Chapter 1

Introduction

There are no exercises or applications in Chapter 1.



Chapter 2

The Classical Multiple Linear
Regression Model

There are no exercises or applications in Chapter 2.



Chapter 3

Least Squares

Exercises
1 x

1. Let X=|..
1 x,

(@ The normal equations are given by (3-12), X'e =0 (we drop the minus sign), hence for each of the
columns of X, x,, we know that x,'e = 0. This implies that £ e, =0andX? x.e, =0.

(b) Use X! e to conclude from the first normal equation that a =y — bx .

(c) We know that ='.e =0 and X', xe =0. It follows then that X! (x, —X)e, =0 because

X! Xe, =X e =0. Substitute e; to obtain

Zinzl(xi - 7)(Yi —a- bxi) =0 or Zin:l(xi _7)(yi - 7_ b(xi _7)) =0

1(Xi _7)(yi _7)

Zinzl(xi _Y)z

(d) The first derivative vector of e’e is -2X’e. (The normal equations.) The second derivative matrix is
d*(e’e)/obob’ = 2X'X. We need to show that this matrix is positive definite. The diagonal elements are 2n
and 23!, x? which are clearly both positive. The determinant is (2n)( 22", x?)-( 221, x, )?

= 4nz, x? -4(nX)? = 4n[(Z,x?) —nx?]=4n[(Z",(x, —X)?]. Note that a much simpler proof appears after
(3-6).

Then, Zi":l(xi _7)(yi -y)= bzin:l(xi _7)(Xi -X))sob= Zin:

2. Writecasb + (c - b). Then, the sum of squared residuals based on c is

(y - Xc)'(y - Xc) =[y - X(b + (c- b))] [y - X(b + (c - b))] = [(y - Xb) + X(c - b)] "[(y - Xb) + X(c - b)]
= (y-Xb) '(y - Xb) + (c - b) 'X’X(c-b) + 2(c - b) 'X'(y - Xb).

But, the third term is zero, as 2(c - b) 'X'(y - Xb) = 2(c - b)X’e = 0. Therefore,
(y-Xc)'(y-Xc)=¢ee+(c-b)'X'X(c-b)

or (y - Xc)'(y - Xc) -e'e = (c-b) "X'X(c - b).

The right hand side can be written as d’d where d = X(c - b), so it is necessarily positive. This confirms what

we knew at the outset, least squares is least squares.

3. The residual vector in the regression of y on X is Mxy = [I - X(X’X)*X'ly. The residual vector in the
regression of y on Z is
My = [1-2Z2)'Zy

= [1- XP((XP)'(XP))(XP))y

= [I - XPP(X'X) (P")'P'X")y

= Myy
Since the residual vectors are identical, the fits must be as well. Changing the units of measurement of the
regressors is equivalent to postmultiplying by a diagonal P matrix whose kth diagonal element is the scale
factor to be applied to the kth variable (1 if it is to be unchanged). It follows from the result above that this
will not change the fit of the regression.

4. In the regression of y on i and X, the coefficients on X are b = (X’M°X)™X'M%. M° = I -i(i"i)™’ is the
matrix which transforms observations into deviations from their column means. Since M° is idempotent and
symmetric we may also write the preceding as [(X'M®)(M®X)](X'M*)(My) which implies that the



regression of M% on M®X produces the least squares slopes. If only X is transformed to deviations, we
would compute [(X'M®)(M®X)](X'M®)y but, of course, this is identical. However, if only y is transformed,
the result is (X"X)*X’M® which is likely to be quite different.

5. What is the result of the matrix product M;M where M is defined in (3-19) and M is defined in (3-14)?
MiM = (1 - X(X2Xa) Xa)(1 - XIX)IX) = M= X (X' Xa) XM

There is no need to multiply out the second term. Each column of MX; is the vector of residuals in the

regression of the corresponding column of X, on all of the columns in X. Since that x is one of the columns in

X, this regression provides a perfect fit, so the residuals are zero. Thus, MX; is a matrix of zeroes which

implies that M;M = M.

6. The original X matrix has n rows. We add an additional row, xs/. The new y vector likewise has an

X
additional element. Thus, X = [ X'”} andy,, = R/n } The new coefficient vector is

S S

bns = (Xns' Xnys)'l(Xnys’ynys). The matrix is X, s'Xns = X' Xy + XeXs'. To invert this, use (A -66);

(XX, ) = (X ) e
<7 1+, (X, X, ),

(Xns'Yns) = (Xn'Yn) + Xsys. Multiply out the four terms to get

(XX, )X XL(XEX,) ™. The vector is

(Xn,s' Xn,s)_l(xn,s’yn,s) =

1 ’ —. ’ 12 —
" T Xy, X)Xy + (6 X,) ™ s

1

W(X;Xn)flxsxé(xﬁxn)fl XsYs

n

X (X0 X)X,
1+ (X, X,) 7,

1

b+ (XX ) Xeys — -
O L 06X X,

(XIX, )% xb

s*'sTn

(X)X Y,

' ' -1
bn+ l_XS(Ln),XlS (X;Xn)ilxsys_;l(xrzxn)_lxsxébn
L (X X)X, L X (X X)X,
nht+ ;,1(X;Xn)_lxsys_%(X;Xn)_lxsxébn
L x (X0 X)X, L+ (X X)X,
1

byt ———————— (X! X )'x -x'b
n 1+X;(X;1Xn)7lxs( n n) s(ys s n)

01 Y1
on the parts of y refer to the “observed” and “missing” rows of X. We will use Frish-Waugh to obtain the first

two columns of the least squares coefficient vector. b;=(Xy'M,X1)™ (X1'M,y). Multiplying it out, we find that
M, = an identity matrix save for the last diagonal element that is equal to 0.

i 0 0
7. Define the data matrix as follows: X = E X }: {X }: [X, X,]andy= B" } (The subscripts

m

0
the coeffients on the first two columns are the same as if y, had been linearly regressed on X;. The
denomonator of R? is different for the two cases (drop the observation or keep it with zero fill and the dummy
variable). For the first strategy, the mean of the n-1 observations should be different from the mean of the full
n unless the last observation happens to equal the mean of the first n-1.

For the second strategy, replacing the missing value with the mean of the other n-1 observations, we can
deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of x’s with deviations
from the means, which then turns the last observation to zero. Thus, once again, the coefficient on the x
equals what it is using the earlier strategy. The constant term will be the same as well.

00
Xi'MyX; = X{Xl—X{ Jxl. This just drops the last observation. X;'M,y is computed likewise. Thus,



8. For convenience, reorder the variables so that X = [i, Py, Py, Ps, Y]. The three dependent variables are Eg,
E.,and E;,and Y =E4+ E, + E;. The coefficient vectors are

by = (X'X)'X'Eg,

b, = (X’X)*X'E,, and

by = (X’X)*X'Es.
The sum of the three vectors is

b = (X'X)™X[Eq+E,+E] = (X'X)'X'Y.
Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the
regression of the last column of X on all of the columns of X, including the last. Of course, we get a perfect
fit. Inaddition, X'[Ey + E,, + E4] is the last column of X'X, so the matrix product is equal to the last column of
an identity matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income
is 1.

9. Let ﬁZK denote the adjusted R? in the full regression on K variables including x, and Ietﬁf denote the
adjusted R? in the short regression on K-1 variables when x, is omitted. Let RZand RZdenote their
unadjusted counterparts. Then,

RZ=1 - e'ely'My

RZ= 1 - e/e)y’M%y
where e’e is the sum of squared residuals in the full regression, e;'e; is the (larger) sum of squared residuals in
the regression which omits x,, and y'M® = 3 (yi - ¥ )°

Then, Rk=1 - [(-1)/(n-K)](L- RZ)

and Ri= 1 - [(n-1)/(n-(K-1))](1 - R?).
The difference is the change in the adjusted R? when x, is added to the regression,

Ri- Ri = [(n-1)/(n-K+1)][er'esyMy] - [(n-1)/(n-K)][ely' MPy].

The difference is positive if and only if the ratio is greater than 1. After cancelling terms, we require for the
adjusted R? to increase that e;'e;/(n-K+1))/[(n-K)/e’e] > 1. From the previous problem, we have that e,'e; =
e'e + b’(x/Myxy), where My is defined above and by is the least squares coefficient in the full regression of y
on X; and x,. Making the substitution, we require [(e’e + b’(x/Mx))(n-K)J/[(n-K)e'e + e’e] > 1. Since
e'e = (n-K)s?, this simplifies to [e’e + b’(x/Myx)]/[e’e + s°] > 1. Since all terms are positive, the fraction
is greater than one if and only b?(x/Mx) > s° or b’ (x/Mwx/s?) > 1. The denominator is the estimated
variance of by, so the result is proved.

10. This R? must be lower. The sum of squares associated with the coefficient vector which omits the
constant term must be higher than the one which includes it. We can write the coefficient vector in the
regression without a constant as ¢ = (0,b") where b™ = (W'W)™W'y, with W being the other K-1 columns of
X. Then, the result of the previous exercise applies directly.

11. We use the notation “Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances. Our
information is Var[N] =1, Var[D] =1, Var[Y] = 1.
Since C=N + D, Var[C] = Var[N] + Var[D] + 2Cov[N,D] = 2(1 + Cov[N,D]).
From the regressions, we have
Cov[C,Y]/Var[Y] = Cov[C,Y] = .8.

But, Cov[C,Y] = CoV[N,Y] + Cov[D,Y].

Also, Cov[C,N]/Var[N] = Cov[C,N] = .5,

but, Cov[C,N] = Var[N] + Cov[N,D] = 1+ Cov|[N,D], so Cov[N,D] =-.5,
so that Var[C]=2(1 +-5)=1.

And, Cov[D,Y]/Var[Y] = Cov[D,Y] = 4.

Since Cov[C,Y] =.8 =CoV[N,Y] + Cov[D,Y], Cov[N,Y] = .4.

Finally, Cov[C,D] =Cov[N,D] + Var[D] =-5+1= 5.

Now, in the regression of C on D, the sum of squared residuals is (n-1){Var[C] - (Cov[C,D]/Var[D])*Var[D]}



based on the general regression result Se? = =(y; -y)? - b?2(x -x )% All of the necessary figures were
obtained above. Inserting these and n-1 = 20 produces a sum of squared residuals of 15.

12. The relevant submatrices to be used in the calculations are

Investment Constant GNP Interest
Investment * 3.0500 3.9926 23.521
Constant 15 19.310 111.79
GNP 25.218 148.98
Interest 943.86
The inverse of the lower right 3x3 block is (X'X),
7.5874
XX)*t = -7.41859 7.84078
.27313 -.598953 .06254637

The coefficient vectoris b = (X'X)*X'y = (-.0727985, .235622, -.00364866)". The total sum of squares is
y'y = .63652, so we can obtain e'e = y'y - b'’X'y. X'y is given in the top row of the matrix. Making the
substitution, we obtain e’e = .63652 - .63291 = .00361. To compute R? we require Z;(x;- ¥ )* =

63652 - 15(3.05/15)> = .01635333,50R*> = 1 - .00361/.0163533 = .77925.

13. The results cannot be correct. Since log S/N = log S/Y + log Y/N by simple, exact algebra, the same
result must apply to the least squares regression results. That means that the second equation estimated
must equal the first one plus log Y/N. Looking at the equations, that means that all of the coefficients
would have to be identical save for the second, which would have to equal its counterpart in the first
equation, plus 1. Therefore, the results cannot be correct. In an exchange between Leff and Arthur
Goldberger that appeared later in the same journal, Leff argued that the difference was simple rounding
error. You can see that the results in the second equation resemble those in the first, but not enough so that
the explanation is credible. Further discussion about the data themselves appeared in subsequent
idscussion. [See Goldberger (1973) and Leff (1973).]

14. A proof of Theorem 3.1 provides a general statement of the observation made after (3-8). The
counterpart for a multiple regression to the normal equations preceding (3-7) is
bn  +b,Xx, +bX X, +o+b Exe =2y,

b X, +0,Z, X5 +BT XXy D Z XX =X, Y,

blzi XiK + b22iXiK Xi2 + b32i XiK Xi3 +..t+ bKZi XiZK = z:i XiK yi )
As before, divide the first equation by n, and manipulate to obtain the solution for the constant term,
b =y-b,X,—...—b, X, . Substitute this into the equations above, and rearrange once again to obtain the

equations for the slopes,
bzzi (Xiz _72)2 +b32i (Xiz _Yz)(xm _Ys) +"'+bKZi(Xi2 _72)(XiK _YK) = Zi (XiZ _72)(yi _V)
bzzi (Xi3 _73)(Xi2 _72) + b3zi (Xi3 _73)2 +..+ bKEi (Xi3 _73)(Xi}< _YK) = Ei (Xi3 _73)(yi - 7)
bzzi (XiK _XK )(Xiz _72) +b32i (XiK _7|< )(XiB _73) +ot szi (XiK _7K )2 = 2i (XiK _YK )(yi - 7)
If the variables are uncorrelated, then all cross product terms of the formZ, (x; — X;)(x, —X,) will equal
zero. This leaves the solution,
bzzi (Xi2 _72)2 =2, (Xiz _72)(yi -Y)
b32i (Xi3 _73)2 = zi (Xi3 _73)(yi - 7)

bKZi(XiK — Xy )2 =Z:i(XiK _YK)(yi _7)1
which can be solved one equation at a time for

b, = [Ei(xik =X, _V)]/[Zi (Xic _Yk)zj k=2, K



Each of these is the slope coefficient in the simple of y on the respective variable.

Application

I

? Chapter 3 Application 1

Read $

(Data appear in the text.)

Namelist ; X1 = one,educ,exp,ability$
Namelist ; X2 = mothered, fathered,sibs$

? a.

Regress ; Lhs = wage ; Rhs = x1%
R S SSSSSSHiniivs +
Ordinary least squares regression
LHS=WAGE Mean = 2.059333
Standard deviation = -2583869
| WTS=none Number of observs. = 15
Model size Parameters = 4
Degrees of freedom = 11
Residuals Sum of squares = .7633163
| Standard error of e = .2634244
Fit R-squared = -1833511
Adjusted R-squared = -.3937136E-01
Model test F[ 3, 11] (prob) = .82 (.5080)
e e ———————————————————————————————————————
R o Fomm e Fomm Fomm e e +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] 1.66364000 .61855318 2.690 .0210
EDUC | -01453897 .04902149 -297 .7723 12.8666667
EXP | -07103002 .04803415 1.479 .1673  2.80000000
ABILITY | .02661537 .09911731 -269 .7933 -36600000
? b.
Regress ; Lhs = wage ; Rhs = x1,x2%$
e e ———————————————————————————————————————
Ordinary least squares regression
LHS=WAGE Mean = 2.059333
Standard deviation = -2583869
| WTS=none Number of observs. = 15
Model size Parameters = 7
Degrees of freedom = 8
Residuals Sum of squares = .4522662
| Standard error of e = .2377673
Fit R-squared = -5161341
Adjusted R-squared = .1532347
Model test F[ 6, 8] (prob) = 1.42 (.3140)
e e ———————————————————————————————————————
R o Fomm e Fomm Fomm e e +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom o - Fom e — +
Constant] .04899633 -94880761 -052 9601
EDUC | .02582213 .04468592 .578 .5793 12.8666667
EXP | -10339125 .04734541 2.184 .0605 2.80000000
ABILITY | .03074355 .12120133 .254 -8062 -36600000
MOTHERED] -10163069 .07017502 1.448 1856 12.0666667
FATHERED] .00164437 .04464910 -037 .9715 12.6666667
SIBS | .05916922 .06901801 .857 4162  2.20000000

? C.

o)




Regress ; Lhs = mothered ; Rhs = x1 ; Res = meds $
Regress ; Lhs = fathered ; Rhs = x1 ; Res = feds $
Regress ; Lhs = sibs ; Rhs = x1 ; Res = sibss $
Namelist ; X2S = meds,feds,sibss $

Matrix ; list ; Mean(X2S) $
Matrix Result has 3 rows and 1 columns.
1

1] -.1184238D-14

2] -.1657933D-14

3] --5921189D-16
The means are (essentially) zero. The sums must be zero, as these new variables
are orthogonal to the columns of X1. The first column in X1 is a column of ones,
so this means that these residuals must sum to zero.

2 d.
Namelist ; X = X1,X2 $
Matrix ;1= init(n,1,1) $
Matrix ; MO = iden(n) - 1/n*i*i" $
Matrix ; bl2 = <X*X>*X"wage$
Calc ; list ; ymOy =(N-1)*var(wage) $
Matrix ; list ; cod = 1/ymOy * b12"*X"*MO*X*b12 $
Matrix COD has 1 rows and 1 columns.
1
R ——
1] .51613
Matrix ; e = wage - X*b12 $
Calc ; list ; cod =1 - 1/ymQy * e"e $
+—— +
Cob = -516134
The R squared is the same using either method of computation.
Calc ; list ; RsgAd = 1 - (n-1)/(n-col(xX))*(1-cod)$
+—— +
RSQAD = -153235

? Now drop the constant
Namelist ; X0 = educ,exp,ability,X2 $

Matrix ;1 = init(n,1,1) $
Matrix ; MO = iden(n) - 1/n*i*i" $
Matrix ; b120 = <X0"X0>*X0"wage$
Matrix ; list ; cod = 1/ymOy * bl120"*X0"*MO*X0*b120 $
Matrix COD has 1 rows and 1 columns.
1
S
1] .52953
Matrix ; e0 = wage - X0*b120 $
Calc ; list ; cod =1 - 1/ymOy * e0"e0 $
- +
| Listed Calculator Results |
e +
CcoD = .515973

The R squared now changes depending on how it is computed. It also goes up,
completely artificially.

2 e.
fhe R squared for the full regression appears immediately below.
? f.

Regress ; Lhs = wage ; Rhs = X1,X2 $

e +
| Ordinary least squares regression |
| WTS=none Number of observs. = 15 |
| Model size Parameters = 7 |
Degrees of freedom = 8 |
| Fit R-squared = -5161341 |
——  —____ +
o o N Fomm o o +



|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]

Fom e - o o Fom - Fom—— - Fom e — +
Constant] -04899633 -94880761 -052 9601

EDUC | .02582213 .04468592 .578 .5793 12.8666667
EXP | -10339125 .04734541 2.184 0605  2.80000000
ABILITY | -03074355 -12120133 .254 8062 -36600000
MOTHERED] -10163069 .07017502 1.448 1856 12.0666667
FATHERED] .00164437 .04464910 -037 .9715 12.6666667
SIBS | .05916922 .06901801 .857 4162  2.20000000
Regress ; Lhs = wage ; Rhs = X1,X2S $

A S SSSSSSsioniw +

| Ordinary least squares regression |

| WTS=none Number of observs. = 15 |

| Model size Parameters = 7 |

| Degrees of freedom = 8 |

| Fit R-squared = -5161341 |

| Adjusted R-squared = -1532347 |

e —___ +

S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]

Fom o o Fom Fomm—— Fom e +
Constant]| 1.66364000 -55830716 2.980 .0176

EDUC | .01453897 .04424689 -329 7509 12.8666667
EXP | -07103002 .04335571 1.638 1400 2.80000000
ABILITY | .02661537 .08946345 .297 L7737 -36600000
MEDS | -10163069 -07017502 1.448 .1856 -.118424D-14
FEDS | .00164437 .04464910 -037 .9715 .165793D-14
SIBSS | -05916922 -06901801 -857 .4162 -.592119D-16

In the first set of results, the first coefficient vector is

b1 = (X1'MzX1)"X1'M,y and

b, = (X' MXp) X' My

In the second regression, the second set of regressors is My X,, so

b1 = (Xi'My, Xl)_lxl'Mlzy where My, = 1 - (Mlxz)[(Mlxz)'(M1X2)]>1(M1X2)'

Thus, because the “M” matrix is different, the coefficient vector is different. The second set of coefficients
in the second regression is

b, = [(MX2) My(MX)]™ (M Xo)Myy = (X5’ M1 X,) " X,'Myy because M; is idempotent.



Chapter 4

Statistical Properties of the Least
Squares Estimator

Exercises

1. Consider the optimization problem of minimizing the variance of the weighted estimator. If the estimate is
to be unbiased, it must be of the form ¢, , + ¢, 8, where ¢; and ¢, sumto 1. Thus, ¢, =1 - ¢;. The function to
minimize is MincL« = ¢,%v; + (1 - ¢))%,. The necessary condition is oL+/dc; = 2¢v; - 2(1 - c)v, = 0
which implies ¢; = v,/ (v; +v,). A more intuitively appealing form is obtained by dividing numerator and

denominator by v,v, to obtain ¢c; = (1/vq) / [Liv; + 1lv,]. Thus, the weight is proportional to the inverse of the
variance. The estimator with the smaller variance gets the larger weight.

2. First, ﬁ= c'y=c'x+ce. So E[ﬁ] = Bc'x and Var[fs] = o?c’c. Therefore,
MSE[B ] = BYc'x - 1] + o’c’c. To minimize this, we set OMSE[ B J/oc = 2p*[c'x - 1]x + 26%C = 0.

Collecting terms, BYc'x - 1)x = -o%C
Premultiply by x' to obtain B%(c'x - 1)xX'x = -o°X'c

or c'x = BA'x/ (6? + PAX'X).
Then, ¢ = [(-p%/c’)(c'x - D)X,

s0 ¢ = [U(B® + X'X)]X.

Then, B=cy = xy/ (B> + XX).

The expected value of this estimator is
E[B] = BX'x/ (c%B? + X'X)

s0 E[B1-B = B(-o"Ip%) / (5*IB* + X'X)
= -(6%B) | (6*IB? + X'X)
while its variance is Var[x'(xB + &) / (¥ + x'x)] = o™X'x [ (c*/B? + x'x)

The mean squared error is the variance plus the squared bias,
MSE[B] = [6*/B? + a>X'X]/[c%/B? + x'X]*.
The ordinary least squares estimator is, as always, unbiased, and has variance and mean squared error
MSE(b) = o%/x'x.
The ratio is taken by dividing each term in the numerator
MSE[B] (@B (0P IX'X) + a?X X (0% 1 X'X)
2
MSE(b) (0_2 /B2 + X'X)
[2X'X/B% + (XX)J/(c*B? + X'X)?
X'X[c?IB? + X'X]/(c?IB? + X'X)?
X'x/(c’IB? + X'X)
Now, multiply numerator and denominator by p%c? to obtain
MSE[ 8 IMSE[b] = BX'x/c?/[1 + pX'x/c?] = °/[1 + 77
As 10, the ratio goes to one. This would follow from the result that the biased estimator and the unbiased

estimator are converging to the same thing, either as o goes to zero, in which case the MMSE estimator is the
same as OLS, or as x'x grows, in which case both estimators are consistent.

10



3. The OLS estimator fit without a constant termisb = x'y / x’x. Assuming that the constant term is, in fact,
zero, the variance of this estimator is Var[b] = o%x’x. If a constant term is included in the regression, then,

b = =, (% —X)(y,—¥)/ZL(x —Y)z
The appropriate variance is ¢/ = (xi - Y)Z as always. The ratio of these two is
Var[b)Var[b'] = [6%x'x]/ [0/ =0, (% - %) ]
But, 2 (% —X) = xx+nX?
so the ratio is Var[b]/Var[b'] = [Xx+nX/x'x = 1-nX%x'x = 1-{nX [Sx+nX?}<1

It follows that fitting the constant term when it is unnecessary inflates the variance of the least squares
estimator if the mean of the regressor is not zero.

4. We could write the regressionas y; = (a+X) + Bxi + (6-A) = o + Px; + & . Then, we know that
E['] = 0, and that it is independent of x;. Therefore, the second form of the model satisfies all of our
assumptions for the classical regression. Ordinary least squares will give unbiased estimators of o.” and B. As
long as A is not zero, the constant term will differ from .

5. Let the constant term be written as a = Zidiy; = Zidi(a + Bx + &) = aXid; + BZidix; + Zidig;. In order for
a to be unbiased for all samples of x;, we must have X;d; = 1 and Z;dix; = 0. Consider, then, minimizing the
variance of a subject to these two constraints. The Lagrangean is
L. = Var[a] + A(Zid; - 1) + A.Zidix; where Var[a] = =i o%di2.

Now, we minimize this with respect to d;, A;, and A,. The (n+2) necessary conditions are

oL+/od; = 202di + i+ AoX;, OLJON; = Xidi-1, OLJONy = ZidiX;
The first equation implies that di = [-1/(202)]@1 + AoXi).
Therefore, nidi =1 = [/ + (Eix)Ao]
and Zidx = 0 = [FU26I](Eix)h + (Zix)A].
We can solve these two equations for A, and A, by first multiplying both equations by -2 then writing the

A 1
. . n XX M - 262 L 1 n ZiX; —20'2
resulting equations as 21, | = .The solutionis | ; | = ) :
X XX 2 0 2 XX X 0

Note, first, that =;x; = nx . Thus, the determinant of the matrix is nZ;x? - ("X ) = n(Zix? - N X %) = nSy

}\4 > 2 2 _2 2
where S =7, (x, —X)” . The solution is, therefore, [xlj— 1 { i%i nx} { c }

,) nS.|-nx 0 0
or M = (-26%)(Zix?/n)/Sy
Ao = (262X /Sy
Then, di = [Zixizln - Yxi]/SXX

This simplifies if we writeXx? = S, +nX % 50 Zix?/n = Sy/n+X % Then,
di = 1/n + X (X - X)/Sx, or, in a more familiar form,d; = 1/n -X (X - X )/Sy.
This makes the intercept term Zidiy; = (1/n)Zy; - X Zi”:l(xi —7) Y. IS = ¥ -bX which was to be shown.

6. Letq = E[Q]. Then, = o + BP,orP = (-a/B) + (1/B)g.

Using a well known result, for a linear demand curve, marginal revenue is MR = (-a/B) + (2/B)g. The profit
maximizing output is that at which marginal revenue equals marginal cost, or 10. Equating MR to 10 and
solving for q produces g = a/2 + 5, so we require a confidence interval for this combination of the
parameters.

The least squares regression results are Q = 20.7691 - .840583. The estimated covariance matrix

796124  —0.624559
—0.624559 0.0564361
of § is (1/4)7.96124 + 25(.056436) + 5(-.0624559) or 0.278415, so the estimated standard error is 0.5276.

of the coefficients is { } The estimate of g is 6.1816. The estimate of the variance
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The 95% cutoff value for a t distribution with 13 degrees of freedom is 2.161, so the confidence interval is
6.1816 - 2.161(.5276) to 6.1816 + 2.161(.5276) or 5.041 to 7.322.

7. a. The sample means are (1/100) times the elements in the first column of X"X. The sample covariance
matrix for the three regressors is obtained as (1/99)[(X'X) j -100 X X ].

10127 0.069899 0555489
Sample Var[x] = | 0069899 0.755960 0.417778| The simple correlation matrix is
0555489 0417778 0.496969

1 07971 .78043
07971 1 68167
.78043 .68167 1

b. The vector of slopes is (X’X) X'y = [-.4022, 6.123, 5.910, -7.525].
c. For the three short regressions, the coefficient vectors are

(1) one, x4, and x,: [-.223, 2.28, 2.11]

(2) one, x4, and X3 [-.0696, .229, 4.025]

(3) one, x,, and x3: [-.0627,-.0918, 4.358]'
d. The magnification factors are

for x,: [(1/(99(1.01727)) / 1.129])* = .094

for x,: [(1/99(.75596)) / 1.11]* = .109

for xs: [(1/99(.496969))/ 4.292]> = .068.
e. The problem variable appears to be x3 since it has the lowest magnification factor. In fact, all three are
highly intercorrelated.  Although the simple correlations are not excessively high, the three multiple
correlations are .9912 for x; on x, and xs, .9881 for x, on x; and X3, and .9912 for x; on x; and X,.

8. We consider two regressions. In the first, y is regressed on K variables, X. The variance of the least
squares estimator, b = (X'X)X'y, Var[b] = o*(X’X)™. In the second, y is regressed on X and an additional
variable, z. Using results for the partitioned regression, the coefficients on X when y is regressed on X and z

areb, = (X'MZX)'1X’MZy whfre M, =1- z(z'z)‘lz’. The true variance of b is the upper left KxK matrix in
X'X Xz|
Var[b,c] = §°| #x zXx| - But we have already found this above. The submatrix is Var[b,] =

s (X'M,X)™. We can show that the second matrix is larger than the first by showing that its inverse is smaller.
(See (A-120).) Thus, as regards the true variance matrices (Var[b])™ - (Var[b,])* = (U/c)z(z'2)*z’

which is a nonnegative definite matrix. Therefore Var[b]™ is larger than Var[b_]?, which implies that Var[b]
is smaller.

Although the true variance of b is smaller than the true variance of b, it does not follow that the
estimated variance will be. The estimated variances are based on s? not the true 6°. The residual variance
estimator based on the short regression is s> = €’e/(n - K) while that based on the regression which includes z
iss,”> = e,'e,/(n-K-1). The numerator of the second is definitely smaller than the numerator of the first, but
s0 is the denominator. It is uncertain which way the comparison will go. The result is derived in the previous
problem. We can conclude, therefore, that if t ratio on c in the regression which includes z is larger than one
in absolute value, then s,> will be smaller than s°. Thus, in the comparison, Est.Var[b] = s*(X'X)™ is based
on a smaller matrix, but a larger scale factor than Est.Var[b,] = s,2(X'M,X)™. Consequently, it is uncertain
whether the estimated standard errors in the short regression will be smaller than those in the long one. Note
that it is not sufficient merely for the result of the previous problem to hold, since the relative sizes of the
matrices also play a role. But, to take a polar case, suppose z and X were uncorrelated. Then, XNM,X equals
XNX. Then, the estimated variance of b, would be less than that of b without z even though the true variance
is the same (assuming the premise of the previous problem holds). Now, relax this assumption while holding
the t ratio on c constant. The matrix in Var[b_] is now larger, but the leading scalar is now smaller. Which
way the product will go is uncertain.

9. The F ratio is computed as [b’X'Xb/K]/[e'e/(n - K)]. We substitute e = Mg, and
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b=p+ XX)'Xe = (XX)'X'e. Then, F = [&/X(X'X)"X'X(X'X)"X’e/K]/[e 'Mel(n - K)] =
[€'(1 - M)e/K]/[e'Me/(n - K)].

The exact expectation of F can be found as follows: F = [(n-K)/K][¢'(] - M)e)/[¢'Mg]. So, its exact
expected value is (n-K)/K times the expected value of the ratio. To find that, we note, first, that Mg and
(I - M)e are independent because M(I - M) = 0. Thus, E{[¢'(l - M)e]/[e'Me]} = E[¢'(I- M)e]xE{1/[¢'Me]}.
The first of these was obtained above, E[¢/(I - M)e] = Ko’ The second is the expected value of the
reciprocal of a chi-squared variable. The exact result for the reciprocal of a chi-squared variable is
E[1/%%(n-K)] = 1/(n - K - 2). Combining terms, the exact expectation is E[F] = (n-K)/(n - K - 2). Notice
that the mean does not involve the numerator degrees of freedom.

10. Wewrite b = B + (X'X)™X'g,sob'b = B'B + &X(X'X)'(X'X) X'e + 2B'(X'X)"X’s. The expected
value of the last term is zero, and the first is nonstochastic. To find the expectation of the second term, use the
trace, and permute &'X inside the trace operator. Thus,

E[BB] = BB+ E[X(X'X)(X'X)"X’€]
+ E[tr{e’X(X'X) (X'X) " X'e}]
E[tr{ (X' X) X"’ X(X'X)™}]
tr[E{(XX) X "ee’ X (X'X) "}
tr[ (X X)X E[eg’]IX(X"X) Y]
tr[(X" X)X (G® )X (X' X) ™M
SAr[ (X X) XX (X X) Y]
SAr[(X'X)™"]

= BB + o (1)

The trace of the inverse equals the sum of the characteristic roots of the inverse, which are the reciprocals of
the characteristic roots of X’'X.

p'p
p'B
p'p
p'B
p'p
p'B
p'p

+ + 4+ + + +

11. The Fratio is computed as [b"X"Xb/K]/[e’e/(n - K)]. We substitute e = M, and

b=p+ (XX)Xe = (XX)™X'e. Then, F = [&/X(X"X)"X'X(X'X)X"e/K]/[e 'Me/(n - K)] =

[€'(1 - M)e/K]/[e'Me/(n - K)]. The denominator converges to c* as we have seen before. The numerator is an
idempotent quadratic form in a normal vector. The trace of (I - M) is K regardless of the sample size, so the
numerator is always distributed as o times a chi-squared variable with K degrees of freedom. Therefore, the
numerator of F does not converge to a constant, it converges to o%/K times a chi-squared variable with K
degrees of freedom. Since the denominator of F converges to a constant, o, the statistic converges to a
random variable, (1/K) times a chi-squared variable with K degrees of freedom.

12. Wecanwriteejas e = yi-b'x = (B'xi+&)-b'% = g + (b-B)X
We know that plim b = B, and x; is unchanged as n increases, so as n—oo, €; is arbitrarily close to &;.

13. Theestimatoris y = (1/n)Z;y; = (Un)Zi(u+¢g) = p + (Un)Zig. Then, E[ Y] = p+ (UN)ZiE[g] = p

and Var[y ]= (1/nd)z; % Covleig] &%/n. Since the mean equals p and the variance vanishes as n—oo, ¥ is
mean square consistent. In addition, since y is a linear combination of normally distributed variables, y has a
normal distribution with the mean and variance given above in every sample. Suppose that g were not
normally distributed. Then, Jn (y-n = Jn )(Ziei) satisfies the requirements for the central limit

theorem. Thus, the asymptotic normal distribution applies whether or not the disturbances have a normal
distribution.

For the alternative estimator, 0 = XZ;wiy;, S0 E[0] = ZiwiE[y]] = Ziwip = pXiw; = pand Var[(i ]=
nwle? = o’Z;wi. The sum of squares of the weights is Zw? = % i/[%ii]* = [n(n+1)(2n+1)/6)/[n(n+1)/2]* =
[2(n? + 3n/2 + 1/2)J/[1.5n(n* + 2n + 1)]. As n—, the fraction will be dominated by the term (1/n) and will
tend to zero. This establishes the consistency of this estimator. The last expression also provides the
asymptotic variance. The large sample variance can be found as Asy.Var[pn] = (1/n)lim HOOVar[\/F (p-

u)]. For the estimator above, we can use Asy.Var[i] = (A/n)lim ,.nVar[i-p] = @/n)lim ,..0°[2(n? +
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3n/2 + 1/2))/[1.5(n? + 2n + 1)] = 1.3333c°. Notice that this is unambiguously larger than the variance of the
sample mean, which is the ordinary least squares estimator.

14. To obtain the asymptotic distribution, write the result already in hand as b = (B + Q) + (X'X) X' - Q
'g. We have established that plim b = B + Q'y. For convenience, let @ = B denote p + Q™y = plim b. Write
the preceding in the form b - 8 = (X'X/n)*(X’e/n) - Q. Since plim(X'X/n) = Q, the large sample behavior
of the right hand side is the same as that of plim (b - 8) = Qplim(X’e/n) - Q. That is, we may replace
(X"X/n) with Q in our derivation. Then, we seek the asymptotic distribution of Jn (b - 6) which is the same
as that of

Vn [Qplim(X’e/M) - Q™1 = Q' Vn (1/n)=", (x&, - y). From this point, the derivation is exactly the same

as that when y = 0, so there is no need to redevelop the result. We may proceed directly to the same
asymptotic distribution we obtained before. The only difference is that the least squares estimator estimates 0,
not .

15. a. To solve this, we will use an extension of Exercise 6 in Chapter 3 (adding one row of data), and the
necessary matrix result, (A-66b) in which B will be X, and C will be 1. Bypassing the matrix algebra,
which will be essentially identical to the earlier exercise, we have

bc,m = bc + [I + Xm(xc’Xc)_lxm]_l(xc’xc)-lxm’(ym - mec)
But, in this case, yn, is precisely X,b., so the ending vector is zero. Thus, the coefficient vector is the
same. b. The model applies to the first n. observations, so b, is the least squares estimator for those
observations. Yes, it is unbiased.
c. The residuals at the second step are e and (X,b. — XiWbe) = (&, 0")’. Thus, the sum of squares is the
same at both steps.
d. The numerator of s? is the same in both cases, however, for the second one, the degrees of freedom is
larger. The first is unbiased, so the second one must be biased downward.

Applications

? Chapter 4 Application 1

Read $
Year GasExp Pop Gasp Income PNC PUC PPT PD PN PS
1953 7.4 159565 16.668 8883 47.2 26.7 16.8 37.7 29.7 19.4

2004 224.5 293951 123.901 27113133.9 133.3 209.1 114.8 172.2 222.8

Sample ; 1 - 52 %

Create ; G = 1000000*gasexp/(gasp*pop)$

Create ; t = year - 1952 $

Namelist ; X = one,income, gasp,pnc,puc,ppt,pd,pn,ps,t$

4

? a. Basic regression

ﬁegress ; Lhs =g ; Rhs = X $

e +
| Ordinary least squares regression |
| LHS=G Mean = 4.935619 |
| Standard deviation = 1.059105 |
| WTS=none Number of observs. = 52 |
| Model size Parameters = 10 |
| Degrees of freedom = 42 |
| Residuals Sum of squares = -4985489 |
| Standard error of e = -1089505 |
| Fit R-squared = .9912852 |
| Adjusted R-squared = -9894177 |
| Model test F[L 9, 421 (prob) = 530.82 (.0000) |
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Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

R, o o o o o +
Constant 1.10587817 .56937860 1.942 .0588
INCOME .00021575 .517619D-04 4.168 .0001 16805.0577
GASP -.01108386 .00397812 -2.786 .0080 51.3429615
PNC | .00057735 .01284414 .045 .9644 87.5673077
PUC -.00587463 .00487032 -1.206 .2345 77 .8000000
PPT .00690726 .00483613 1.428 .1606 89.3903846
PD .00122888 .01188175 .103 .9181 78.2692308
PN | .01269051 .01259799 1.007 .3195 83.5980769
PS -.02802781 .00799625 -3.505 .0011 89.7769231
T .07250369 .01418280 5.112 .0000 26.5000000

o)

2 b. Hypothesis that b(NC) = b(UC) $

Calc ; list ; (b(4)-b(5))/sqgr(varb(4,4)+varb(5,5)-2*varb(4,5)) $

+—— +
| Listed Calculator Results |
e +

Result = .494883

2 c. Elasticities. In each case, elasticity = b*xbar/ybar
Calc ; g2004 = g(52)%

Calc ; 12004 = income(52)%

Calc ; pg2004 = gasp(52)$

Calc ; ppt2004 = ppt(52)$

Calc ; list ; ei = b(2)*i12004/g2004
; ep = b(3)*pg2004/g2004

S
| Listed Calculator Results |
+—— +
El = -948988

EP = -.222792

EPPT = .234311

? d. Log regression

Create ; logg = log(g) ; logpg = log(gasp) ; logi = log(income)

; logpnc=log(pnc) ; logpuc = log(puc) ; logppt = log(ppt)

; logpd = log(pd) ; logpn = log(pn) ; logps = log(ps) $
Namelist ; LogX = one,logi, logpg, logpnc, logpuc, logppt, logpd, logpn, logps, t$
Regress ; Ihs = logg ; rhs = logx

e —___ +

| Ordinary least squares regression |
LHS=LOGG Mean 1.570475
Standard deviation 2388115
WTS=none Number of observs. 52

| Model size Parameters 10 |
Degrees of freedom 42

Residuals Sum of squares .3812817E-01
Standard error of e -3012994E-01
| Fit R-squared -9868911 |
Adjusted R-squared -9840821

Model test F[ 9, 427 (prob) 351.33 (-0000)

|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +

LOGPPT -01926966 -13644891 -141 -8884  4.14194132

Constant]| -7.28719016 2.52056245 -2.891 .0061

LOGI | -99299135 -25037574 3.966 -0003 9.67214751

LOGPG | .06051812 -05401018 1.120 .2689  3.72930296

LOGPNC | -.15471632 .26696298 -.580 .5653  4.38036654

LOGPUC | -.48909058 .08519952 -5.741 .0000 4.10544881
|



LOGPD | 1.73205775 .25988611 6.665 .0000 4.23906603
LOGPN | -.72953933 .26506853 -2.752 .0087 4.23689080
LOGPS | -.86798166 -35291106 -2.459 -0181 4.17535768
T | -03797198 .00751371 5.054 -0000 26.5000000

)

? e. Correlations of Price Variables

)

Namelist ; Prices = pnc,puc,ppt,pd,pn,ps$
Matrix ; list ; xcor(prices) $
Correlation Matrix for Listed Variables

PNC PUC PPT PD PN PS

PNC 1.00000 -99387 -98074 -99327 -98853 -97849
PUC .99387 1.00000 .98242 -98783 .98220 -97685
PPT -98074 -98242 1.00000 -95847 -98986 -99751
PD .99327 -98783 .95847 1.00000 .97734 -95633
PN -98853 -98220 -98986 -97734 1.00000 -99358
PS .97849 .97685 .99751 -95633 .99358 1.00000

o)

? f. Renormalizations of price variables

o)

/*

In the linear case, the coefficients would be divided by the same
scale factor, so that x*b would be unchanged, where x is a variable
and b is the coefficient. In the loglinear case, since log(k*x)=
log(k)+log(x), the renomalization would simply affect the constant
term. The price coefficients woulde be unchanged.

*/

? g. Oaxaca decomposition

Dates ; 1953 $
Period ; 1953-1973 $
Matrix ; xb0 = Mean(logx)$

Regress ; lhs = logg ; rhs = logx $

Matrix ; bO = b ; vO = varb $

Calc ; yb0O = ybar $

Period ; 1974-2004 $

Matrix ; xbl = mean(logx) $

Regress ; lhs = logg ; rhs = logx $

Matrix ; bl =b ; vl = varb $

Calc ; ybl = ybar $

? Now the decomposition

Calc ; list ; dybar = ybl - yb0O $ Total

Calc ; list ; dy_dx bl"xbl - bl1"xb0 $ Change due to change in X
Calc ; list ; dy db = b1"xb0 - b0"xb0 $

Matrix ; vdb = vi+v0 ; vdb = xbO"[vdb]xb0 $

Calc ; sdb = sqr(vdb)

list ; lower dy_db - 1.96*sqr(vdb)

; upper = dy_db + 1.96*sqr(vdb) $

T —— +

| Listed Calculator Results |
e +

DYBAR = .395377

DY_DX = .122745

DY_DB = .272631

LOWER = .184844

UPPER = .360419



)

~J

Chapter 4 Application 2

o)

Create ; Ic log(cost/pf) ; Ipl=log(pl/pf) ; Ipk=log(pk/pf)$
Create ; Iq = log(q) ; lqq = .5*1g*Iq $

Namelist ; x = one,lq,lqq, Ipk,Ipl $

? a. Cost function

Regress; lhs = Ic ; rhs = x ; printvc $

e +
| Ordinary least squares regression |
| LHS=LC Mean = -.3195570 |
| Standard deviation = 1.542364 |
| WTS=none Number of observs. = 158 |
| Model size Parameters = 5 |
| Degrees of freedom = 153 |
| Residuals Sum of squares = 2.904896 |
| Standard error of e = -1377906 |
| Fit R-squared = .9922222 |
| Adjusted R-squared = -9920189 |
| Model test F[L 4, 153] (prob) =4879.59 (.0000) |
e +
Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o ——— T . o o ——— B T - +
Constant]| -6.81816332 .25243920  -27.009 -0000
LQ | .40274543 .03148312 12.792 .0000 8.26548908
LQQ | .06089514 .00432530 14.079 .0000 35.7912728
LPK | -16203385 -04040556 4.010 .0001 -85978893
LPL | .15244470 .04659735 3.272 .0013 5.58162250
1 2 3 4 5
e ——————————————_——_—_—_—_—_——_———_——_———E————————————————————————
1] -06373 -.00238 -00031 -00399 -.01047
2] -.00238 -00099 -.00013 .00010 -.00020
3] -00031 -.00013 .1870819D-04 -.1493338D-04 .2453652D-04
4] -00399 .00010 -.1493338D-04 -00163 -.00102
5] -.01047 -.00020 .2453652D-04 -.00102 .00217
? b. capital price coefficient
Wald ; fnl = 1 - b_Ipk - b_Ipl $
Sy +
| WALD procedure. Estimates and standard errors |
| for nonlinear functions and joint test of |
| nonlinear restrictions. |
| Wald Statistic = 266.36109 |
| Prob. from Chi-squared[ 1] = -00000 |
e +
o ——— T . o o ——— +
|variable| Coefficient | Standard Error |b/St._Er.|P[]|Z]>z]1]
Fom e - o o Fom - Fom—— - +
Fnen(1) | .68552145 .04200352 16.321 -0000
? c. efficient scale
Wald ; fnl = exp((1-b_Iq)/b_1qq) $
.. +
| WALD procedure. Estimates and standard errors |
| for nonlinear functions and joint test of |
| nonlinear restrictions. |
| wald Statistic = 21.74979 |
| Prob. from Chi-squared[ 1] = .00000 |
+—— +
o o R Fomm o +

|Variable] Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]]
Fom o o Fom Fomm—— +

Fncn(l) | 18177 .1045 3897.59890 4.664 -0000
Calc ; gstar = waldfns(l) ; vgstar = varwald(l,1)
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list ; lower
> upper

gstar - 1.96*sqr(vqgstar)
gstar + 1.96*sgr(vgstar) $

é d. Raw data

+—— +

| Listed Calculator Results |

e +
LOWER 10537 .810653

25816.398344

Create ; output = q $

§2rt ; Ihs = output $

The estimated efficient scale is 18177. There are 25 firms in the sample that have output larger than this.
As noted in the problem, many of the largest firms in the sample are aggregates of smaller ones, so it is
difficult to draw a conclusion here. However, some of the largest firms (Southern, American Electric
power) are singly counted, and are much larger than this scale. The important point is that much of the
output in the sample is produced by firms that are smaller than this efficient scale. There are unexploited

economies of scale in this industry.
*/
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Chapter 5

Inference and Prediction

Exercises
1. The estimated covariance matrix for the least squares estimator is
20 3900/29 O 0 69 0 0
Gyt = 3900 0 80 -10| = |0 40 —051| wheres® = 520/(29-3) = 20. Then,
0 -10 80 0 -051 .256

the test may be based on t = (4 + .9 - 1)/[.410 + .256 - 2(.051)]*2 = .399. This is smaller than the critical
value of 2.056, so we would not reject the hypothesis.

2. In order to compute the regression, we must recover the original sums of squares and cross products for y.
These areX’y = X'Xb = [116, 29, 76]’. The total sum of squares is found using R =1 - e’ely'MPy, so
y'M% = 520/ (52/60) = 600. The meansare x1= 0, x2= 0, y= 4,50,y'y = 600 +29(4?) = 1064. The

slope in the regression of y on x, alone is b, = 76/80, so the regression sum of squares is b,%(80) = 72.2, and
the residual sum of squares is 600 - 72.2 = 527.8. The test based on the residual sum of squares is F =
[(527.8 - 520)/1]/[520/26] = .390. In the regression of the previous problem, the t-ratio for testing the same
hypothesis would be t =.4/(.410)“ = .624 which is the square root of .39.

3. For the current problem, R = [0,1] where 1 is the last K, columns. Therefore, ROX'X)'RN is the lower
right K,xK, block of (X'X)™. As we have seen before, this is (X,’M.X2). Also, (X'X)™R’ is the last K,

- (X4 X)X X (X5 My Xp)
(X3'M;X5) ™
g = (Oby + Iby) - 0 = h,. Therefore, the constrained estimator is
b = m ] {-(xl'xl)lxl'xz(xz'Mlxz)l
b, (X2'M;X;) ™
coefficients in the regression of y on both X; and X, Collecting terms, this produces b. =

columns of (X’X)™. These are (X'X)'R’ = { Finally, since g = 0, Rb -

} (Xa'M1X,)b,, where by and b, are the multiple regression

b _ 1 -1 1
{bl} - { (% Xl)b X1 Xzbz] But, we have from Section 6.3.4 that b; = (X'X1)™Xy'y - (X¢'X4)
2 2

1 -1 '
(X' X)X y} which was to be shown.

X ,"X,h, so the preceding reduces to b« = {

If, instead, the restriction is B, = B,” then the preceding is changed by replacing Rp - q = 0 with
RB-B =0. Thus, Rb-q = b,-B,". Then, the constrained estimator is

be = b1 i |:— (Xl'Xl)lxllxz(XZ'M1X2)l:| (XZ’M1X2)(b2' [520)

b2 (X2'M;Xp) ™
or
by = by | + {(Xfxl)lexz(bz—ﬁg)}
0
b, (B2 - by)

Using the result of the previous paragraph, we can rewrite the first part as
by = (X¢'X1) X1y - (Xo'X0) X' XoB2’ = (Xo'Xe) X' (y - X))
which was to be shown.
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4. By factoring the result in (5-14), we obtain b« = [l - CR]b + w where C = (X’X)'R'[R(X'X)'R’]* and
w = Cqg. The covariance matrix of the least squares estimator is
Var[b] = [l - CR]6*(X'X)™[I - CRY'
= ’(X'X)? + *CR(X'X)'R'C’ - s?CR(X'X)* - 6*(X’X)'R'C".
By multiplying it out, we find that CR(X'X)™ = (X’X)'R'(R(X'X)'R)'R(X'X)* = CR(X'X)'R'C’
so Var[bs] = c*(X'X)* - s?CR(X'X)'R'C’ = c*(X'X)™ - s2(X'X) ' R[R(X'X) ' RTR(X’'X)*
This may also be written as Var[b.] = c?(X’X){I - R"(R(X'X)*R")*R(X'X)}
= (X' X)H[*(X'X) T - R[RAX'X) 'R R} (X'X)?
Since Var[Rb] = Rc?(X'X)'R’ this is the answer we seek.

5. The variance of the restricted least squares estimator is given in the second equation in the previous
exercise. We know that this matrix is positive definite, since it is derived in the form B'c*(X’X)'B’, and
o (X'X) " is positive definite. Therefore, it remains to show only that the matrix subtracted from Var[b] to
obtain Var[b.] is positive definite. Consider, then, a quadratic form in Var[b]
z'Var[b]z = z'Var[b]z - 6’2’ (X’X) (R’ [R(X’X)'RT'R)(X"X)*z
=z'Var[b]z - W[R(X'X)'R'T'w where w = cR(X'X)"z.

It remains to show, therefore, that the inverse matrix in brackets is positive definite. This is obvious since its
inverse is positive definite. This shows that every quadratic form in Var[b.] is less than a quadratic form in
Var[b] in the same vector.

6. The result follows immediately from the result which precedes (5-19). Since the sum of squared residuals
must be at least as large, the coefficient of determination, COD = 1 - sum of squares / % (y; - ¥ )Y

must be no larger.

7. For convenience, let F = [R(X'X)"R'T". Then, A = F(Rb - q) and the variance of the vector of Lagrange
multipliers is Var[A] = FRo*(X’X)'R'F = o’F. The estimated variance is obtained by replacing o with s
Therefore, the chi-squared statistic is
% = (Rb-q)'F(sF)'F(Rb-q) = (Rb-q) [(L5F](Rb-q)

= (Rb - q) [RX'X)'R'T(Rb - g)/[e’e/(n - K)]
This is exactly J times the F statistic defined in (5-19) and (5-20). Finally, J times the F statistic in (5-20)
equals the expression given above.

8. We use (5-19) to find the new sum of squares. The change in the sum of squares is

ese.-e'e = (Rb-q) [RX'X)'RTYRb - q)
For this problem, (Rb-q) = b, +bz-1 = .3. The matrix inside the brackets is the sum of the 4 elements in
the lower right block of (X'X)™. These are given in Exercise 1, multiplied by s* = 20. Therefore, the required
sum is [R(X'X)'R’] = (1/20)(.410 + .256 - 2(.051)) = .028. Then, the change in the sum of squares is
3%/.028 = 3.215. Thus, ee = 520, e+'e~ = 523.215, and the chi-squared statistic is 26[523.215/520 - 1] =
.16. This is quite small, and would not lead to rejection of the hypothesis. Note that for a single restriction,
the Lagrange multiplier statistic is equal to the F statistic which equals, in turn, the square of the t statistic used
to test the restriction. Thus, we could have obtained this quantity by squaring the .399 found in the first
problem (apart from some rounding error).

9. First, use (5-19) to write e/e. = ee + (Rb - q)'[R(X’X)"'R’T*(Rb - g). Now, the result that E[e’e] = (n -
K)o? obtained in Chapter 6 must hold here, so E[e-'e.] = (n - K)o® + E[(Rb - q)'[R(X'X)'R'T*(Rb - q)].
Now,b = B + (X'X)'X’s, so Rb-q = RB-q + R(X'X)'X's. But, RB-q = 0, so under the
hypothesis, Rb - q = R(X'X)*X’e. Insert this in the result above to obtain
E[eve] = (-K)o? + E[e’X(X'X) 'R [ROXX)'RT'R(X'X)*X'g]. The quantity in square brackets is a scalar,
so it is equal to its trace. Permute &’X(X'X) 'R’ in the trace to obtain

E[eses] = (n-K)o® + E[tr{[ROXX)'RTRX'X) " X'ee’X(X'X)'R']}
We may now carry the expectation inside the trace and use E[ee'] = ol to obtain

E[eses] = (n- K)o? + tr{[ROXX) ' RTRXX) X' GPIX(X'X)'R]}
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Carry the o° outside the trace operator, and after cancellation of the products of matrices times their inverses,
we obtain E[eves] = (n-K)o? + c?tr[l)] = (n-K +J)o”

10. Show that in the multiple regression of y on a constant, x;, and x,, while imposing the restriction
B; + B, = 1 leads to the regression of y - x; on a constant and X, - X;.

For convenience, we put the constant term last instead of first in the parameter vector. The constraint
iSRb-q=0where R = [110] so R, = [1] andR, = [1,0]. Then, B, =[1]*[1-B2] = 1 - B.. Thus, y
= (1-B)X tPxataiteor y-x; = BalXp-X) +ai+e.

Applications

o)

2 Application 5.1 Wage Equation

Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_var.dat";
nvar=5;nobs=17919%

? This creates the group count variable.

Regress ; Lhs = one ; Rhs = one ; Str = ID ; Panel $

? This READ merges the smaller file into the larger one.
Read;File="F:\Text-Revision\edition6\Solutions-and-Applications\time_invar.dat";
names=ability,med,fed,bh,sibs? ; group=_groupti ;nvar=5;nobs=2178%
Names=id, educ, lwage, pexp,t;

namelist ; x1=one,educ,pexp,ability$

namelist ; x2=med,fed,bh,sibs$

? a. Long regression

4

fegress ; Ths= lwage ; rhs = x1,x2 $

e +
Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
Standard deviation = -5282364
| WTS=none Number of observs. = 17919 |
Model size Parameters = 8
Degrees of freedom = 17911
Residuals Sum of squares = 4119.734
| Standard error of e = -4795950 |
Fit R-squared = -1760081
Adjusted R-squared = .1756861
Model test F[ 7, 17911] (prob) = 546.55 (.0000)

e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -98965433 -03389449 29.198 -0000
EDUC | -07118866 -00225722 31.538 -0000 12.6760422
PEXP | .03951038 .00089858 43.970 .0000 8.36268765
ABILITY | .07736880 -00493359 15.682 .0000 -05237402
MED | .709887D-04 -00169543 .042 -9666 11.4719013
FED | -00531681 -00133795 3.974 -0001 11.7092472
BH | -.05286954 .00999042 -5.292 .0000 -15385903
SIBS | .00487138 .00179116 2.720 .0065  3.15620291

é b. F test

FSTAT = 14.025040
Calc ; rl1 = rsgrd ; dfl=n-kreg$
Matrix ; bl = b ; vl = varb $
Matrix ; bl =b1(5:8) ; vl=varb(5:8,5:8)%
Regress ; Ihs = lwage ; rhs = x1 $
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Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
| Standard deviation = -5282364 |
WTS=none Number of observs. = 17919
Model size Parameters = 4
Degrees of freedom = 17915
| Residuals Sum of squares = 4132.637 |
Standard error of e = .4802919
Fit R-squared = .1734272
Adjusted R-squared = .1732888

| Model test F[ 3, 17915] (prob) =1252.94 (.0000) |
e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
o Sy Ry Fomm o o +
Constant] 1.02722913 -03004146 34.194 -0000
EDUC | .07376210 .00221425 33.312 .0000 12.6760422
PEXP | .03948955 .00089835 43.958 .0000 8.36268765
ABILITY | .08289072 -00459996 18.020 -0000 .05237402

? c. F test for hypothesis that coefficients on X2 are zero

FSTAT = 14.025040

? c. Wald test for hypothesis that coefficients on X2 are zero

Matrix ; List ; Wald = bl <vi>bl $
Matrix WALD has 1 rows and 1 columns.

1] 56.10016
Note Wald = 4*F, as expected.

Application 5.2 Translog Cost Function

NN ) N

First prepare the data

?

Create ; Ipk=log(pk);Ipl=log(pl);Ipf=log(pf)$

create ; Ipk2=_5*1pk"2 ; Ipl2=_5*Ipl™2 ; Ipf2=_5*1pf 2%
Create ; Ipkf=Ipk*Ipf ; Iplf=Ipl*Ipf ; Ipkl=Ipk*Ipl $
Create ; Ig = log(q) ; 192 = .5*Ig™"2 $

Create ; Igk=Ilg*Ipk ; Iql=1g*Ipl ; Ilgf=Ig*lpf $

Create ; Ic = log(cost) $

Create ; Icpf = log(cost/pf) $

Create ; Ipkpf=log(pk/pf) ; Iplpf=log(pl/pf) $

Create ; Ipkpf2=.5*1pkpf~2 ; Iplpf2=_5*Iplpf*2 ; Iplfpkf=Iplpf*lpkpf $
Create ; lglpkf=1g*lpkpf ; Iglplf=1g*Iplf $

é a. Beta is a,b,dk,dl,df,pkk,pll,pff,pkl,pkf,plf,c,tgk,tql,tgf

r
0,0,1,1,1,0,0,0,0,0,0,0,0,0,0 1
o0,0,0,0,0,1,0,0,1,1,0,0,0,0,0 0

R = o0,0,0,0,0,0,1,0,1,0,1,0,0,0,0 g =0
0,0,0,0,0,0,0,1,0,1,1,0,0,0,0 0
o0,0,0,0,0,0,0,0,0,0,0,0,1,1,1 0

o)

? b. Testing the theory

Namelist ; Xl=one, Iq, Ipk, Ipl,IpF,Ipk2, 1pl2, IpF2, Ipkl, Ipkf,Iplf,1g92,1gk, 1q.- -.
Namelist ; XO=one, lq, Ipkf, Iplf, Ipkpf2, Iplpf2, Iplfpkf, 192, Iglpkf, Iqlplf$
Regress ; lhs = Ic ; rhs=x0 $



Ordinary least squares regression
LHS=LC Mean = 3.071619
| Standard deviation = 1.542734 |
WTS=none Number of observs. = 158
Model size Parameters = 10
Degrees of freedom = 148
| Residuals Sum of squares = 2.634416 |
Standard error of e = -1334170
Fit R-squared = .9929498
Adjusted R-squared = .9925211
| Model test F[L 9, 1481 (prob) =2316.03 (-.0000) |
R +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
Fomm o o Fomm Fomm—— - Fommm +
Constant -1.13340208 1.04296294 -1.087 2789
LQ .02244828 .12717485 177 .8601  8.26548908
LPKF -.02309567 .14153592 -.163 8706 14.4192992
LPLF | -.01690697 -09185395 -.184 8542  30.4387314
LPKPF2 -.04730093 .21017152 -.225 .8222 .42211776
LPLPF2 -.03419034 .06850142 -.499 6184  15.6173009
LPLFPKF -.00741233 .11649585 -.064 9494  4.84868706
LQ2 | -05544306 -00446607 12.414 0000 35.7912728
LQLPKF -03562155 -02862683 1.244 2153  7.15696461
LQLPLF -01279036 -00375187 3.409 0008 251.570118
Calc ; ee0 = sumsqdev $
Regress ; lhs = Icpf ; rhs = x1 $
R +
Ordinary least squares regression
LHS=LCPF Mean = -.3195570
| Standard deviation = 1.542364 |
WTS=none Number of observs. = 158
Model size Parameters = 15
Degrees of freedom = 143
| Residuals Sum of squares = 2.464348 |
Standard error of e = -1312753
Fit R-squared = .9934018
Adjusted R-squared = .9927558
| Model test F[ 14, 143] (prob) =1537.82 (.0000) |
R +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
Fomm o o Fomm Fomm—— - Fommm +
Constant -76.2592615 38.2800363 -1.992 .0483
LQ -1.08042535 .37554512 -2.877 .0046  8.26548908
LPK 6.38079702 4.52920686 1.409 .1611  4.25096457
LPL | 14.7182926 7.08482345 2.077 .0395 8.97279814
LPF -1.89473291 2.84231282 -.667 5061 3.39117564
LPK2 -.32741427 -44070869 -.743 .4587  9.05539681
LPL2 -1.53852735 .69240298 -2.222 .0279  40.2700121
LPF2 | -.07350556 -18203881 -.404 .6870 5.78602018
LPKL -.57205049 -37189026 -1.538 1262  38.1346773
LPKF -.02402470 .24632928 -.098 9224  14.4192992
LPLF .16228289 .27007181 .601 -5489  30.4387314
LQ2 | -05297849 -00471336 11.240 0000 35.7912728
LQK -04014440 -02979137 1.348 1799 35.1677247
LQL -13104059 .03828401 3.423 0008  74.2063474
LQF .05865220 .02554928 2.296 0232 28.0107601
Calc ; eel = sumsqdev $
Calc ; list ; Fstat = ((ee0 - eel)/5)/(eel/(158-15))%
e +
FSTAT = 1.973714
--> Calc ; list ; ftb(.95,5,143)%
R +
Result = 2.277490

The F statistic is small; the theory is not rejected.
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)

? c. Testing homotheticity
e +
Ordinary least squares regression
LHS=LCPF Mean = -.3195570
| Standard deviation = 1.542364 |
WTS=none Number of observs. = 158
Model size Parameters = 10
Degrees of freedom = 148
| Residuals Sum of squares = 2.634223 |
Standard error of e = -1334121
Fit R-squared = .9929469
Adjusted R-squared = -9925180

| Model test F[L 9, 1481 (prob) =2315.08 (-.0000) |
e e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
Fomm o o Fomm Fomm—— - Fommm +
Constant -2.78239562 1.04292476 -2.668 -0085
LQ -01362521 .12717020 -107 .9148  8.26548908
LPKF -.06044098 .14153074 -.427 .6700  14.4192992
LPLF | -.07639000 -09185059 -.832 -4069 30.4387314
LPKPF2 -.10507269 .21016383 -.500 .6178 .42211776
LPLPF2 -.00146323 -06849891 -.021 -.9830 15.6173009
LPLFPKF .01806822 .11649158 -155 .8770 4.84868706
LQ2 | -05565578 -00446590 12.462 -0000 35.7912728
LQLPKF -03824257 -02862578 1.336 .1836  7.15696461
LQLPLF -01296202 -00375173 3.455 .0007 251.570118
Regress ; lhs = lIcpf ; Rhs = x0 ; cls:b(9)=0,b(10)=0%
R +
Linearly restricted regression
Ordinary least squares regression
LHS=LCPF Mean = -.3195570
| Standard deviation = 1.542364 |
WTS=none Number of observs. = 158
Model size Parameters = 8
Degrees of freedom = 150
| Residuals Sum of squares = 2.896172 |
Standard error of e = -1389526
Fit R-squared = .9922456
Adjusted R-squared = .9918837
| Model test F[ 7, 150] (prob) =2741.96 (-.0000) |
Restrictns. F[ 2, 1481 (prob) = 7.36 (-0009)

Not using OLS or no constant. Rsqd & F may be < O.
Note, with restrictions imposed, Rsqd may be < O.

e +

o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]

Fom e - o o Fom - Fom—— - Fom e — +
Constant] -6.20547247 -37175165 -16.693 -0000

LQ | -40111764 -03208201 12.503 -0000 8.26548908
LPKF | -.05918207 -14502101 -.408 .6838  14.4192992
LPLF | .03234530 .08668866 .373 .7096  30.4387314
LPKPF2 | -.20340518 -21249945 -.957 -3400 42211776
LPLPF2 | -.00516132 -06888408 -.075 -9404 15.6173009
LPLFPKF | -08684971 -10534811 -824 -4110 4.84868706
LQ2 | .06103878 .00440807 13.847 .0000 35.7912728
LQLPKF | -.138778D-16 -517639D-09 -000 1.0000 7.15696461
LQLPLF | -000000 -915064D-10 .000 1.0000 251.570118

Calc ; list ; ftb(.95,2,148)%

+—— +

Result = 3.057197

The F statistic of 7.36 is larger than the critical value of 3.057. The
hypothesis is rejected.



)

? d. Testing generalized Cobb-Douglas against full translog.
Regress ; lhs = Icpf ; rhs = x0 ;cls:b(5)=0,b(6)=0,b(7)=0,b(9)=0,b(10)=0%
e +
| Linearly restricted regression |
| Ordinary least squares regression |
LHS=LCPF Mean = -.3195570
Standard deviation = 1.542364
WTS=none Number of observs. = 158
| Model size Parameters = 5 |
Degrees of freedom = 153
Residuals Sum of squares = 3.191949
Standard error of e = -1444383
| Fit R-squared = -9914536 |
Adjusted R-squared = -9912302
Model test F[ 4, 153] (prob) =4437.33 (.0000)
Restrictns. F[ 5, 1481 (prob) = 6.27 (-0000)

| Not using OLS or no constant. Rsqd & F may be < 0. |
| Note, with restrictions imposed, Rsqd may be < 0. |

e +
Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o ——— T . o o ——— B T - +
Constant -5.07718678 .18072495  -28.093 -0000
LQ .41724916 .03285950 12.698 -.0000 8.26548908
LPKF | -00903097 -01466874 .616 5391  14.4192992
LPLF -.03131901 -00770196 -4.066 .0001 30.4387314
LPKPF2 -.582867D-15 -127559D-07 -000 1.0000 .42211776
LPLPF2 -.328730D-15 .986857D-08 -000 1.0000 15.6173009
LPLFPKF | .461436D-15 -201473D-07 .000 1.0000 4.84868706
LQ2 -05956626 -00452575 13.162 .0000 35.7912728
LQLPKF -.555112D-16 -538074D-09 .000 1.0000 7.15696461
LQLPLF -.693889D-17 .223074D-09 .000 1.0000 251.570118
Calc ; list ; ftb(.95,5,148)%
e +
| Listed Calculator Results |
e +
Result = 2.275319
The F statistic of 6.27 is larger than the critical value of 2.275. The
hypothesis is rejected.
? e. Testing Cobb-Douglas against full translog.
Matrix ; b2=b(5:10) ; v2=varb(5:10,5:10) $
Matrix ; list ; Fcd = 1/6 * b2"<v2>b2 $
Matrix FCD has 1 rows and 1 columns.
1
e
1] 28.87144
Calc ; list ; ftb(.95,6,148)%
+—— +
| Listed Calculator Results |
e +
Result = 2.160352
The F statistic of 28.871 is larger than the critical value of 2.16. The

hypothesis is rejected.

o)

? f. Testing generalized Cobb-Douglas against homothetic translog.

ﬁegress ;
: cls:b(5)=0,b(6)=0,b(7)=0$

| Linearly restricted regression |

Lhs = lcpf ; rhs = one,Iq, Ipkf, Iplf, Ipkpf2, Iplpf2, Iplfpkf, 192
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Ordinary
LHS=LCPF

WTS=none

| Residuals

Fit

Model size

| Model test
Restrictns.

least squares regression

Mean

Standard deviation
Number of observs.

Parameters

Degrees of freedom
Sum of squares
Standard error of e

R-squared

Adjusted R-squared

153] (prob)
150] (prob)
Not using OLS or no constant. Rsqd & F may be < O.

FL 4,
FL 3,

443

.3195570
1.542364
158
5
153
3.191949
.1444383
9914536
9912302
7.33 (.0000)
5.11 (.0022)

Note, with restrictions imposed, Rsqd may be < O.
e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -5.07718678 .18072495  -28.093 0000
LQ | .41724916 -03285950 12.698 0000 8.26548908
LPKF | -00903097 .01466874 .616 .5391  14.4192992
LPLF | -.03131901 .00770196 -4.066 .0001 30.4387314
LPKPF2 | -.199840D-14 .243505D-07 -000 1.0000 -42211776
LPLPF2 | -.746798D-15 .608762D-08 .000 1.0000 15.6173009
LPLFPKF | -140166D-14 -121752D-07 .000 1.0000 4.84868706
LQ2 | .05956626 .00452575 13.162 0000 35.7912728
Calc ; list ftb(.95,3,150) $
e +
| Listed Calculator Results |
e +
Result = 2.664907
?
2 g- We have not rejected the theory, but we have rejected all the
? functional forms
? except the nonhomothetic translog. Just like Christensen and Greene.

)

? Application 5.3 Nonlinear restrictions

éample;1—52$

name ; x=one, logpg, logi, logpnc, logpuc, logppt, t, logpd, logpn, logps$

? a. Simple hypothesis test

ﬁegr;lhszlogg:rhszx$

| Ordinary
LHS=LOGG

WTS=none

| Model size

least squares regression

Mean

Standard deviation
Number of observs.

Parameters

Degrees of freedom

1.570475

Residuals Sum of squares .3812817E-01
Standard error of e -3012994E-01
| Fit R-squared -9868911 |
Adjusted R-squared -9840821
Model test F[ 9, 427 (prob) 351.33 (-0000)
e —___ +
S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +
Constant] -7.28719016 2.52056245 -2.891 .0061
LOGPG | .06051812 .05401018 1.120 .2689  3.72930296
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LOGI | -99299135 .25037574 3.966 .0003 9.67214751
LOGPNC | -.15471632 .26696298 -.580 .5653  4.38036654
LOGPUC | -.48909058 -08519952 -5.741 -0000 4.10544881
LOGPPT | -01926966 -13644891 .141 .8884  4.14194132
T | .03797198 .00751371 5.054 .0000 26.5000000
LOGPD | 1.73205775 .25988611 6.665 .0000 4.23906603
LOGPN | -.72953933 -26506853 -2.752 -0087  4.23689080
LOGPS | -.86798166 -35291106 -2.459 .0181 4.17535768

Calc;ril=rsqrd$
Regr; lhs=logg;rhs=one, logpg, logi, logpnc, logpuc, logppt, t$

M +
Ordinary least squares regression
LHS=LOGG Mean = 1.570475
Standard deviation = .2388115
| WTS=none Number of observs. = 52 |
Model size Parameters = 7
Degrees of freedom = 45
Residuals Sum of squares = -1014368
| Standard error of e = _4747790E-01 |
Fit R-squared = -9651249
Adjusted R-squared = .9604749

Model test F[ 6, 45] (prob) 207.55 (-0000)

e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -13.1396625 2.09171186 -6.282 -0000
LOGPG | -.05373342 -04251099 -1.264 .2127 3.72930296
LOGI | 1.64909204 .20265477 8.137 .0000 9.67214751
LOGPNC | -.03199098 .20574296 -.155 .8771  4.38036654
LOGPUC | -.07393002 -10548982 -.701 .4870 4.10544881
LOGPPT | -.06153395 -12343734 -.499 -6206 4.14194132
T | -.01287615 .00525340 -2.451 .0182  26.5000000

Calc;r0=rsqrd$

Calc;list; f=((r1-r0)/2)/((1-r1)/(n-10))%
e +

| Listed Calculator Results |

F = 34.868735
The critical value from the F table is 2.827, so we would reject the hypothesis.

o)

? b. Nonlinear restriction

o)

Since the restricted model is quite nonlinear, it would be quite cumbersome to estimate and examine

the loss in fit. We can test the restriction using the unrestricted model. For this problem,

f = [Ync - Yuor YncOs - théd] !
The matrix of derivatives, using the order given above and " to represent the entire parameter vector, is

al/aa}{0001—1 O 0 0 0 0

0 003986 0 -64 0 - 0
G= {5]‘2 [ oo s d Vot Trel The parameter estimates are

Thus, f = [-.17399, .10091]". The covariance matrix to use for the tests is Gs*(X'X)*G’
The statistic for the joint test is x> = F[Gs*(X'X)*G']*f = .4772. This is less than the critical value for a

chi-squared with two degrees of freedom, so we would not reject the joint hypothesis. For the individual

hypotheses,

we need only compute the equivalent of a t ratio for each element of f. Thus,
z; =-.6053

and Z, = .2898

Neither is large, so neither hypothesis would be rejected. (Given the earlier result, this was to be expected.)
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? c. Computations for nonlinear restriction

éample;1—52$
name ; x=one, logpg, logi, logpnc, logpuc, logppt, t, logpd, logpn, logps$

____________________________________________________ +
Ordinary least squares regression
LHS=LOGG Mean = 1.570475
Standard deviation = .2388115
| WTS=none Number of observs. = 52 |
Model size Parameters = 7
Degrees of freedom = 45
Residuals Sum of squares = -1014368
| Standard error of e = -4747790E-01 |
Fit R-squared = -9651249
Adjusted R-squared = .9604749
Model test F[ 6, 45] (prob) = 207.55 (.0000)
- +
R o Fomm e Fomm Fomm e R +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -13.1396625 2.09171186 -6.282 -0000
LOGPG | -.05373342 -04251099 -1.264 .2127  3.72930296
LOGI | 1.64909204 .20265477 8.137 .0000 9.67214751
LOGPNC | -.03199098 -20574296 -.155 .8771  4.38036654
LOGPUC | -.07393002 -10548982 -.701 .4870  4.10544881
LOGPPT | -.06153395 .12343734 -.499 .6206  4.14194132
T | -.01287615 .00525340 -2.451 .0182  26.5000000

Calc;rl=rsqrd$

Ordinary least squares regression
LHS=LOGG Mean = 1.570475
| Standard deviation = .2388115 |
WTS=none Number of observs. = 52
Model size Parameters = 7
Degrees of freedom = 45
| Residuals Sum of squares = -1014368
Standard error of e = .4747790E-01
Fit R-squared = .9651249
Adjusted R-squared = .9604749

| Model test F[ 6, 45] (prob) 207.55 (.0000) |
e e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o Sy Ry Fomm o o +
Constant] -13.1396625 2.09171186 -6.282 -0000
LOGPG | -.05373342 .04251099 -1.264 .2127  3.72930296
LOGI | 1.64909204 .20265477 8.137 .0000 9.67214751
LOGPNC | -.03199098 .20574296 -.155 8771 4.38036654
LOGPUC | -.07393002 .10548982 -.701 .4870 4.10544881
LOGPPT | -.06153395 .12343734 -.499 .6206  4.14194132
T | -.01287615 .00525340 -2.451 .0182  26.5000000

Calc;r0=rsqrd$
Calc;list;fstat=((r1-r0)/2)/((1-r1)/(n-10))$
+

e
FSTAT = 34.868735

Calc;list;ftb(.95,3,42)%

ey +
Result = 2.827049

REGR;Lhs=logg;rhs=x$

Calc ; ds=b(10);dd=-b(8);gpt=-b(6);gnc=b(4)$
Matr;gm=[0,0,0,1,-1,0,0,0,0,0 /7 0,0,0,ds,0,dd,0,gpt,0,gnc]$
Calc;f1l=b(4)-b(6) ; 2=b(4)*b(10)-b(6)*b(8)$
Matrix; list; f=[f1/f2]$
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Matrix F has 2 rows and 1 columns.

1
e
1] -.17399
2] .10091
Matrix;list;vf=gm*varb*gm*$
Matrix VF has 2 rows and 2 columns.
1 2
e
1] .08263 -.08059
2] -.08059 .12129
Matrix;list;Wald=F"<vf>f$
Matrix WALD has 1 rows and 1 columns.
1
e
1] .47716
Calc;list;z1=F(1)/sqr(vf(1,1))%$
e +
Z1 = -.605278
Calc;list;z2=F(2)/sqr(vf(2,2))$
e +
Z2 = .289760
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