vj

-1 R -1

 a
J - 1

j = 1
(Vj

-1Bnj).

the estimated asymptotic covariance matrix would be the first term. each of the binary logit 
estimates and the averaging at the last step require an insignificant amount of computation.

it does remain true that, like the binary choice estimator, the post-estimation 
analysis is severely limited because the fixed effects are not actually estimated. it is not 
possible to compute probabilities and partial effects, etc.

Example 18.8  Stated Choice Experiment: Preference for Electricity Supplier
Revelt and Train (2000) studied the preferences for different prices of a sample of California 
electricity customers.22 The authors were particularly interested in individual heterogeneity and 
used a mixed logit approach. The choice experiment examines the choices among electricity 
suppliers in which a supplier is defined by a set of attributes. The choice model is based on

Uijt = b1PRICEijt + b2TODijt + b3SEASijt + b4CNTLijt + b5LOCALijt + b6KNOWNijt + eijt,

where

PRICE  = Fixed rates, cents/kwh = 7 or 9, or 0 if seasonal or time of day rates,
TOD  = Dummy for time of day rates, 11 cents 8AM-8PM, 5 cents 8PM – 8AM,
SEAS  = Dummy for seasonal rates, 10 summer, 8 winter, 6 spring and fall,
CNTL  = Fixed term contract with exit penalty, length 0, 1 year, 5 years,
LOCAL, KNOWN = Dummies for familiarity: local utility, known but not local, unknown.

Data were collected in 1997 by the Research Triangle Institute for the Electric Power Research 
Institute.23 The sample contains 361 individuals, each asked to make 12 choices from a set 
of 4 candidate firms.24 There were a total of 4,308 choice situations analyzed.

21Pforr (2011) reports results for a moderate-sized problem with 4,344 individuals, about six periods and only 
two outcomes with four attributes. using the brute force method takes over 100 seconds. the minimum distance 
estimator for the same problem takes 0.2 seconds to produce the identical results. the time advantage would be 
far greater for the four-choice model analyzed in example 18.8.
22see also train (2009, Chapter 11).
23Professor train has generously provided the data for this experiment for us (and readers) to replicate, analyze, 
and extend the models in this example.
24a handful of the 361 individuals answered fewer than 12 choice tasks: two each answered 8 or 9; one answered 
10 and eight answered 11.
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This is an unlabeled choice experiment. There is no inherent distinction between the 
firms in the choice set other than the attributes. Firm 1 in the choice set is only labeled Firm 
1 because it is first in the list. The choice situations we have examined in this chapter have 
varied in this dimension:

Example 18.2 Heating system types labeled,
Example 18.3 Travel mode labeled,
Example 18.4 Water heating type labeled,
Example 18.5 Green energy unlabeled,
Example 18.6 Malaria control guidelines unlabeled,
Example 18.7 Heating systems labeled,
Example 18.8 Electricity pricing unlabeled.

One of the main uses of choice models is to analyze substitution patterns. In Example 18.3, 
we estimated elasticities of substitution among travel modes. Unlabeled choice experiments 
generally do not provide information about substitution between alternatives. They do provide 
information about willingness to pay. That will be the focus of the study in this example. When 
the utility function is based on price, rather than income, the marginal disutility of an increase 
in price is treated as a surrogate for the marginal utility of an increase in income for purposes 
of measuring willingness to pay. In general, the interpretation of the sign of the WTP is context 
specific. In the example below, we are interested in the perceived value of time of day rates, 
measured by the TOD/PRICE coefficients. Both coefficients are negative in the MNL model. 
But the negative of the price change is the surrogate for income. We interpret the WTP of 
approximately 10 cents/kwh as the amount the customer would accept as a fixed rate if he 
or she could avoid the TOD rates. But, the LOCAL brand value of the utility is positive, so the 
positive WTP is interpreted as the extra amount the customer would be willing to pay to be 
supplied by the local utility as opposed to an unknown supplier.

Table 18.17 reports estimates of the choice models for rate structures and utility companies. 
The MNL model shows marginal valuations of contract length, time, and seasonal rates 
relative to the fixed rates and the brand value of the utility. The WTP results are shown in 
Table 18.18. The negative coefficient on Contract Length implies that the average customer 
is willing to pay a premium of (0.17 cents/kwh)/year to avoid a fixed length contract. The 
offered contracts are one and five years, so customers appear to be willing to pay up to 
0.85 cents/kwh to avoid a long-term contract. The brand value of the local utility compared 
to a new and unknown supplier is 2.3 cents/kwh. Since the average rate across the different 
scenarios is about 9 cents, this is quite a large premium. The value is somewhat less for a 
known, but not the local, utility. The coefficients on time of day and seasonal rates suggest 
the equivalent valuations of the rates compared to the fixed rate schedule. Based on the MNL 
model, the average customer would value the time of day rates as equivalent to a fixed rate 
schedule of 8.74 cents. The fixed rate offer was 7 or 9 cents/kwh, so this is on the high end.

The mixed logit model allows heterogeneity in the valuations. A normal distribution is 
used for the contract length and brand value coefficients. These allow the distributions 
to extend on both sides of zero so that, for example, some customers prefer the local 
utility while others do not. With an estimated mean of 2.16117 and standard deviation 
of 1.50097, these results suggest that (1 - Φ(2.16117/1.50097)) = 7.5% of customers 
actually prefer an unknown outside supplier to their local utility. The coefficients on TOD 
and seasonal rates have been specified to have lognormal distributions. Because they 
are assumed to be negative, the specified coefficient is -exp(b + sv). (The negative sign 
is attached to the variable and the coefficient on -TOD is then specified with a positive 
lognormal distribution.) The mean value of this coefficient in the population distribution is 
then E[bTOD] = -exp(2.11304 + 0.386512/2) = 8.915., so the average customer is roughly 
indifferent between the TOD rates and the fixed rate schedule. Figure 18.2 shows a kernel 
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Contract Local Known TOD Seasonal

Multinomial logit Fixed Parameter
  estimate 0.17322 2.30675 1.59223 8.73723 9.34065
  standard error 0.02364 0.18894 0.13870 0.15126 0.15222
  lower Confidence limit 0.12689 1.93643 1.32038 8.44076 9.04230
  upper Confidence limit 0.21955 2.67707 1.86407 9.03370 9.63899
Mixed logit WtP for Rates
 lognormal

  estimated Mean = exp(b + s2/2) 8.91500 8.79116

   estimated std. dev. =
Mean * [exp(s2) - 1]1/2

3.57852 2.47396

  5% lower limit 1.90110 3.94220
  95% upper limit 15.92900 13.64012
 triangular
  estimated Mean = b 7.83937 8.19676
  estimated spread = b { s 5.90744 4.15295

  estimated std. dev. = [s2/6]1/2 2.41170 1.69543

  5% lower limit 3.11244 4.87370
  95% upper limit 12.56630 11.51981

TABLE 18.18 Estimated WTP Based on Different Models

Variable

Mixed Logitb

MNLa Mean b Std. Dev. s FEM REMc ANAd

Price -0.62523 -0.86814 0.00000 -0.38841 -0.63762 -0.54713
(0.03349) (0.02273) (0.00000) (0.02039) (0.07432) (0.03962)

Contract -0.10830 -0.21831 0.36379 -0.05586 -0.10940 -0.10937
(0.01402) (0.01659) (0.01736) (0.00682) (0.00964) (0.00862)

Time of Daye -5.46276 2.11304e 0.38651 -3.46145 -5.57917 -5.11061
(0.27815) (0.02693) (0.01847) (0.16622) (0.59680) (0.30446)

Seasonale -5.84003 2.13564e 0.27607 -3.59727 -5.95563 -5.34035
(0.27272) (0.02571) (0.01589) (0.16596) (0.61004) (0.30811)

Local 1.44224 2.16117 1.50097 0.83266 1.47522 1.44016
(0.07887) (0.08915) (0.08985) (0.04106) (0.09103) (0.05510)

Known 0.99550 1.46173 0.97705 0.47649 1.02153 0.97419
(0.06387) (0.06538) (0.07272) (0.03319) (0.07962) (0.04944)

ln L -4958.65 -3959.73 -4586.93 -4945.98 -4882.34

a Robust standard errors are clustered over individuals. Conventional standard errors for Mnl are 0.02322, 
0.00824, 0.18371, 0.18668, 0.05056, 0.04478, respectively.
b train (2009) reports point estimates (b,s) = (-0.8827,0), (-0.2125, 0.3865), (2.1328, 0.4113), (2.1577, 0.2812), 
(2.2297, 1.7514), (1.5906, 0.9621) for Price, Cntl, tod, seas, local, Known, respectively.
c estimated standard deviations in Re Model are 0.00655 (0.02245), 0.47463 (0.06049), 0.016062 (0.04259).
d Class probabilities are 0.93739, 0.06261.
e lognormal coefficient in mixed logit model is exp(b + sv).

TABLE 18.17 Estimated Choice Models for Electricity Supplier (Standard errors in parentheses)
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density estimator of the estimated population distribution of marginal valuations of the TOD 
rates. The bimodal distribution shows the sample of estimated values of E[@bTOD � choices made]. 
Train notes, if the model is properly specified and the estimates appropriate, the means of 
these two distributions should be the same. The sample mean of the estimated conditional 
means is 10.4 cents/kwh while the estimated population mean is 9.9. The estimated standard 
deviation of the population distribution is 8.915 * [exp(0.386512) - 1]1/2 = 3.578. Thus, 
about 95% of the population is estimated to value the TOD rates in the interval 9.9 + /-  7.156. 
Note that a very high valuation of the TOD rates suggests a strong aversion to TOD rates. 
The lognormal distribution tends to produce implausibly large values such as those here in 
the thick tail of the distribution. We refit the model using triangular distributions that have 
fixed widths b { s. The estimated distributions have range 7.839 { 5.907 for TOD and 
8.197 { 4.152 for Seasonal. Computation of 95% probability intervals (based on a normal 
approximation, m { 1.96s) are shown in Table 18.18.

Results are also shown for simple fixed and random effects estimates. The random effects 
results are essentially identical to the MNL results while the fixed effects results depart 
substantially from both the MNL and mixed logit results. The ANA model relates to whether, 
in spite of the earlier findings, there are customers who do not consider the brand value of 
the local utility in choosing their suppliers. The ANA model specifies two classes, one with 
full attendance and one in which coefficients on LOCAL and KNOWN are both equal to zero. 
The results suggest that 6.26% of the population ignores the brand value of the supplier in 
making their choices.

18.2.9  AGGREGATE MARKET SHARE DATA—THE BLP RANDOM PARAMETERS MODEL

the structural demand model of Berry, levinsohn, and Pakes (BlP) (1995) is an 
important application of the mixed logit model. demand models for differentiated 
products such as automobiles [BlP (1995), Goldberg (1995)], ready-to-eat cereals [nevo 
(2001)], and consumer electronics [das, olley, and Pakes (1996)], have been constructed 
using the mixed logit model with market share data.25 a basic structure is defined for

Markets, denoted t = 1, c, T,

Consumers in the markets, denoted i = 1, c, nt,

Products, denoted j = 1, c, J.

the definition of a market varies by application; BlP analyzed the u.s. national 
automobile market for 20 years; nevo examined a cross section of cities over 20 
quarters so the city-quarter is a market; das et al. defined a market as the annual sales 
to consumers in particular income levels.

For market t, we base the analysis on average prices, pjt; aggregate quantities, qjt; 
consumer incomes, yi; observed product attributes, xjt; and unobserved (by the analyst) 
product attributes, ∆jt. the indirect utility function for consumer i, for product j in 
market t is

 uijt = ai(yi - pjt) + x=
jtBi + ∆jt + eijt, (18-14)

where ai is the marginal utility of income and Bi are marginal utilities attached to specific 
observable attributes of the products. the fact that some unobservable product attributes, 
∆jt, will be reflected in the prices implies that prices will be endogenous in a demand 

25We draw heavily on nevo (2000) for this discussion.
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model that is based on only the observable attributes. heterogeneity in preferences is 
reflected (as we did earlier) in the formulation of the random parameters,

 ¢ai

Bi
≤ = ¢a

B
≤ + ¢P′

�
≤di + ¢gwi

�vi
≤, (18-15)

where di is a vector of demographics such as gender and age while a, B, P, �, g, and � are 
structural parameters to be estimated (assuming they are identified). a utility function is 
also defined for an “outside good” that is (presumably) chosen if the consumer chooses 
none of the brands, 1, . . . , J,

ui0t = aiyi + ∆0t + P0
=di + ei0t.

since there is no variation in income across the choices, ai yi will fall out of the logit 
probabilities, as we saw earlier. a normalization is used instead, ui0t = ei0t, so that 
comparisons of utilities are against the outside good. the resulting model can be 
reconstructed by inserting (18-15) into (18-14),

 uijt = aiyi + djt(xjt, pjt, ∆jt: a, B) + tijt(xjt, pjt, vi, wi: P, �, g, �) + eijt,

 djt = x=
jtB - apjt + ∆jt,

 tjt = [-pjt, x
=
jt]J ¢P′

�
≤di + ¢gwi

�vi
≤ R .

the preceding model defines the random utility model for consumer i in market t. each 
consumer is assumed to purchase the one good that maximizes utility. the market share 
of the jth product in this market is obtained by summing over the choices made by those 
consumers. With the assumption of homogeneous tastes (� = 0 and g = 0) and i.i.d., 
type i extreme value distributions for eijt, it follows that the market share of product j is

sjt =
exp(x=

jtB - apjt + ∆jt)

1 + a J
k = 1exp(xkt

= B - apkt + ∆kt)
.

the iia assumptions produce the familiar problems of peculiar and unrealistic 
substitution patterns among the goods. alternatives considered include a nested logit, a 
“generalized extreme value” model and, finally, the mixed logit model, now applied to 
the aggregate data.

estimation cannot proceed along the lines of section 18.2.7 because ∆jt is unobserved 
and pjt is, therefore, endogenous. BlP propose, instead, to use a GMM estimator, based 
on the moment equations,

E{[Sjt - sjt(xjt, pjt �a, B)]zjt} = 0,

for a suitable set of instruments. layering in the random parameters specification, we 
obtain an estimation based on method of simulated moments, rather than a maximum 
simulated log likelihood. the simulated moments would be based on

Ew,v[sjt(xjt, pjt �ai, Bi)] = Lw, v
 {sjt[xjt, pjt �ai(w), Bi(v)]}dF(w)dF(v).
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these would be simulated using the method of section 18.2.7. the algorithm developed 
by BlP for estimation of the model is famously intricate and complicated. several 
authors have proposed faster, less complicated methods of estimation. lee and seo 
(2011) proposed a useful device that is straightforward to implement.

Example 18.9  Health Insurance Market
Tamm, Tauchmann, Wasem, and Greb (2007) analyzed the German health insurance market in 
this framework. The study was motivated by the introduction of competition into the German 
social health insurance system in 1996. The authors looked for evidence of competition in 
estimates of the price elasticities of the market shares of the firms using an extensive panel 
data set spanning 2001–2004. The starting point is a model for the market shares,

sit =
exp(B′xit + gi + eit)

aN
i = 1exp(B′xit + gi + eit)

, i = 1, c, N.

Taking logs produces

ln(sit) = B′xit + dt + gi + eit,

where dt is the log of the denominator, which is the same for all firms, and gi is an endogenous 
firm effect. Since consumers do not change their insurer every period, the model is augmented 
to account for persistence,

ln(sit) = a ln(si,t - 1) + B′xit + dt + gi + eit.

The limiting cases of a = 0 (the static case) and a = 1 (random walk) are examined in 
the study, as well as the intermediate cases. GMM estimators are formulated for the three 
cases. The preferred estimate of the premium elasticity (from their Table VII) is -1.09, with a 
confidence interval of (-1.43 to -0.75), which suggests the influence of price competition 
in this market.

18.3 RANDOM UTILITY MODELS FOR ORDERED CHOICES

the analysts at bond rating agencies such as Moody’s and standard & Poor’s provide an 
evaluation of the quality of a bond that is, in practice, a discrete listing of the continuously 
varying underlying features of the security. the rating scales are as follows:

Rating S&P Rating Moody’s Rating

highest quality aaa aaa
high quality aa aa
upper medium quality a a
Medium grade BBB Baa
somewhat speculative BB Ba
low grade, speculative B B
low grade, default possible CCC Caa
low grade, partial recovery possible CC Ca
default, recovery unlikely C C

For another example, netflix (www.netflix.com) is an internet company that, among other 
activities, streams movies to subscribers. after a subscriber streams a movie, the next time 
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he or she logs onto the Web site, he or she is invited to rate that movie on a five-point scale, 
where five is the highest, most favorable rating. the ratings of the many thousands of 
subscribers who streamed that movie are averaged to provide a recommendation to 
prospective viewers. as of april 5, 2009, the average rating of the 2007 movie National 
Treasure: Book of Secrets given by approximately 12,900 visitors to the site was 3.8. Many 
other internet sellers of products and services, such as Barnes & noble, amazon, hewlett 
Packard, and Best Buy, employ rating schemes such as this. Many recently developed 
national survey data sets, such as the British household Panel data set (BhPs) (www.iser.
essex.ac.uk/bhps), the australian hilda data (www.melbourneinstitute.com/hilda/), and 
the German socioeconomic Panel (GsoeP) (www.diw.de/en/soep), all contain questions 
that elicit self-assessed ratings of health, health satisfaction, or overall well-being. like the 
other examples listed, these survey questions are answered on a discrete scale, such as the 
0 to 10 scale of the question about health satisfaction in the GsoeP.26 Ratings such as these 
provide applications of the models and methods that interest us in this section.27

For an individual respondent, we hypothesize that there is a continuously varying 
strength of preferences that underlies the rating he or she submits. For convenience and 
consistency with what follows, we will label that strength of preference “utility,” U*. 
Continuing the netflix example, we describe utility as ranging over the entire real line,

- ∞ 6 Uim
* 6 + ∞ ,

where i indicates the individual and m indicates the movie. individuals are invited to rate 
the movie on an integer scale from 1 to 5. logically, then, the translation from underlying 
utility to a rating could be viewed as a censoring of the underlying utility,

 Rim = 1 if - ∞ 6 Uim
* … m1,

 Rim = 2 if m1    6 Uim
* … m2,

 Rim = 3 if m2    6 Uim
* … m3,

 Rim = 4 if m3    6 Uim
* … m4,

 Rim = 5 if m4    6 Uim
* 6 ∞ .

the same mapping would characterize the bond ratings, since the qualities of bonds 
that produce the ratings will vary continuously, and the self-assessed health and well-
being questions in the panel survey data sets are based on an underlying utility or 
preference structure. the crucial feature of the description thus far is that underlying 
the discrete response is a continuous range of preferences. therefore, the observed rating 
represents a censored version of the true underlying preferences. Providing a rating of 
five could be an outcome ranging from general enjoyment to wild enthusiasm. note 
that for thresholds, mj, number (J - 1), where J is the number of possible ratings (here, 
five)—J - 1 values are needed to divide the range of utility into J cells. the thresholds 
are an important element of the model; they divide the range of utility into cells that 
are then identified with the observed outcomes. importantly, the difference between 

26the original survey used a 0–10 scale for self-assessed health. it is currently based on a five-point scale.
27Greene and hensher (2010a) provide a survey of ordered choice modeling. other textbook and monograph 
treatments include deMaris (2004), long (1997), Johnson and albert (1999), and long and Freese (2006). 
introductions to the model also appear in journal articles such as Winship and Mare (1984), Becker and Kennedy 
(1992), daykin and Moffatt (2002), and Boes and Winkelmann (2006).
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FIGURE 18.3   IMDb.com Ratings.
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two levels of a rating scale (for example, one compared to two, two compared to three) 
is not the same as on a utility scale. hence, we have a strictly nonlinear transformation 
captured by the thresholds, which are estimable parameters in an ordered choice model.

the model as suggested thus far provides a crude description of the mechanism 
underlying an observed rating. any individual brings his or her own set of characteristics 
to the utility function, such as age, income, education, gender, where he or she lives, 
family situation, and so on, which we denote xi1, xi2, c, xiK. they also bring their own 
aggregates of unmeasured and unmeasurable (by the statistician) idiosyncrasies, denoted 
eim. how these features enter the utility function is uncertain, but it is conventional to 
use a linear function, which produces a familiar random utility function,

Uim
* = b0 + b1xi1 + b2xi2 + g + bKxiK + eim.

Example 18.10  Movie Ratings
The Web site www.IMDb.com invites visitors to rate movies that they have seen. This site 
uses a 10-point scale. It reported the results in Figure 18.3 for the movie National Treasure: 
Book of Secrets for 41,771 users of the site.28 The figure at the left shows the overall ratings. 
The panel at the right shows how the average rating varies across age, gender, and whether 
the rater is a U.S. viewer or not. The rating mechanism we have constructed is

 Rim = 1 if - ∞ 6 xi
=B + eim … m1,

 Rim = 2 if m1 6 xi
=B + eim … m2,

g
 Rim = 9 if m8 6 xi

=B + eim … m9,

 Rim = 10 if m9 6 xi
=B + eim 6 ∞ .

28the data are as of december 1, 2008. a rating for the same movie as of august 1, 2016 at www.imdb.com/title/
tt0465234/ratings?ref_=tt_ov_rt shows essentially the same pattern for 182,780 viewers.
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Relying on a central limit theorem to aggregate the innumerable small influences that add up 
to the individual idiosyncrasies and movie attraction, we assume that the random component, 
eim, is normally distributed with zero mean and (for now) constant variance. The assumption 
of normality will allow us to attach probabilities to the ratings. In particular, arguably the most 
interesting one is

Prob(Rim = 10 � xi) = Prob[eim 7 m9 - xi
=B].

The structure provides the framework for an econometric model of how individuals rate 
movies (that they stream from Netflix). The resemblance of this model to familiar models of 
binary choice is more than superficial. For example, one might translate this econometric 
model directly into a simple probit model by focusing on the variable

 Eim = 1 if Rim = 10

 Eim = 0 if Rim 6 10.

Thus, the model is an extension of a binary choice model to a setting of more than two 
choices. But the crucial feature of the model is the ordered nature of the observed outcomes 
and the correspondingly ordered nature of the underlying preference scale.

the model described here is an ordered choice model. (the use of the normal 
distribution for the random term makes it an ordered probit model.) ordered choice 
models are appropriate for a wide variety of settings in the social and biological 
sciences. the essential ingredient is the mapping from an underlying, naturally ordered 
preference scale to a discrete ordered observed outcome, such as the rating scheme 
just described. the model of ordered choice pioneered by aitcheson and silvey (1957), 
snell (1964), and Walker and duncan (1967) and articulated in its modern form by 
Zavoina and Mcelvey (1975) has become a widely used tool in many fields. the number 
of applications in the current literature is large and increasing rapidly, including:

●● Bond ratings [terza (1985a)],
●● Congressional voting on a Medicare bill [Mcelvey and Zavoina (1975)],
●● Credit ratings [Cheung (1996), Metz, and Cantor (2006)],
●● driver injury severity in car accidents [eluru, Bhat, and hensher (2008)],
●● drug reactions [Fu, Gordon, liu, dale, and Christensen (2004)],
●● education [Machin and vignoles (2005), Carneiro, hansen, and heckman (2003), 

Cunha, heckman, and navarro (2007)],
●● Financial failure of firms [hensher and Jones (2007)],
●● happiness [Winkelmann (2005), Zigante (2007)],
●● health status [Jones, Koolman, and Rice (2003)],
●● Job skill rating [Marcus and Greene (1985)],
●● life satisfaction [Clark, Georgellis, and sanfey (2001), Groot and ven den Brink 

(2003), Winkelmann (2002)],
●● Monetary policy [eichengreen, Watson, and Grossman (1985)],
●● nursing labor supply [Brewer, Kovner, Greene, and Cheng (2008)],
●● obesity [Greene, harris, hollingsworth, and Maitra (2008)],
●● Political efficacy [King, Murray, salomon, and tandon (2004)],
●● Pollution [Wang and Kockelman (2009)],
●● Promotion and rank in nursing [Pudney and shields (2000)],
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●● stock price movements [tsay (2005)],
●● tobacco use [harris and Zhao (2007), Kasteridis, Munkin, and Yen (2008)], and
●● Work disability [Kapteyn et al. (2007)].

18.3.1  THE ORDERED PROBIT MODEL

the ordered probit model is built around a latent regression in the same manner as the 
binomial probit model. We begin with

y* = x′B + e.

as usual, y* is unobserved. What we do observe is

 y = 0 if y* … 0

 = 1 if 0 6 y* … m1

 = 2 if m1 6 y* … m2

 f
 = J if mJ - 1 … y*,

which is a form of censoring. the m’s are unknown parameters to be estimated with B.
We assume that e is normally distributed across observations.29 For the same reasons 

as in the binomial probit model (which is the special case with J = 1), we normalize the 
mean and variance of e to zero and one. We then have the following probabilities:

 Prob(y = 0 � x) = Φ(-x′B),

 Prob(y = 1 � x) = Φ(m1 - x′B) - Φ(-x′B),

 Prob(y = 2 � x) = Φ(m2 - x′B) - Φ(m1 - x′B),
f

 Prob(y = J � x) = 1 - Φ(mJ - 1 - x′B).

For all the probabilities to be positive, we must have

0 6 m1 6 m2 6 g 6 mJ - 1.

Figure 18.4 shows the implications of the structure. this is an extension of the univariate 
probit model we examined in Chapter 17. the log-likelihood function and its derivatives 
can be obtained readily, and optimization can be done by the usual means.

as usual, the partial effects of the regressors x on the probabilities are not equal 
to the coefficients. it is helpful to consider a simple example. suppose there are three 
categories. the model thus has only one unknown threshold parameter. the three 
probabilities are

 Prob(y = 0 � x) = 1 - Φ(x′B),

 Prob(y = 1 � x) = Φ(m - x′B) - Φ(-x′B),

 Prob(y = 2 � x) = 1 - Φ(m - x′B).

29other distributions, particularly the logistic, could be used just as easily. We assume the normal purely for 
convenience. the logistic and normal distributions generally give similar results in practice.
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For the three probabilities, the partial effects of changes in the regressors are

0 Prob(y = 0 � x)

0x
= -f(x′B)B,

0 Prob(y = 1 � x)

0x
= [f(-x′B) - f(m - x′B)]B,

0 Prob(y = 2 � x)

0x
= f(m - x′B)B.

Figure 18.5 illustrates the effect. the probability distributions of y and y* are shown in 
the solid curve. increasing one of the x’s while holding B and m constant is equivalent 
to shifting the distribution slightly to the right, which is shown as the dashed curve. the 
effect of the shift is unambiguously to shift some mass out of the leftmost cell. assuming 
that B is positive (for this x), Prob(y = 0 � x) must decline. alternatively, from the 
previous expression, it is obvious that the derivative of Prob(y = 0 � x) has the opposite 
sign from B. By a similar logic, the change in Prob(y = 2 � x) [or Prob(y = J � x) in the 
general case] must have the same sign as B. assuming that the particular B is positive, we 
are shifting some probability into the rightmost cell. But what happens to the middle cell 
is ambiguous. it depends on the two densities. in the general case, relative to the signs of 
the coefficients, only the signs of the changes in Prob(y = 0 � x) and Prob(y = J � x) are 
unambiguous! the upshot is that we must be very careful in interpreting the coefficients 
in this model. indeed, without a fair amount of extra calculation, it is quite unclear how 
the coefficients in the ordered probit model should be interpreted.

Example 18.11  Rating Assignments
Marcus and Greene (1985) estimated an ordered probit model for the job assignments of new 
Navy recruits. The Navy attempts to direct recruits into job classifications in which they will be 

FIGURE 18.4  Probabilities in the Ordered Probit Model.
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FIGURE 18.5  Effects of Change in x on Predicted Probabilities.
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Variable Estimate t Ratio Mean of Variable

Constant -4.34 — —
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 12.1
AFQT 0.039 39.9 71.2
EDYRS 0.190 8.7 12.1
MARR -0.48 -9.0 0.08
AGEAT 0.0015 0.1 18.8
m 1.79 80.8 —

TABLE 18.19 Estimated Rating Assignment Equation

most productive. The broad classifications the authors analyzed were technical jobs with three 
clearly ranked skill ratings: “medium skilled,” “highly skilled,” and “nuclear qualified/highly 
skilled.” Because the assignment is partly based on the Navy’s own assessment and needs 
and partly on factors specific to the individual, an ordered probit model was used with the 
following determinants: (1) ENSPE = a dummy variable indicating that the individual entered 
the Navy with an “A school” (technical training) guarantee; (2) EDMA = educational level of the 
entrant’s mother; (3) AFQT = score on the Armed Forces Qualifying Test; (4) EDYR = years 
of education completed by the trainee; (5) MARR = a dummy variable indicating that the 
individual was married at the time of enlistment; and (6) AGEAT = trainee’s age at the time 
of enlistment. (The data used in this study are not available for distribution.) The sample size 
was 5,641. The results are reported in Table 18.19. The extremely large t ratio on the AFQT 
score is to be expected, as it is a primary sorting device used to assign job classifications.

To obtain the marginal effects of the continuous variables, we require the standard normal 
density evaluated at -x′Bn = -0.8479 and mn - x′Bn = 0.9421. The predicted probabilities are 
Φ(-0.8479) = 0.198, Φ(0.9421) - Φ(-0.8479) = 0.628, and 1 - Φ(0.9421) = 0.174. (The 
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actual frequencies were 0.25, 0.52, and 0.23.) The two densities are f(-0.8479) = 0.278 
and f(0.9421) = 0.255. Therefore, the derivatives of the three probabilities with respect to 
AFQT, for example, are

 
0P0

0AFQT
= (-0.278)0.039 = -0.01084,

 
0P1

0AFQT
= (0.278 - 0.255)0.039 = 0.0009,

 
0P2

0AFQT
= 0.255(0.039) = 0.00995.

Note that the marginal effects sum to zero, which follows from the requirement that the 
probabilities add to one. This approach is not appropriate for evaluating the effect of a dummy 
variable. We can analyze a dummy variable by comparing the probabilities that result when 
the variable takes its two different values with those that occur with the other variables held 
at their sample means. For example, for the MARR variable, we have the results given in 
Table 18.20.

18.3.2.a  SPECIFICATION TEST FOR THE ORDERED CHOICE MODEL

the basic formulation of the ordered choice model implies that for constructed binary 
variables,

 wij = 1 if yi … j, 0 otherwise, j = 1, 2, c, J - 1, (18-16)

Prob(wij = 1 � xi) = F(xi
=B - mj).

the first of these, when j = 1, is the binary choice model of section 17.2. one implication 
is that we could estimate the slopes, but not the threshold parameters, in the ordered 
choice model just by using wi1 and xi in a binary probit or logit model. (note that this 
result also implies the validity of combining adjacent cells in the ordered choice model.) 
But (18-16) also defines a set of J - 1 binary choice models with different constants but 
common slope vector, B. this equality of the parameter vectors in (18-16) has been 
labeled the parallel regression assumption. although it is merely an implication of the 
model specification, this has been viewed as an implicit restriction on the model.30 Brant 
(1990) suggests a test of the parallel regressions assumption based on (18-16). one can, 
in principle, fit J - 1 such binary choice models separately. each will produce its own 
constant term and a consistent estimator of the common B. Brant’s Wald test examines 
the linear restrictions B1 = B2 = g = BJ - 1, or H0: Bq - B1 = 0, q = 2, c, J - 1. 
the Wald statistic will be

30 see, for example, long (1997, p. 141).

-Bn ′x Mn - Bn ′x Prob[y = 0] Prob[y = 1] Prob[y = 2]

MARR = 0 -0.8863 0.9037 0.187 0.629 0.184
MARR = 1 -0.4063 1.3837 0.342 0.574 0.084
Change 0.155 -0.055 -0.100

TABLE 18.20 Partial Effect of a Binary Variable
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x2[(J - 2)K] = (RBn*)′[R * asy.var[Bn*] * R′]-1(RBn*),

where Bn* is obtained by stacking the individual binary logit or probit estimates of B 
(without the constant terms).31

Rejection of the null hypothesis calls the model specification into question. an 
alternative model in which there is a different B for each value of y has two problems: it does 
not force the probabilities to be positive and it is internally inconsistent. on the latter point, 
consider the suggested latent regression, y* = x′Bj + e. if the B is different for each j, then 
it is not possible to construct a data-generating mechanism for y* (or, for example, simulate 
it); the realized value of y* cannot be defined without knowing y (that is, the realized j), 
since the applicable B depends on j, but y is supposed to be determined from y* through, 
for example, (18-16). there is no parametric restriction other than the one we seek to avoid 
that will preserve the ordering of the probabilities for all values of the data and maintain 
the coherency of the model. this still leaves the question of what specification failure would 
logically explain the finding. some suggestions in Brant (1990) include: (1) misspecification 
of the latent regression, x′B; (2) heteroscedasticity of e; and (3) misspecification of the 
distributional form for the latent variable, that is, “nonlogistic link function.”

Example 18.12  Brant Test for an Ordered Probit Model of Health Satisfaction
In Examples 17.6 through 17.10 and several others, we studied the health care usage of a 
sample of households in the German Socioeconomic Panel (GSOEP). The data include a self-
reported measure of health satisfaction (HSAT) that is coded 0 to 10. This variable provides a 
natural application of the ordered choice models in this chapter. The data are an unbalanced 
panel. For purposes of this exercise, we have used the first (1984) wave of the data set, which 
is a cross section of 4,483 observations. We then collapsed the 11 cells into 5 [(0–2), (3–5), 
(6–8), (9), (10)] for this example. The utility function is

 HSATi
* = b1 + b2 AGEi + b3 INCOMEi + b4 KIDSi

+ b5 EDUCi + b6 MARRIEDi b7 WORKINGi + ei.

Variables KIDS, MARRIED, and WORKING are binary indicators of whether there are children 
in the household, marital status, and whether the individual was working at the time of the 
survey. (These data are examined further in Example 18.14.) The model contains six variables, 
and there are four binary choice models fit, so there are (J - 2)(K) = (3)(6) = 18 restrictions. 
The chi squared for the probit model is 87.836. The critical value for 95% is 28.87, so the 
homogeneity restriction is rejected. The corresponding value for the logit model is 77.84, 
which leads to the same conclusion.

18.3.3  BIVARIATE ORDERED PROBIT MODELS

there are several extensions of the ordered probit model that follow the logic of the 
bivariate probit model we examined in section 17.9. a direct analog to the base case 
two-equation model is used in the study in example 18.13.

Example 18.13  Calculus and Intermediate Economics Courses
Butler et al. (1994) analyzed the relationship between the level of calculus attained and 
grades in intermediate economics courses for a sample of Vanderbilt University students. The 
two-step estimation approach involved the following strategy. (We are stylizing the precise 
formulation a bit to compress the description.) Step 1 involved a direct application of the 

31see Brant (1990), long (1997), or Greene and hensher (2010a, p. 187) for details on computing the statistic.
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ordered probit model of Section 18.3.1 to the level of calculus achievement, which is coded 
0,1, . . . , 6:

 mi
* = xi

=B + ei, ei � xi ∼ N[0, 1],

 mi = 0 if - ∞ 6 mi
* … 0

 = 1 if 0 6 mi
* … m1

g
 = 6 if m5 6 mi

* 6 + ∞ .

The authors argued that although the various calculus courses can be ordered discretely by 
the material covered, the differences between the levels cannot be measured directly. Thus, 
this is an application of the ordered probit model. The independent variables in this first-step 
model included SAT scores, foreign language proficiency, indicators of intended major, and 
several other variables related to areas of study.

The second step of the estimator involves regression analysis of the grade in the intermediate 
microeconomics or macroeconomics course. Grades in these courses were translated to a 
granular continuous scale (A = 4.0, A- = 3.7, etc.). A linear regression is specified,

Gradei = zi
=d + ui, where ui � zi ∼ N[0, su

2].

Independent variables in this regression include, among others: (1) dummy variables for 
which outcome in the ordered probit model applies to the student (with the zero reference 
case omitted), (2) grade in the last calculus course, (3) several other variables related to 
prior courses, (4) class size, (5) freshman GPA, and so on. The unobservables in the Grade 
equation and the math attainment are clearly correlated, a feature captured by the additional 
assumption that (ei, ui � xi, zi) ∼ N2[(0, 0), (1, su

2), rsu]. A nonzero r captures this “selection” 
effect. With this in place, the dummy variables in (1) have now become endogenous. The 
solution is a selection correction that we will examine in detail in Chapter 19. The modified 
equation becomes

 Gradei � mi = z=
id + E[ui � mi] + vi

 = zi
=d + (rsu)[l(xi

=B, m1, c, m5)] + vi.

They thus adopt a “control function” approach to accommodate the endogeneity of the math 
attainment dummy variables. [See Sections 17.6.2d and 17.6.2e) for another application of 
this method.] The term l(xi

=B, m1, c, m5) is a generalized residual that is constructed using 
the estimates from the first-stage ordered probit model.32 Linear regression of the course 
grade on zi and this constructed regressor is computed at the second step. The standard 
errors at the second step must be corrected for the use of the estimated regressor using what 
amounts to a Murphy and Topel (2002) correction. (See Section 14.7.)

Li and Tobias (2006) in a replication of and comment on Butler et al. (1994), after roughly 
replicating the classical estimation results with a Bayesian estimator, observe that the 
preceding Grade equation above could also be treated as an ordered probit model. The 
resulting bivariate ordered probit model would be

 mi
* = xi

=B + ei,     and      gi
* = zi

=D + ui,

 mi = 0 if - ∞ 6 mi
* … 0      gi = 0 if - ∞ 6 gi

* … 0

 = 1 if 0 6 mi
* … m1      = 1 if 0 6 gi

* … a1

 g      g
 = 6 if m5 6 mi

* 6 + ∞      = 11 if m9 6 gi
* 6 + ∞ ,

32a precise statement of the form of this variable is given in li and tobias (2006).
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where

(ei, ui � xi, zi) ∼ N2[(0, 0),(1, su
2), rsu].

Li and Tobias extended their analysis to this case simply by transforming the dependent 
variable in Butler et al.’s second equation. Computing the log likelihood using sets of 
bivariate normal probabilities is fairly straightforward for the bivariate ordered probit 
model.33 However, the classical study of these data using the bivariate ordered approach 
remains to be done, so a side-by-side comparison to Li and Tobias’s Bayesian alternative 
estimator is not possible. The endogeneity of the calculus dummy variables in (1) remains 
a feature of the model, so both the MLE and the Bayesian posterior are less straightforward 
than they might appear. Whether the results in Section 17.9.5 on the recursive bivariate 
probit model extend to this case also remains to be determined.

the bivariate ordered probit model has been applied in a number of settings in the 
recent empirical literature, including husband and wife’s education levels [Magee et al. 
(2000)], family size [(Calhoun (1995)], and many others. in two early contributions to 
the field of pet econometrics, Butler and Chatterjee analyze ownership of cats and dogs 
(1995), and dogs and televisions (1997).

18.3.4  PANEL DATA APPLICATIONS

the ordered probit model is used to model discrete scales that represent indicators of 
a continuous underlying variable such as strength of preference, performance, or level 
of attainment. Many of the recently assembled national panel data sets contain survey 
questions that ask about subjective assessments of health satisfaction, or well-being, 
all of which are applications of this interpretation. examples include the following:

●● the european Community household Panel (eChP) includes questions about job 
satisfaction.34

●● the British household Panel survey (BhPs) and the australian hilda data 
include questions about health status.35

●● the German socioeconomic household Panel (GsoeP) includes questions about 
subjective well-being36 and subjective assessment of health satisfaction.37

ostensibly, the applications would fit well into the ordered probit frameworks already 
described. however, given the panel nature of the data, it will be desirable to augment 
the model with some accommodation of the individual heterogeneity that is likely to be 
present. the two standard models, fixed and random effects, have both been applied to 
the analyses of these survey data.

18.3.4.a  Ordered Probit Models with Fixed Effects 
d’ addio et al. (2003), using methodology developed by Frijters et al. (2004) and Ferrer-
i-Carbonell et al. (2004), analyzed survey data on job satisfaction using the danish 

33see Greene (2007b).
34see d’addio (2004).
35see Contoyannis et al. (2004).
36see Winkelmann (2005).
37see Riphahn et al. (2003) and example 18.4.
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component of the european Community household Panel (eChP). their estimator for 
an ordered logit model is built around the logic of Chamberlain’s estimator for the 
binary logit model. [see section 17.7.3.] Because the approach is robust to individual 
specific threshold parameters and allows time-invariant variables, it differs sharply from 
the fixed effects models we have considered thus far as well as from the ordered probit 
model of section 18.3.1.38 unlike Chamberlain’s estimator for the binary logit model, 
however, their conditional estimator is not a function of minimal sufficient statistics. as 
such, the incidental parameters problem remains an issue.

das and van soest (2000) proposed a somewhat simpler approach.39 Consider the 
base case ordered logit model with fixed effects,

yit
* = ai + xit

=B + eit, eit � Xi ∼ logistic[0, p2/3],

yit = j if mj - 1 6 yit
* 6 mj, j = 0, 1, c, J and m-1 = - ∞ , m0 = 0, mJ = + ∞ .

the model assumptions imply that

Prob(yit = j � Xi) = Λ(mj - ai - xit
=B) - Λ(mj - 1 - ai - xit

=B),

where Λ(t) is the cdf of the logistic distribution. now, define a binary variable

wit,j = 1 if yit 7 j, j = 0, c, J - 1.

it follows that

 Prob[wit,j = 1 � Xi] = Λ(ai - mj + xit
=B)

 = Λ(ui + xit
=B).

the j specific constant, which is the same for all individuals, is absorbed in ui. thus, a 
fixed effects binary logit model applies to each of the J - 1 binary random variables, 
wit,j. the method in section 17.7.3 can now be applied to each of the J - 1 random 
samples. this provides J - 1 estimators of the parameter vector B (but no estimator of 
the threshold parameters). the authors propose to reconcile these different estimators 
by using a minimum distance estimator of the common true B. (see section 13.3 and  
18.2.8c.) the minimum distance estimator at the second step is chosen to minimize

q = a
J - 1

j = 0
 a

J - 1

m = 0
(Bn j - B)′[Vjm

-1](Bnm - B),

where [Vjm
-1] is the j, m block of the inverse of the (J - 1)K * (J - 1)K partitioned 

matrix V that contains asy.Cov[Bnj, Bnm]. the appropriate form of this matrix for a set 
of cross-section estimators is given in Brant (1990). das and van soest (2000) used the 
counterpart for Chamberlain’s fixed effects estimator but do not provide the specifics 
for computing the off-diagonal blocks in V.

38Cross-section versions of the ordered probit model with individual specific thresholds appear in terza (1985a), 
Pudney and shields (2000), and Greene (2009a).
39see long’s (1997) discussion of the “parallel regressions assumption,” which employs this device in a cross-
section framework.
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the full ordered probit model with fixed effects, including the individual specific 
constants, can be estimated by unconditional maximum likelihood using the results in 
section 14.9.6.d. the likelihood function is concave, so despite its superficial complexity, 
the estimation is straightforward.40 (in the following application, with more than 27,000 
observations and 7,293 individual effects, estimation of the full model required roughly 
five seconds of computation.) no theoretical counterpart to the hsiao (1986, 2003) and 
abrevaya (1997) results on the small T bias (incidental parameters problem) of the Mle 
in the presence of fixed effects has been derived for the ordered probit model. the 
Monte Carlo results in Greene (2004a) (see, as well, section 15.5.2), suggest that biases 
comparable to those in the binary choice models persist in the ordered probit model as 
well. (see, also, Bester and hansen (2009) and Carro (2007).) as in the binary choice 
case, the complication of the fixed effects model is the small sample bias, not the 
computation. the das and van soest approach finesses this problem—their estimator is 
consistent—but at the cost of losing the information needed to compute partial effects 
or predicted probabilities.

18.3.4.b  Ordered Probit Models with Random Effects 
the random effects ordered probit model has been much more widely used than the 
fixed effects model. applications include Groot and van den Brink (2003), who studied 
training levels of employees, with firm effects; Winkelmann (2005), who examined 
subjective measures of well-being with individual and family effects; Contoyannis et al. 
(2004), who analyzed self-reported measures of health status; and numerous others. in 
the simplest case, the Butler and Moffitt (1982) quadrature method (section 14.9.6.c) 
can be extended to this model.

Winkelmann (2005) used the random effects approach to analyze the subjective 
well-being (SWB) question (also coded 0 to 10) in the German socioeconomic Panel 
(GsoeP) data set. the ordered probit model in this study is based on the latent 
regression,

yimt
* = ximt

= B + eimt + uim + vi.

the independent variables include age, gender, employment status, income, family size, 
and an indicator for good health. an unusual feature of the model is the nested random 
effects (see section 14.14.2), which include a family effect, vi, as well as the individual 
family member (i in family m) effect, uim. the Gls/Mle approach we applied to the 
linear regression model  in section 14.9.6.b is unavailable in this nonlinear setting. 
Winkelmann instead employed a hermite quadrature procedure to maximize the log-
likelihood function.

18.14  Example Health Satisfaction
The GSOEP German Health Care data that we have used in Examples 11.16, 17.4, and 
others includes a self-reported measure of health satisfaction, HSAT, that takes values 
0, 1, . . . ,10.41 This is a typical application of a scale variable that reflects an underlying 
continuous variable, “health.” The frequencies and sample proportions for the reported 
values are as follows:

40see Pratt (1981).
41in the original data set, 40 (of 27,326) observations on this variable were coded with noninteger values between 
6 and 7. For purposes of our example, we have recoded all 40 observations to 7.
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HSAT Frequency Proportion (%)

0 447 1.6
1 255 0.9
2 642 2.3
3 1,173 4.2
4 1,390 5.0
5 4,233 15.4
6 2,530 9.2
7 4,231 15.4
8 6,172 22.5
9 3,061 11.2

10 3,192 11.6

We have fit pooled and panel data versions of the ordered probit model to these data. The 
model is

yit* = b1 + b2 Ageit + b3 Incomeit + b4 Kidsit + b5 Educationit + b6 Marriedit + b7 Workingit + eit + ci,

where ci will be the common fixed or random effect. (We are interested in comparing the 
fixed and random effects estimators, so we have not included any time-invariant variables 
such as gender in the equation.) Table 18.21 lists five estimated models. (Standard errors 
for the estimated threshold parameters are omitted.) The first is the pooled ordered probit 
model. The second and third are fixed effects. Column 2 shows the unconditional fixed effects 
estimates using the results of Section 14.9.6.d. Column 3 shows the Das and van Soest 
estimator. For the minimum distance estimator, we used an inefficient weighting matrix, the 
block-diagonal matrix in which the jth block is the inverse of the jth asymptotic covariance 
matrix for the individual logit estimators. With this weighting matrix, the estimator is

BnMDE = Ja9
j = 0

Vj
-1 R -1

a
9

j = 0
Vj

-1 Bn j

and the estimator of the asymptotic covariance matrix is approximately equal to the bracketed 
inverse matrix. The fourth set of results is the random effects estimator computed using 
the maximum simulated likelihood method. This model can be estimated using Butler and 
Moffitt’s quadrature method; however, we found that even with a large number of nodes, 
the quadrature estimator converged to a point where the log likelihood was far lower than 
the MSL estimator, and at parameter values that were implausibly different from the other 
estimates. Using different starting values and different numbers of quadrature points did not 
change this outcome. The MSL estimator for a random constant term (see Section 15.6.3) 
is considerably lower but produces more reasonable results. The fifth set of results is the 
Mundlak form of the random effects model, which includes the group means in the models 
as controls to accommodate possible correlation between the latent heterogeneity and the 
included variables. As noted in Example 18.3, the components of the ordered choice model 
must be interpreted with some care. By construction, the partial effects of the variables on 
the probabilities of the outcomes must change sign, so the simple coefficients do not show 
the complete picture implied by the estimated model. Table 18.22 shows the partial effects 
for the pooled model to illustrate the computations.

Example 18.15  A Dynamic Ordered Choice Model:
Contoyannis, Jones, and Rice (2004) analyzed a self-assessed health (SAH) scale that 
ranged from 1 (very poor) to 5 (excellent) in the British Household Panel Survey. The data set 
examined consisted of the first eight waves of the data set, from 1991 to 1999, roughly 5,000 
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HSAT Age Income Kids Education Married Working

0 0.0006 -0.0061 -0.0020 -0.0012 -0.0009 -0.0046
1 0.0003 -0.0031 -0.0010 -0.0006 -0.0004 -0.0023
2 0.0008 -0.0072 -0.0024 -0.0014 -0.0010 -0.0053
3 0.0012 -0.0113 -0.0038 -0.0021 -0.0016 -0.0083
4 0.0012 -0.0111 -0.0037 -0.0021 -0.0016 -0.0080
5 0.0024 -0.0231 -0.0078 -0.0044 -0.0033 -0.0163
6 0.0008 -0.0073 -0.0025 -0.0014 -0.0010 -0.0050
7 0.0003 -0.0024 -0.0009 -0.0005 -0.0003 -0.0012
8 -0.0019 0.0184 0.0061 0.0035 0.0026 0.0136
9 -0.0021 0.0198 0.0066 0.0037 0.0028 0.0141

10 -0.0035 0.0336 0.0114 0.0063 0.0047 0.0233

TABLE 18.22 Estimated Partial Effects: Pooled Model

Variable
(1)  

Pooled

(2)  
Fixed Effects 

Uncond.

(3)  
Fixed Effects 
Conditional

(4)  
Random 
Effects

(5)  
Random Effects Mundlak

Variables Means

Constant 2.4739 3.8577 3.2603
(0.04669) (0.05072) (0.05323)

Age -0.01913 -0.07162 -0.1011 -0.03319 -0.06282 0.03940
(0.00064) (0.002743) (0.002878) (0.00065) (0.00234) (0.00244)

Income 0.1811 0.2992 0.4353 0.09436 0.2618 0.1461
(0.03774) (0.07058) (0.07462) (0.03632) (0.06156) (0.07695)

Kids 0.06081 -0.06385 -0.1170 0.01410 -0.05458 0.1854
(0.01459) (0.02837) (0.03041) (0.01421) (0.02566) (0.03129)

Education 0.03421 0.02590 0.06013 0.04728 0.02296 0.02257
(0.002828) (0.02677) (0.02819) (0.002863) (0.02793) (0.02807)

Married 0.02574 0.05157 0.08505 0.07327 0.04605 -0.04829
(0.01623) (0.04030) (0.04181) (0.01575) (0.03506) (0.03963)

Working 0.1292 -0.02659 -0.00797 0.07108 -0.02383 0.2702
(0.01403) (0.02758) (0.02830) (0.01338) (0.02311) (0.02856)

m1 0.1949 0.3249 0.2726 0.2752
m2 0.5029 0.8449 0.7060 0.7119
m3 0.8411 1.3940 1.1778 1.1867
m4 1.111 1.8230 1.5512 1.5623
m5 1.6700 2.6992 2.3244 2.3379
m6 1.9350 3.1272 2.6957 2.7097
m7 2.3468 3.7923 3.2757 3.2911
m8 3.0023 4.8436 4.1967 4.2168
m9 3.4615 5.5727 4.8308 4.8569
su 0.0000 0.0000 1.0078 0.9936
ln L -56,813.52 -41,875.63 -53,215.54 -53,070.43

TABLE 18.21 Estimated Ordered Probit Models for Health Satisfaction
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households. Their model accommodated a variety of complications in survey data. The latent 
regression underlying their ordered probit model is

hit
* = xit

=B + Hi,t - 1
= G + ai + eit,

where xit includes marital status, race, education, household size, age, income, and number of 
children in the household. The lagged value, Hi, t - 1, is a set of binary variables for the observed 
health status in the previous period.42 In this case, the lagged values capture state dependence—
the assumption that the health outcome is redrawn randomly in each period is inconsistent with 
evident runs in the data. The initial formulation of the regression is a fixed effects model. To 
control for the possible correlation between the effects, ai, and the regressors, and the initial 
conditions problem that helps to explain the state dependence, they use a hybrid of Mundlak’s 
(1978) correction and a suggestion by Wooldridge (2010) for modeling the initial conditions,

ai = a0 + x′A1 + Hi,1
= D + ui,

where ui is exogenous. Inserting the second equation into the first produces a random effects 
model that can be fit using the quadrature method we considered earlier.

The authors were interested in transitions in the reported health status, especially to and 
from the highest level. Based on the balanced panel for women, the authors estimated the 
unconditional probabilities of transition to Excellent Health from (Excellent, Good, Fair, Poor, 
and Very Poor) to be (0.572, 0.150, 0.040, 0.021, 0.014).43

The presence of attrition complicates the analysis. The authors examined the issue in a 
set of tests, and found evidence of nonrandom attrition for men in the sample, but not 
women.  (See Example 11.2 in Section 11.2.5, where we have examined their study.) 
Table 18.23, extracted from their Table XII, displays a few of the partial effects of most interest, 
the implications for the probability of reporting the highest value of SAH.44 Several 
specifications were considered. Model (4) in the results includes the IPW treatment for 
possible attrition (see Section 17.7.7). Model (6) is the most general specification considered. 
Surprisingly, the income effect is extremely small. However, given the considerable inertia 
suggested by the transition probabilities, one might expect that it would require a large 
change in the covariates to induce switching out of the top cell. The mean log income in the 
data is about 0.5 and the proportion of responders who report EX is roughly 
4884/23,408 = 0.2086. If log income rises by 0.1, or 20%, the average probability for EX 
would rise by only 0.1 * 0.008 = 0.0008, which is trivial. Having reported EX in the previous 
period is expected to raise the probability by 0.074 compared to the value if SAH were GOOD 
(the omitted cell is the second one), which is substantial.

42this is the same device that was used by Butler et al. (1994) in example 18.13. van ooijen, alessie, and Knoef 
(2015) also analyzed self-assessed health in the context of a dynamic ordered choice model, using the dutch 
longitudinal internet study in the social sciences.
43Figures from Contoyannis, Jones, and Rice (2004), table ii.
44Contoyannis et al. (2004).

Pooled Model (4) Random Effects Model (6)

ln income 0.004 (0.002) 0.008 (0.004)
SAH EX(t-1) 0.208 (0.092) 0.074 (0.035)
SAH FAIR(t-1) -0.127 (0.074) -0.061 (0.033)

TABLE 18.23 Average Partial Effects on Probability of Reporting Excellent Health

M18_GREE1366_08_SE_C18.indd   880 2/24/17   1:49 PM



 CHAPTER 18 ✦ Multinomial Choices and Event Counts 881

18.3.5  EXTENSIONS OF THE ORDERED PROBIT MODEL

the basic specification of the ordered probit model can be extended in the same 
directions as we considered in constructing models for binary choice in Chapter 17. these 
include heteroscedasticity in the random utility function45 and heterogeneity in the 
preferences (i.e., random parameters and latent classes).46 two specification issues that 
are specific to the ordered choice model are accommodating heterogeneity in the 
threshold parameters and reconciling differences in the meaning of the preference scale 
across different groups. We will sketch the model extensions in this section. Further 
details are given in Chapters 6 and 7 of Greene and hensher (2010a).

18.3.5.a  Threshold Models—Generalized Ordered Choice Models 
the model analyzed thus far assumes that the thresholds mj are the same for every 
individual in the sample. terza (1985a), Pudney and shields (2000), King, Murray, salomon, 
and tandon (KMst, 2004), Boes and Winkelmann (2006a), Greene, harris, hollingsworth 
and Maitra (2008), and Greene and hensher (2010a) all present applications that include 
individual variation in the thresholds of the ordered choice model.

in his analysis of bond ratings, terza (1985a) suggested the generalization,

mij = mj + xi
=D.

With three outcomes, the probabilities are formed from

yi* = A + xi
=B + ei,

and
 yi = 0 if yi* … 0,

1 if 0 6 yi* … m + xi
=D,

2 if yi* 7 m + xi
=D.

For three outcomes, the model has two thresholds, m0 = 0 and m1 = m + xi
=D. the three 

probabilities can be written

 P0 = Prob(yi = 0 � xi) = Φ[ - (a + xi
=B)],

 P1 = Prob(yi = 1 � xi) = Φ[(m + xi
=D) - (a + xi

=B)] - Φ[ - (a + xi
=B)],

 P2 = Prob(yi = 2 � xi) = 1 - Φ[(m + xi
=D) - (a + xi

=B)].

For applications of this approach, see, for example, Kerkhofs and lindeboom (1995), 
Groot and van den Brink (2003), and lindeboom and van doorslayer (2003). note that 
if D is unrestricted, then Prob(yi = 1 � xi) can be negative. this is a shortcoming of the 
model when specified in this form. subsequent development of the generalized model 
involves specifications that avoid this internal inconsistency. note, as well, that if the 
model is recast in terms of m and G = [a, (B - D)], then the model is not distinguished 
from the original ordered probit model with a constant threshold parameter. this 
identification issue emerges prominently in Pudney and shield’s (2000) continued 
development of this model.

45see section 17.5.2, Keele and Park (2005), and Wang and Kockelman (2005), for an application.
46an extensive study of heterogeneity in health satisfaction based on 22 waves of the GsoeP is Jones and 
schurer (2010).
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Pudney and shields’s (2000) “generalized ordered probit model” was also formulated 
to accommodate observable individual heterogeneity in the threshold parameters. their 
application was in the context of job promotion for uK nurses in which the steps on 
the promotion ladder are individual specific. in their setting, in contrast to terza’s, 
some of the variables in the threshold equations are explicitly different from those in 
the regression. the authors constructed a generalized model and a test of threshold 
constancy by defining qi to include a constant term and those variables that are unique 
to the threshold model. variables that are common to both the thresholds and the 
regression are placed in xi and the model is reparameterized as

Pr(yi = g � xi, qi) = Φ[qi
=Dg - xi

=(B - Dg)] - Φ[qi
=Dg - 1 - xi

=(B - Dg - 1)].

an important point noted by the authors is that the same model results if these common 
variables are placed in the thresholds instead. this is a minor algebraic result, but it 
exposes an ambiguity in the interpretation of the model—whether a particular variable 
affects the regression or the thresholds is one of the issues that was developed in the 
original model specification.

as will be evident in the application in the next section, the specification of the 
threshold parameters is a crucial feature of the ordered choice model. KMst (2004), 
Greene (2007b), eluru, Bhat, and hensher (2008), and Greene and hensher (2010a) 
employ a hierarchical ordered probit, or hoPit model,

 yi
* = xi

=B + ei,

 yi = j if mi,j - 1 … yi
* 6 mij,

 m0 = 0,

 mi,j = exp(lj + zi
=G) (case 1),

 or mi,j = exp(lj + zi
=Gj) (case 2).

Case 2 is the terza (1985a) and Pudney and shields’s (2000) model with an exponential 
rather than linear function for the thresholds. this formulation addresses two problems: 
(1) the thresholds are mathematically distinct from the regression; (2) by this construction, 
the threshold parameters must be positive. With a slight modification, the ordering of 
the thresholds can also be imposed. in case 1,

mi,j = [exp(l1) + exp(l2) + g + exp(lj)] * exp(zi
=G),

and in case 2,

mi,j = mi,j - 1 + exp(lj + zi
=Gj).

in practical terms, the model can now be fit with the constraint that all predicted 
probabilities are greater than zero. this is a numerical solution to the problem of 
ordering the thresholds for all data vectors.

this extension of the ordered choice model shows a case of identification through 
functional form. as we saw in the previous two models, the parameters (lj, Gj, B) would 
not be separately identified if all the functions were linear. the contemporary literature 
views models that are unidentified without a change in functional form with some 
skepticism. however, the underlying theory of this model does not insist on linearity of 
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the thresholds (or the utility function, for that matter), but it does insist on the ordering of 
the thresholds, and one might equally criticize the original model for being unidentified 
because the model builder insists on a linear form. that is, there is no obvious reason 
that the threshold parameters must be linear functions of the variables, or that linearity 
enjoys some claim to first precedence in the utility function. this is a methodological 
issue that cannot be resolved here. the nonlinearity of the preceding specification, 
or others that resemble it, does provide the benefit of a simple way to achieve other 
fundamental results, for example, coherency of the model (all positive probabilities).

18.3.5.b  Thresholds and Heterogeneity—Anchoring Vignettes 
the introduction of observed heterogeneity into the threshold parameters attempts to 
deal with a fundamentally restrictive assumption of the ordered choice model. survey 
respondents rarely view the survey questions exactly the same way. this is certainly true 
in surveys of health satisfaction or subjective well-being.47 KMst (2004) identify two very 
basic features of survey data that will make this problematic. First, they often measure 
concepts that are definable only with reference to examples, such as freedom, health, 
satisfaction, and so on. second, individuals do, in fact, often understand survey questions 
very differently, particularly with respect to answers at the extremes. a widely used term 
for this interpersonal incomparability is differential item functioning (DIF). Kapteyn, 
smith, and van soest (Ksv, 2007) and van soest et al. (2007) suggest the results in Figure 
18.6 to describe the implications of diF. the figure shows the distribution of health (or 
drinking behavior in the latter study) in two hypothetical countries. the density for 
country a (the upper figure) is to the left of that for country B, implying that, on average, 
people in country a are less healthy than those in country B. But the people in the two 
countries culturally offer very different response scales if asked to report their health on 
a five-point scale, as shown. in the figure, those in country a have a much more positive 
view of a given, objective health status than those in country B. a person in country a 
with health status indicated by the dotted line would report that he or she is in “very 
Good” health while a person in country B with the same health status would report only 
“Fair.” a simple frequency of the distribution of self-assessments of health status in the 
two countries would suggest that people in country a are much healthier than those in 
country B when, in fact, the opposite is true. Correcting for the influences of diF in such 
a situation would be essential to obtaining a meaningful comparison of the two countries. 
the impact of diF is an accepted feature of the model within a population but could be 
strongly distortionary when comparing very disparate groups, such as across countries, as 
in KMst (political groups), Murray, tandon, Mathers, and sudana (2002) (health 
outcomes), tandon et al. (2004), and Ksv (work disability), sirven, santos-egglmann, 
and spagnoli (2008), and Gupta, Kristensens, and Possoli (2008) (health), angelini et al. 
(2008) (life satisfaction), Kristensen and Johansson (2008), and Bago d’uva et al. (2008), 
all of whom used the ordered probit model to make cross-group comparisons.

KMst proposed the use of anchoring vignettes to resolve this difference in 
perceptions across groups.48 the essential approach is to use a series of examples that, it 
is believed, all respondents will agree on to estimate each respondent’s diF and correct 
for it. the idea of using vignettes to anchor perceptions in survey questions is not itself 

47see Boes and Winkelmann (2006b) and Ferrer-i-Carbonell and Frijters (2004).
48see also Kristensen and Johansson (2008).
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new; KMst cite a number of earlier uses. the innovation is their method for incorporating 
the approach in a formal model for ordered choices. the bivariate and multivariate 
probit models that they develop combine the elements described in sections 18.3.1 
through 18.3.3 and the hoPit model in section 18.3.5.

18.4 MODELS FOR COUNTS OF EVENTS

We have encountered behavioral variables that involve counts of events at several points 
in this text. in examples 14.13 and 17.33, we examined the number of times an individual 
visited the physician using the GsoeP data. the credit default data that we used in 
example 17.21 also includes another behavioral variable, the number of derogatory 
reports in an individual’s credit history. Finally, in example 17.36, we analyzed data on 
firm innovation. innovation is often analyzed in terms of the number of patents that the 
firm obtains (or applies for).49 in each of these cases, the variable of interest is a count 

49For example, by hausman, hall, and Griliches (1984) and many others.

FIGURE 18.6  Differential Item Functioning in Ordered Choices.
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of events. this obviously differs from the discrete dependent variables we have analyzed 
in the previous two sections. a count is a quantitative measure that is, at least in principle, 
amenable to analysis using multiple linear regression. however, the typical 
preponderance of zeros and small values and the discrete nature of the outcome variable 
suggest that the regression approach can be improved by a method that explicitly 
accounts for these aspects.

like the basic multinomial logit model for unordered data in section 18.2 and the 
simple probit and logit models for binary and ordered data in sections 17.2 and 18.3, 
the Poisson regression model is the fundamental starting point for the analysis of count 
data. We will develop the elements of modeling for count data in this framework in 
sections 18.4.1 through 18.4.3, and then turn to more elaborate, flexible specifications 
in subsequent sections. sections 18.4.4 and 18.4.5 will present the negative binomial 
and other alternatives to the Poisson functional form. section 18.4.6 will describe the 
implications for the model specification of some complicating features of observed data, 
truncation, and censoring. truncation arises when certain values, such as zero, are absent 
from the observed data because of the sampling mechanism, not as a function of the 
data-generating process. data on recreation site visitation that are gathered at the site, 
for example, will, by construction, not contain any zeros. Censoring arises when certain 
ranges of outcomes are all coded with the same value. in the example analyzed the 
response variable is censored at 12, though values larger than 12 are possible in the field. 
as we have done in the several earlier treatments, in section 18.4.7, we will examine 
extensions of the count data models that are made possible when the analysis is based 
on panel data. Finally, section 18.4.8 discusses some behavioral models that involve more 
than one equation. For an example, based on the large number of zeros in the observed 
data, it appears that our count of doctor visits might be generated by a two-part process, 
a first step in which the individual decides whether or not to visit the physician at all, 
and a second decision, given the first, how many times to do so. the hurdle model that 
applies here and some related variants are discussed in sections 18.4.8 and 18.4.9.

18.4.1  THE POISSON REGRESSION MODEL

the Poisson regression model specifies that each yi is drawn from a Poisson population 
with parameter li, which is related to the regressors xi. the primary equation of the 
model is

 Prob(Y = yi � xi) =
e-lili

yi

yi!
, yi = 0, 1, 2, c. (18-17)

the most common formulation for li is the loglinear model,

ln li = xi
=B.

it is easily shown that the expected number of events per period or per unit of space is 
given by

E[yi � xi] = var[yi � xi] = li = exi
=B,

so
0E[yi � xi]

0xi
= liB.
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With the parameter estimates in hand, this vector can be computed using any data vector 
desired or averaged across the sample to estimate the average partial effects. Because 
the model to this point is a straightforward regression, computation of treatment effects 
(at this point) is simple as well. For exogenous treatment indicator, t,

E[y � x, T] = exp(x′B + gT).

so, average treatment effects can be estimated with

ate =
1
n a

n

i = 1
[exp(xi

=Bn + gn) - exp(xi
=Bn)].

atet is computed by averaging over only those observations with t = 1. the case of 
endogenous treatment is more complicated, as usual, and is examined in section 18.4.9.

in principle, the Poisson model is simply a nonlinear regression. But it is easier 
to estimate the parameters with maximum likelihood techniques. the log-likelihood 
function is

ln L = a
n

i = 1
[-li + yixi

=B - ln yi!].

the likelihood equations are

0 ln L
0B

= a
n

i = 1
(yi - li)xi = 0.

the hessian is

02 ln L
0B 0B′

= - a
n

i = 1
lixixi

=.

the hessian is negative definite for all x and B. newton’s method is a simple algorithm 

for this model and will usually converge rapidly. at convergence, Ja n
i = 1l

n

ixixi
= R -1

 

provides an estimator of the asymptotic covariance matrix for the parameter estimator.
there are a variety of extensions of the Poisson model—some considered later in 

section 18.4.5—that introduce heterogeneity or relax the assumption of equidispersion. 
in general, the implication of these extensions is upon the (heteroscedastic) 
variance of the random variable. the conditional mean function remains the same; 
E[y � x] = l(x) = exp(x′B). a consequence is that the Poisson log likelihood will 
provide a consistent Ml estimator of B even in the presence of a wide variety of failures 
of the Poisson model assumptions. thus, the Poisson Mle is one of the fundamental 
examples of a QMle. in these settings, it is generally appropriate to adjust the estimated 
asymptotic covariance matrix of the estimator. For this case, a robust covariance matrix 
is computed using

[-H]-1(G′G)[-H]-1 = Jan
i = 1

lnixixi
= R -1Jan

i = 1
(yi - lni)

2xixi
= R Jan

i = 1
lnixixi

= R -1

.

Given the estimates, the prediction for observation i is lni = exp(xi Bn). a standard error 
for the prediction interval can be formed by using the delta method (see section 4.6). 
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the estimated variance of the prediction will be lni
2xi

=Vxi, where V is the estimated 
asymptotic covariance matrix for Bn .

For testing hypotheses, the three standard tests are very convenient in this model. 
the Wald statistic is computed as usual. as in any discrete choice model, the likelihood 
ratio test has the intuitive form

lR = 2a
n

i = 1
ln¢ Pn i

Pnrestricted,i

≤,

where the probabilities in the denominator are computed with using the restricted 
model. using the Bhhh estimator for the asymptotic covariance matrix, the lM 
statistic is simply

 lM = Jan
i = 1

xi(yi - lni) R =Jan
i = 1

xixi
= (yi - lni)

2 R -1Jan
i = 1

xi(yi - lni) R = i′G(G′G)-1G′i,

 (18-18)

where each row of G is simply the corresponding row of X multiplied by ei = (yi - lni), lni 
is computed using the restricted coefficient vector, and i is a column of ones. 
Characteristically, the lM statistic can be computed as nR2 in the regression of a column 
of ones on gi = eixi.

18.4.2  MEASURING GOODNESS OF FIT

the Poisson model produces no natural counterpart to the R2 in a linear regression 
model, as usual, because the conditional mean function is nonlinear and, moreover, 
because the regression is heteroscedastic. But many alternatives have been suggested.50 
a measure based on the standardized residuals is

Rp
2 = 1 -

a n
i = 1 Jyi - lni2lni

R 2

a n
i = 1Jyi - y2y

R 2
.

this measure has the virtue that it compares the fit of the model with that provided by a 
model with only a constant term. But it can be negative, and it can rise when a variable 
is dropped from the model. For an individual observation, the deviance is

di = 2[yi ln(yi/lni) - (yi - lni)] = 2[yi ln(yi/lni) - ei],

where, by convention, 0 ln(0) = 0. if the model contains a constant term, then 

a n
i = 1ei = 0. the sum of the deviances,

G2 = a
n

i = 1
di = 2a

n

i = 1
yi ln(yi/lni),

is reported as an alternative fit measure by some computer programs. this statistic will 
equal 0.0 for a model that produces a perfect fit. (Note: because yi is an integer while the 

50see the surveys by Cameron and Windmeijer (1993), Gurmu and trivedi (1994), and Greene (2005).
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prediction is continuous, it could not happen.) Cameron and Windmeijer (1993) suggest 
that the fit measure based on the deviances,

Rd
2 = 1 -

a n
i = 1Jyi log¢ yi

lni

≤ - (yi - lni) R
a n

i = 1Jyi log¢ yi

y
≤ R ,

has a number of desirable properties. First, denote the log-likelihood function for 
the model in which ci is used as the prediction (e.g., the mean) of yi as /(ci, yi). the 
Poisson model fit by Mle is, then, /(lni, yi), the model with only a constant term is /(y, yi), 
and a model that achieves a perfect fit (by predicting yi with itself) is /(yi, yi). then,

Rd
2 =

/(ln, yi) - /(y, yi)

/(yi, yi) - /(y, yi)
.

Both numerator and denominator measure the improvement of the model over one with 
only a constant term. the denominator measures the maximum improvement, since one 
cannot improve on a perfect fit. hence, the measure is bounded by zero and one and 
increases as regressors are added to the model.51 We note, finally, the passing resemblance 
of Rd

2 to the “pseudo@R2,” or “likelihood ratio index” reported by some statistical 
packages (for example, Stata),

RlRi
2 = 1 -

/(lni, yi)

/(y, yi)
.

Many modifications of the Poisson model have been analyzed by economists. in this and 
the next few sections, we briefly examine a few of them.

18.4.3  TESTING FOR OVERDISPERSION

the Poisson model has been criticized because of its implicit assumption that the 
variance of yi equals its mean. Many extensions of the Poisson model that relax this 
assumption have been proposed by hausman, hall, and Griliches (1984), McCullagh 
and nelder (1983), and Cameron and trivedi (1986), to name but a few.

the first step in this extended analysis is usually a test for overdispersion in the 
context of the simple model. a number of authors have devised tests for “overdispersion” 
within the context of the Poisson model. [see Cameron and trivedi (1990), Gurmu 
(1991), and lee (1986).] We will consider three of the common tests, one based on a 
regression approach, one a conditional moment test, and a third, a lagrange multiplier 
test, based on an alternative model.

Cameron and trivedi (1990) offer several different tests for overdispersion. a simple 
regression-based procedure used for testing the hypothesis

 H0: var[yi] = E[yi],

 H1: var[yi] = E[yi] + ag(E[yi]),

51note that multiplying both numerator and denominator by 2 produces the ratio of two likelihood ratio statistics, 
each of which is distributed as chi squared.
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is carried out by regressing

zi =
(yi - lni)

2 - yi

lni22
,

where lni is the predicted value from the regression, on either a constant term or lni 
without a constant term. a simple t test of whether the coefficient is significantly 
different from zero tests H0 versus H1.

the next section presents the negative binomial model. this model relaxes the 
Poisson assumption that the mean equals the variance. the Poisson model is obtained 
as a parametric restriction on the negative binomial model, so a lagrange multiplier test 
can be computed. in general, if an alternative distribution for which the Poisson model 
is obtained as a parametric restriction, such as the negative binomial model, can be 
specified, then a lagrange multiplier statistic can be computed.52 the lM statistic is

 lM = D a n
i = 1wn i[(yi - lni)

2 - yi]22a n
i = 1wn il

n

i
2

T 2

. (18-19)

the weight, wn i, depends on the assumed alternative distribution. For the negative 
binomial model discussed later, wn i equals 1.0. thus, under this alternative, the statistic is 
particularly simple to compute:

 lM =
(e′e - ny)2

2 - Ln ′Ln
. (18-20)

the main advantage of this test statistic is that one need only estimate the Poisson model 
to compute it. under the hypothesis of the Poisson model, the limiting distribution of 
the lM statistic is chi squared with one degree of freedom.

18.4.4  HETEROGENEITY AND THE NEGATIVE BINOMIAL REGRESSION MODEL

the assumed equality of the conditional mean and variance functions is typically taken 
to be the major shortcoming of the Poisson regression model. Many alternatives have 
been suggested.53 the most common is the negative binomial model, which arises from a 
natural formulation of cross-section heterogeneity. [see hilbe (2007).] We generalize the 
Poisson model by introducing an individual, unobserved effect into the conditional mean,

ln mi = xi
=B + ei = ln li + ln ui,

where the disturbance ei reflects either specification error, as in the classical regression 
model, or the kind of cross-sectional heterogeneity that normally characterizes 
microeconomic data. then, the distribution of yi conditioned on xi and ui (i.e., ei) remains 
Poisson with conditional mean and variance mi:

f(yi � xi, ui) =
e-(liui)(liui)

yi

yi!
.

52see Cameron and trivedi (1986, p. 41).
53see hausman, hall, and Griliches (1984), Cameron and trivedi (1986, 1998), Gurmu and trivedi (1994), Johnson 
and Kotz (1993), and Winkelmann (2005) for discussion.
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the unconditional distribution f(yi � xi) is the expected value (over ui) of f(yi � xi, ui),

f(yi � xi) = L
∞

0

e-(liui)(liui)
yi

yi!
 g(ui) dui.

the choice of a density for ui defines the unconditional distribution. For mathematical 
convenience, a gamma distribution is usually assumed for ui = exp(ei).54 as in other 
models of heterogeneity, the mean of the distribution is unidentified if the model 
contains a constant term (because the disturbance enters multiplicatively) so E[exp(ei)] 
is assumed to be 1.0. With this normalization,

g(ui) =
uu

Γ(u)
 e-uuiui

u - 1.

the density for yi is then

 f(yi � xi) = L
∞

0

e-(liui)(liui)
yi

yi!
 
uuui

u - 1e-uui

Γ(u)
 dui

 =
uuli

yi

Γ(yi + 1)Γ(u) L
∞

0
e-(li + u)ui ui

u + yi - 1dui

 =
uuli

yiΓ(u + yi)

Γ(yi + 1)Γ(u)(li + u)u + yi

 =
Γ(u + yi)

Γ(yi + 1)Γ(u)
 r i

yi(1 - ri)
u,  where ri =

li

li + u
,

which is one form of the negative binomial distribution. the distribution has conditional 
mean li and conditional variance li(1 + (1/u)li).55 the negative binomial model can be 
estimated by maximum likelihood without much difficulty. a test of the Poisson 
distribution is often carried out by testing the hypothesis a = 1/u = 0 using the Wald 
or likelihood ratio test.

18.4.5  FUNCTIONAL FORMS FOR COUNT DATA MODELS

the equidispersion assumption of the Poisson regression model, E[yi � xi] = var[yi � xi], 
is a major shortcoming. observed data rarely, if ever, display this feature. the very large 
amount of research activity on functional forms for count models is often focused on testing 
for equidispersion and building functional forms that relax this assumption. in practice, the 
Poisson model is typically only the departure point for an extended specification search.

one easily remedied minor issue concerns the units of measurement of the data. in 
the Poisson and negative binomial models, the parameter li is the expected number of 
events per unit of time or space. thus, there is a presumption in the model formulation, 
for example, the Poisson, that the same amount of time is observed for each i. in a spatial 

54an alternative approach based on the normal distribution is suggested in terza (1998), Greene (1995b, 1997, 2005), 
Winkelmann (2003), and Riphahn, Wambach, and Million (2003). the normal-Poisson mixture is also easily extended 
to the random effects model discussed in the next section. there is no closed form for the normal-Poisson mixture 
model, but it can be easily approximated by using hermite quadrature or simulation. see sections 14.14.4 and 17.7.2.
55this model is negbin 2 in Cameron and trivedi’s (1986) presentation.

M18_GREE1366_08_SE_C18.indd   890 2/24/17   1:49 PM



 CHAPTER 18 ✦ Multinomial Choices and Event Counts 891

context, such as measurements of the prevalence of a disease per group of Ni persons, or 
the number of bomb craters per square mile (london, 1940), the assumption would be 
that the same physical area or the same size of population applies to each observation. 
Where this differs by individual, it will introduce a type of heteroscedasticity in the 
model. the simple remedy is to modify the model to account for the exposure, Ti, of the 
observation as follows:

Prob(yi = j � xi, Ti) =
exp(-Tifi)(Tifi)

j

j!
, fi = exp(xi

=B), j = 0, 1, c.

the original model is returned if we write li = exp(xi
=B + ln Ti). thus, when the 

exposure differs by observation, the appropriate accommodation is to include the log 
of exposure in the regression part of the model with a coefficient of 1.0. (For less than 
obvious reasons, the term offset variable is commonly associated with the exposure 
variable Ti #) note that if Ti is the same for all i, ln Ti will simply vanish into the constant 
term of the model (assuming one is included in xi).

the recent literature, mostly associating the result with Cameron and trivedi’s (1986, 
1998) work, defines two familiar forms of the negative binomial model. the Negbin 2 
(NB2) form of the probability is

 Prob(Y = yi � xi) =
Γ(u + yi)

Γ(yi + 1)Γ(u)
 r i

yi(1 - ri)
u,

 li = exp(xi
=B),

 ri = li/(u + li).  (18-21)

this is the default form of the model in the standard econometrics packages that provide 
an estimator for this model. the Negbin 1 (NB1) form of the model results if u in the 
preceding is replaced with ui = uli. then, ri reduces to r = 1/(1 + u), and the density 
becomes

 Prob(Y = yi � xi) =
Γ(uli + yi)

Γ(yi + 1)Γ(uli)
 ryi(1 - r)uli. (18-22)

this is not a simple reparameterization of the model. the results in example 18.15 
demonstrate that the log-likelihood functions are not equal at the maxima, and the 
parameters are not simple transformations in one model versus the other. We are not 
aware of a theory that justifies using one form or the other for the negative binomial 
model. neither is a restricted version of the other, so we cannot carry out a likelihood 
ratio test of one versus the other. the more general Negbin P (NBP) family does nest 
both of them, so this may provide a more general, encompassing approach to finding 
the right specification. [see Greene (2005, 2008b).] the negbin P model is obtained by 
replacing u in the negbin 2 form with uli

2 - P. We have examined the cases of P = 1 and 
P = 2 in (18-21) and (18-22). the full model is

Prob(Y = yi � xi) =
Γ(uli

Q + yi)

Γ(yi + 1)Γ(uli
Q)

 ¢ li

uli
Q + li

≤yi¢ uli
Q

uli
Q + li

≤uli
Q

, Q = 2 - P.

the conditional mean function for the three cases considered is

E[yi � xi] = exp(xi
=B) = li.
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the parameter P is picking up the scaling. a general result is that for all three variants 
of the model,

var[yi � xi] = li(1 + ali
P - 1), where a = 1/u.

thus, the nB2 form has a variance function that is quadratic in the mean while the nB1 
form’s variance is a simple multiple of the mean. there have been many other functional 
forms proposed for count data models, including the generalized Poisson, gamma, and 
Polya-aeppli forms described in Winkelmann (2003) and Greene (2016).

the heteroscedasticity in the count models is induced by the relationship between 
the variance and the mean. the single parameter u picks up an implicit overall scaling, so 
it does not contribute to this aspect of the model. as in the linear model, microeconomic 
data are likely to induce heterogeneity in both the mean and variance of the response 
variable. a specification that allows independent variation of both will be of some virtue. 
the result,

var[yi � xi] = li(1 + (1/u)li
P - 1),

suggests that a convenient platform for separately modeling heteroscedasticity will be 
the dispersion parameter, u, which we now parameterize as

ui = u exp(zi
=D).

operationally, this is a relatively minor extension of the model. But it is likely to 
introduce quite a substantial increase in the flexibility of the specification. indeed, 
a heterogeneous negbin P model is likely to be sufficiently parameterized to 
accommodate the behavior of most data sets. (of course, the specialized models 
discussed in section 18.4.8, for example, the zero-inflation models, may yet be more 
appropriate for a given situation.)

Example 18.16  Count Data Models for Doctor Visits
The study by Riphahn et al. (2003) that provided the data we have used in numerous earlier 
examples analyzed the two count variables DocVis (visits to the doctor) and HospVis (visits 
to the hospital). The authors were interested in the joint determination of these two count 
variables. One of the issues considered in the study was whether the data contained evidence 
of moral hazard, that is, whether health care utilization as measured by these two outcomes 
was influenced by the subscription to health insurance.56 The data contain indicators of two 
levels of insurance coverage, PUBLIC, which is the main source of insurance, and ADDON, 
which is a secondary optional insurance. In the sample of 27,326 observations (family/years), 
24,203 individuals held the public insurance. (There is quite a lot of within group variation in 
this. Individuals did not routinely obtain the insurance for all periods.) Of these 24,203, 23,689 
had only public insurance and 514 had both types. (One could not have only the ADDON 
insurance.) To explore the issue, we have analyzed the DocVis variable with the count data 
models described in this section. The exogenous variables in our model are

xit = (1, Age, Education, Income, Kids, AddOn).

(Variables are described in Appendix Table F7.1.)
Table 18.24 presents the estimates of the several count models. In all specifications, the 

coefficient on ADDON is positive but not statistically significant, which is consistent with 
the results in the authors’ study. They found evidence of moral hazard in a simple model, 

56Munkin and trivedi (2007) is a similar application to dental insurance.
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but none when their model was expanded. The various test statistics strongly reject the 
hypothesis of equidispersion. Cameron and Trivedi’s (1990) semiparametric tests from the 
Poisson model (see Section 18.4.3) have t statistics of 22.151 for gi = mi and 22.440 for 
gi = mi

2. Both of these are far larger than the critical value of 1.96. The LR statistic comparing 
to the NB model is over 80,000, which is also larger than the (any) critical value. On these 
bases, we would reject the hypothesis of equidispersion. The Wald and likelihood ratio 
tests based on the negative binomial models produce the same conclusion. For comparing 
the different negative binomial models, note that Negbin 2 is the worst of the four by the 
likelihood function, although NB1 and NB2 are not directly comparable. On the other hand, 
note that in the NBP model, the estimate of P is more than 10 standard errors from 1.0000 
or 2.0000, so both NB1 and NB2 are rejected in favor of the unrestricted NBP form of the 
model. The NBP and the heterogeneous NB2 model are not nested either, but comparing 
the log likelihoods, it does appear that the heterogeneous model is substantially superior. We 
computed the Vuong statistic based on the individual contributions to the log likelihoods, with 

Variable Poisson Negbin 2
Negbin 2 

Heterogeneous Negbin 1 Negbin P
Poisson  
Normal

Constant 1.05266 1.10083 1.14129 0.93184 0.97164 0.09302
(0.11395) (0.05970) (0.06175) (0.05630) (0.06389) (0.04364)

Age 0.01838 0.01789 0.01689 0.01571 0.01888 0.02267
(0.00134) (0.00079) (0.00081) (0.00070) (0.00081) (0.00051)

Education -0.04355 -0.04797 -0.04450 -0.03127 -0.04282 -0.04595
(0.00699) (0.00378) (0.00386) (0.00355) (0.00414) (0.00276)

Income -0.52502 -0.46285 -0.45443 -0.23198 -0.37774 -0.45804
(0.08240) (0.04600) (0.04654) (0.04451) (0.05122) (0.03235)

Kids -0.16109 -0.15656 -0.16266 -0.13658 -0.16521 -0.18450
(0.03118) (0.01735) (0.01769) (0.01648) (0.01855) (0.01217)

AddOn 0.07282 0.07134 0.06839 0.17879 0.16107 0.27067
(0.07801)
[0.06548]
{0.02534}

(0.07205) (0.07142) (0.05493) (0.06969) (0.04068)

P 0.0000 2.0000 2.0000 1.0000 1.52377
— — — — (0.03485)

a 0.0000 1.92971 2.61217 6.19585 3.34512
s —

—
—

(0.02009)
—
—

(0.05965)
—
—

(0.06867)
—
—

(0.13995)
—
—

1.31484
(0.00425)

d (Female) — — -0.38157 — —
— — (0.02040) — —

d (Married) — — -0.13661 — —
— — (0.02305) — —

ATE 0.24018
(0.26637)

0.23491
(0.24561)

0.22070
(0.23850)

0.62105
(0.20782)

0.55460
(0.25929)

0.42961
(0.07399)

ATET 0.21945
(0.24317)

0.21482
(0.22454)

0.21781
(0.25055)

0.59304
(0.19813)

0.51528
(0.24066)

0.39914
(0.06810)

ln L -104,603.0 -60,291.50 -60,149.00 -60,274.94 -60,219.19 -60,619.11

TABLE 18.24 Estimated Models for DocVis (standard errors in parentheses)
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vi = ln Li(NBP) - ln Li(NB2@H). (See Section 14.6.6). The value of the statistic is -3.27. On this 
basis, we would reject NBP in favor of NB2-H. Finally, with regard to the original question, 
the ATE and ATET computed for ADDON are generally quite small with the Poisson and NB 
models—the mean of DocVis is about 3.2 and the effect is about 0.2 and insignificant. The 
effect is larger in the less restrictive NBP and normal mixture models. The evidence here, as 
in RWM, is mixed.

18.4.6  TRUNCATION AND CENSORING IN MODELS FOR COUNTS

truncation and censoring are relatively common in applications of models for counts. 
truncation arises as a consequence of discarding what appear to be unusable data, such 
as the zero values in survey data on the number of uses of recreation facilities.57 in this 
setting, a more common case which also gives rise to truncation is on-site sampling. 
When one is interested in visitation by the entire population, which will naturally include 
zero visits, but one draws their sample on site, the distribution of visits is truncated at 
zero by construction. every visitor has visited at least once. shaw (1988), englin and 
shonkwiler (1995), Grogger and Carson (1991), Creel and loomis (1990), egan and 
herriges (2006), and Martínez-espinera and amoako-tuffour (2008) are studies that 
have treated truncation due to on-site sampling in environmental and recreation 
applications. truncation will also arise when data are trimmed to remove what appear 
to be unusual values. Figure 18.7 displays a histogram for the number of doctor visits in 
the 1988 wave of the GsoeP data that we have used in several examples. there is a 
suspiciously large spike at zero and an extremely long right tail of what might seem to 
be atypical observations. For modeling purposes, it might be tempting to remove these 
non-Poisson appearing observations in the tails. (other models might be a better 
solution.) the distribution that characterizes what remains in the sample is a truncated 
distribution. truncation is not innocent. if the entire population is of interest, then 

57shaw (1988) and Bockstael et al. (1990).

FIGURE 18.7  Number of Doctor Visits, 1988 Wave of GSOEP Data.
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conventional statistical inference (such as estimation) on the truncated sample produces 
a systematic bias known as (of course) truncation bias. this would arise, for example, if 
an ordinary Poisson model intended to characterize the full population is fit to the 
sample from a truncated population.

Censoring, in contrast, is generally a feature of the sampling design. in the application 
in example 18.18, the dependent variable is the self-reported number of extramarital 
affairs in a survey taken by the magazine Psychology Today. the possible answers are 
0, 1, 2, 3, 4 to 10 (coded as 7), and “monthly, weekly or daily” coded as 12. the two upper 
categories are censored. similarly, in the doctor visits data in the previous paragraph, 
recognizing the possibility of truncation bias due to data trimming, we might, instead, 
simply censor the distribution of values at 15. the resulting variable would take values 
0, . . . , 14, “15 or more.” in both cases, applying conventional estimation methods leads to 
predictable biases. however, it is also possible to reconstruct the estimators specifically 
to account for the truncation or censoring in the data.

truncation and censoring produce similar effects on the distribution of the random 
variable and on the features of the population such as the mean. For the truncation case, 
suppose that the original random variable has a Poisson distribution—all these results 
can be directly extended to the negative binomial or any of the other models considered 
earlier—with

P(yi = j � xi) = [exp(-li)li
j/j!] = Pi,j.

if the distribution is truncated at value C—that is, only values C + 1, . . . are observed—
then the resulting random variable has probability distribution

P(yi = j � xi, yi 7 C) =
P(yi = j � xi)

P(yi 7 C � xi)
=

P(yi = j � xi)

1 - P(yi … C � xi)
.

the original distribution must be scaled up so that it sums to one for the cells that remain 
in the truncated distribution. the leading case is truncation at zero, that is, “left 
truncation,” which, for the Poisson model produces58

P(yi = j � xi, yi 7 0) =
exp(-li)li

j

j![1 - exp(-li)]
=

Pi,j

1 - Pi,0

, j = 1, c.

the conditional mean function is

E(yi � xi, yi 7 0) =
1

[1 - exp(-li)] a
∞

j = 1

j exp(-li)li
j

j!
=

li

[1 - exp(-li)]
7 li.

the second equality results because the sum can be started at zero—the first term 
is zero—and this produces the expected value of the original variable. as might be 
expected, truncation “from below” has the effect of increasing the expected value. it 
can be shown that it decreases the conditional variance, however. the partial effects are

 di =
0E[yi � xi, yi 7 0]

0xi
= J1 - Pi,0 - liPi,0

(1 - Pi,0)
2 RliB. (18-23)

58see, for example, Mullahy (1986), shaw (1988), Grogger and Carson (1991), Greene (1995a,b), and Winkelmann 
(2003).
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the term outside the brackets is the partial effects in the absence of the truncation 
while the bracketed term rises from slighter greater than 0.5 to 1.0 as li increases from 
just above zero.

Example 18.17  Major Derogatory Reports
In Examples 17.17 and 17.21, we examined a binary choice model for the accept/reject 
decision for a sample of applicants for a major credit card. Among the variables in that model 
is Major Derogatory Reports (MDRs). This is an interesting behavioral variable in its own right 
that can be appropriately modeled using the count data specifications in this chapter. In the 
sample of 13,444 individuals, 10,833 had zero MDRs while the values for the remaining 2,561 
ranged from 1 to 22. This preponderance of zeros exceeds by far what one would anticipate 
in a Poisson model that was dispersed enough to produce the distribution of remaining 
individuals. As we will pursue in Example 18.18, a natural approach for these data is to treat 
the extremely large block of zeros explicitly in an extended model. For present purposes, 
we will consider the nonzero observations apart from the zeros and examine the effect of 
accounting for left truncation at zero on the estimated models. Estimation results are shown 
in Table 18.25. The first column of results compared to the second shows the suspected 
impact of incorrectly including the zero observations. The coefficients change only slightly, 
but the partial effects are far smaller when the zeros are included in the estimation. It was not 
possible to fit a truncated negative binomial with these data.

Censoring is handled similarly. the usual case is right censoring, in which realized values 
greater than or equal to C are all given the value C. in this case, we have a two-part 
distribution.59 the observed random variable, yi, is constructed from an underlying random 
variable, yi*, by yi = Min(yi*, C). Wang and Zhou (2015) applied this specification with a 
negative binomial count model to a study of the number of deliveries to online shoppers. 
the dependent variable, deliveries, ranging from 0 to 200, was censored at 10 for the analysis.

59see terza (1985b).

Poisson Full Sample Poisson Truncated Poisson

Constant 0.8756 (17.10) 0.8698 (16.78) 0.7400 (11.99)
Age 0.0036 (2.38) 0.0035 (2.32) 0.0049 (2.75)
Income -0.0039 (-4.78) -0.0036 (-3.83) -0.0051 (-4.51)
OwnRent -0.1005 (-3.52) -0.1020 (-3.56) -0.1415 (-4.18)
Self-Employed -0.0325 (-0.62) -0.0345 (-0.66) -0.0515 (-0.82)
Dependents 0.0445 (4.69) 0.0440 (4.62) 0.0606 (5.48)
MthsCurAdr 0.00004 (0.23) 0.0001 (0.25) 0.0001 (0.30)
ln L -5,379.30 -5,378.79 -5,097.08

Average Partial Effects
Age 0.0017 0.0085 0.0084
Income -0.0018 -0.0087 -0.0089
OwnRent -0.0465 -0.2477 -0.2460
Self-Employed -0.0150 -0.0837 -0.0895
Dependents 0.0206 0.1068 0.1054
MthsCurAdr 0.00002 0.0001 0.0001
Cond’l. Mean 0.4628 2.4295 2.4295
Scale factor 0.4628 2.4295 1.7381

TABLE 18.25 Estimated Truncated Poison Regression Model (t ratios in parentheses)
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Probabilities in the presence of censoring are constructed using the axioms of 
probability. this produces

Prob(yi = j � xi) = Pi,j, j = 0, 1, c, C - 1,

Prob(yi = C � xi) = a
∞

j = C
Pi,j = 1 - a

C - 1

j = 0
Pi,j.

in this case, the conditional mean function is

 E[yi � xi] = a
C - 1

j = 0
j Pi,j + a

∞

j = C
CPi,j

 = a
∞

j = 0
jPi,j - a

∞

j = C
(j - C)Pi,j

 = li - a
∞

j = C
(j - C)Pi, j 6 li.

the infinite sum can be computed by using the complement. thus,

 E[yi � xi] = li - Ja∞
j = 0

(j - C)Pi,j - a
C - 1

j = 0
(j - C)Pi,jR

 = li - (li - C) + a
C - 1

j = 0
(j - C)Pi,j

 = C - a
C - 1

j = 0
(C - j)Pi,,j.

Example 18.18  Extramarital Affairs
In 1969, the popular magazine Psychology Today published a 101-question survey on sex 
and asked its readers to mail in their answers. The results of the survey were discussed in 
the July 1970 issue. From the approximately 2,000 replies that were collected in electronic 
form (of about 20,000 received), Professor Ray Fair (1978) extracted a sample of 601 
observations on men and women then currently married for the first time and analyzed their 
responses to a question about extramarital affairs. Fair’s analysis in this frequently cited study 
suggests several interesting econometric questions.60  

Fair used the tobit model that we discuss in Chapter 19 as a platform. The nonexperimental 
nature of the data (which can be downloaded from the Internet at http://fairmodel.econ.yale.
edu/rayfair/work.ss.htm and are given in Appendix Table F18.1) provides a laboratory case 
that we can use to examine the relationships among the tobit, truncated regression, and 
probit models. Although the tobit model seems to be a natural choice for the model for these 
data, given the cluster of zeros, the fact that the behavioral outcome variable is a count that 
typically takes a small value suggests that the models for counts that we have examined in 
this chapter might be yet a better choice. Finally, the preponderance of zeros in the data that 
initially motivated the tobit model suggests that even the standard Poisson model, although 
an improvement, might still be inadequate. We will pursue that aspect of the data later. In this 
example, we will focus on just the censoring issue. Other features of the models and data are 
reconsidered in the exercises.

60in addition, his 1977 companion paper in Econometrica on estimation of the tobit model proposed a variant of 
the eM algorithm, developed by dempster, laird, and Rubin (1977).
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The study was based on 601 observations on the following variables (full details on data 
coding are given in the data file and Appendix Table F18.1):  

y = number of affairs in the past year, 0, 1, 2, 3, (4910) = 7, (monthly, weekly, or daily) = 12.  
 Sample mean = 1.46; Frequencies = (451, 34, 17, 19, 42, 38),

 z1 = sex = 0 for female, 1 for male. Sample mean = 0.476,
 z2 = age. Sample mean = 32.5,
 z3 = number of years married. Sample mean = 8.18,
 z4 = children, 0 = no, 1 = yes. Sample mean = 0.715,
 z5 = religiousness, 1 = anti, c, 5 = very. Sample mean = 3.12,
 z6 = education, years, 9 = grade school, 12 = high school, c, 20 = Ph.D or other.

Sample mean = 16.2,
 z7 = occupation, “Hollingshead scale,” 197. Sample mean = 4.19,
 z8 = self@rating of marriage, 1 = very unhappy, c, 5 = very happy. Sample mean = 3.93.

A tobit model was fit to y using a constant term and all eight variables. A restricted model 
was fit by excluding z1, z4, and z6, none of which was individually statistically significant in the 
model. We are able to match exactly Fair’s results for both equations. The tobit model should 
only be viewed as an approximation for these data. The dependent variable is a count, not a 
continuous measurement. The Poisson regression model, or perhaps one of the many variants 
of it, should be a preferable modeling framework. Table 18.26 presents estimates of the 
Poisson and negative binomial regression models. There is ample evidence of overdispersion 
in these data; the t ratio on the estimated overdispersion parameter is 7.015/0.945 = 7.42, 
which is strongly suggestive. The large absolute value of the coefficient is likewise suggestive.

Responses of 7 and 12 do not represent the actual counts. It is unclear what the effect 
of the first recoding would be, because it might well be the mean of the observations in this 
group. But the second is clearly a censored observation. To remove both of these effects, we 
have recoded both the values 7 and 12 as 4 and treated this observation (appropriately) as 
a censored observation, with 4 denoting “4 or more.” As shown in the lower panel of results 
in Table 18.26, the effect of this treatment of the data is greatly to reduce the measured 
effects. Although this step does remove a deficiency in the data, it does not remove the 
overdispersion; at this point, the negative binomial model is still the preferred specification.

18.4.7  PANEL DATA MODELS

the familiar approaches to accommodating heterogeneity in panel data have fairly 
straightforward extensions in the count data setting.61 We will examine them for the 
Poisson model. hausman, hall and Griliches (1984) and allison (2000) also give results 
for the negative binomial model.

18.4.7.a  Robust Covariance Matrices for Pooled Estimators 

the standard asymptotic covariance matrix estimator for the Poisson model is

est.asy.var[Bn] = J -
02 ln L

0Bn  0Bn ′
R -1

= Jan
i = 1

lnixixi
= R -1

= [X′�n X]-1,

where �n  is a diagonal matrix of predicted values. the Bhhh estimator is

est.asy.var[Bn] = Jan
i=1

¢ 0 ln Pi

0Bn
≤ ¢ 0 ln Pi

0Bn
≤=R -1

= J a
n

i = 1i

(yi - lni)
2xixi

= R -1

= [X′En 2X]-1,

61hausman, hall, and Griliches (1984) give full details for these models.
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where En  is a diagonal matrix of residuals. the Poisson model is one in which the Mle is 
robust to certain misspecifications of the model, such as the failure to incorporate latent 
heterogeneity in the mean (that is, one fits the Poisson model when the negative binomial 
is appropriate). in this case, a robust covariance matrix is the “sandwich” estimator,

Robust est.asy.var[Bn] = [X′�n X]-1[X′En 2X][X′�n X]-1,

which is appropriate to accommodate this failure of the model. it has become common 
to employ this estimator with all specifications, including the negative binomial. one 
might question the virtue of this. Because the negative binomial model already accounts 
for the latent heterogeneity, it is unclear what additional failure of the assumptions of 
the model this estimator would be robust to. the questions raised in section 14.8 about 
robust covariance matrices would be relevant here. however, if the model is, indeed, 
complete, then the robust estimator does no harm.

a related calculation is used when observations occur in groups that may be 
correlated. this would include a random effects setting in a panel in which observations 
have a common latent heterogeneity as well as more general, stratified, and clustered data 
sets. the parameter estimator is unchanged in this case (and an assumption is made that 
the estimator is still consistent), but an adjustment is made to the estimated asymptotic 
covariance matrix. the calculation is done as follows: suppose the n observations are 
assembled in G clusters of observations, in which the number of observations in the 
ith cluster is ni. thus, aG

i = 1ni = n. denote by B the full set of model parameters in 
whatever variant of the model is being estimated. let the observation-specific gradients 

Poisson Regression Negative Binomial Regression

Variable Estimate Std. Error Partial Effect Estimate Std. Error Partial Effect

Based on Uncensored Poisson Distribution
Constant 2.53 0.197 — 2.19 0.859 —
z2 -0.0322 0.0059 -0.047 -0.0262 0.0180 -0.0039
z3 0.116 0.0099 0.168 0.0848 0.0401 0.127
z5 -0.354 0.0309 -0.515 -0.422 0.171 -0.632
z7 0.0798 0.0194 0.116 0.0604 0.0909 0.0906
z8 -0.409 0.0274 -0.596 -0.431 0.167 -0.646
a 7.015 0.945
ln L -1,427.037 -728.2441

Based on Poisson Distribution Right Censored at y = 4
Constant 1.90 0.283 — 4.79 1.16 —
z2 -0.0328 0.0084 -0.0235 -0.0166 0.0250 -0.0043
z3 0.105 0.0140 0.0755 0.174 0.0568 0.045
z5 -0.323 0.0437 -0.232 -0.723 0.198 -0.186
z7 0.0798 0.0275 0.0572 0.0900 0.116 0.0232
z8 -0.390 0.0391 -0.279 -0.854 0.216 -0.220
a 9.40 1.35
ln L -747.7541 -482.0505

TABLE 18.26 Censored Poisson and Negative Binomial Distributions
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and hessians be gij = 0 ln Lij/0B = (yij - lij)xij and Hij = 02 ln Lij/0B0B′ = -lijxijxij
= . 

the uncorrected estimator of the asymptotic covariance matrix based on the hessian is

VH = -H-1 = ¢ - a
G

i = 1
a
ni

j = 1
Hij≤-1

.

the corrected asymptotic covariance matrix is

est.asy.var[Bn] = VHa G
G - 1

b JaG
i = 1

¢ ani

j = 1
gij≤ ¢ ani

j = 1
gij≤=RVH.

note that if there is exactly one observation per cluster, then this is G/(G - 1) times 
the sandwich (robust) estimator.

18.4.7.b  Fixed Effects 

With fixed effects, the Poisson distribution will have conditional mean
 log lit = B′xit + ai, (18-24)

where now xit has been redefined to exclude the constant term. the approach used in 
the linear model of transforming yit to group mean deviations does not remove the 
heterogeneity, nor does it leave a Poisson distribution for the transformed variable. 
however, the Poisson model with fixed effects can be fit using the methods described 
for the probit model  in section 17.7.3. the extension to the Poisson model requires 
only the minor modifications, git = (yit - lit) and hit = -lit. everything else in that 
derivation applies with only a simple change in the notation. the first-order conditions 
for maximizing the log-likelihood function for the Poisson model will include

0 ln L
0ai

= a
Ti

t = 1
(yit - eai mit) = 0 where mit = ex=

itB.

this implies an explicit solution for ai in terms of B in this model,

 an i = ln§ (1/Ti)a Ti

t = 1yit

(1/Ti)a Ti

t = 1mn it

¥ = ln¢ yi

mnQ i
≤. (18-25)

unlike the regression or the probit model, this estimator does not require that there be 
within-group variation in yit—all the values can be the same. it does require that at least 
one observation for individual i be nonzero, however. the rest of the solution for the 
fixed effects estimator follows the same lines as that for the probit model. an alternative 
approach, albeit with little practical gain, would be to concentrate the log-likelihood 
function by inserting this solution for ai back into the original log likelihood, and then 
maximizing the resulting function of B. While logically this makes sense, the approach 
suggested earlier for the probit model is simpler to implement.

an estimator that is not a function of the fixed effects is found by obtaining the joint 
distribution of (yi1, c, yiTi

) conditional on their sum. For the Poisson model, a close 
cousin to the multinomial logit model discussed earlier is produced:

 p¢yi1, yi2, c, yiTi
2 aTi

i = 1
yit≤ =

¢ a Ti

t = 1yit≤!¢ q Ti

t = 1yit!≤ qTi

t = 1
pit

yit, (18-26)
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where

 pit =
exit

=B + ai

a Ti

t = 1e
xit

=B + ai
=

exit
=B

a Ti

t = 1e
x=

itB

. (18-27)

the contribution of group i to the conditional log likelihood is

ln Li = a
Ti

t = 1
yit ln pit.

note, once again, that the contribution to ln L of a group in which yit = 0 in every 
period is zero. Cameron and trivedi (1998) have shown that these two approaches give 
identical results.

hausman, hall, and Griliches (1984) (hhG) report the following conditional 
density for the fixed effects negative binomial (FenB) model:

p¢yi1, yi2, c, yiTi
2 aTi

t = 1
yit≤ =

Γ¢1 + a Ti

t = 1yit≤Γ¢ a Ti

t = 1lit≤
Γ¢ a Ti

t = 1yit + a Ti

t = 1lit≤ q
Ti

t = 1

Γ(yit + lit)

Γ(1 + yit)Γ(lit)
,

which is also free of the fixed effects. this is the default FenB formulation used in 
popular software packages such as SAS and Stata. Researchers accustomed to the 
admonishments that fixed effects models cannot contain overall constants or time-
invariant covariates are sometimes surprised to find (perhaps accidentally) that this 
fixed effects model allows both.62 the resolution of this apparent contradiction is that 
the hhG FenB model is not obtained by shifting the conditional mean function by the 
fixed effect, ln lit = xit

=B + ai, as it is in the Poisson model. Rather, the hhG model is 
obtained by building the fixed effect into the model as an individual-specific ui in the 
negbin 1 form in (18-22). the conditional mean functions in the models are as follows 
(we have changed the notation slightly to conform to our earlier formulation):

 nB1(hhG): E[yit � xit] = uifit = ui exp(xit
=B),

 nB2:    E[yit � xit] = exp(ai)fit = lit = exp(xit
=B + ai).

the conditional variances are

 nB1(hhG): var[yit � xit] = uifit[1 + ui],

 nB2:    var[yit � xit] = lit[1 + ulit].

letting mi = ln ui, it appears that the hhG formulation does provide a fixed effect in 
the mean, as now, E[yit � xit] = exp(xit

=B + mi). indeed, by this construction, it appears 
(as the authors suggest) that there are separate effects in both the mean and the variance. 
they make this explicit by writing ui = exp(mi)gi so that in their model,

 E[yit � xit] = gi exp(xit
=B + mi),

 var[yit � xit] = gi exp(xit
=B + mi)/[1 + gi exp(mi)].

the contradiction arises because the authors assert that mi and gi are separate parameters. 
in fact, they cannot vary separately; only ui can vary autonomously. the firm-specific 

62this issue is explored at length in allison (2000) and allison and Waterman (2002).
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effect in the hhG model is still isolated in the scaling parameter, which falls out of the 
conditional density. the mean is homogeneous, which explains why a separate constant, 
or a time-invariant regressor (or another set of firm-specific effects) can reside there.63

18.4.7.c  Random Effects 

the fixed effects approach has the same flaws and virtues in this setting as in the probit 
case. it is not necessary to assume that the heterogeneity is uncorrelated with the included 
exogenous variables. if the uncorrelatedness of the regressors and the heterogeneity 
can be maintained, then the random effects model is an attractive alternative model. 
once again, the approach used in the linear regression model, partial deviations from 
the group means followed by generalized least squares (see section 11.5), is not usable 
here. the approach used is to formulate the joint probability conditioned upon the 
heterogeneity, then integrate it out of the joint distribution. thus, we form

p(yi1, c, yiTi
� ui) = q

Ti

t = 1
p(yit � ui).

then the random effect is swept out by obtaining

 p(yi1, c, yiTi
) = Lui

p(yi1, c, yi,Ti
, ui)dui

 = Lui

p(yi1, c, yiTi
� ui)g(ui)dui

 = Eui
[p(yi1, c, yiTi

� ui)].

this is exactly the approach used earlier to condition the heterogeneity out of the 
Poisson model to produce the negative binomial model. if, as before, we take p(yit � ui) 
to be Poisson with mean lit = exp(xit

=B + ui) in which exp(ui) is distributed as gamma 
with mean 1.0 and variance 1/a, then the preceding steps produce a negative binomial 
distribution,

 p(yi1, c, yiTi
) =

Jq Ti

t = 1lit
yitRΓ¢u + a Ti

t = yit≤JΓ(u)q Ti

t = 1yit!R J ¢ a Ti

t = 1lit≤ΣTi
t = 1yitR   Qi

u
 (1 - Qi)

ΣTi
t = 1yit,

 (18-28)

where

Qi =
u

u + a Ti

t = 1lit

.

For estimation purposes, we have a negative binomial distribution for Yi = Σt yit with 
mean Λi = Σtlit.

like the fixed effects model, introducing random effects into the negative binomial 
model adds some additional complexity. We do note, because the negative binomial model 
derives from the Poisson model by adding latent heterogeneity to the conditional mean, 

63see Greene (2005) and allison and Waterman (2002) for further discussion.
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adding a random effect to the negative binomial model might well amount to 
introducing the heterogeneity a second time—the random effects nB model is a Poisson 
regression with E[yit � xit, ei, wit] = exp(xit

=B + wit + ei). however, one might prefer to 
interpret the negative binomial as the density for yit in its own right and treat the 
common effects in the familiar fashion. hausman et al.’s (1984) random effects negative 
binomial (RenB) model is a hierarchical model that is constructed as follows. the 
heterogeneity is assumed to enter lit additively with a gamma distribution with mean 1, 
i.e., G(ui, ui). then, ui/(1 + ui) is assumed to have a beta distribution with parameters a 
and b (see appendix B.4.6). the resulting unconditional density after the heterogeneity 
is integrated out is

p(yi1, yi2, c, yiTi
) =

Γ(a + b)Γ¢a + a Ti

t = 1lit≤Γ¢b + a Ti

t = 1yit≤
Γ(a)Γ(b)Γ¢a + a Ti

t = 1lit + b + a Ti

t = 1yit≤ .

as before, the relationship between the heterogeneity and the conditional mean function 
is unclear, because the random effect impacts the parameter of the scedastic function. an 
alternative approach that maintains the essential flavor of the Poisson model (and other 
random effects models) is to augment the nB2 form with the random effect,

 Prob(Y = yit � xit, ei) =
Γ(u + yit)

Γ(yit + 1)Γ(u)
 r it

yit(1 - rit)
u,

 lit = exp(xit
=B + ei),

 rit = lit/(u + lit).

We then estimate the parameters by forming the conditional (on ei) log likelihood and 
integrating ei out either by quadrature or simulation. the parameters are simpler to 
interpret by this construction. estimates of the two forms of the random effects model 
are presented in example 18.19 for a comparison.

there is a preference in the received literature for the fixed effects estimators 
over the random effects estimators. the virtue of dispensing with the assumption of 
uncorrelatedness of the regressors and the group-specific effects is substantial. on the 
other hand, the assumption does come at a cost. to compute the probabilities or the 
marginal effects, it is necessary to estimate the constants, ai. the unscaled coefficients 
in these models are of limited usefulness because of the nonlinearity of the conditional 
mean functions.

other approaches to the random effects model have been proposed. Greene (1994, 
1995a, 1995b, 1997), Riphahn et al. (2003), and terza (1995) specify a normally distributed 
heterogeneity, on the assumption that this is a more natural distribution for the aggregate 
of small independent effects. Brannas and Johanssen (1994) have suggested a 
semiparametric approach based on the GMM estimator by superimposing a very general 
form of heterogeneity on the Poisson model. they assume that conditioned on a random 
effect eit, yit is distributed as Poisson with mean eitlit. the covariance structure of eit is 
allowed to be fully general. For t, s = 1, c, T, var[eit] = si

2, Cov[eit, ejs] = gij( � t - s � ). 
For a long time series, this model is likely to have far too many parameters to be 
identified without some restrictions, such as first-order homogeneity (Bi = B  5 i), 
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uncorrelatedness across groups, [gij(.) = 0 for i ≠ j], groupwise homoscedasticity 
(si

2 = s2 5 i), and nonautocorrelatedness [g(r) = 0 5 r ≠ 0]. With these assumptions, 
the estimation procedure they propose is similar to the procedures suggested earlier. if 
the model imposes enough restrictions, then the parameters can be estimated by the 
method of moments. the authors discuss estimation of the model in its full generality. 
Finally, the latent class model discussed in section 14.15.4 and the random parameters 
model in section 15.9 extend naturally to the Poisson model. indeed, most of the received 
applications of the latent class structure have been in the Poisson or negative binomial 
regression framework.64

Example 18.19  Panel Data Models for Doctor Visits
The German health care panel data set contains 7,293 individuals with group sizes ranging 
from 1 to 7. Table 18.27 presents the fixed and random effects estimates of the equation. 
The pooled estimates are also shown for comparison. Overall, the panel data treatments 
bring large changes in the estimates compared to the pooled estimates. There is also a 

64see Greene (2001) for a survey.

Poisson Negative Binomial

Pooled 
Robust 

Std. Error

Fixed Effects Random Effects

Variable
Fixed 
Effects

Random 
Effects

Pooled 
NB2 FE NB1 FE NB2

HHG 
Gamma Normal

Constant 1.05266 — 0.69553 1.10083 -1.14543 — -0.41087 0.37764
(0.11395) (0.05266) (0.05970) (0.09392) (0.06062) (0.05499)

Age 0.01838 0.03127 0.02331 0.01789 0.02383 0.04476 0.01886 0.02230
(0.00134) (0.00144) (0.00045) (0.00079) (0.00119) (0.00277) (0.00078) 0.00070)

Educ -0.04355 -0.03934 -0.03938 -0.04797 0.01338 -0.04788 -0.02469 -0.04536
(0.00699) (0.01734) (0.00434) (0.00378) (0.00630) (0.02963) (0.00386) (0.00345)

Income -0.52502 -0.30674 -0.27282 -0.46285 0.01635 -0.20085 -0.10785 -0.18650
(.08240) (0.04103) (0.01519) (0.04600) (0.05541) (0.07321) (0.04577) (0.04267)

Kids -0.16109 0.00153 -0.03974 -0.15656 -0.03336 -0.00131 -0.11181 -0.12013
(0.03118) (0.01534) (0.00526) (0.01735) (0.02117) (0.02921) (0.01677) (0.01583)

AddOn 0.07282 -0.07946 -0.05654 0.07134 0.11224 -0.02158 0.15086 0.05637
(0.07801) (0.03568) (0.01605) (0.07205) (0.06622) (0.06739) (0.05836) (0.05699)

a — — 1.16959 1.92971 — 1.91953 — 1.08433
(0.01949) (0.02009) (0.02993) (0.01210)

a — — — — — — 2.13948 —
(0.05928)

b — — — — — — 3.78252 —
(0.11377)

s — — — — — — — 0.96860
(0.00828)

ln L -104,603.0 -60,327.8 -71,779.6 -60,291.5 34,015.4 -49,478.0 -58,189.5 -58,170.5

TABLE 18.27 Estimated Panel Data Models for Doctor Visits (standard errors in parentheses)
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considerable amount of variation across the specifications. With respect to the parameter of 
interest, AddOn, we find that the size of the coefficient falls substantially with all panel data 
treatments and it becomes negative in the Poisson models. Whether using the pooled, fixed, 
or random effects specifications, the test statistics (Wald, LR) all reject the Poisson model in 
favor of the negative binomial. Similarly, either common effects specification is preferred to 
the pooled estimator. There is no simple basis for choosing between the fixed and random 
effects models, and we have further blurred the distinction by suggesting two formulations 
of each of them. We do note that the two random effects estimators are producing similar 
results, which one might hope for. But the two fixed effects estimators are producing very 
different estimates. The NB1 estimates include two coefficients, Income and Education, which 
are positive, but negative in every other case. Moreover, the coefficient on AddOn, varies in 
sign, and is insignificant in nearly all cases. As before, the data do not suggest the presence 
of moral hazard, at least as measured here.

We also fit a three-class latent class model for these data. (See Section 14.10.) The three class 
probabilities were modeled as functions of Married and Female, which appear from the results 
to be significant determinants of the class sorting. The average prior probabilities for the three 
classes are 0.09027, 0.49332, and 0.41651. The coefficients on AddOn in the three classes, 
with associated t ratios, are -0.02191 (0.45), 0.36825 (5.60), and 0.01117 (0.26). The qualitative 
result concerning evidence of moral hazard suggested here is that there might be a segment 
of the population for which we have some evidence, but more generally, we find relatively little.

18.4.8  TWO-PART MODELS: ZERO-INFLATION AND HURDLE MODELS

Mullahy (1986), heilbron (1989), lambert (1992), Johnson and Kotz (1993), and Greene 
(1994) have analyzed an extension of the hurdle model in which the zero outcome can 
arise from one of two regimes.65 in one regime, the outcome is always zero. in the other, 
the usual Poisson process is at work, which can produce the zero outcome or some other. 
in lambert’s application, she analyzes the number of defective items produced by a 
manufacturing process in a given time interval. if the process is under control, then the 
outcome is always zero (by definition). if it is not under control, then the number of 
defective items is distributed as Poisson and may be zero or positive in any period. the 
model at work is therefore

 Prob(yi = 0 � xi) = Prob(regime 1) + Prob(yi = 0 � xi, regime 2) Prob(regime 2),

 Prob(yi = j � xi) = Prob(yi = j � xi, regime 2) Prob(regime 2), j = 1, 2, c.

let z denote a binary indicator of regime 1 (z = 0) or regime 2 (z = 1), and let y* 
denote the outcome of the Poisson process in regime 2. then the observed y is z * y*.  
a natural extension of the splitting model is to allow z to be determined by a set of 
covariates. these covariates need not be the same as those that determine the conditional 
probabilities in the Poisson process. thus, the model is:

Prob(zi = 0 � wi) = F(wi, G), (Regime 1: y will equal zero);

Prob(yi = j � xi, zi = 1) =
exp(-li)li

j

j!
, (Regime 2: y will be a count outcome).

the zero-inflation model can also be viewed as a type of latent class model. the two 
class probabilities are F (wi, G) and 1 - F(wi, G), and the two regimes are y = 0 and the 

65the model is variously labeled the “with zeros,” or WZ, model [Mullahy (1986)], the zero-inflated Poisson, or 
ZiP, model [lambert (1992)], and “zero-altered Poisson,” or ZaP, model [Greene (1994)].
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Poisson or negative binomial data-generating process.66 the extension of the ZiP 
formulation to the negative binomial model is widely labeled the ZinB model.67 [see 
Zaninotti and Falischetti (2010) for an application.]

the mean of this random variable in the Poisson case is

E[yi � xi, wi] = Fi * 0 + (1 - Fi) * E[yi* � xi, zi = 1] = (1 - Fi)li.

lambert (1992) and Greene (1994) consider a number of alternative formulations, 
including logit and probit models discussed in sections 17.2 and 17.3, for the probability of 
the two regimes. it might be of interest to test simply whether there is a regime splitting 
mechanism at work or not. unfortunately, the basic model and the zero-inflated model 
are not nested. setting the parameters of the splitting model to zero, for example, does 
not produce Prob[z = 0] = 0. in the probit case, this probability becomes 0.5, which 
maintains the regime split. the preceding tests for over- or underdispersion would be 
rather indirect. What is desired is a test of non-Poissonness. an alternative distribution 
may (but need not) produce a systematically different proportion of zeros than the 
Poisson. testing for a different distribution, as opposed to a different set of parameters, 
is a difficult procedure. Because the hypotheses are necessarily nonnested, the power 
of any test is a function of the alternative hypothesis and may, under some, be small. 
vuong (1989) has proposed a test statistic for nonnested models that is well suited for 
this setting when the alternative distribution can be specified. (see section 14.6.6.) let 
fj(yi � xi) denote the predicted probability that the random variable Y equals yi under the 
assumption that the distribution is fj(yi � xi), for j = 1, 2, and let

mi = ln¢ f1(yi � xi)

f2(yi � xi)
≤.

then vuong’s statistic for testing the nonnested hypothesis of model 1 versus model 2 is

v =
2n[1

nΣn
i = 1mi]21

nΣn
i = 1(mi - m)2

=
2nm

sm

.

this is the standard statistic for testing the hypothesis that E[mi] equals zero. vuong 
shows that v has a limiting standard normal distribution. as he notes, the statistic is 
bidirectional. if � v �  is less than 2, then the test does not favor one model or the other. 
otherwise, large values favor model 1 whereas small (negative) values favor model 2. 
Carrying out the test requires estimation of both models and computation of both sets 
of predicted probabilities. in Greene (1994), it is shown that the vuong test has some 
power to discern the zero-inflation phenomenon. the logic of the testing procedure is to 
allow for overdispersion by specifying a negative binomial count data process and then 
examine whether, even allowing for the overdispersion, there still appear to be excess 
zeros. in his application, that appears to be the case.

Example 18.20  Zero-Inflation Models for Major Derogatory Reports
In Example 18.17, we examined the counts of major derogatory reports for a sample of 
13,444 credit card applicants. It was noted that there are over 10,800 zeros in the counts. 
One might guess that among credit card users, there is a certain (probably large) proportion 

66harris and Zhao (2007) applied this approach to a survey of teenage smokers and nonsmokers in australia, 
using an ordered probit model. (see section 18.3.)
67Greene (2005) presents a survey of two-part models, including the zero-inflation models.
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of individuals who would never generate an MDR, and some other proportion who might 
or might not, depending on circumstances. We propose to extend the count models in 
Example 18.17 to accommodate the zeros. The extensions to the ZIP and ZINB models are 
shown in Table 18.28. Only the coefficients are shown for purpose of the comparisons. Vuong’s 
diagnostic statistic appears to confirm intuition that the Poisson model does not adequately 
describe the data; the value is 20.6981. Using the model parameters to compute a prediction 
of the number of zeros, it is clear that the splitting model does perform better than the basic 
Poisson regression. For the simple Poisson model, the average probability of zero times the 
sample size gives a prediction of 8,609. For the ZIP model, the value is 10,914.8, which is a 
dramatic improvement. By the likelihood ratio test, the negative binomial is clearly preferred; 
comparing the two zero-inflation models, the difference in the log likelihood functions is over 
1,000. As might be expected, the Vuong statistic falls considerably, to 4.5943. However, the 
simple model with no zero inflation is still rejected by the test.

in some settings, the zero outcome of the data generating process is qualitatively 
different from the positive ones. the zero or nonzero value of the outcome is the result of 
a separate decision whether or not to participate in the activity. on deciding to participate, 
the individual decides separately how much, that is, how intensively. Mullahy (1986) argues 
that this fact constitutes a shortcoming of the Poisson (or negative binomial) model and 
suggests a hurdle model as an alternative.68 in his formulation, a binary probability model 
determines whether a zero or a nonzero outcome occurs and then, in the latter case, a 
(truncated) Poisson distribution describes the positive outcomes. the model is

 Prob(yi = 0 � xi) = e-u,

 Prob(yi = j � xi) = (1 - e-u) 
exp(-li)li

j

j![1 - exp(-li)]
, j = 1, 2, c.

this formulation changes the probability of the zero outcome and scales the remaining 
probabilities so that they sum to one. Mullahy suggests some formulations and applies 

68For a similar treatment in a continuous data application, see Cragg (1971).

Poisson Negative Binomial

Zero Inflation Zero Inflation

Poisson 
Regression Regression

Zero 
Regime

Negative 
Binomial Regression

Zero 
Regime

Constant -1.33276 0.75483 2.06919 -1.54536 -0.39628 4.18910
Age 0.01286 0.00358 -0.01741 0.01807 -0.00280 -0.14339
Income -0.02577 -0.05127 -0.03023 -0.02482 -0.05502 -0.33903
OwnRent -0.17801 -0.15593 -0.01738 -0.18985 -0.28591 -0.50026
Self Employment 0.04691 -0.01257 0.07920 0.06817
Dependents 0.13760 0.06038 -0.09098 0.14054 0.08599 -0.32897
Cur. Add. 0.00195 0.00046 0.00245 0.00257
a 6.41435 4.85653
ln L -15,467.71 -11,569.74 -10,582.88 -10,516.46
Vuong 20.6981 4.5943

TABLE 18.28 Estimated Zero Inflated Count Models
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the model to a sample of observations on daily beverage consumption. Mullahy’s 
formulation adds a new restriction that Prob(yi = 0 � xi) no longer depends on the 
covariates, however. the natural next step is to parameterize this probability. this 
extension of the hurdle model would combine a binary choice model  like those in 
section 17.2 and 17.3 with a truncated count model as shown in section 18.4.6. this 
would produce, for example, for a logit participation equation and a Poisson intensity 
equation,

 Prob(yi = 0 � wi) = Λ(wi
=G)

 Prob(yi = j � xi, wi, yi 7 0) =
[1 - Λ(wi

=G)] exp(-li)li
j

j![1 - exp(-li)]
.

the conditional mean function in the hurdle model is

E[yi � xi, wi] =
[1 - F(wi

=G)]li

[1 - exp(-li)]
, li = exp(xi

=B),

where F(.) is the probability model used for the participation equation (probit or logit). 
the partial effects are obtained by differentiating with respect to the two sets of variables 
separately,

 
0E[yi � xi, wi]

0xi
= [1 - F(wi

=G)]Di,

 
0E[yi � xi, wi]

0wi
= b -f(wi

=G)li

[1 - exp(-li)]
rG,

where Di is defined in (18-23) and f(.) is the density corresponding to F(.). For variables 
that appear in both xi and wi, the effects are added. For dummy variables, the preceding 
would be an approximation; the appropriate result would be obtained by taking the 
difference of the conditional means with the variable fixed at one and zero.

it might be of interest to test for hurdle effects. the hurdle model is similar to 
the zero-inflation model in that a model without hurdle effects is not nested within 
the hurdle model; setting G = 0 produces either F = a, a constant, or F = 1>2  if the 
constant term is also set to zero. neither serves the purpose. nor does forcing G = B 
in a model with wi = xi and F = Λ with a Poisson intensity equation, which might be 
intuitively appealing. a complementary log log model with

Prob(yi = 0 � wi) = exp[-exp(wi
=G)]

does produce the desired result if wi = xi. in this case, “hurdle effects” are absent 
if G = B. the strategy in this case, then, would be a test of this restriction. But, this 
formulation is otherwise restrictive, first in the choice of variables and second in its 
unconventional functional form. the more general approach to this test would be the 
vuong test used earlier to test the zero-inflation model against the simpler Poisson or 
negative binomial model.

the hurdle model bears some similarity to the zero-inflation model. however, the 
behavioral implications are different. the zero-inflation model can usefully be viewed 
as a latent class model. the splitting probability defines a regime determination. in the 
hurdle model, the splitting equation represents a behavioral outcome on the same level 
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as the intensity (count) equation.69 Both of these modifications substantially alter the 
Poisson formulation. First, note that the equality of the mean and variance of the 
distribution no longer follow; both modifications induce overdispersion. on the other 
hand, the overdispersion does not arise from heterogeneity; it arises from the nature of 
the process generating the zeros. as such, an interesting identification problem arises in 
this model. if the data do appear to be characterized by overdispersion, then it seems 
less than obvious whether it should be attributed to heterogeneity or to the regime 
splitting mechanism. Mullahy (1986) argues the point more strongly. he demonstrates 
that overdispersion will always induce excess zeros. as such, in a splitting model, we may 
misinterpret the excess zeros as due to the splitting process instead of the heterogeneity.

Example 18.21  Hurdle Models for Doctor Visits
Jones and Schurer (2009) used the hurdle framework to study physician visits in several 
countries using the ECHP panel data set. The base model was a negative binomial regression, 
with a logit hurdle equation. The main interest was the cross-country variation in the income 
elasticity of health care utilization. A few of their results for general practitioners are shown in 
Table 18.29, which is extracted from their Table 8.70 (Corresponding results are computed for 
specialists.) Note that individuals are classified as high or low users. The latent classes have 
been identified as a group of heavy users of the system and light users, which would seem 
to suggest that the classes are not latent. The class assignments are done using the method 
described in Section 14.15.4. The posterior (conditional) class probabilities, pni1 and pni2, are 
computed for each person in the sample. An individual is classified as coming from class 1 
if pni1 Ú 0.5 and class 2 if pni1 6 0.5. With this classification, the average within group utilization 
is computed. The group with the higher group mean is labeled the “High users.”

In Examples 18.16 and 18.21, we fit Poisson regressions with means

E[DocVis � x] = exp(b1 + b2Age + b3Education + b4Income + b5Kids + b6AddOn).

69see, for example, Jones (1989), who applied the model to cigarette consumption.
70From Jones and schurer (2009).

Estimated Income Coefficients and Elasticities for GP and Specialist Visits—Country-Specific LC 
Hurdle Models (Asymptotic t ratios in parentheses)

Country

GPs

Low Users High Users

Estimated 
Coefficient

Estimated 
Elasticity

Estimated 
Coefficient

Estimated 
Elasticity

Austria P(Y 7 0) -0.051 (-1.467) -0.012 -0.109 (-0.872) -0.005

E(Y � Y 7 0) 0.012(0.693) 0.009 0.039(2.167) 0.035
Belgium P(Y 7 0) 0.035(1.002) 0.008 0.292(4.004) 0.010

E(Y � Y 7 0) -0.052(-3.125) -0.037 -0.055(-4.030) -0.050
Denmark P(Y 7 0) 0.083(1.746) 0.033 0.261 (2.302) 0.023

E(Y � Y 7 0) 0.042 (0.992) 0.021 -0.030 (-1.009) -0.024
Finland P(Y 7 0) 0.054(1.358) 0.024 -0.030 (-0.263) -0.003

E(Y � Y 7 0) 0.007(0.237) 0.004 -0.048 (-1.706) -0.037

TABLE 18.29 Income Elasticities
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Table 18.30 reports results for a two-class latent class model based on this specification using 
the 3,377 observations in the 1994 wave of the panel. The estimated prior class probabilities 
are 0.23298 and 0.76702. For each observation in the sample, the posterior probabilities are 
computed using

pni1 =
pn1Lni1

pn1Lni1 + pn2Lni2

, Lnic =
exp(-lnic)(lnic)DocVisi

DocVisi!
, lnic = exp(xi

=Bnc), c = 1, 2,

then pni2 = 1 - pni1. The mean values of these posterior probabilities are 0.228309 and 0.771691, 
which, save for some minor error, match the prior probabilities. (In theory, they match perfectly.) 
We then define the class assignment to be class 1 if pni1 Ú 0.5 and class 2 if pni1 6 0.5. By this 
calculation, there are 771 and 2,606 observations in the two classes, respectively. The sample 
averages of DocVis for the two groups are 11.380 and 1.535, which confirms the idea of a group 
of high users and low users. Figure 18.8 displays histograms for the two groups. (The sample 
has been trimmed by dropping a handful of observations larger than 30 in group 1.)

18.4.9  ENDOGENOUS VARIABLES AND ENDOGENOUS PARTICIPATION

as in other situations, one would expect to find endogenous variables in models for 
counts. For example, in the study on which we have relied for our examples of health 
care utilization, Riphahn, Wambach, and Million (RWM, 2003), were interested in the 
role of the AddOn insurance in the usage variable. one might expect the choice to buy 
insurance to be at least partly influenced by some of the same factors that motivate 
usage of the health care system. insurance purchase might well be endogenous in a 
model such as the hurdle model in example 18.21.

the Poisson model presents a complication for modeling endogeneity that arises in 
some other cases as well. For simplicity, consider a continuous variable, such as Income, 
to continue our ongoing example. a model of income determination and doctor visits 
might appear

Income = zi
=G + ui,

Prob(DocVisi = j � xi, Incomei) = exp(-li), li
j/j!, li = exp(xi

=B + d Incomei).

endogeneity as we have analyzed it, for example, in Chapter 8 and sections 17.3.5 and 
17.5.5, arises through correlation between the endogenous variable and the unobserved 

Latent Class Model Poisson Regression

Class 1 Class 2

Variable Estimate Std. Error Estimate Std. Error Estimate Std. Error

Constant 2.67381 0.11876 0.66690 0.17591 1.23358 0.06706
Age 0.01394 0.00149 0.01867 0.00213 0.01866 0.00082
Income -0.39859 0.08096 -0.51861 0.12012 -0.40231 0.04632
Education -0.05760 0.00699 -0.06516 0.01140 -0.04457 0.00435
Kids -0.13259 0.03539 -0.32098 0.05270 -0.14477 0.02065
AddOn 0.00786 0.08795 0.06883 0.15084 0.12270 0.06129
Class Prob. 0.23298 0.00959 0.76702 0.00959 1.00000 0.00000
ln L -9263.76 -13653.41

TABLE 18.30 Estimated Latent Class Model for Doctor Visits
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omitted factors in the main equation. But the Poisson model does not contain any 
unobservables. this is a major shortcoming of the specification as a regression model; 
all of the regression variation of the dependent variable arises through variation of the 
observables. there is no accommodation for unobserved heterogeneity or omitted 
factors. this is the compelling motivation for the negative binomial model or, in RWM’s 
case, the Poisson-normal mixture model.71 if the model is reformulated to accommodate 
heterogeneity, as in

li = exp(xi
=B + d Incomei + ei),

then Incomei will be endogenous if ui and ei are correlated.
a bivariate normal model for (ui, ei) with zero means, variances su

2 and se
2, and 

correlation r provides a convenient (and the usual) platform to operationalize this idea. 
By projecting ei on ui, we have

ei = (rse/su)ui + vi,

where vi is normally distributed with mean zero and variance se
2(1 - r2). it will prove 

convenient to parameterize these based on the regression and the specific parameters 
as follows:

 ei = rse(Incomei - zi
=G)/su + vi,

 = t[(Incomei - zi
=G)/su] + uwi,

71see terza (2009, pp. 555–556) for discussion of this issue.

FIGURE 18.8  Distributions of Doctor Visits by Class.
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912 PART IV  ✦   Cross Sections, Panel Data, and Microeconometrics

where wi will be normally distributed with mean zero and variance one while t = rse 
and u2 = se

2(1 - r2). then, combining terms,

ei = tui* + uwi.

With this parameterization, the conditional mean function in the Poisson regression 
model is

li = exp(xi
=B + d Incomei + tui* + uwi).

the parameters to be estimated are B, G, d, se, su, and r. there are two ways to proceed. 
a two-step method can be based on the fact that G and su can consistently be estimated 
by linear regression of Income on z. after this first step, we can compute values of ui* and 
formulate the Poisson regression model in terms of

lni(wi) = exp[xi
=B + d Incomei + tun i + uwi].

the log likelihood to be maximized at the second step is

ln L(B, d, t, u � w) = a
n

i = 1
- lni(wi) + yi ln lni(wi) - ln yi!.

a remaining complication is that the unobserved heterogeneity, wi, remains in the 
equation so it must be integrated out of the log-likelihood function. the unconditional 
log-likelihood function is obtained by integrating the standard normally distributed wi 
out of the conditional densities,

ln L(B, G, t, u) = a
n

i = 1
lnb L

∞

-∞
Jexp(-lni(wi))(lni(wi))yi

yi!
Rf(wi)dwi r .

the method of Butler and Moffitt or maximum simulated likelihood that we used to 
fit a probit model in section 17.4.2 can be used to estimate B, d, t, and u. estimates of r 
and se can be deduced from the last two of these; se

2 = u2 + t2 and r = t/se. this is the 
control function method discussed in section 17.6.2 and is also the “residual inclusion” 
method discussed by terza, Basu, and Rathouz (2008).

the full set of parameters can be estimated in a single step using full information 
maximum likelihood. to estimate all parameters simultaneously and efficiently, 
we would form the log likelihood from the joint density of DocVis and Income as 
P(DocVis � Income)f(Income). thus,

f(DocVis, Income) =
exp[-li(wi)][li(wi)]yi

yi!
 

1
su

 f¢ Income - zi
=G

su
≤,

li(wi) = exp(xi
=B + d Incomei + t(Incomei - zi

=G)/su + uwi).

as before, the unobserved wi must be integrated out of the log-likelihood function. 
either quadrature or simulation can be used. the parameters to be estimated by 
maximizing the full log likelihood are (B, G, d, su, se, r). the invariance principle can 
be used to simplify the estimation a bit by parameterizing the log-likelihood function 
in terms of t and u. some additional simplification can also be obtained by using the 
olsen (1978) [and tobin (1958)] transformations, h = 1/su and A = (1/su)G.

an endogenous binary variable, such as Public or AddOn in our DocVis example is 
handled similarly but is a bit simpler. the structural equations of the model are
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T * = z′G + u,      u ∼ N[0, 1],

T = 1(t* 7 0),

l = exp(x′B + dT + e)  e ∼ N[0, se
2],

with Cov(u, e) = rse. the endogeneity of T is implied by a nonzero r. We use the 
bivariate normal result,

u = (r/se)e + v,

where v is normally distributed with mean zero and variance 1 - r2. then, using our 
earlier results for the probit model (section 17.3),

P(T � e) = ΦJ(2T - 1)¢ z′G + (r/se)e21 - r2
≤ R , T = 0, 1.

it will be convenient once again to write e = sew where w ∼ n[0, 1]. Making the 
substitution, we have

P(T � w) = ΦJ(2T - 1)¢ z′G + rw21 - r2
≤ R , T = 0, 1.

the probability density function for y � T,w is Poisson with l(w) = exp(x′B + dT +
sew). Combining terms,

P(y, T � w) =
exp[-l(w)][l(w)]y

y!
 ΦJ(2T - 1)¢ z′G + rw21 - r2

≤ R .

this last result provides the terms that enter the log likelihood for (B, G, d, r, se). as 
before, the unobserved heterogeneity, w, must be integrated out of the log likelihood, 
so either the quadrature or simulation method discussed in Chapter 17 is used to obtain 
the parameter estimates. note that this model may also be estimated in two steps, with 
G obtained in the first-step probit. the two-step method will not be appreciably simpler, 
since the second term in the density must remain to identify r. the residual inclusion 
method is not feasible here since T* is not observed.

this same set of methods is used to allow for endogeneity of the participation 
equation in the hurdle model in section 18.4.8. Mechanically, the hurdle model with 
endogenous participation is essentially the same as the endogenous binary variable.72

Example 18.22  Endogenous Treatment in Health Care Utilization
Table 18.31 reports estimates of the treatment effects model for our health care utilization 
data. The main result is the causal parameter on Addon, which is shown in the boxes in the 
table. We have fit the model with the full panel (pooled) and with the final (1994) wave of the 
panel. The results are nearly identical. The large negative value is, of course, inconsistent 
with any suggestion of moral hazard, and seems extreme enough to cast some suspicion 
on the model specification. We, like Riphahn et al. (2003) and others they discuss, did not 
find evidence of moral hazard in the demand for physician visits. (The authors did find more 
suggestive results for hospital visits.)

72see Greene (2005, 2007d).
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18.5 SUMMARY AND CONCLUSIONS

the analysis of individual decisions in microeconometrics is largely about discrete 
decisions such as whether to participate in an activity or not, whether to make a purchase 
or not, or what brand of product to buy. this chapter and Chapter 17 have developed 
the four essential models used in that type of analysis. Random utility, the binary 
choice model, and regression-style modeling of probabilities developed in Chapter 17 
are the three fundamental building blocks of discrete choice modeling. this chapter 
extended those tools into the three primary areas of choice modeling: unordered choice 
models, ordered choice models, and models for counts. in each case, we developed a core 
modeling framework that provides the broad platform and then developed a variety of 
extensions.

Full Panel 1994 Wave

Treatment Outcome Treatment Outcome

Variable (Probit: Addon) (Poisson: DocVis) (Probit: Addon) (Poisson: DocVis)

Health Sat. 0.10824 0.13202
(0.00677) (0.00903)

Married 0.12325 0.14827
(0.03564) (0.07314)

Income 0.61812 0.31412
(0.05873) (0.14664)

Working -0.05864 0.19407
(0.03297) (0.12375)

Education 0.05233 0.04755
(0.00588) (0.01020)

Kids -0.10872 -0.17063 -0.00065 -0.23349
(0.03306) (0.01879) (0.07519) (04933)

Constant -3.56368 -0.74006 -3.70407 -0.20658
(0.08364) (0.04094) (0.16509) (0.10440)

Age 0.02099 0.01431
(0.00079) (0.00214)

Female 0.42599 0.50918
(0.01619) (0.04400)

AddOn -2.73847 -2.86428
(0.04978) (0.09289)

Sigma 1.43070 1.42112
(0.00653) (0.01866)

Rho 0.93299 0.99644
(0.00754) (0.00376)

ln L -62366.61 -8313.88
N 27,326, 3,377

TABLE 18.31 Estimated Treatment Effects Model (Standard errors in parentheses)

M18_GREE1366_08_SE_C18.indd   914 2/24/17   1:50 PM



 CHAPTER 18 ✦ Multinomial Choices and Event Counts 915

in the analysis of unordered choice models, such as brand or location, the 
multinomial logit (Mnl) model has provided the essential starting point. the Mnl 
works well to provide a basic framework, but as a behavioral model in its own right, it 
has some important shortcomings. Much of the recent research in this area has focused 
on relaxing these behavioral assumptions. the most recent research in this area, on 
the mixed logit model, has produced broadly flexible functional forms that can match 
behavioral modeling to empirical specification and estimation.

the ordered choice model is a natural extension of the binary choice setting and 
also a convenient bridge between models of choice between two alternatives and more 
complex models of choice among multiple alternatives. We began this analysis with the 
ordered probit and logit model pioneered by Zavoina and McKelvey (1975). Recent 
developments of this model have produced the same sorts of extensions to panel data 
and modeling heterogeneity that we considered in Chapter 17 for binary choice. We 
also examined some multiple-equation specifications. For all its versatility, the familiar 
ordered choice models have an important shortcoming in the assumed constancy 
underlying preference behind the rating scale. the current work on differential item 
functioning, such as King et al. (2004), has produced significant progress on filling this 
gap in the theory.

Finally, we examined probability models for counts of events. here, the Poisson 
regression model provides the broad framework for the analysis. the Poisson model 
has two shortcomings that have motivated the current stream of research. First, the 
functional form binds the mean of the random variable to its variance, producing an 
unrealistic regression specification. second, the basic model has no component that 
accommodates unmeasured heterogeneity. (this second feature is what produces the 
first.) Current research has produced a rich variety of models for counts, such as two-
part behavioral models that account for many different aspects of the decision-making 
process and the mechanisms that generate the observed data.

Key Terms and Concepts

•	attribute nonattendance
•	Bivariate ordered probit
•	Censoring
•	Characteristics
•	Choice-based sample
•	Conditional logit model
•	Count data
•	deviance
•	differential item 

functioning (diF)
•	exposure
•	Generalized mixed logit 

model
•	hurdle model
•	identification through 

functional form
•	inclusive value

•	independence from 
irrelevant alternatives 
(iia)

•	limited information
•	log-odds
•	Method of simulated 

moments
•	Mixed logit model
•	Multinomial choice
•	Multinomial logit model
•	Multinomial probit model 

(MnP)
•	negative binomial 

distribution
•	negative binomial model
•	negbin 1 (nB1) form
•	negbin 2 (nB2) form

•	negbin P (nBP) model
•	nested logit model 
•	ordered choice
•	overdispersion
•	Parallel regression 

assumption
•	Random coefficients
•	Random parameters logit 

model (RPl)
•	Revealed preference data
•	specification error
•	stated choice data
•	stated choice experiment
•	subjective well-being (sWB)
•	unlabeled choices
•	unordered choice model
•	Willingness to pay space

M18_GREE1366_08_SE_C18.indd   915 2/24/17   1:50 PM



916 PART IV  ✦   Cross Sections, Panel Data, and Microeconometrics

Exercises

1. We are interested in the ordered probit model. our data consist of 250 observations, 
of which the responses are

y 0 1 2 3 4
.

n 50 40 45 80 35

using the preceding data, obtain maximum likelihood estimates of the unknown 
parameters of the model. (Hint: Consider the probabilities as the unknown 
parameters.)

2. For the zero-inflated Poisson (ZiP) model in section 18.4.8, we derived the 
conditional mean function, E[yi � xi, wi] = (1 - Fi)li.
a. For the same model, now obtain [Var[yi � xi, wi]]. then, obtain 

ti = var[yi � xi, wi]/E[yi � xi, wi]. does the zero inflation produce overdispersion? 
(that is, is the ratio greater than one?)

b. obtain the partial effect for a variable zi that appears in both wi and xi.
3. Consider estimation of a Poisson regression model for yi � xi. the data are truncated 

on the left—these are on-site observations at a recreation site, so zeros do not 
appear in the data set. the data are censored on the right—any response greater 
than 5 is recorded as a 5. Construct the log likelihood for a data set drawn under 
this sampling scheme.

Applications

1. appendix table F17.2 provides Fair’s (1978) Redbook Magazine survey on 
extramarital affairs. the variables in the data set are as follows:

id = an identification number,
C = constant, value = 1,
yrb = a constructed measure of time spent in extramarital affairs,
v1 = a rating of the marriage, coded 1 to 5,
v2 = age, in years, aggregated,
v3 = number of years married,
v4 = number of children, top coded at 5,
v5 = religiosity, 1 to 4, 1 = not, 4 = very,
v6 = education, coded 9, 12, 14, 16, 17, 20,
v7 = occupation,
v8 = husband’s occupation,

and three other variables that are not used. the sample contains a survey of 
6,366 married women. For this exercise, we will analyze, first, the binary variable 
A = 1 if yrb 7 0, 0 otherwise. the regressors of interest are v1 to v8. however, 
not necessarily all of them belong in your model. use these data to build a binary 
choice model for A. Report all computed results for the model. Compute the partial 
effects for the variables you choose. Compare the results you obtain for a probit 
model to those for a logit model. are there any substantial differences in the results 
for the two models?
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2. Continuing the analysis of the first application, we now consider the self-reported 
rating, v1. this is a natural candidate for an ordered choice model, because the 
simple five-item coding is a censored version of what would be a continuous scale 
on some subjective satisfaction variable. analyze this variable using an ordered 
probit model. What variables appear to explain the response to this survey 
question? (Note: the variable is coded 1, 2, 3, 4, 5. some programs accept data for 
ordered choice modeling in this form, for example, Stata, while others require the 
variable to be coded 0, 1, 2, 3, 4, for example, NLOGIT. Be sure to determine which 
is appropriate for the program you are using and transform the data if necessary.) 
Can you obtain the partial effects for your model? Report them as well. What 
do they suggest about the impact of the different independent variables on the 
reported ratings?

3. several applications in the preceding chapters using the German health care data 
have examined the variable DocVis, the reported number of visits to the doctor. 
the data are described in appendix table F7.1. a second count variable in that data 
set that we have not examined is HospVis, the number of visits to hospital. For this 
application, we will examine this variable. to begin, we treat the full sample (27,326) 
observations as a cross section.
a. Begin by fitting a Poisson regression model to this variable. the exogenous 

variables are listed in appendix table F7.1. determine an appropriate 
specification for the right-hand side of your model. Report the regression results 
and the partial effects.

b. estimate the model using ordinary least squares and compare your least squares 
results to the partial effects you computed in part a. What do you find?

c. is there evidence of overdispersion in the data? test for overdispersion. now, 
reestimate the model using a negative binomial specification. What is the result? 
do your results change? use a likelihood ratio test to test the hypothesis of the 
negative binomial model against the Poisson.

4. the GsoeP data are an unbalanced panel, with 7,293 groups. Continue your 
analysis in application 3 by fitting the Poisson model with fixed and with random 
effects and compare your results. (Recall, like the linear model, the Poisson fixed 
effects model may not contain any time-invariant variables.) how do the panel data 
results compare to the pooled results?

5. appendix table F18.3 contains data on ship accidents reported in McCullagh and 
nelder (1983). the data set contains 40 observations on the number of incidents of 
wave damage for oceangoing ships. Regressors include aggregate months of service, 
and three sets of dummy variables, type (1, . . . ,5), operation period (1960–1974 or 
1975–1979), and construction period (1960–1964, 1965–1969, or 1970–1974). there 
are six missing values on the dependent variable, leaving 34 usable observations.
a. Fit a Poisson model for these data, using the log of service months, four type 

dummy variables, two construction period variables, and one operation period 
dummy variable. Report your results.

b. the authors note that the rate of accidents is supposed to be per period, but the 
exposure (aggregate months) differs by ship. Reestimate your model constraining 
the coefficient on log of service months to equal one.

c. the authors take overdispersion as a given in these data. do you find evidence 
of overdispersion? show your results.
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