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Chapter 3 
 

Least Squares 
 

Exercises 
 

1. Let 
11

... ...
1 n

x

x

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

X .  

(a) The normal equations are given by (3-12), =X'e 0 (we drop the minus sign), hence for each of the 
columns of X, xk, we know that xk′e = 0. This implies that 1 0n

i ie=Σ = and 1 0n
i i ix e=Σ = .  

(b) Use  to conclude from the first normal equation that 1
n
i ie=Σ a y bx= − . 

(c) We know that  and 1 0n
i ie=Σ = 1 0n

i i ix e=Σ = . It follows then that 1( )n
i i ix x e= 0Σ − = because 

1 1 0n n
i i i ixe x e= =Σ = Σ = . Substitute ei to obtain  

1( )( )n
i i i ix x y a bx=Σ − − − = 0  or 1( )( ( ))n

i i i ix x y y b x x=Σ − − − − = 0  

Then, 1
1 1 2

1

( )(
( )( ) ( )( )) so 

( )

n
n n i i i
i i i i i i n

i i

)
.

x x y y
x x y y b x x x x b

x x
=

= =
=

Σ − −
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(d) The first derivative vector of e′e is -2X′e.  (The normal equations.)  The second derivative matrix is 
∂2(e′e)/∂b∂b′ = 2X′X.  We need to show that this matrix is positive definite.  The diagonal elements are 2n 
and 2 2

1
n
i ix=Σ which are clearly both positive.  The determinant is (2n)( 2

12 n
i ix=Σ )-( 12 n

i ix=Σ )2  
= -4(2

14 n
i in x=Σ nx )2 = 2 2

1 1
2( ) ] 4 [( ( ) ]n n

i i i in x nx n x x= =Σ − = Σ −4 [ .  Note that a much simpler proof appears after 
(3-6). 
 
2.  Write c as b + (c - b).  Then, the sum of squared residuals based on c is 
(y - Xc)′(y - Xc) = [y - X(b + (c - b))] ′[y - X(b + (c - b))] = [(y - Xb) + X(c - b)] ′[(y - Xb) + X(c - b)] 
   =  (y - Xb) ′(y - Xb) + (c - b) ′X′X(c - b) +  2(c - b) ′X′(y - Xb). 
But, the third term is zero, as  2(c - b) ′X′(y - Xb) =  2(c - b)X′e  =  0.  Therefore,  
   (y - Xc) ′(y - Xc) = e′e + (c - b) ′X′X(c - b) 
or         (y - Xc) ′(y - Xc) - e′e  =  (c - b) ′X′X(c - b). 
The right hand side can be written as d′d where d = X(c - b), so it is necessarily positive.  This confirms what 
we knew at the outset, least squares is least squares.  
 
3. The residual vector in the regression of y on X is MXy  =  [I - X(X′X)-1X′]y.  The residual vector in the 
regression of y on Z is 
  MZy   =  [I - Z(Z′Z)-1Z′]y      
   =  [I - XP((XP)′(XP))-1(XP)′)y  
         =  [I - XPP-1(X′X)-1(P′)-1P′X′)y   
   =  MXy 
Since the residual vectors are identical, the fits must be as well.  Changing the units of measurement of the 
regressors is equivalent to postmultiplying by a diagonal P matrix whose kth diagonal element is the scale 
factor to be applied to the kth variable (1 if it is to be unchanged).  It follows from the result above that this 
will not change the fit of the regression.  
 
4.  In the regression of y on i and X, the coefficients on X are  b  =  (X′M0X)-1X′M0y.  M0  =  I - i(i′i)-1i′ is the 
matrix which transforms observations into deviations from their column means. Since M0 is idempotent and 
symmetric we may also write the preceding as  [(X′M0′)(M0X)]-1(X′M0′)(M0y) which implies that the 
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regression of M0y on M0X produces the least squares slopes.  If only X is transformed to deviations, we 
would compute [(X′M0′)(M0X)]-1(X′M0′)y  but, of course, this is identical.  However, if only y is transformed, 
the result is (X′X)-1X′M0y which is likely to be quite different.    
 
5. What is the result of the matrix product M1M where M1 is defined in (3-19) and M is defined in (3-14)? 
  M1M = (I - X1(X1′X1)-1X1′)(I - X(X′X)-1X′)  =  M - X1(X1′X1)-1X1′M 
There is no need to multiply out the second term.  Each column of MX1 is the vector of residuals in the 
regression of the corresponding column of X1 on all of the columns in X.  Since that x is one of the columns in 
X, this regression provides a perfect fit, so the residuals are zero.  Thus, MX1 is a matrix of zeroes which 
implies that M1M = M.  
 
6.  The original X matrix has n rows.  We add an additional row, xs′.  The new y vector likewise has an 

additional element.  Thus, , , and .n
n s n s

s sy
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

X ny
X y

x
  The new coefficient vector is 

 bn,s = (Xn,s′ Xn,s)-1(Xn,s′yn,s).  The matrix is Xn,s′Xn,s = Xn′Xn + xsxs′.  To invert this, use (A -66); 

 1 1 1
, , 1

1( ) ( ) ( ) ( )
1 ( )n s n s n n n n s s n n

s n n s

− − −
−

′ ′ ′ ′ ′= −
′ ′+

X X X X X X x x X X
x X X x

1− .  The vector is 

 (Xn,s′yn,s) = (Xn′yn) + xsys.  Multiply out the four terms to get 
 
 (Xn,s′ Xn,s)-1(Xn,s′yn,s) =  

   bn – 1
1
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s n n s
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−

′ ′
′ ′+

X X x x b
x X X x
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−′X X  xsys 1 1
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− −
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X X x x X X
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−′X X
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7. Define the data matrix as follows:    (The subscripts 

on the parts of y refer to the “observed” and “missing” rows of X.  We will use Frish-Waugh to obtain the first 
two columns of the least squares coefficient vector.  b =(X ′M X )-1(X ′M y).  Multiplying it out, we find that  

[ ]1 1 2,  and .
1 0 1 1

o

my
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

yi x 0 0
X X X X y

1 1 2 1 1 2
M2 = an identity matrix save for the last diagonal element that is equal to 0. 

X1′M2X1 = .  This just drops the last observation.  X1′M2y is computed likewise.  Thus, 

the coeffients on the first two columns are the same as if y0 had been linearly regressed on X1.  The 
denomonator of R2 is different for the two cases (drop the observation or keep it with zero fill and the dummy 
variable).  For the first strategy, the mean of the n-1 observations should be different from the mean of the full 
n unless the last observation happens to equal the mean of the first n-1. 

1 1 1 11
⎡ ⎤′ ′− ⎢ ⎥′⎣ ⎦

0 0
X X X X

0

    For the second strategy, replacing the missing value with the mean of the other n-1 observations, we can 
deduce the new slope vector logically.  Using Frisch-Waugh, we can replace the column of x’s with deviations 
from the means, which then turns the last observation to zero.  Thus, once again, the coefficient on the x 
equals what it is using the earlier strategy.  The constant term will be the same as well. 
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8.  For convenience, reorder the variables so that X  =  [i, Pd, Pn, Ps, Y].  The three dependent variables are Ed, 
En, and Es, and Y  = Ed + En + Es.  The coefficient vectors are 
  bd  =  (X′X)-1X′Ed,    
  bn  =  (X′X)-1X′En, and   
  bs  =  (X′X)-1X′Es. 
The sum of the three vectors is 
  b   =  (X′X)-1X′[Ed + En + Es]  =  (X′X)-1X′Y. 
Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the 
regression of the last column of X on all of the columns of X, including the last.  Of course, we get a perfect 
fit.  In addition, X′[Ed + En + Es] is the last column of X′X, so the matrix product is equal to the last column of 
an identity matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income 
is 1.  
 
9.  Let RK

2  denote the adjusted R2 in the full regression on K variables including xk, and let R1
2 denote the 

adjusted R2 in the short regression on K-1 variables when xk is omitted.  Let and denote their 
unadjusted counterparts.  Then, 

RK
2 R1

2

   =  1  -  e′e/y′M0y RK
2

   =  1  -  e1′e1/y′M0y R1
2

where e′e is the sum of squared residuals in the full regression, e1′e1 is the (larger) sum of squared residuals in 
the regression which omits xk, and y′M0y = Σi (yi - y )2 

Then,   RK
2 =  1  -  [(n-1)/(n-K)](1 - ) RK

2

and   R1
2 =  1  -  [(n-1)/(n-(K-1))](1 - ). R1

2

The difference is the change in the adjusted R2 when xk is added to the regression, 
   RK

2 -  R1
2 =  [(n-1)/(n-K+1)][e1′e1/y′M0y] - [(n-1)/(n-K)][e′e/y′M0y]. 

The difference is positive if and only if the ratio is greater than 1.  After cancelling terms, we require for the 
adjusted R2 to increase that e1′e1/(n-K+1)]/[(n-K)/e′e]  >  1.  From the previous problem, we have that e1′e1  =  
e′e  +  bK

2(xk′M1xk), where M1 is defined above and bk is the least squares coefficient in the full regression of y 
on X1 and xk. Making the substitution, we require [(e′e  +  bK

2(xk′M1xk))(n-K)]/[(n-K)e′e  +  e′e]  >  1.  Since 
e′e  =  (n-K)s2, this simplifies to [e′e  +  bK

2(xk′M1xk)]/[e′e  +  s2]  >  1.  Since all terms are positive, the fraction 
is greater than one if and only bK

2(xk′M1xk)  >  s2  or  bK
2(xk′M1xk/s2)  >  1.  The denominator is the estimated 

variance of bk, so the result is proved.  
 
10.  This R2 must be lower.  The sum of squares associated with the coefficient vector which omits the 
constant term must be higher than the one which includes it.  We can write the coefficient vector in the 
regression without a constant as c  =  (0,b*) where b*  =  (W′W)-1W′y, with W being the other K-1 columns of 
X.  Then, the result of the previous exercise applies directly.  
 
11.  We use the notation ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances.  Our 
information is   Var[N] = 1,  Var[D] = 1, Var[Y] = 1. 
Since C = N + D, Var[C] = Var[N] + Var[D] + 2Cov[N,D]  =  2(1 + Cov[N,D]). 
From the regressions, we have 
   Cov[C,Y]/Var[Y] = Cov[C,Y] = .8. 
But,   Cov[C,Y] = Cov[N,Y] + Cov[D,Y]. 
Also,   Cov[C,N]/Var[N] = Cov[C,N] = .5, 
but,   Cov[C,N] = Var[N] + Cov[N,D]  =  1 + Cov[N,D], so Cov[N,D] = -.5, 
so that   Var[C] = 2(1 + -.5) = 1. 
And,   Cov[D,Y]/Var[Y] = Cov[D,Y] = .4. 
Since          Cov[C,Y] = .8 = Cov[N,Y] + Cov[D,Y],  Cov[N,Y] = .4. 
Finally,      Cov[C,D] = Cov[N,D] + Var[D] = -.5 + 1 = .5. 
Now, in the regression of C on D, the sum of squared residuals is (n-1){Var[C] - (Cov[C,D]/Var[D])2Var[D]} 
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based on the general regression result Σe2 =  Σ(yi - y )2  - b2Σ(xi - x )2.  All of the necessary figures were 
obtained above.  Inserting these and n-1 = 20 produces a sum of squared residuals of 15. 
 
12.  The relevant submatrices to be used in the calculations are 
         Investment    Constant     GNP     Interest 
 Investment        *   3.0500    3.9926  23.521 
 Constant                    15      19.310      111.79 
 GNP                                    25.218      148.98 
 Interest                                         943.86 
The inverse of the lower right 3×3 block is (X′X)-1, 
     7.5874  
   (X′X)-1  =    -7.41859      7.84078 
       .27313   -.598953 .06254637 
The coefficient vector is   b  =  (X′X)-1X′y  =  (-.0727985, .235622, -.00364866)′.  The total sum of squares is 
y′y = .63652, so we can obtain  e′e  =  y′y  -  b′X′y.  X′y is given in the top row of the matrix.  Making the 
substitution, we obtain e′e  =  .63652 - .63291  =  .00361.  To compute R2, we require Σi (xi - y )2  =   
.63652  -  15(3.05/15)2  =  .01635333, so R2  =  1   -   .00361/.0163533  =  .77925. 
 
13.  The results cannot be correct.  Since log S/N = log S/Y + log Y/N by simple, exact algebra, the same 
result must apply to the least squares regression results.  That means that the second equation estimated 
must equal the first one plus log Y/N.  Looking at the equations, that means that all of the coefficients 
would have to be identical save for the second, which would have to equal its counterpart in the first 
equation, plus 1.  Therefore, the results cannot be correct.  In an exchange between Leff and Arthur 
Goldberger that appeared later in the same journal, Leff argued that the difference was simple rounding 
error.  You can see that the results in the second equation resemble those in the first, but not enough so that 
the explanation is credible.  Further discussion about the data themselves appeared in subsequent 
idscussion.  [See Goldberger (1973) and Leff (1973).] 
 
14.  A proof of Theorem 3.1 provides a general statement of the observation made after (3-8). The 
counterpart for a multiple regression to the normal equations preceding (3-7) is 

 

1 2 2 3 3
2

1 2 2 2 3 2 3 2 2

2
1 2 2 3 3

...

...
...

...

                    

      
                                  

    

i i i i K i iK i i

i i i i i i i K i i iK i i i

i iK i iK i i iK i K i iK i i

b n b x b x b x y

b x b x b x x b x x x y

b x b x x b x x b x x

+ Σ + Σ + + Σ = Σ

Σ + Σ + Σ + + Σ = Σ

Σ + Σ + Σ + + Σ = Σ .K iy

 

As before, divide the first equation by n, and manipulate to obtain the solution for the constant term, 
1 2 2 ... K Kb y b x b x= − − − .  Substitute this into the equations above, and rearrange once again to obtain the 

equations for the slopes, 

        

2
2 2 2 3 2 2 3 3 2 2 2 2

2
2 3 3 2 2 3 3 3 3 3 3 3

( ) ( )( ) ... ( )( ) ( )(

( )( ) ( ) ... ( )( ) ( )(

   

   
                                          

i i i i i K i i iK K i i i

i i i i i K i i iK K i i i

b x x b x x x x b x x x x x x y y

b x x x x b x x b x x x x x x y y

Σ − + Σ − − + + Σ − − = Σ − −

Σ − − + Σ − + + Σ − − = Σ − −

)

)

2
2 2 2 3 3 3

...
( )( ) ( )( ) ... ( ) ( )(

                         
 i iK K i i iK K i K i iK K i iK K ib x x x x b x x x x b x x x x y yΣ − − + Σ − − + + Σ − = Σ − − ).

 

If the variables are uncorrelated, then all cross product terms of the form ( )(i ij j ik k )x x x xΣ − − will equal 
zero.  This leaves the solution, 

 

2
2 2 2 2 2

2
3 3 3 3 3

2

( ) ( )(

( ) ( )( )
...

( ) ( )(

 

 
i i i i i

i i i i i

K i iK K i iK K i

b x x x x y y

b x x x x y y

b x x x x y y

Σ − = Σ − −

Σ − = Σ − −

Σ − = Σ − −

)

),

 

 

which can be solved one equation at a time for  

[ ] 2( )( ) ( )k i ik k i i ik kb x x y y x x⎡ ⎤= Σ − − Σ −⎣ ⎦ , k = 2,...,K. 
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Each of these is the slope coefficient in the simple of y on the respective variable. 
 

================================================= 
 1 

hered,sibs$ 
================================= 

---+----------+ 
>t]| Mean of X| 

---+----------+ 
>t]| Mean of X| 

Application  
 
?======================
 Chapter 3 Application?

?======================================================================= 
Read $ 
(Data appear in the text.) 

t ; X1 = one,educ,exp,ability$ Namelis
Namelist ; X2 = mothered,fat
?======================================
? a. 
?======================================================================= 

ss  ; Lhs = wage ; Rhs = x1$ Regre
+----------------------------------------------------+ 

sion               | | Ordinary    least squares regres
| LHS=WAGE     Mean                 =   2.059333     | 
|              Standard deviation   =   .2583869     | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         11     | 
| Residuals    Sum of squares       =   .7633163     | 
|              Standard error of e  =   .2634244     | 
| Fit          R-squared            =   .1833511     | 
|              Adjusted R-squared   =  -.3937136E-01 | 
| Model test   F[  3,    11] (prob) =    .82 (.5080) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.66364000       .61855318     2.690   .0210 
 EDUC    |     .01453897       .04902149      .297   .7723   12.8666667 

  2.80000000  EXP     |     .07103002       .04803415     1.479   .1673 
 ABILITY |     .02661537       .09911731      .269   .7933    .36600000 
?======================================================================= 
? b. 
?======================================================================= 

ss  ; Lhs = wage ; Rhs = x1,x2$ Regre
+----------------------------------------------------+ 

n               | | Ordinary    least squares regressio
| LHS=WAGE     Mean                 =   2.059333     | 
|              Standard deviation   =   .2583869     | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Residuals    Sum of squares       =   .4522662     | 
|              Standard error of e  =   .2377673     | 
| Fit          R-squared            =   .5161341     | 
|              Adjusted R-squared   =   .1532347     | 
| Model test   F[  6,     8] (prob) =   1.42 (.3140) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .04899633       .94880761      .052   .9601 
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 

  2.80000000  EXP     |     .10339125       .04734541     2.184   .0605 
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 
?======================================================================= 
? c. 
?======================================================================= 
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Regress  ; Lhs = mothered ; Rhs = x1 ; Res = meds $  
Regress  ; Lhs = fathered ; Rhs = x1 ; Res = feds $  
Regress  ; Lhs = sibs     ; Rhs = x1 ; Res = sibss $  
Namelist ; X2S = meds,feds,sibss $ 
Matrix   ; list ; Mean(X2S) $ 

olumns. Matrix Result   has  3 rows and  1 c
               1 
        +-------------- 
       1| -.1184238D-14 
       2|  .1657933D-14 
       3| -.5921189D-16 
The means are (essentially) zero.  The sums must be zero, as these new variables 

) $ 
0*X*b12 $ 

12 $ 
ym0y * e'e $ 

od of computation. 

*X0'*M0*X0*b120 $ 

*b120 $ 
y * e0'e0 $ 

ow it is computed.  It also goes up, 

---+----------+ 

are orthogonal to the columns of X1. The first column in X1 is a column of ones, 
so this means that these residuals must sum to zero. 
?======================================================================= 
? d.  
?======================================================================= 
Namelist ; X = X1,X2 $ 
Matrix   ; i = init(n,1,1) $ 

*i*i' $ Matrix   ; M0 = iden(n) - 1/n
Matrix   ; b12 = <X'X>*X'wage$ 
Calc     ; list ; ym0y =(N-1)*var(wage
Matrix   ; list ; cod = 1/ym0y * b12'*X'*M
Matrix COD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .51613 
Matrix   ; e = wage - X*b
Calc     ; list ; cod = 1 - 1/
+------------------------------------+ 
 COD     =       .516134 

ethThe R squared is the same using either m
Calc     ; list ; RsqAd = 1 - (n-1)/(n-col(x))*(1-cod)$ 
+------------------------------------+ 
 RSQAD   =       .153235 
? Now drop the constant 

bility,X2 $ Namelist ; X0 = educ,exp,a
Matrix   ; i = init(n,1,1) $ 
Matrix   ; M0 = iden(n) - 1/n*i*i' $ 
Matrix   ; b120 = <X0'X0>*X0'wage$ 
Matrix   ; list ; cod = 1/ym0y * b120'
Matrix COD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .52953 
Matrix   ; e0 = wage - X0
Calc     ; list ; cod = 1 - 1/ym0
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 COD     =       .515973 
The R squared now changes depending on h
completely artificially. 
?======================================================================= 
? e. 
?======================================================================= 
The R squared for the full regression appears immediately below. 
? f. 
Regress ; Lhs = wage ; Rhs = X1,X2 $ 

----------------+ +------------------------------------
| Ordinary    least squares regression               | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Fit          R-squared            =   .5161341     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+-----
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|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .04899633       .94880761      .052   .9601 
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 
 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000 
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 
Regress ; Lhs = wage ; Rhs = X1,X2S $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| WTS=none     Number of observs.   =         15     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =          8     | 
| Fit          R-squared            =   .5161341     | 
|              Adjusted R-squared   =   .1532347     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 

-1

econd set of regressors is M1X2, so 
2)]-1(M1X2)′ 
d n  e second set of coefficients 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.66364000       .55830716     2.980   .0176 
 EDUC    |     .01453897       .04424689      .329   .7509   12.8666667 
 EXP     |     .07103002       .04335571     1.638   .1400   2.80000000 
 ABILITY |     .02661537       .08946345      .297   .7737    .36600000 
 MEDS    |     .10163069       .07017502     1.448   .1856 -.118424D-14 
 FEDS    |     .00164437       .04464910      .037   .9715  .165793D-14 
 SIBSS   |     .05916922       .06901801      .857   .4162 -.592119D-16 
 
In the first set of results, the first coefficient vector is 
b1 = (X1′M2X1) X1′M2y and 

-1 yb2 = (X2′M1X2) X2′M1  
In the second re ression, the sg

-1b1 = (X1′M12 X1) X1′M12y where M12 = I – (M1X2)[(M1X2)′(M1X
Thus, because the “M” matrix is different, the coefficient vector is iffere t.  Th
in the second regression is 
b2 = [(M1X2)′M1(M1X2)]-1 (M1X2)M1y = (X2′M1X2)-1X2′M1y because M1 is idempotent. 
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Chapter 4 
 

Statistical Properties of the Least 
Squares Estimator 
 

Exercises 
 
1.  Consider the optimization problem of minimizing the variance of the weighted estimator.  If the estimate is 
to be unbiased, it must be of the form c1 1θ̂ + c2 2θ̂ where c1 and c2 sum to 1.  Thus, c2 = 1 - c1.  The function to 

minimize is MincL*  =  c1
2v1 + (1 - c1)2v2.  The necessary condition is  ∂L*/∂c1  =  2c1v1 - 2(1 - c1)v2  =  0  

which implies  c1  =  v2 / (v1 + v2).  A more intuitively appealing form is obtained by dividing numerator and 
denominator by v1v2 to obtain c1  =  (1/v1) / [1/v1 + 1/v2].  Thus, the weight is proportional to the inverse of the 
variance.  The estimator with the smaller variance gets the larger weight.  
 
2.  First, =  c′y = c′x + c′ε.   So  E[ ]  =  βc′x  and  Var[β̂ β̂ β̂ ]  =  σ2c′c.  Therefore,  

MSE[ ]  =  β2[c′x - 1]2 + σ2c′c.  To minimize this, we set ∂MSE[β̂ β̂ ]/∂c  =  2β2[c′x - 1]x + 2σ2c = 0. 
Collecting terms,     β2(c′x - 1)x  =  -σ2c 
Premultiply by x′ to obtain β2(c′x - 1)x′x  =  -σ2x′c 
or                 c′x  =  β2x′x / (σ2 + β2x′x). 
Then,              c  =  [(-β2/σ2)(c′x - 1)]x, 
so                 c  =  [1/(σ2/β2  +  x′x)]x. 
Then,              =  c′y  =  x′y / (σ2/β2  +  x′x). β̂
The expected value of this estimator is 
    E[ ]  =  βx′x / (σ2/β2  +  x′x) β̂

so                 E[ ] - β  =  β(-σ2/β2) / (σ2/β2  +  x′x) β̂
                      =  -(σ2/β) / (σ2/β2  +  x′x) 
while its variance is  Var[x′(xβ + ε) / (σ2/β2  +  x′x)]  =  σ2x′x / (σ2/β2  +  x′x)2 
The mean squared error is the variance plus the squared bias,  
    MSE[ β̂ ]  =  [σ4/β2 + σ2x′x]/[σ2/β2  +  x′x]2. 
The ordinary least squares estimator is, as always, unbiased, and has variance and mean squared error 
    MSE(b)  =  σ2/x′x. 
The ratio is taken by dividing each term in the numerator 

  
ˆMSE

S b

⎡ ⎤β⎣ ⎦
Μ Ε( )

   =   
( )

( / ) / ( / ' ) ' ( / ' )

/ '

σ σ σ σ

σ

4 2 2 2 2

2 2 2
β

β

x x x x / x x

x x

+

+
 

              =   [σ2x′x/β2 + (x′x)2]/(σ2/β2  +  x′x)2 
        =   x′x[σ2/β2 + x′x]/(σ2/β2  +  x′x)2 
        =   x′x/(σ2/β2  +  x′x) 
Now, multiply numerator and denominator by β2/σ2 to obtain 
  MSE[ β ]/MSE[b]  =  β2x′x/σ2/[1 + β2x′x/σ2]  =  τ2/[1 + τ2] ˆ

As τ→∞, the ratio goes to one.  This would follow from the result that the biased estimator and the unbiased 
estimator are converging to the same thing, either as σ2 goes to zero, in which case the MMSE estimator is the 
same as OLS, or as x′x grows, in which case both estimators are consistent. 
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3.  The OLS estimator fit without a constant term is b  =  x′y / x′x.  Assuming that the constant term is, in fact, 
zero, the variance of this estimator is Var[b]  =  σ2/x′x.  If a constant term is included in the regression, then,  
  b′  =  ( )( )1

n
i i ix x y y=Σ − − / ( )2

1
n
i ix x=Σ −  

The appropriate variance is  σ2/ ( 2
1

n
i i )x x=Σ − as always.  The ratio of these two is 

   Var[b]/Var[b′] =  [σ2/x′x] / [σ2/ ( )2
1

n
i ix x=Σ − ] 

But,   ( 2
1

n
i i )x x=Σ − =  x′x + n x 2 

so the ratio is  Var[b]/Var[b′]  =  [x′x + n x 2]/x′x  =  1 - n x 2/x′x  =  1 - { n x 2/[Sxx + n x 2]} < 1 
It follows that fitting the constant term when it is unnecessary inflates the variance of the least squares 
estimator if the mean of the regressor is not zero.  
 
4.  We could write the regression as  yi  =  (α + λ)  +  βxi  +  (εi - λ)  =  α*  +  βxi  +  εi

*.   Then, we know that 
E[εi

*] = 0, and that it is independent of xi.  Therefore, the second form of the model satisfies all of our 
assumptions for the classical regression.  Ordinary least squares will give unbiased estimators of α* and β.  As 
long as λ is not zero, the constant term will differ from α.  
 
5.   Let the constant term be written as a  =  Σidiyi  =  Σidi(α + βxi + εi)  =  αΣidi + βΣidixi + Σidiεi.  In order for 
a to be unbiased for all samples of xi, we must have Σidi = 1 and Σidixi = 0.  Consider, then, minimizing the 
variance of a subject to these two constraints.  The Lagrangean is 
  L*  =  Var[a] + λ1(Σidi - 1) +  λ2Σidixi  where   Var[a] = Σi σ2di

2. 
Now, we minimize this with respect to di, λ1, and λ2.  The (n+2) necessary conditions are 
 ∂L*/∂di  =  2σ2di + λ1 + λ2xi,   ∂L*/∂λ1  =  Σi di - 1,   ∂L*/∂λ2  =  Σi dixi 
The first equation implies that di  =  [-1/(2σ2)](λ1 + λ2xi). 
Therefore,         Σi di     =  1  =  [-1/(2σ2)][nλ1 + (Σi xi)λ2] 
and    Σi dixi   =  0  =  [-1/(2σ2)][(Σi xi)λ1 + (Σi xi

2)λ2]. 
We can solve these two equations for λ1 and λ2 by first multiplying both equations by -2σ2 then writing the 

resulting equations as The solution is  
n x
x x

i i

i i i i

Σ
Σ Σ 2

1

2

22
0

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
λ
λ

σ .   
-1λ

λ
σ1

2 2

22

0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n x

x x
i i

i i i i

Σ

Σ Σ
.

Note, first, that Σi xi = n x  .  Thus, the determinant of the matrix is nΣi xi
2 - (n x )2  =  n(Σi xi

2 - n x 2) = nSxx 

where Sxx ( 2
1

n
i i )x x=Σ − .  The solution is, therefore, 

2 2
1

2

21  
0 0

i i

xx

x nx
nS nx

λ ⎡ ⎤ ⎡ ⎤Σ − − σ⎛ ⎞
=⎜ ⎟ ⎢ ⎥ ⎢λ −⎝ ⎠

⎥
⎣ ⎦ ⎣ ⎦

 

or   λ1  =  (-2σ2)(Σi xi
2/n)/Sxx 

   λ2  =  (2σ2 x )/Sxx 
Then,   di  =  [Σi xi

2/n  - x xi]/Sxx 
This simplifies if we writeΣxi

2  =  Sxx + n x 2, so Σi xi
2/n  =  Sxx/n + x 2.  Then, 

di  =  1/n  + x ( x  -  xi)/Sxx, or, in a more familiar form, di  =  1/n  - x  (xi  - x )/Sxx. 
This makes the intercept term Σidiyi  =  (1/n)Σiyi  - x ( )1

n
i i ix x y=Σ − /Sxx  = y  - b x   which was to be shown.  

 
6. Let q = E[Q].  Then,   q  =  α  +  βP, or P  =  (-α/β) + (1/β)q. 
Using a well known result, for a linear demand curve, marginal revenue is  MR  =  (-α/β) + (2/β)q.  The profit 
maximizing output is that at which marginal revenue equals marginal cost, or 10.  Equating MR to 10 and 
solving for q produces  q  =  α/2  +  5β, so we require a confidence interval for this combination of the 
parameters. 
 The least squares regression results are  =   20.7691  -  .840583.  The estimated covariance matrix 

of the coefficients is  .  The estimate of q is 6.1816.  The estimate of the variance 

of  is  (1/4)7.96124 + 25(.056436) + 5(-.0624559)  or  0.278415, so the estimated standard error is 0.5276.  

Q̂

7 96124 0 624559
0 624559 0 0564361
. .
. .

−
−

⎡

⎣
⎢

⎤

⎦
⎥

q̂
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The 95% cutoff value for a t distribution with 13 degrees of freedom is 2.161, so the confidence interval is  
6.1816 - 2.161(.5276) to 6.1816 + 2.161(.5276) or 5.041 to  7.322.  
 
7.  a.  The sample means are (1/100) times the elements in the first column of X'X.  The sample covariance 
matrix for the three regressors is obtained as (1/99)[(X′X) ij -100 i jx x ].  

Sample Var[x] =  The simple correlation matrix is 
10127 0 069899 0555489

0 069899 0 755960 0 417778
0555489 0 417778 0 496969

. . .
. . .
. . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  
1 07971 78043

07971 1 68167
78043 68167 1

. .
. .
. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

b.  The vector of slopes is (X′X)-1X′y =  [-.4022, 6.123, 5.910, -7.525]′.   
c.  For the three short regressions, the coefficient vectors are 
   (1) one, x1, and x2:  [-.223, 2.28, 2.11]′ 
   (2) one, x1, and x3   [-.0696, .229, 4.025]′ 
   (3) one, x2, and x3:  [-.0627, -.0918, 4.358]′ 
d.  The magnification factors are 
   for x1:  [(1/(99(1.01727)) / 1.129]2  =  .094 
   for x2:  [(1/99(.75596)) / 1.11]2  =  .109 
   for x3:  [(1/99(.496969))/ 4.292]2  =  .068. 
e.  The problem variable appears to be x3 since it has the lowest magnification factor.  In fact, all three are 
highly intercorrelated.  Although the simple correlations are not excessively high, the three multiple 
correlations are .9912 for x1 on x2 and x3, .9881 for x2 on x1 and x3, and .9912 for x3 on x1 and x2.  
 
8.  We consider two regressions.  In the first, y is regressed on K variables, X.  The variance of the least 
squares estimator, b  =  (X′X)-1X′y, Var[b]  =  σ2(X′X)-1.  In the second, y is regressed on X and an additional 
variable, z. Using results for the partitioned regression, the coefficients on X when y is regressed on X and z 
are b.z  =  (X′MzX)-1X′Mzy where Mz   =  I - z(z′z)-1z′. The true variance of b.z is the upper left K×K matrix in  

Var[b,c]  =  s2 .  But, we have already found this above.  The submatrix is Var[b.z]  =  

s2(X′MzX)-1.  We can show that the second matrix is larger than the first by showing that its inverse is smaller.  
(See (A-120).)  Thus, as regards the true variance matrices (Var[b])-1 - (Var[b.z])-1  =  (1/σ2)z(z′z)-1z′ 

X X X z
z X z X

'
' '

'⎡

⎣
⎢

⎤

⎦
⎥

−1

which is a nonnegative definite matrix.  Therefore Var[b]-1 is larger than Var[b.z]-1, which implies that Var[b] 
is smaller. 
 Although the true variance of b is smaller than the true variance of b.z, it does not follow that the 
estimated variance will be.  The estimated variances are based on s2, not the true σ2.  The residual variance 
estimator based on the short regression is s2  =  e′e/(n - K) while that based on the regression which includes z 
is sz

2  =  e.z′e.z/(n - K - 1).  The numerator of the second is definitely smaller than the numerator of the first, but 
so is the denominator.  It is uncertain which way the comparison will go.  The result is derived in the previous 
problem.  We can conclude, therefore, that if t ratio on c in the regression which includes z is larger than one 
in absolute value, then sz

2 will be smaller than s2. Thus, in the comparison,   Est.Var[b]  =  s2(X′X)-1  is based 
on a smaller matrix, but a larger scale factor than  Est.Var[b.z]  =  sz

2(X′MzX)-1.  Consequently, it is uncertain 
whether the estimated standard errors in the short regression will be smaller than those in the long one.  Note 
that it is not sufficient merely for the result of the previous problem to hold, since the relative sizes of the 
matrices also play a role. But, to take a polar case, suppose z and X were uncorrelated. Then, XNMzX equals 
XNX.  Then, the estimated variance of b.z would be less than that of b without z even though the true variance 
is the same (assuming the premise of the previous problem holds).  Now, relax this assumption while holding 
the t ratio on c constant.  The matrix in Var[b.z] is now larger, but the leading scalar is now smaller.  Which 
way the product will go is uncertain.  
 
9.  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  Mε, and 
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b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)]. 
 The exact expectation of F can be found as follows: F  =  [(n-K)/K][ε′(I - M)ε]/[ε′Mε].  So, its exact 
expected value is (n-K)/K times the expected value of the ratio.  To find that, we note, first, that Mε and  
(I - M)ε are independent because M(I - M) = 0.  Thus, E{[ε′(I - M)ε]/[ε′Mε]} = E[ε′(I- M)ε]×E{1/[ε′Mε]}. 
The first of these was obtained above, E[ε′(I - M)ε]  =  Kσ2.  The second is the expected value of the 
reciprocal of a chi-squared variable.  The exact result for the reciprocal of a chi-squared variable is 
E[1/χ2(n-K)]  =  1/(n - K - 2).  Combining terms, the exact expectation is E[F]  =  (n - K) / (n - K - 2).  Notice 
that the mean does not involve the numerator degrees of freedom. 
 
10.  We write  b  =  β  +  (X′X)-1X′ε, so b′b  =  β′β  +  ε′X(X′X)-1(X′X)-1X′ε  +  2β′(X′X)-1X′ε.  The expected 
value of the last term is zero, and the first is nonstochastic.  To find the expectation of the second term, use the 
trace, and permute ε′X inside the trace operator.  Thus, 
 E[β′β]   =  β′β +  E[ε′X(X′X)-1(X′X)-1X′ε] 
  =  β′β +  E[tr{ε′X(X′X)-1(X′X)-1X′ε}] 
  =  β′β  +  E[tr{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[E{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[(X′X)-1X′E[εε′]X(X′X)-1] 
  =  β′β  +  tr[(X′X)-1X′(σ2I)X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1X′X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1] 
  =  β′β  +  σ2Σk (1/λk ) 
The trace of the inverse equals the sum of the characteristic roots of the inverse, which are the reciprocals of 
the characteristic roots of X′X. 
 
11.  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  M, and 
b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)].  The denominator converges to σ2 as we have seen before.  The numerator is an 
idempotent quadratic form in a normal vector.  The trace of (I - M) is K regardless of the sample size, so the 
numerator is always distributed as σ2 times a chi-squared variable with K degrees of freedom.  Therefore, the 
numerator of F does not converge to a constant, it converges to σ2/K times a chi-squared variable with K 
degrees of freedom.   Since the denominator of F converges to a constant, σ2, the statistic converges to a 
random variable, (1/K) times a chi-squared variable with K degrees of freedom. 
 
12.  We can write ei as  ei  =  yi - b′xi  =  (β′xi + εi) - b′xi  =  εi  +  (b - β)′xi 
We know that plim b = β, and xi is unchanged as n increases, so as n→∞, ei is arbitrarily close to εi. 
 
13.  The estimator is y =  (1/n)Σi yi  =  (1/n)Σi (μ + εi)  =  μ  +  (1/n)Σi εi. Then, E[ y ] = μ+  (1/n)Σi E[εi]  =  μ 
and Var[ y ]=  (1/n2)Σi Σj Cov[εi,εj]  =  σ2/n. Since the mean equals μ and the variance vanishes as n→∞, y is 
mean square consistent. In addition, since y is a linear  combination of normally distributed variables, y   has a 
normal distribution with the mean and variance given above in every sample.  Suppose that εi were not 
normally distributed.  Then, n ( y -μ)  =  (1/ n )(Σiεi) satisfies the requirements for the central limit 
theorem.  Thus, the asymptotic normal distribution applies whether or not the disturbances have a normal 
distribution. 
 For the alternative estimator, =  Σi wiyi, so E[μ̂ μ̂ ] =  Σi wiE[yi]  =  Σi wiμ  =  μΣi wi  =  μ and Var[ μ̂ ]=  
Σi wi

2σ2  =  σ2Σi wi
2.  The sum of squares of the weights is Σiwi

2 = Σi i2/[Σi i]2 =  [n(n+1)(2n+1)/6]/[n(n+1)/2]2 =  
[2(n2 + 3n/2 + 1/2)]/[1.5n(n2 + 2n + 1)]. As n→∞, the fraction will be dominated by the term (1/n) and will 
tend to zero.  This establishes the consistency of this estimator.  The last expression also provides the 
asymptotic variance.  The large sample variance can be found as Asy.Var[ μ̂ ]  =  (1/n)lim n→∞Var[ n ( μ̂ - 
μ)].  For the estimator above, we can use Asy.Var[ μ̂ ]  =  (1/n)lim n→∞nVar[ μ̂ - μ] =  (1/n)lim n→∞σ2[2(n2 + 
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3n/2 + 1/2)]/[1.5(n2 + 2n + 1)] =  1.3333σ2.  Notice that this is unambiguously larger than the variance of the 
sample mean, which is the ordinary least squares estimator.  
 
14.  To obtain the asymptotic distribution, write the result already in hand as b = (β + Q-1γ) + (X′X)-1X′ε - Q-

1ε. We have established that plim b = β + Q-1γ.  For convenience, let θ ≠ β denote β + Q-1γ = plim b.  Write 
the preceding in the form b - θ = (X′X/n)-1(X′ε/n) - Q-1γ.  Since plim(X′X/n) = Q, the large sample behavior 
of the right hand side is the same as that of plim (b - θ) = Q-1plim(X′ε/n) - Q-1γ.  That is, we may replace 
(X′X/n) with Q in our derivation.  Then, we seek the asymptotic distribution of  n (b - θ) which is the same 
as that of 

n [Q-1plim(X′ε/n) - Q-1γ] = Q-1 n ( )1(1/ )   -  n
i i in =Σ εx γ .  From this point, the derivation is exactly the same 

as that when γ = 0, so there is no need to redevelop the result.  We may proceed directly to the same 
asymptotic distribution we obtained before.  The only difference is that the least squares estimator estimates θ, 
not β. 
 
15.  a.  To solve this, we will use an extension of Exercise 6 in Chapter 3 (adding one row of data), and the 
necessary matrix result, (A-66b) in which B will be Xm and C will be I.  Bypassing the matrix algebra, 
which will be essentially identical to the earlier exercise, we have 
 bc,m = bc + [I + Xm(Xc′Xc)-1Xm]-1(Xc′Xc)-1Xm′(ym – Xmbc) 
But, in this case, ym is precisely Xmbc, so the ending vector is zero.  Thus, the coefficient vector is the 
same.  b.  The model applies to the first nc observations, so bc is the least squares estimator for those 
observations.  Yes, it is unbiased. 
c.  The residuals at the second step are ec and (Xmbc – Xmbc) = (ec′, 0′)′.  Thus, the sum of squares is the 
same at both steps. 
d.  The numerator of s2 is the same in both cases, however, for the second one, the degrees of freedom is 
larger.  The first is unbiased, so the second one must be biased downward. 
 

Applications 
 
?======================================================================= 
? Chapter 4 Application 1 
?======================================================================= 
Read $ 
Year GasExp Pop Gasp Income PNC PUC PPT PD PN PS  
1953 7.4 159565 16.668 8883 47.2 26.7 16.8 37.7 29.7 19.4  
... 
2004 224.5 293951 123.901 27113 133.9 133.3 209.1 114.8 172.2 222.8  
 
Sample ; 1 - 52 $ 
Create ; G = 1000000*gasexp/(gasp*pop)$ 
Create ; t = year - 1952 $ 
Namelist ; X = one,income, gasp,pnc,puc,ppt,pd,pn,ps,t$ 
?======================================================================= 
? a.  Basic regression 
?======================================================================= 
Regress ; Lhs = g ; Rhs = X $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=G        Mean                 =   4.935619     | 
|              Standard deviation   =   1.059105     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .4985489     | 
|              Standard error of e  =   .1089505     | 
| Fit          R-squared            =   .9912852     | 
|              Adjusted R-squared   =   .9894177     | 
| Model test   F[  9,    42] (prob) = 530.82 (.0000) | 
+----------------------------------------------------+ 
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+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.10587817       .56937860     1.942   .0588 
 INCOME  |     .00021575     .517619D-04     4.168   .0001   16805.0577 
 GASP    |    -.01108386       .00397812    -2.786   .0080   51.3429615 
 PNC     |     .00057735       .01284414      .045   .9644   87.5673077 
 PUC     |    -.00587463       .00487032    -1.206   .2345   77.8000000 
 PPT     |     .00690726       .00483613     1.428   .1606   89.3903846 
 PD      |     .00122888       .01188175      .103   .9181   78.2692308 
 PN      |     .01269051       .01259799     1.007   .3195   83.5980769 
 PS      |    -.02802781       .00799625    -3.505   .0011   89.7769231 
 T       |     .07250369       .01418280     5.112   .0000   26.5000000 
?======================================================================= 
? b.  Hypothesis that b(NC) = b(UC) $ 
?======================================================================= 
Calc ; list ; (b(4)-b(5))/sqr(varb(4,4)+varb(5,5)-2*varb(4,5)) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =       .494883 
?======================================================================= 
? c.  Elasticities.  In each case, elasticity = b*xbar/ybar 
?======================================================================= 
Calc ; g2004   = g(52)$ 
Calc ; i2004   = income(52)$ 
Calc ; pg2004  = gasp(52)$ 
Calc ; ppt2004 = ppt(52)$ 
Calc ; list ; ei = b(2)*i2004/g2004 
            ; ep = b(3)*pg2004/g2004  
            ; eppt = b(6)*ppt2004/g2004$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 EI      =       .948988 
 EP      =      -.222792 
 EPPT    =       .234311 
?======================================================================= 
? d. Log regression 
?======================================================================= 
Create ; logg = log(g) ; logpg = log(gasp) ; logi = log(income) 
       ; logpnc=log(pnc) ; logpuc = log(puc) ; logppt = log(ppt) 
       ; logpd = log(pd) ; logpn = log(pn) ; logps = log(ps) $ 
Namelist ; LogX = one,logi,logpg,logpnc,logpuc,logppt,logpd,logpn,logps,t$ 
Regress ; lhs = logg ; rhs = logx $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .3812817E-01 | 
|              Standard error of e  =   .3012994E-01 | 
| Fit          R-squared            =   .9868911     | 
|              Adjusted R-squared   =   .9840821     | 
| Model test   F[  9,    42] (prob) = 351.33 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -7.28719016      2.52056245    -2.891   .0061 
 LOGI    |     .99299135       .25037574     3.966   .0003   9.67214751 
 LOGPG   |     .06051812       .05401018     1.120   .2689   3.72930296 
 LOGPNC  |    -.15471632       .26696298     -.580   .5653   4.38036654 
 LOGPUC  |    -.48909058       .08519952    -5.741   .0000   4.10544881 
 LOGPPT  |     .01926966       .13644891      .141   .8884   4.14194132 
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 LOGPD   |    1.73205775       .25988611     6.665   .0000   4.23906603 
 LOGPN   |    -.72953933       .26506853    -2.752   .0087   4.23689080 
 LOGPS   |    -.86798166       .35291106    -2.459   .0181   4.17535768 
 T       |     .03797198       .00751371     5.054   .0000   26.5000000 
?======================================================================= 
? e.  Correlations of Price Variables 
?======================================================================= 
Namelist ; Prices = pnc,puc,ppt,pd,pn,ps$ 
Matrix   ; list ; xcor(prices) $ 
Correlation Matrix for Listed Variables 
 
              PNC      PUC      PPT       PD       PN       PS 
     PNC  1.00000   .99387   .98074   .99327   .98853   .97849 
     PUC   .99387  1.00000   .98242   .98783   .98220   .97685 
     PPT   .98074   .98242  1.00000   .95847   .98986   .99751 
      PD   .99327   .98783   .95847  1.00000   .97734   .95633 
      PN   .98853   .98220   .98986   .97734  1.00000   .99358 
      PS   .97849   .97685   .99751   .95633   .99358  1.00000 
?======================================================================= 
? f.  Renormalizations of price variables 
?======================================================================= 
/* 
In the linear case, the coefficients would be divided by the same 
scale factor, so that x*b would be unchanged, where x is a variable 
and b is the coefficient.  In the loglinear case, since log(k*x)= 
log(k)+log(x), the renomalization would simply affect the constant 
term.  The price coefficients woulde be unchanged. 
*/ 
?======================================================================= 
? g.  Oaxaca decomposition 
?======================================================================= 
Dates ; 1953 $ 
Period ; 1953-1973 $ 
Matrix ; xb0 = Mean(logx)$ 
Regress ; lhs = logg ; rhs = logx $ 
Matrix ; b0 = b ; v0 = varb $ 
Calc ; yb0 = ybar $ 
Period ; 1974-2004 $ 
Matrix ; xb1 = mean(logx) $ 
Regress ; lhs = logg ; rhs = logx $ 
Matrix ; b1 = b ; v1 = varb $ 
Calc ; yb1 = ybar $ 
? Now the decomposition 
Calc ; list ; dybar = yb1 - yb0 $ Total 
Calc ; list ; dy_dx = b1'xb1 - b1'xb0 $ Change due to change in x 
Calc ; list ; dy_db = b1'xb0 - b0'xb0 $ 
Matrix ; vdb = v1+v0 ; vdb = xb0'[vdb]xb0 $ 
Calc ; sdb = sqr(vdb) 
     ; list ; lower = dy_db - 1.96*sqr(vdb)  
            ; upper = dy_db + 1.96*sqr(vdb) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 DYBAR   =       .395377 
 DY_DX   =       .122745 
 DY_DB   =       .272631 
 LOWER   =       .184844 
 UPPER   =       .360419 
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?======================================================================= 
? Chapter 4 Application 2 
?======================================================================= 
Create ; lc = log(cost/pf) ; lpl=log(pl/pf) ; lpk=log(pk/pf)$ 
Create ; lq = log(q) ; lqq = .5*lq*lq $ 
Namelist ; x = one,lq,lqq,lpk,lpl $ 
? a.  Cost function 
Regress; lhs = lc ; rhs = x ; printvc $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LC       Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   2.904896     | 
|              Standard error of e  =   .1377906     | 
| Fit          R-squared            =   .9922222     | 
|              Adjusted R-squared   =   .9920189     | 
| Model test   F[  4,   153] (prob) =4879.59 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -6.81816332       .25243920   -27.009   .0000 
 LQ      |     .40274543       .03148312    12.792   .0000   8.26548908 
 LQQ     |     .06089514       .00432530    14.079   .0000   35.7912728 
 LPK     |     .16203385       .04040556     4.010   .0001    .85978893 
 LPL     |     .15244470       .04659735     3.272   .0013   5.58162250 
               1             2             3             4             5 
        +---------------------------------------------------------------------- 
       1|     .06373      -.00238       .00031       .00399      -.01047 
       2|    -.00238       .00099      -.00013       .00010      -.00020 
       3|     .00031      -.00013    .1870819D-04 -.1493338D-04  .2453652D-04 
       4|     .00399       .00010   -.1493338D-04     .00163      -.00102 
       5|    -.01047      -.00020    .2453652D-04    -.00102       .00217 
?======================================================================= 
? b.  capital price coefficient 
?======================================================================= 
Wald ; fn1 = 1 - b_lpk - b_lpl $ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =    266.36109     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |     .68552145       .04200352    16.321   .0000 
?======================================================================= 
? c.  efficient scale 
?======================================================================= 
Wald ; fn1 = exp((1-b_lq)/b_lqq) $ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =     21.74979     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |    18177.1045      3897.59890     4.664   .0000 
Calc ; qstar = waldfns(1) ; vqstar = varwald(1,1) 
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     ; list ; lower = qstar - 1.96*sqr(vqstar) 
            ; upper = qstar + 1.96*sqr(vqstar) $ 
?======================================================================= 
? d.  Raw data 
?======================================================================= 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LOWER   =  10537.810653 
 UPPER   =  25816.398344 
Create ; output = q $ 
Sort ; lhs = output $ 
/*  
The estimated efficient scale is 18177.  There are 25 firms in the sample that have output larger than this.  
As noted in the problem, many of the largest firms in the sample are aggregates of smaller ones, so it is 
difficult to draw a conclusion here.  However, some of the largest firms (Southern, American Electric  
power) are singly counted, and are much larger than this scale.  The important point is that much of the 
output in the sample is produced by firms that are smaller than this efficient scale.  There are unexploited 
economies of scale in this industry. 
*/ 
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Chapter 5 
 

Inference and Prediction 
 

Exercises 
 
1.  The estimated covariance matrix for the least squares estimator is 

s2(X′X)-1  =  20
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  =   where s2  =  520/(29-3) = 20.  Then, 

the test may be based on t = (.4 + .9 - 1)/[.410 + .256 - 2(.051)]1/2  =  .399.  This is smaller than the critical 
value of 2.056, so we would not reject the hypothesis.   
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2.  In order to compute the regression, we must recover the original sums of squares and cross products for y.  
These areX′y  =  X′Xb  =  [116, 29, 76]′.  The total sum of squares is found using  R2 = 1 -  e′e/y′M0y, so 
y′M0y  =  520 / (52/60)  =  600. The means are x1 =  0, x2 =  0, y =  4, so, y′y  =  600 + 29(42)  =  1064.  The 
slope in the regression of y on x2 alone is b2  =  76/80, so the regression sum of squares is b2
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(80)  =  72.2, and 
the residual sum of squares is 600  -  72.2  =  527.8.  The test based on the residual sum of squares is F  =    
[(527.8 - 520)/1]/[520/26]  =  .390.   In the regression of the previous problem, the t-ratio for testing the same 
hypothesis would be  t = .4/(.410)1/2 = .624 which is the square root of .39.  
 
3.  For the current problem, R = [0,I] where I is the last K2 columns.  Therefore, R(X′X)-1RN is the lower 
right K2×K2 block of (X′X)-1.  As we have seen before, this is (X2′M1X2)-1.  Also, (X′X)-1R′ is the last K2 

columns of (X′X)-1.  These are (X′X)-1R′     =   Finally, since q = 0, Rb - 

q = (0b1 + Ib2) - 0 = b2.  Therefore, the constrained estimator is 
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b*  =  (X2′M1X2)b2,  where b1 and b2 are the multiple regression 

coefficients in the regression of y on both X1 and X2. Collecting terms, this produces b*  =  

.   But, we have from Section 6.3.4 that b1  =  (X1′X1)-1X1′y - (X1′X1)-

1X1′X2b2 so the preceding reduces to b*  =   which was to be shown. 
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 If, instead, the restriction is β2 = β2
0 then the preceding is changed by replacing Rβ - q = 0 with  

Rβ - β2
0  = 0.  Thus,  Rb - q  =  b2 - β2

0.  Then, the constrained estimator is 

b*  =  (X2′M1X2)(b2 - β2
0) 
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b*  =   
b
b

1

2 22

Using the result of the previous paragraph, we can rewrite the first part as 

( ' ) ' ( )
)

X X X X b
 -  b

1 1 1 2 2

  b   =  (X1′X1)-1X1′y - (X1′X1)-1X1′X2β2
0 =  (X1′X1)-1X1′(y - X2β2

0) 1*
which was to be shown.   
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4.  By factoring the result in (5-14), we obtain  b*  =  [I - CR]b + w where C = (X′X)-1R′[R(X′X)-1R′]-1  and  
w   =  Cq.  The covariance matrix of the least squares estimator is 
 Var[b*] =  [I - CR]σ2(X′X)-1[I - CR]′ 
  =  σ2(X′X)-1 + σ2CR(X′X)-1R′C′ - σ2CR(X′X)-1 - σ2(X′X)-1R′C′. 
By multiplying it out, we find that CR(X′X)-1  =  (X′X)-1R′(R(X′X)-1R′)-1R(X′X)-1 =  CR(X′X)-1R′C′ 
so Var[b*]  =  σ2(X′X)-1 - σ2CR(X′X)-1R′C′ =  σ2(X′X)-1 - σ2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1 
This may also be written as  Var[b*] = σ2(X′X)-1{I - R′(R(X′X)-1R′)-1R(X′X)-1} 
    = σ2(X′X)-1{[σ2(X′X)-1]-1 - R′[Rσ2(X′X)-1R′]-1R}σ2(X′X)-1 
Since Var[Rb]  =  Rσ2(X′X)-1R′  this is the answer we seek.  
 
5.  The variance of the restricted least squares estimator is given in the second equation in the previous 
exercise.  We know that this matrix is positive definite, since it is derived in the form B′σ2(X′X)-1B′, and 
σ2(X′X)-1 is positive definite. Therefore, it remains to show only that the matrix subtracted from Var[b] to 
obtain Var[b*] is positive definite.  Consider, then, a quadratic form in Var[b*] 
 z′Var[b*]z  = z′Var[b]z - σ2z′(X′X)-1(R′[R(X′X)-1R′]-1R)(X′X)-1z 
              = z′Var[b]z - w′[R(X′X)-1R′]-1w   where  w  = σR(X′X)-1z. 
It remains to show, therefore, that the inverse matrix in brackets is positive definite.  This is obvious since its 
inverse is positive definite. This shows that every quadratic form in Var[b*] is less than a quadratic form in 
Var[b] in the same vector. 
  
6.  The result follows immediately from the result which precedes (5-19).  Since the sum of squared residuals 
must be at least as large, the coefficient of determination, COD  =  1 - sum of squares / Σi (yi - y )2, 
must be no larger.  
 
7.  For convenience, let  F = [R(X′X)-1R′]-1.  Then, λ = F(Rb - q) and the variance of the vector of Lagrange 
multipliers is Var[λ]  =  FRσ2(X′X)-1R′F =  σ2F.  The estimated variance is obtained by replacing σ2 with s2.  
Therefore, the chi-squared statistic is 
χ2  =  (Rb - q) ′F′(s2F)-1F(Rb - q)   =  (Rb - q) ′[(1/s2)F](Rb - q) 
        =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q)/[e′e/(n - K)] 
This is exactly J times the F statistic defined in (5-19) and (5-20).  Finally, J times the F statistic in (5-20) 
equals the expression given above.  
 
8.  We use (5-19) to find the new sum of squares.  The change in the sum of squares is 
   e*′e* - e′e  =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q) 
For this problem,  (Rb - q)  =  b2 + b3 - 1  =  .3.  The matrix inside the brackets is the sum of the 4 elements in 
the lower right block of (X′X)-1.  These are given in Exercise 1, multiplied by s2 = 20.  Therefore, the required 
sum is [R(X′X)-1R′]  =  (1/20)(.410 + .256 - 2(.051)) = .028.  Then, the change in the sum of squares is   
.32 / .028  =  3.215.  Thus, e′e = 520, e*′e* = 523.215, and the chi-squared statistic is  26[523.215/520  -  1]  =  
.16.  This is quite small, and would not lead to rejection of the hypothesis.   Note that for a single restriction, 
the Lagrange multiplier statistic is equal to the F statistic which equals, in turn, the square of the t statistic used 
to test the restriction.  Thus, we could have obtained this quantity by squaring the .399 found in the first 
problem (apart from some rounding error).  
 
9.  First, use (5-19) to write  e*′e*  =  e′e + (Rb - q)′[R(X′X)-1R′]-1(Rb - q).  Now, the result that E[e′e] = (n - 
K)σ2 obtained in Chapter 6 must hold here, so E[e*′e*]  =  (n - K)σ2 + E[(Rb - q)′[R(X′X)-1R′]-1(Rb - q)]. 
Now, b  =  β  +  (X′X)-1X′ε,  so  Rb - q  =  Rβ - q  +  R(X′X)-1X′ε.  But, Rβ - q  =  0,  so under the 
hypothesis, Rb - q  =  R(X′X)-1X′ε.  Insert this in the result above to obtain  
E[e*′e*] = (n-K)σ2 + E[ε′X(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1X′ε].  The quantity in square brackets is a scalar, 
so it is equal to its trace. Permute ε′X(X′X)-1R′ in the trace to obtain 
  E[e*′e*]  =  (n - K)σ2  +  E[tr{[R(X′X)-1R′]-1R(X′X)-1X′εε′X(X′X)-1R′]} 
We may now carry the expectation inside the trace and use  E[εε′]  =  σ2I to obtain 
  E[e*′e*]  =  (n - K)σ2 + tr{[R(X′X)-1R′]-1R(X′X)-1X′σ2IX(X′X)-1R′]} 
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Carry the σ2 outside the trace operator, and after cancellation of the products of matrices times their inverses, 
we obtain E[e*′e*]  =  (n - K)σ2 + σ2tr[IJ]  =  (n - K + J)σ2. 
 
10. Show that in the multiple regression of y on a constant, x1, and x2, while imposing the restriction  
β1 + β2 = 1 leads to the regression of y - x1 on a constant and x2 - x1. 
 For convenience, we put the constant term last instead of first in the parameter vector.  The constraint 
is Rb - q = 0 where  R  =  [1  1  0]  so  R1  =  [1]  and R2  =  [1,0].  Then, β1 = [1]-1[1 - β2]  =  1  -  β2.  Thus,  y  
=  (1 - β2)x1 + β2x2 + αi + ε or  y - x1  =  β2(x2 - x1) + αi + ε.   
 

Applications 
 
?======================================================================= 
? Application 5.1 Wage Equation 
?======================================================================= 
Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_var.dat"; 
nvar=5;nobs=17919$ 
? This creates the group count variable. 
Regress ; Lhs = one ; Rhs = one ; Str = ID ; Panel $ 
? This READ merges the smaller file into the larger one. 
Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_invar.dat"; 
names=ability,med,fed,bh,sibs? ; group=_groupti ;nvar=5;nobs=2178$ 
Names=id,educ,lwage,pexp,t; 
namelist ; x1=one,educ,pexp,ability$ 
namelist ; x2=med,fed,bh,sibs$ 
?======================================================================= 
? a.  Long regression 
?======================================================================= 
regress ; lhs= lwage ; rhs = x1,x2 $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          8     | 
|              Degrees of freedom   =      17911     | 
| Residuals    Sum of squares       =   4119.734     | 
|              Standard error of e  =   .4795950     | 
| Fit          R-squared            =   .1760081     | 
|              Adjusted R-squared   =   .1756861     | 
| Model test   F[  7, 17911] (prob) = 546.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .98965433       .03389449    29.198   .0000 
 EDUC    |     .07118866       .00225722    31.538   .0000   12.6760422 
 PEXP    |     .03951038       .00089858    43.970   .0000   8.36268765 
 ABILITY |     .07736880       .00493359    15.682   .0000    .05237402 
 MED     |    .709887D-04      .00169543      .042   .9666   11.4719013 
 FED     |     .00531681       .00133795     3.974   .0001   11.7092472 
 BH      |    -.05286954       .00999042    -5.292   .0000    .15385903 
 SIBS    |     .00487138       .00179116     2.720   .0065   3.15620291 
?======================================================================= 
? b.  F test 
?======================================================================= 
Calc ; list ; fstat = Rsqrd/(kreg-1)/((1-rsqrd)/(n-kreg)) $ 
+------------------------------------+ 
 FSTAT   =     14.025040 
Calc ; r1 = rsqrd ; df1=n-kreg$ 
Matrix ; b1 = b ; v1 = varb $ 
Matrix ; b1 =b1(5:8) ; v1=varb(5:8,5:8)$ 
Regress ; lhs = lwage ; rhs = x1 $ 
+----------------------------------------------------+ 
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| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   2.296821     | 
|              Standard deviation   =   .5282364     | 
| WTS=none     Number of observs.   =      17919     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =      17915     | 
| Residuals    Sum of squares       =   4132.637     | 
|              Standard error of e  =   .4802919     | 
| Fit          R-squared            =   .1734272     | 
|              Adjusted R-squared   =   .1732888     | 
| Model test   F[  3, 17915] (prob) =1252.94 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.02722913       .03004146    34.194   .0000 
 EDUC    |     .07376210       .00221425    33.312   .0000   12.6760422 
 PEXP    |     .03948955       .00089835    43.958   .0000   8.36268765 
 ABILITY |     .08289072       .00459996    18.020   .0000    .05237402 
?======================================================================= 
? c.  F test for hypothesis that coefficients on X2 are zero 
?======================================================================= 
Calc ; list ; fstat = (r1-rsqrd)/(col(x2))/((1-r1)/(df1)) $ 
+------------------------------------+ 
 FSTAT   =     14.025040 
?======================================================================= 
? c.  Wald test for hypothesis that coefficients on X2 are zero 
?======================================================================= 
Matrix ; List ; Wald = b1'<v1>b1 $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   56.10016 
Note Wald = 4*F, as expected. 
 
?======================================================================= 
? Application 5.2 Translog Cost Function 
?======================================================================= 
? First prepare the data 
? 
Create ; lpk=log(pk);lpl=log(pl);lpf=log(pf)$ 
create ; lpk2=.5*lpk^2 ; lpl2=.5*lpl^2 ; lpf2=.5*lpf^2$ 
Create ; lpkf=lpk*lpf ; lplf=lpl*lpf ; lpkl=lpk*lpl $ 
Create ; lq = log(q) ; lq2 = .5*lq^2 $ 
Create ; lqk=lq*lpk ; lql=lq*lpl ; lqf=lq*lpf $ 
Create ; lc = log(cost) $ 
Create ; lcpf = log(cost/pf) $ 
Create ; lpkpf=log(pk/pf) ; lplpf=log(pl/pf) $ 
Create ; lpkpf2=.5*lpkpf^2 ; lplpf2=.5*lplpf^2 ; lplfpkf=lplpf*lpkpf $ 
Create ; lqlpkf=lq*lpkpf ; lqlplf=lq*lplf $ 
?======================================================================= 
? a.  Beta is a,b,dk,dl,df,pkk,pll,pff,pkl,pkf,plf,c,tqk,tql,tqf 
?======================================================================= 
Restrictions are 
            0,0,1,1,1,0,0,0,0,0,0,0,0,0,0      1 
            0,0,0,0,0,1,0,0,1,1,0,0,0,0,0      0 
    R =     0,0,0,0,0,0,1,0,1,0,1,0,0,0,0  q = 0  
            0,0,0,0,0,0,0,1,0,1,1,0,0,0,0      0 
            0,0,0,0,0,0,0,0,0,0,0,0,1,1,1      0 
?======================================================================= 
? b. Testing the theory 
?======================================================================= 
Namelist ; X1=one,lq,lpk,lpl,lpf,lpk2,lpl2,lpf2,lpkl,lpkf,lplf,lq2,lqk,lq... 
Namelist ; X0=one,lq,lpkf,lplf,lpkpf2,lplpf2,lplfpkf,lq2,lqlpkf,lqlplf$ 
Regress ; lhs = lc ; rhs=x0 $ 
 
+----------------------------------------------------+ 
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| Ordinary    least squares regression               | 
| LHS=LC       Mean                 =   3.071619     | 
|              Standard deviation   =   1.542734     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =        148     | 
| Residuals    Sum of squares       =   2.634416     | 
|              Standard error of e  =   .1334170     | 
| Fit          R-squared            =   .9929498     | 
|              Adjusted R-squared   =   .9925211     | 
| Model test   F[  9,   148] (prob) =2316.03 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -1.13340208      1.04296294    -1.087   .2789 
 LQ      |     .02244828       .12717485      .177   .8601   8.26548908 
 LPKF    |    -.02309567       .14153592     -.163   .8706   14.4192992 
 LPLF    |    -.01690697       .09185395     -.184   .8542   30.4387314 
 LPKPF2  |    -.04730093       .21017152     -.225   .8222    .42211776 
 LPLPF2  |    -.03419034       .06850142     -.499   .6184   15.6173009 
 LPLFPKF |    -.00741233       .11649585     -.064   .9494   4.84868706 
 LQ2     |     .05544306       .00446607    12.414   .0000   35.7912728 
 LQLPKF  |     .03562155       .02862683     1.244   .2153   7.15696461 
 LQLPLF  |     .01279036       .00375187     3.409   .0008   251.570118 
Calc ; ee0 = sumsqdev $ 
Regress ; lhs = lcpf ; rhs = x1 $ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         15     | 
|              Degrees of freedom   =        143     | 
| Residuals    Sum of squares       =   2.464348     | 
|              Standard error of e  =   .1312753     | 
| Fit          R-squared            =   .9934018     | 
|              Adjusted R-squared   =   .9927558     | 
| Model test   F[ 14,   143] (prob) =1537.82 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -76.2592615      38.2800363    -1.992   .0483 
 LQ      |   -1.08042535       .37554512    -2.877   .0046   8.26548908 
 LPK     |    6.38079702      4.52920686     1.409   .1611   4.25096457 
 LPL     |    14.7182926      7.08482345     2.077   .0395   8.97279814 
 LPF     |   -1.89473291      2.84231282     -.667   .5061   3.39117564 
 LPK2    |    -.32741427       .44070869     -.743   .4587   9.05539681 
 LPL2    |   -1.53852735       .69240298    -2.222   .0279   40.2700121 
 LPF2    |    -.07350556       .18203881     -.404   .6870   5.78602018 
 LPKL    |    -.57205049       .37189026    -1.538   .1262   38.1346773 
 LPKF    |    -.02402470       .24632928     -.098   .9224   14.4192992 
 LPLF    |     .16228289       .27007181      .601   .5489   30.4387314 
 LQ2     |     .05297849       .00471336    11.240   .0000   35.7912728 
 LQK     |     .04014440       .02979137     1.348   .1799   35.1677247 
 LQL     |     .13104059       .03828401     3.423   .0008   74.2063474 
 LQF     |     .05865220       .02554928     2.296   .0232   28.0107601 
Calc ; ee1 = sumsqdev $ 
Calc ; list ; Fstat = ((ee0 - ee1)/5)/(ee1/(158-15))$ 
+------------------------------------+ 
FSTAT   =      1.973714 
--> Calc ; list ; ftb(.95,5,143)$ 
+------------------------------------+ 
Result  =      2.277490 
The F statistic is small; the theory is not rejected. 
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?======================================================================= 
? c. Testing homotheticity 
?======================================================================= 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =        148     | 
| Residuals    Sum of squares       =   2.634223     | 
|              Standard error of e  =   .1334121     | 
| Fit          R-squared            =   .9929469     | 
|              Adjusted R-squared   =   .9925180     | 
| Model test   F[  9,   148] (prob) =2315.08 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -2.78239562      1.04292476    -2.668   .0085 
 LQ      |     .01362521       .12717020      .107   .9148   8.26548908 
 LPKF    |    -.06044098       .14153074     -.427   .6700   14.4192992 
 LPLF    |    -.07639000       .09185059     -.832   .4069   30.4387314 
 LPKPF2  |    -.10507269       .21016383     -.500   .6178    .42211776 
 LPLPF2  |    -.00146323       .06849891     -.021   .9830   15.6173009 
 LPLFPKF |     .01806822       .11649158      .155   .8770   4.84868706 
 LQ2     |     .05565578       .00446590    12.462   .0000   35.7912728 
 LQLPKF  |     .03824257       .02862578     1.336   .1836   7.15696461 
 LQLPLF  |     .01296202       .00375173     3.455   .0007   251.570118 
Regress ; lhs = lcpf ; Rhs = x0 ; cls:b(9)=0,b(10)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          8     | 
|              Degrees of freedom   =        150     | 
| Residuals    Sum of squares       =   2.896172     | 
|              Standard error of e  =   .1389526     | 
| Fit          R-squared            =   .9922456     | 
|              Adjusted R-squared   =   .9918837     | 
| Model test   F[  7,   150] (prob) =2741.96 (.0000) | 
| Restrictns.  F[  2,   148] (prob) =   7.36 (.0009) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -6.20547247       .37175165   -16.693   .0000 
 LQ      |     .40111764       .03208201    12.503   .0000   8.26548908 
 LPKF    |    -.05918207       .14502101     -.408   .6838   14.4192992 
 LPLF    |     .03234530       .08668866      .373   .7096   30.4387314 
 LPKPF2  |    -.20340518       .21249945     -.957   .3400    .42211776 
 LPLPF2  |    -.00516132       .06888408     -.075   .9404   15.6173009 
 LPLFPKF |     .08684971       .10534811      .824   .4110   4.84868706 
 LQ2     |     .06103878       .00440807    13.847   .0000   35.7912728 
 LQLPKF  |   -.138778D-16    .517639D-09      .000  1.0000   7.15696461 
 LQLPLF  |       .000000     .915064D-10      .000  1.0000   251.570118 
Calc ; list ; ftb(.95,2,148)$ 
+------------------------------------+ 
Result  =      3.057197 
The F statistic of 7.36 is larger than the critical value of 3.057.  The 
hypothesis is rejected.
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?======================================================================= 
? d.  Testing generalized Cobb-Douglas against full translog. 
?======================================================================= 
Regress ; lhs = lcpf ; rhs = x0 ;cls:b(5)=0,b(6)=0,b(7)=0,b(9)=0,b(10)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   3.191949     | 
|              Standard error of e  =   .1444383     | 
| Fit          R-squared            =   .9914536     | 
|              Adjusted R-squared   =   .9912302     | 
| Model test   F[  4,   153] (prob) =4437.33 (.0000) | 
| Restrictns.  F[  5,   148] (prob) =   6.27 (.0000) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -5.07718678       .18072495   -28.093   .0000 
 LQ      |     .41724916       .03285950    12.698   .0000   8.26548908 
 LPKF    |     .00903097       .01466874      .616   .5391   14.4192992 
 LPLF    |    -.03131901       .00770196    -4.066   .0001   30.4387314 
 LPKPF2  |   -.582867D-15    .127559D-07      .000  1.0000    .42211776 
 LPLPF2  |   -.328730D-15    .986857D-08      .000  1.0000   15.6173009 
 LPLFPKF |    .461436D-15    .201473D-07      .000  1.0000   4.84868706 
 LQ2     |     .05956626       .00452575    13.162   .0000   35.7912728 
 LQLPKF  |   -.555112D-16    .538074D-09      .000  1.0000   7.15696461 
 LQLPLF  |   -.693889D-17    .223074D-09      .000  1.0000   251.570118 
 
Calc ; list ; ftb(.95,5,148)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.275319 
The F statistic of 6.27 is larger than the critical value of 2.275.  The 
hypothesis is rejected. 
 
?======================================================================= 
? e.  Testing Cobb-Douglas against full translog. 
?======================================================================= 
Matrix ; b2=b(5:10) ; v2=varb(5:10,5:10) $ 
Matrix ; list ; Fcd = 1/6 * b2'<v2>b2 $ 
Matrix FCD      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   28.87144 
Calc ; list ; ftb(.95,6,148)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.160352 
The F statistic of 28.871 is larger than the critical value of 2.16.  The 
hypothesis is rejected. 
 
?======================================================================= 
? f. Testing generalized Cobb-Douglas against homothetic translog. 
?======================================================================= 
Regress ; Lhs = lcpf ; rhs = one,lq,lpkf,lplf,lpkpf2,lplpf2,lplfpkf,lq2 
        ; cls:b(5)=0,b(6)=0,b(7)=0$ 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
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| Ordinary    least squares regression               | 
| LHS=LCPF     Mean                 =  -.3195570     | 
|              Standard deviation   =   1.542364     | 
| WTS=none     Number of observs.   =        158     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        153     | 
| Residuals    Sum of squares       =   3.191949     | 
|              Standard error of e  =   .1444383     | 
| Fit          R-squared            =   .9914536     | 
|              Adjusted R-squared   =   .9912302     | 
| Model test   F[  4,   153] (prob) =4437.33 (.0000) | 
| Restrictns.  F[  3,   150] (prob) =   5.11 (.0022) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -5.07718678       .18072495   -28.093   .0000 
 LQ      |     .41724916       .03285950    12.698   .0000   8.26548908 
 LPKF    |     .00903097       .01466874      .616   .5391   14.4192992 
 LPLF    |    -.03131901       .00770196    -4.066   .0001   30.4387314 
 LPKPF2  |   -.199840D-14    .243505D-07      .000  1.0000    .42211776 
 LPLPF2  |   -.746798D-15    .608762D-08      .000  1.0000   15.6173009 
 LPLFPKF |    .140166D-14    .121752D-07      .000  1.0000   4.84868706 
 LQ2     |     .05956626       .00452575    13.162   .0000   35.7912728 
 
Calc ; list ; ftb(.95,3,150) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      2.664907 
? 
?======================================================================= 
? g.  We have not rejected the theory, but we have rejected all the  
? functional forms 
? except the nonhomothetic translog.  Just like Christensen and Greene. 
?======================================================================= 
 
 
?======================================================================= 
? Application 5.3 Nonlinear restrictions 
?======================================================================= 
sample;1-52$ 
name;x=one,logpg,logi,logpnc,logpuc,logppt,t,logpd,logpn,logps$ 
?======================================================================= 
? a.  Simple hypothesis test 
?======================================================================= 
Regr;lhs=logg;rhs=x$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =         42     | 
| Residuals    Sum of squares       =   .3812817E-01 | 
|              Standard error of e  =   .3012994E-01 | 
| Fit          R-squared            =   .9868911     | 
|              Adjusted R-squared   =   .9840821     | 
| Model test   F[  9,    42] (prob) = 351.33 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -7.28719016      2.52056245    -2.891   .0061 
 LOGPG   |     .06051812       .05401018     1.120   .2689   3.72930296 
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 LOGI    |     .99299135       .25037574     3.966   .0003   9.67214751 
 LOGPNC  |    -.15471632       .26696298     -.580   .5653   4.38036654 
 LOGPUC  |    -.48909058       .08519952    -5.741   .0000   4.10544881 
 LOGPPT  |     .01926966       .13644891      .141   .8884   4.14194132 
 T       |     .03797198       .00751371     5.054   .0000   26.5000000 
 LOGPD   |    1.73205775       .25988611     6.665   .0000   4.23906603 
 LOGPN   |    -.72953933       .26506853    -2.752   .0087   4.23689080 
 LOGPS   |    -.86798166       .35291106    -2.459   .0181   4.17535768 
Calc;r1=rsqrd$ 
Regr;lhs=logg;rhs=one,logpg,logi,logpnc,logpuc,logppt,t$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
 
Calc;r0=rsqrd$ 
Calc;list;f=((r1-r0)/2)/((1-r1)/(n-10))$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 F       =     34.868735 
The critical value from the F table is 2.827, so we would reject the hypothesis.  
 
?======================================================================= 
? b.  Nonlinear restriction 
?======================================================================= 
 Since the restricted model is quite nonlinear, it would be quite cumbersome to estimate and examine 
the loss in fit.  We can test the restriction using the unrestricted model.  For this problem, 
   f  =  [γnc - γuc, γncδs - γptδd] ′ 
The matrix of derivatives, using the order given above and " to represent the entire parameter vector, is 

G = = .  The parameter estimates are 
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Thus, f  =  [-.17399, .10091]′.  The covariance matrix to use for the tests is Gs2(X′X)-1G′   
The statistic for the joint test  is χ2  =  f′[Gs2(X′X)-1G′]-1f  =  .4772.   This is less than the critical value for a  
chi-squared with two degrees of freedom, so we would not reject the joint hypothesis.  For the individual 
hypotheses,  
we need only compute the equivalent of a t ratio for each element of f.  Thus, 
  z1  = -.6053 
and  z2  =  .2898 
Neither is large, so neither hypothesis would be rejected.  (Given the earlier result, this was to be expected.)     
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?======================================================================= 
? c.  Computations for nonlinear restriction 
?======================================================================= 
sample;1-52$ 
name;x=one,logpg,logi,logpnc,logpuc,logppt,t,logpd,logpn,logps$ 
Regr;lhs=logg;rhs=x$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
Calc;r1=rsqrd$ 
Regr;lhs=logg;rhs=one,logpg,logi,logpnc,logpuc,logppt,t$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   1.570475     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.1396625      2.09171186    -6.282   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   26.5000000 
Calc;r0=rsqrd$ 
Calc;list;fstat=((r1-r0)/2)/((1-r1)/(n-10))$ 
+------------------------------------+ 
 FSTAT   =     34.868735 
Calc;list;ftb(.95,3,42)$ 
+------------------------------------+ 
 Result  =      2.827049 
 
REGR;Lhs=logg;rhs=x$ 
Calc ; ds=b(10);dd=-b(8);gpt=-b(6);gnc=b(4)$ 
Matr;gm=[0,0,0,1,-1,0,0,0,0,0 / 0,0,0,ds,0,dd,0,gpt,0,gnc]$ 
Calc;f1=b(4)-b(6) ; f2=b(4)*b(10)-b(6)*b(8)$ 
Matrix;list;f=[f1/f2]$ 
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Matrix F        has  2 rows and  1 columns. 
               1 
        +-------------- 
       1|    -.17399 
       2|     .10091 
Matrix;list;vf=gm*varb*gm'$ 
Matrix VF       has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|     .08263      -.08059 
       2|    -.08059       .12129 
Matrix;list;Wald=f'<vf>f$ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .47716 
Calc;list;z1=f(1)/sqr(vf(1,1))$ 
+------------------------------------+ 
 Z1      =      -.605278 
Calc;list;z2=f(2)/sqr(vf(2,2))$ 
+------------------------------------+ 
 Z2      =       .289760 
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