Solutions and Applications Manual

Econometric Analysis

Sixth Edition

William H. Greene

New York University

Prentice Hall, Upper Saddle River, New Jersey 07458

Contents and Notation

This book presents solutions to the end of chapter exercises and applications in Econometric Analysis. There are no exercises in the text for Appendices A - E. For the instructor or student who is interested in exercises for this material, I have included a number of them, with solutions, in this book. The various computations in the solutions and exercises are done with the *NLOGIT* Version 4.0 computer package (Econometric Software, Inc., Plainview New York, <u>www.nlogit.com</u>). In order to control the length of this document, only the solutions and not the questions from the exercises and applications are shown here. In some cases, the numerical solutions for the in text examples shown here differ slightly from the values given in the text. This occurs because in general, the derivative computations in the text are done using the digits shown in the text, which are rounded to a few digits, while the results shown here are based on internal computations by the computer that use all digits.

Chapter 1	Introduction 1
Chapter 2	The Classical Multiple Linear Regression Model 2
Chapter 3	Least Squares 3
Chapter 4	Statisticsl Properties of the Least Squares Estimator 10
Chapter 5	Inference and Prediction 19
Chapter 6	Functional Form and Structural Change 30
Chapter 7	Specification Analysis and Model Selection 40
Chapter 8	The Generalized Regression Model and Heteroscedasticity 44
Chapter 9	Models for Panel Data 54
Chapter 10	Systems of Regression Equations 67
Chapter 11	Nonlinear Regressions and Nonlinear Least Squares 80
Chapter 12	Instrumental Variables Estimation 85
Chapter 13	Simultaneous-Equations Models 90
Chapter 14	Estimation Frameworks in Econometrics 97
Chapter 15	Minimum Distance Estimation and The Generalized Method of Moments 102
Chapter 16	Maximum Likelihood 105
Chapter 17	Simulation Based Estimation and Inference 117
Chapter 18	Bayesian Inference in Econometrics 120
Chapter 19	Serial Correlation 122
Chapter 20	Models with Lagged Variables 128
Chapter 21	Time-Series Models 131
Chapter 22	Nonstationary Data 132
Chapter 23	Models for Discrete Choice 136
Chapter 24	Truncation, Censoring and Sample Selection 142
Chapter 25	Event Counts and Duration Models 147
Appendix A	Matrix Algebra 155
Appendix B	Probability and Distribution Theory 162
Appendix C	Estimation and Inference 172
Appendix D	Large Sample Distribution Theory 183

Appendix E Computation and Optimization 184

In the solutions, we denote:

- scalar values with italic, lower case letters, as in *a*,
- column vectors with boldface lower case letters, as in **b**,
- row vectors as transposed column vectors, as in b',
- \bullet matrices with boldface upper case letters, as in M or $\Sigma,$
- single population parameters with Greek letters, as in θ ,
- \bullet sample estimates of parameters with Roman letters, as in b as an estimate of $\beta,$
- sample estimates of population parameters with a caret, as in $\hat{\alpha}$ or $\hat{\beta}$,
- cross section observations with subscript *i*, as in *y_i*, time series observations with subscript *t*, as in *z_t* and panel data observations with *x_{it}* or *x_{i,t-1}* when the comma is needed to remove ambiguity. Observations that are vectors are denoted likewise, for example, **x**_{it} to denote a column vector of observations.

These are consistent with the notation used in the text.