Chapter 6

Functional Form and Structural
Change

Exercises

1. T he F statistic could be computed as
F = {[1425- (104 + 88 + ... + 211)] / (70 - 16)}/[(104 + 88 + ... + 211) / (570 - 70)] = 1.343
The 95% critical value for the F distribution with 54 and 500 degrees of freedom is 1.363.

2. a. Using the hint, we seek the ¢« which is the slope on d in the regression of g =y -cd -eonyand d. The
yy yd]'[y'(y-cd-e)] _ [yy yd]'[yYy-cyd-ye
dy dd| |d'(y-cd-e) dy dd| |dy-cd'd-de
note that (y'y,d’y)" is the first column of the matrix being inverted while c(y’d,d'd)’ is ¢ times the second. An
inverse matrix times the first column of the original matrix is the first column of an identity matrix, and
likewise for the second. Also, since d was one of the original regressors in (1), d’e = 0, and, of course, y'e =
e'e. If we combine all of these, the coefficient vector is

1, ’ -1 ’ 1, ' -1
- . -c 0 _[YY yd ee = - . -C 0 _[YY yd . e'e. We are interested in the second
0 1 dy dd 0 0 1 dy dd 0

(lower) of the two coefficients. The matrix product at the end is e’e times the first column of the inverse
matrix, and we wish to find its second (bottom) element. Therefore, collecting what we have thus far, the
desired coefficient is ¢~ = -c - e’e times the off diagonal element in the inverse matrix. The off diagonal
element is

-d'y /[(y'y)(dd) - (yd)] = -d'y/{Iy'y)(ddI[L - (y'd)/I(y'y) (D)}
= -dy/ [V d)(L-rg)l

Therefore, Cx = [(e’e)(d'V]/ [(Y'y)(dd)(1 - yzd )N-c¢
(The two negative signs cancel.) This can be further reduced. Since all variables are in deviation form,
e'ely'y is (1 - R%) in the full regression. By multiplying it out, you can show that d =P so that

d'd = 2i(di- P)* = nP(1-P)
and dy = %(di-P)yi-y) = Z(di-P)yi = m(y; - y)
where n; is the number of observations which have d; = 1. Combining terms once again, we have

¢ = {Im(y; - ¥)1-RO}/{nPU-P)(L-rg)} -
Finally, since P = ny/n, this further simplifies to the result claimed in the problem,

¢ = {(yy - Y)L-RIA{EP-1)} - ¢
The problem this creates for the theory is that in the present setting, if, indeed, c is negative, (?1 - y) will
almost surely be also. Therefore, the sign of ¢« is ambiguous.

regression coefficients are [ } . In the preceding,
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slope in the linear regression of y on x is, as usual,

plimb = Cov[yX]/Var[x] = /(1 + oo+ < B.
The probability limit of the intercept is plim

a= E[y] - (plimb)E[X] = a+ By - pu/(L + o/c-)

= o+ B[uou/ (ol + 6] > a (assuming B> 0).

If x is regressed on y instead, the slope will estimate plim[b’] = Cov[yx]/Var[y] = Bo-?/(B°c+* + c.2).
Then,plim[1/b'] = B + . 2/p’cx*> > B. Therefore, b and b’ will bracket the true parameter (at least in their
probability limits). Unfortunately, without more information about o,?, we have no idea how wide this
bracket is. Of course, if the sample is large and the estimated bracket is narrow, the results will be strongly
suggestive.

4. In the regression of y on x and d, if d and x are independent, we can invoke the familiar result for least
squares regression. The results are the same as those obtained by two simple regressions. It is instructive to

xin o xdin T x'yl 2162 0 (Bo? /(1462 /62
verify this. plim xxn X Xy _jo.to, 01 [Po]_ P ( O G*) . Therefore, although
d'x/n d'din| \d'y/n 0 T e y

the coefficient on x is distorted, the effect of interest, namely, v, is correctly measured. Now consider what
happens if X" and d are not independent. With the second assumption, we must replace the off diagonal zero
above with plim(x'd/n). Since u and d are still uncorrelated, this equals Cov[x",d]. This is

Cov[x',d] = E[x'd] = nE[xd|d=1] + (1-n)E[x"d|d=0] = mp".
Also, plim[y’d/n] is now BCov[x,d] + yplim(d'd/n) = pru' + yr and plim[y’x’/n] equals Bplim[x"'x’/n] +
yplim[x""d/n] = Bo-? + yru'. Then, the probability limits of the least squares coefficient estimators is

olim xxin - xdin"( x'y/n _ ol +c. my! 2 (Bo? +ym! _ B/(l-i—csﬁ/cf)
dwin ddin| ldy/n)7| ' x| | e +ym .

1 I —nu* (BGE + ynulJ
(ol +o’)+n’ (1)’ | -t of+o’ |\ Brop! +yn
1 [ B(no? +m* (u')%) )

C m(o?+ o)+’ (W) (ol +6f) + mt (W) + prc?

The second expression does reduce to plimc = y + Brp'c,/[n(c+* + 6.°) - n*(u*)?], but the upshot is that in
the presence of measurement error, the two estimators become an unredeemable hash of the underlying
parameters. Note that both expressions reduce to the true parameters if ,% equals zero.

Finally, the two means are estimators of

Elyld=1] = BE[X|d=1] +y= Bu'+y

and E[yld=0] = BE[x(d=0] = Py,
so the difference is p(u* - u°) + v, which is a mixture of two effects. Which one will be larger is entirely
indeterminate, so it is reasonable to conclude that this is not a good way to analyze the problem. If y equals
zero, this difference will merely reflect the differences in the values of X, which may be entirely unrelated to
the issue under examination here. (This is, unfortunately, what is usually reported in the popular press.) [
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Applications

Application 6.1

) ) N

Q

Wage equation

Namelist ; X = one,educ,ability,pexp,med,fed,bh,sibs$

Regress ; Lhs = lwage ; Rhs = x $

Calc ; xb = b(1)+b(2)*12+b(3)*xbr(ability)+b(4)*xbr(med)
+b(5)*xbr(fed)+b(6)*0+b(7)*xbr(sibs) $

Calc ; list ; mv = exp(xb) * b(2) $

Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
| Standard deviation = -5282364 |
WTS=none Number of observs. = 17919
Model size Parameters = 7
Degrees of freedom = 17912
| Residuals Sum of squares = 4126.175 |
Standard error of e = -4799564
Fit R-squared = 1747197
Adjusted R-squared = .1744433
| Model test F[ 6, 17912] (prob) = 632.02 (-0000) |
R +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fomm o o Fomm Fomm—— - Fommm +
Constant] -96950956 -03370543 28.764 0000
EDUC | -07220350 -00225076 32.080 0000 12.6760422
ABILITY | .07746781 .00493727 15.690 0000 -05237402
PEXP | -03950928 -00089926 43.936 0000 8.36268765
MED | -.00011702 -00169634 -.069 9450 11.4719013
FED | -00545695 -00133870 4.076 0000 11.7092472
SIBS | .00476557 .00179240 2.659 .0078  3.15620291
Ry +
| Listed Calculator Results |
+—— +
MV = .725176b. Step function
? b.

Histogram ; Rhs = Educ $

| Untitled Plot 5 *

=Jokd

72

Histogram for ariable EOUC

7023

4686

Frequency

2343
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Create ; HS = Educ <= 12 $

Create ; Col = (Educ>12) * (educ <=16) $

Create ; Grad = Educ > 16 $

Regress ; Lhs=lwage ; Rhs = one,Col,Grad,ability,pexp,med,fed,bh,sibs $
+

S
| Ordinary least squares regression |
| LHS=LWAGE Mean = 2.296821 |
| Standard deviation = -5282364 |
| WTS=none Number of observs. = 17919 |
| Model size Parameters = 9 |
| Degrees of freedom = 17910 |
| Residuals Sum of squares = 4215.033 |
| Standard error of e = -4851239 |
| Fit R-squared = .1569472 |
| Adjusted R-squared = -1565706 |
| = |

Model test F[L 8, 17910] (prob) 416.78 (-0000)

e +
Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fommm o Fomm e Fomm e Fom +
Constant 1.81124933 -02069456 87.523 -0000
CcoL -17467913 -00872506 20.020 -0000 -32183716
GRAD | .36244740 .02086328 17.373 -0000 -03493499
ABILITY -10097636 .00486713 20.747 -0000 -05237402
PEXP .03814088 -00090643 42.078 .0000 8.36268765
MED -00081934 -00171488 478 .6328  11.4719013
FED | -00700641 -00135096 5.186 .0000 11.7092472
BH -.06962521 -01007870 -6.908 -0000 -15385903
SIBS .00371191 .00181156 2.049 .0405 3.15620291

c. Education squared
Create ; educsqg = educ*educ $
Regress ; Lhs = lwage;rhs=one,educ,educsq,ability,pexp,med,fed,bh,sibs$

e +
Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
Standard deviation = -5282364
| WTS=none Number of observs. = 17919 |
Model size Parameters = 9
Degrees of freedom = 17910
Residuals Sum of squares = 4114.269
| Standard error of e = -4792902 |
Fit R-squared = -1771010
Adjusted R-squared = .1767334
Model test F[ 8, 17910] (prob) = 481.81 (-0000)

e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] 42778242 -12008093 3.562 -0004

EDUC | -15590624 -01751608 8.901 -0000 12.6760422
EDUCSQ | -.00313261 .00064230 -4.877 .0000 164.377588
ABILITY | .07433494 .00496954 14.958 .0000 -05237402
PEXP | -03962214 -00089830 44.108 -0000 8.36268765
MED | -00030520 -00169504 .180 .8571 11.4719013
FED | .00519423 .00133734 3.884 .0001  11.7092472
BH | -.04957434 -01000691 -4.954 .0000 -15385903
SIBS | -00499325 -00179020 2.789 0053 3.15620291

Namelist ; x1 = one,educ,educsq,ability,pexp,méd,fed,Bh,sibs $
Matrix ; means = mean(x1)$

Matrix ; means(2)=0 $

Matrix ; means(3)=0%

Calc ; a=means”"b $

Calc ; b2=b(2) ; b3=b(3) $
Sample ; 1 $

33



Fplot ; fcn

; star

[ Untitled Plot 6 *

t

a b2*schoolng + b3*schoo

Ign™2 ; pts=100

==

Furction

t t
480 80 1240 1620
SCHOOLNG

2000

Potof User Defined FUnction

d. Interaction.
Sample ; AlIl $
Create ; EA = Educ*ability $
Regress ; Lhs = lwage;rhs=one,educ,ability,ea,pexp,med,fed,bh,sibs$

+
12 ; limits = 1,20 ; labels=schoolng ; plot(schoolng) $

Calc ; abar =xbr(ability) $
Calc ; list ; me = b(2)+b(4)*abar $
Calc ; sdme = sgr(varb(2,2)+abar™2*varb(4,4) + 2*abar*varb(2,4))$
Calc ; list ; lower = me - 1.96*sdme ; upper = me + 1.96*sdme $
R +
Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
| Standard deviation = -5282364 |
WTS=none Number of observs. = 17919
Model size Parameters = 9
Degrees of freedom = 17910
| Residuals Sum of squares = 4119.377 |
Standard error of e = 4795877
Fit R-squared = .1760794
Adjusted R-squared = .1757113
| Model test F[ 8, 17910] (prob) = 478.44 (.0000) |
R +
Fomm—_— e o Fom Fom T, +
|Variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fomm——— o o Fomm Fomm—— - Fommm +
Constant] 1.00190276 -03529335 28.388 0000
EDUC | -07006221 -00243183 28.811 0000 12.6760422
ABILITY | .04693108 .02494471 1.881 -0599 -05237402
EA | -00253975 -00204029 1.245 2132  1.60372621
PEXP | -03947437 -00089903 43.908 0000 8.36268765
MED | .542277D-04 -00169546 .032 9745  11.4719013
FED | -00534599 -00133813 3.995 -0001  11.7092472
BH | -.05314420 -00999271 -5.318 0000 -15385903
SIBS | -00479076 -00179231 2.673 .0075 3.15620291
+—— +
| Listed Calculator Results |
Ry +
ME = -070195
LOWER = -065503
UPPER = -074888
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e.
Regress ; Lhs = lwage;rhs=one,educ,educsq,ability,ea,pexp,med,fed,bh,sibs$

M +
Ordinary least squares regression
LHS=LWAGE Mean = 2.296821
Standard deviation = -5282364
| WTS=none Number of observs. = 17919 |
Model size Parameters = 10
Degrees of freedom = 17909
Residuals Sum of squares = 4106.031
| Standard error of e = -4788235 |
Fit R-squared = .1787487
Adjusted R-squared = .1783360
Model test F[ 9, 17909] (prob) = 433.11 (-0000)

e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -.10514525 -14931731 -.704 .4813
EDUC | -24088793 -02252126 10.696 -0000 12.6760422
EDUCSQ | -.00654261 .00085754 -7.630 .0000 164.377588
ABILITY | -.12453442 -03354596 -3.712 -0002 -05237402
EA | -01631824 -00272231 5.994 -0000 1.60372621
PEXP | -03951247 -00089761 44 .020 -0000 8.36268765
MED | .00045246 .00169356 .267 .7893  11.4719013
FED | .00524829 -00133606 3.928 .0001  11.7092472
BH | -.04775208 -01000179 -4.774 -0000 -15385903
SIBS | -00460796 -00178961 2.575 -0100 3.15620291
e +
| Listed Calculator Results |
e +
AVGLOW = -.798563
AVGHIGH = .717891

Create ; lowa = ability < xbr(ability) ; higha =1 - lowa $
Calc ; list ; avglow= lowa"ability /7 lowa®lowa ;
avghigh=higha"ability/higha“higha $
Calc ; a = b(1) + b(6)*xbr(pexp)+b(7)*xbr(med)+
b(8)*xbr(fed)+b(9)*xbr(bh)+b(10)*xbr(sibs)$
Calc ; al=atb(4)*avglow ; ah = at+b(4)*avghigh$
Samp;1-120%$
Create ; school
Create ; lIwlow al + b(2)*school+b(3)*school”2 + b(5)*avglow*school $
Create ; lwhigh ah + b(2)*school+b(3)*school”2 + b(5)*avghigh*school $
Plot ; lhs = school ; rhs =lwhigh,lwlow ;fill ;grid
;Title=Comparison of logWage Profiles for Low and High Ability$

trn(9,.1)%
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[ Untitled Plot 7 * =%
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é Application 6.2

Sample ; AlIl $

Namelist ; X = one,educ,ability,pexp,med,fed,sibs$
Regress ; For [bh=0] ; Lhs = lwage ; Rhs = x $
Calc ; eeO=sumsqgdev $

Matrix ; bO=b ; vO=varb $

Regress ; For [bh=1] ; Lhs = lwage ; Rhs = x $
Calc ; eel=sumsqdev $

Matrix ; bl=b ; vi=varb $

Regress ; Lhs = lwage ; Rhs = x $

Calc ; ee=sumsqdev $

Calc ; list ; chow = ((ee-eel0-eel)/col(x))/ ((eelO+eel)/(n-2*col(x))) $
+

- +
CHOW = 7.348379

Matrix ; db=b0-bl ; vdb=vO+vl $

Matrix ; list ; Wald = db"<vdb>db $

Matrix WALD has 1 rows and 1 columns.

1] 50.57114
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Application 6.3

N )

fob]

.75

72

.70

.67

.65

.63

.60

g/A
q/A

. The least squares estimates of the four models are

= 45237 +.23815Ink
= .91967 -.61863/k
In(g/A) = -.72274 + .35160Ink
In(g/A) = -.032194 - .91496/k

At these parameter values, the four functions are nearly identical. A plot of the four sets of predictions from
the regressions and the actual values appears below.

QF1 * QF2 o QF3 a
QF 4 o QA o
1 O/q
- [ T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40
K

b. The scatter diagram is shown below. The last seven years of the data set show clearly the effect observed
by Solow.

QA

.75

72

.70

.67

.65

.63

.60

2.00

2.20

2.40

2.60

2.80
K

3.00

3.20

3.40
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c. The regression results for the various models are listed below. (d is the dummy variable equal to 1 for the
last seven years of the data set. Standard errors for parameter estimates are given in parentheses.)

a B y 5 R? e'e
Model 1:9/A = a + BInk + yd + 8(dInk) + ¢
.4524 .2381 -94355 .00213
(.00903)  (.00932)
4477 .2396 .01900 .99914 .000032
(.00113) (-.00117) (-000384)
.4476 .2397 .02746  -.08883 -99915 .000032

(.00115) (.00118)  (.0119) (.0126)
Model 2: g/A = a - B(I/K) + yd + 8(d/K) + &

.9168 .6186 .94915 .001915
(.00891)  (.0229)

.9167 .6185 .01961 .99321 .000256
(.00331)  (.00849)  (.00108)

.9168 6187 ~ .008651 .02140 .99322 000255

(.00336)  (.00863) (.0354) (.0917)
Model 3: In(g/A) = o + BInk + yd + 8(dInk) + ¢

-.7227 .3516 .94069 .004882
(.0137) (.0141)

-.7298 .3538°  .002881 .99918 .000068
(.00164)  (.00169)  (.000554)

-.7300 .3540 .04961 ~ -.02182  .99921 000065

(.00164)  (.00148)  (.0171) (.0179)
Model 4: In(g/A) = o - B(1/K) + vyd + 8(d/k) + ¢
5

-.03219 .9150 .94964 .004146
(.0131) (.0337)

-.03665 .9148 02572 99629 000305
(.00361)  (.00928)  (.00118)

-.03646 .9153  .004290 .05556  .99632 .000303

(.00366)  (.00941) (.0386)  (.0999)

d. For the four models, the F test of the third specification against the first is equivalent to the Chow-test. The
statistics are:

Model 1: F = (.002126 - .000032)/2 / (.000032/37) =1210.6
Model 2: F = =120.43
Model 3: F = =1371.0
Model 4: F = =234.64

The critical value from the F table for 2 and 37 degrees of freedom is 3.26, so all of these are statistically
significant. The hypothesis that the same model applies in both subperiods must be rejected.

38



)

2 Application 6.4

According to the full model, the expected number of incidents for a ship of the base type A built in the base
period 1960 to 1964, is 3.4. The other 19 predicted values follow from the previous results and are left as
an exercise. The relevant test statistics for differences across ship type and year are as follows:

(3925.2 - 660.9)/4
type : F[4,12] = =14.82,
660.9/12

(1090.3 - 660.9)/3
=2.60

660.9/12

The 5 percent critical values from the F table with these degrees of freedom are 3.26 and 3.49,
respectively, so we would conclude that the average number of incidents varies significantly across ship
types but not across years.

year 1 F[3,12] =

Regression Coefficients

Full Model Time Effects Type Effects No Effects
Constant 34 6.0 8.25 10.85
B 27.75 0 27.75 0
C -7.0 0 -7.0 0
D -4.5 0 -4.5 0
E -3.25 0 -3.25 0
65-69 7.0 7.0 0 0
70-74 114 114 0 0
75-79 1.0 1.0 0 0
R? 0.84823 0.0986 0.74963 0
e'e 660.9 3925.2 1090.2 4354.5
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Chapter 7

Specification Analysis and Model
Selection

Exercises

1. The result cited is E[b;] = B; + P1,p, where Py, = (X' X)X X5, so the coefficient estimator is
biased. If the conditional mean function E[X3|X4] is a linear function of Xy, then the sample estimator Py,
actually is an unbiased estimator of the slopes of that function. (That result is Theorem B.3, equation (B-
68), in another form). Now, write the model in the form

y = Xif1 + E[XaX1]B2 + € + (X2 - E[Xa/X1])B2

So, when we regress y on X; alone and compute the predictions, we are computing an estimator of

X1(B1 + P1oB2) = Xuf1 + E[X3/X1]B2. Both parts of the compound disturbance in this regression ¢ and

(X2 - E[X4|X1])B2 have mean zero and are uncorrelated with X; and E[X3|X4], so the prediction error has
mean zero. The implication is that the forecast is unbiased. Note that this is not true if E[X,X1] is
nonlinear, since P;, does not estimate the slopes of the conditional mean in that instance. The generality is
that leaving out variables wil bias the coefficients, but need not bias the forecasts. It depends on the
relationship between the conditional mean function E[X,|X;] and X;P ,.

2. The “long” estimator, b, , is unbiased, so its mean squared error equals its variance, 6*(X,’M,X1)™

The short estimator, b is biased; E[b;] = B1 + P12B,. It’s variance is o’ (X' X)) It’s easy to show that
this latter variance is smaller. You can do that by comparing the inverses of the two matrices. The inverse
of the first matrix equals the inverse of the second one minus a positive definite matrix, which makes the
inverse smaller hence the original matrix is larger - Var[b,,] > Var[b,]. But, since b; is biased, the variance
is not its mean squared error. The mean squared error of b; is Var[b,] + biasxbias’. The second term is
P1oB2B2'P12’. When this is added to the variance, the sum may be larger or smaller than Var[b,,]; it
depends on the data and on the parameters, B,. The important point is that the mean squared error of the
biased estimator may be smaller than that of the unbiased estimator.

3. The log likelihood function at the maximum is
InL =-n/2[1 + In2x + In(e’e/n)]
= -n/2{1 + In2% + In[nS,,(1 - R}
=-n/2{1 + In2x + In(nSyy) + In(1-R%)} where Sy =2 (y, - V)
since R* =1 - e’e/S,, . The derivative of this expression is dInL/6R* = (-n/2){1/(1-R?}(-1) which is always
positive. Therefore, the log likelihood increases when R? increases.

4. An inconvenient way to obtain the result is by repeated substitution of Cy4, then Ci, and so on. It is
much easier and faster to introduce the lag operator used in Chapter 20. Thus, the alternative model is
Ci=171 + 712Y¢ + y3LC; + gy Where LC; = Cy4.
Then, (1-ysL)Ci=7y1+ 7Y+ en
Now, multiply both sides of the equation by 1/(1-ysL) = 1 + ysL + y5°L* + ... to obtain
Co=y/(1-y3) +12Ye + ¥2¥3Yer + 2, ¥2Y3 Yes + Z0 Y3 Ees.
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Application

The J test in Example is carried out using over 50 years of data. It is optimistic to hope that the underlying
structure of the economy did not change in 50 years. Does the result of the test carried out in Example 8.2
persist if it is based on data only from 1980 to 2000? Repeat the computation with this subset of the data.

é Example 7.2 and Application 7.1

1950.1 $

Period ; 1950.1 - 2000.4 $

Create ; Ct = Realcons ; Yt
Create ; Ctl = Ct[-1] ; Ytl

bates ;

RealDPI
Yt[-1]

$
$

? Example 7.2
Period ;
Regress; Lhs =
Regress; Lhs =

1950.2 - 2000.4 $

Ct ; Rhs = one,Yt,Ytl ; Keep
Ct ; Rhs = one,Yt,Ctl ; Keep

Regress; Lhs Ct ; Rhs one,Yt,Ytl,CC $
e +
Ordinary least squares regression
Model was estimated May 12, 2007 at 08:56:19AM
LHS=CT Mean = 3008.995
| Standard deviation = 1456.900 |
WTS=none Number of observs. = 203
Model size Parameters = 4
Degrees of freedom = 199
| Residuals Sum of squares = 73550.21 |
Standard error of e = 19.22496
Fit R-squared = .9998285
Adjusted R-squared = -9998259
| Model test F[ 3, 199] (prob) =******* (_0000) |
Diagnostic Log likelihood = -886.1351
Restricted(b=0) = -1766.209
Chi-sq [ 3] (prob) =1760.15 (.0000)
| Info criter. LogAmemiya Prd. Crt. = 5.931932 |
Akaike Info. Criter. = 5.931926
Autocorrel Durbin-Watson Stat. = 2.0256102
Rho = cor[e,e(-1)] = -.0128051
o +
Fom———— o o Fom R Fom +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -.60444607 3.43245774 -.176 8604
YT | -31456542 -04619552 6.809 0000  3352.09360
YT1 | -.33004915 -04591940 -7.188 0000  3325.25222
ccC | 1.01450597 -01613899 62.861 0000  3008.99507
Regress; Lhs = Ct ; Rhs = one,Yt,Ctl,CY $
R g +
Ordinary least squares regression
Model was estimated May 12, 2007 at 08:56:19AM
| LHS=CT Mean = 3008.995 |
Standard deviation = 1456.900
WTS=none Number of observs. = 203
Model size Parameters = 4
| Degrees of freedom = 199 |
Residuals Sum of squares = 73550.21
Standard error of e = 19.22496
Fit R-squared = -9998285
| Adjusted R-squared = -9998259
Model test F[L 3, 199] (prob) =******* (_0000)
Diagnostic Log likelihood = -886.1351
Restricted(b=0) = -1766.209
| Chi-sq [ 3] (prob) =1760.15 (-0000) |
Info criter. LogAmemiya Prd. Crt. = 5.931932
Akaike Info. Criter. = 5.931926
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| Autocorrel Durbin-Watson Stat. = 2.0256102 |
| Rho = cor[e,e(-1)] = -.0128051 |
o +
Fom———— o o Fom R Fom +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -865.712368 120.569071 -7.180 -0000
YT | 9.82505250 1.36759557 7.184 -0000 3352.09360
CT1 | 1.02780685 -01635059 62.861 .0000 2982.97438
CcYy | -10.6765577 1.48541853 -7.188 -0000 3008.99507
? Application 7.1. We use only the 1980 data, so we
? start in quarter 2 of 1980 even though data are
? available for the last quarter of 1979.
Period ; 1980.2 - 2000.4 $
Regress; Lhs = Ct ; Rhs = one,Yt,Ytl ; Keep = CY $
Regress; Lhs = Ct ; Rhs = one,Yt,Ctl ; Keep = CC $
Regress; Lhs = Ct ; Rhs = one,Yt,Ytl1,CC $
e —___ +
| Ordinary least squares regression |
Model was estimated May 12, 2007 at 08:58:19AM
LHS=CT Mean = 4503.230
Standard deviation = 879.3593
| WTS=none Number of observs. = 83 |
Model size Parameters = 4
Degrees of freedom = 79
Residuals Sum of squares = 43603.43
| Standard error of e = 23.49345 |
Fit R-squared = -9993123
Adjusted R-squared = .9992862
Model test F[ 3, 79] (prob) =*****x*x (_0000)
| Diagnostic Log likelihood = -377.7300 |
Restricted(b=0) = -679.9419
Chi-sq [ 3] (prob) = 604.42 (.0000)
Info criter. LogAmemiya Prd. Crt. = 6.360511
| Akaike Info. Criter. = 6.360436 |
Autocorrel Durbin-Watson Stat. = 1.8153241
Rho = cor[e,e(-1)] = .0923379
e —___ +
Fomm— o o Fomm Fomm———— Fommm +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +
Constant] 39.6958824 37.1402619 1.069 2884
YT | -20222923 -07364203 2.746 -.0075  4987.32410
YT1 | -25661196 -07221392 -3.553 -0006  4951.70482
cC | 1.04938412 -04670690 22.467 .0000 4503.23012
Regress; Lhs = Ct ; Rhs = one,Yt,Ctl,CY $
e +
Ordinary least squares regression
Model was estimated May 12, 2007 at 08:58:19AM
LHS=CT Mean = 4503.230
| Standard deviation = 879.3593 |
WTS=none Number of observs. = 83
Model size Parameters = 4
Degrees of freedom = 79
| Residuals Sum of squares = 43603.43 |
Standard error of e = 23.49345
Fit R-squared = .9993123
Adjusted R-squared = -9992862
| Model test F[ 3, 79] (prob) =******* (_0000) |
Diagnostic Log likelihood = -377.7300
Restricted(b=0) = -679.9419
Chi-sq [ 3] (prob) = 604.42 (.0000)
| Info criter. LogAmemiya Prd. Crt. = 6.360511 |
Akaike Info. Criter. = 6.360436
Autocorrel Durbin-Watson Stat. = 1.8153241
Rho = cor[e,e(-1)] = -0923379
o +
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Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

R, o o o o o +
Constant] -856.107861 221.141722 -3.871 0002

YT | 1.21490273 .32340906 3.757 0003 4987.32410
CT1 | .98759074 .04395654 22.467 0000 4465 .65542
CY | -1.13474451 .31933175 -3.553 0006 4503.23012
2

? The results are essentially the same. This suggests
? that neither model is right.

The regressions are based on real consumption and real disposable income. Results for 1950 to
2000 are given in the text. Repeating the exercise for 1980 to 2000 produces: for the first regression, the
estimate of o is 1.03 with a t ratio of 23.27 and for the second, the estimate is -1.24 with a t ratio of -3.062.
Thus, as before, both models are rejected. This is qualitatively the same results obtained with the full 51

year data set.
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Chapter 8

The Generalized Regression Model
and Heteroscedasticity

Exercises

1. Write the two estimators as B= B + (X'Q™X)™X'Q% and b = B + (X'X)"X’e. Then,
(B-b) = [(X'QX)X'QL - (X'X)X"]e has E[P - b] = 0 since both estimators are unbiased. Therefore,

Cov[B,B-b] = E[(B-B)(B-b)]
Then,
E{(X'Q X)X Qee [(X'QIX)IXQT - (X'X)'XT}
= (XQX)IXQH P QIX(X'QIX) T - X(X'X) Y]
= (XXX QIQOIX(X'QX) ™ - (XX XX (XX) !
= (XXX XQTX)T - (XQTX)IXX)XIX)T = 0
once the inverse matrices are multiplied.

2 First, (RP -q) = R[B+ (X'QX)X'Q%)]-q = RX'QIX)X'Q% if RB-q = 0.
Now, use the inverse square root matrix of Q, P = Q™ to obtain the transformed data,
X =PX = Q¥X, y =Py = Q¥ and ¢ = Pe = Q'%.
Then, Ele'e”] = E[Q"%ee'Q?] = QY4 Q)QY? = &,
and, B XXXy = (X7X)IXTY
the OLS estimator in the regression of y” on X
Then, RPB -q = RX"X)IX"e"
and the numerator is £ "X (XX 'R[ROXX)'RTRX"XYXe" 1 J. By multiplying it out, we find that
the matrix of the quadratic form above is idempotent. Therefore, this is an idempotent quadratic form in a
normally distributed random vector. Thus, its distribution is that of o* times a chi-squared variable with
degrees of freedom equal to the rank of the matrix. To find the rank of the matrix of the quadratic form, we
can find its trace. That is
tr{X O XY R RXCX)'RTIRX XY X}
tr{ (XX RIROC XY IRTIRXX) XX}
tr{ (XX 'R [RX'X)'RT'R}
tr{[ROCX)IRIRECX)'RTY = {1} = J,
which might have been expected. Before proceeding, we should note, we could have deduced this outcome
from the form of the matrix. The matrix of the quadratic form is of the form Q = X ABA’X"" where B is the
nonsingular matrix in the square brackets and A = (X’X")'R’, which is a KxJ matrix which cannot have
rank higher than J. Therefore, the entire product cannot have rank higher than J. Continuing, we now find
that the numerator (apart from the scale factor, ) is the ratio of a chi-squared[J] variable to its degrees of
freedom.
We now turn to the denominator. By multiplying it out, we find that the denominator is

v - X'B)(y - X'B)(n-K). Thisis exactly the sum of squared residuals in the least squares regression of
y onX". Since y* = X'B + & and p= (X"X)X"y" the denominator is €M "g"/(n - K), the familiar form
of the sum of squares. Once again, this is an idempotent quadratic form in a normal vector (and, again, apart
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from the scale factor, 6°, which now cancels). The rank of the M matrix is n - K, as always, so the
denominator is also a chi-squared variable divided by its degrees of freedom.

It remains only to show that the two chi-squared variables are independent. We know they are if the
two matrices are orthogonal. They are since M"X" = 0. This completes the proof, since all of the
requirements for the F distribution have been shown.

3. First, we know that the denominator of the F statistic converges to o> Therefore, the limiting distribution
of the F statistic is the same as the limiting distribution of the statistic which results when the denominator is
replaced by o It is useful to write this modified statistic as

W = (Us)(RB - aY[RX"X)'RT'RB - a)/d.
Now, incorporate the results from the previous problem to write this as

W =" X (XX )RR (X" XY RTRXX )X eld

Let g = RIX"X)X"¢".
Note that this is a Jx1 vector. By multiplying it out, we find that E[e%€*] = Var[¢’] = R{c*(X"X)'}IR".
Therefore, the modified statistic can be written as W~ = £”Var[¢"]'€"/J. This is the “full rank quadratic form’
discussed in Appendix B. For convenience, let C = Var[e’], T = C*2 andv = Te’. Then, W = v'v. By
construction, v = Var[e’]*%°, so E[v] = 0 and Var[v] = I. The limiting distribution of v'v is chi-squared
J if the limiting distribution of v is standard normal. All of the conditions for the central limit theorem apply
to v, so we do have the result we need. This implies that as long as the data are well behaved, the numerator
of the F statistic will converge to the ratio of a chi-squared variable to its degrees of freedom. [

4. The development is unchanged. As long as the limiting behavior of (1/n) X' X = (1/n)X'Q *X is the
same as that of (1/n)X’X", the limiting distribution of the test statistic will be the same as if the true Q

were used instead of the estimate Q .

5. First, in order to simplify the algebra somewhat without losing any generality, we will scale the columns
of X so that for each x,, x/x = 1. We do this by beginning with our original data matrix, say, X° and
obtaining X as X = X°D™ where D is a diagonal matrix with diagonal elements Dy = x>'x’. By
multiplying it out, we find that the GLS slopes based on X instead of X° are

[“3: [(XOD'm)’Q'l(XOD'llz)]'1[(XOD'1/2)’Q'1y] - Dllz[x,Q-lx](D,)1/2(D,)-1/2X,Q-1y - D1/2 [‘30

with variance  Var[B] = DY [X'QX]Y(D")¥? = DY2Var[B°|(D")*?. Likewise, the OLS estimator based

on X instead of X’is b = D"?b° and has variance Var[b] = D2Var[b®)(D’)*. Since the scaling affects both
estimators identically, we may ignore it and simply assume that X'X = 1.

If each column of X is a characteristic vector of Q, then, for the kth column, x, Qxi = NX.
Further, x/Qxx = A and x/Qx; = 0 for any two different columns of X. (We neglect the scaling of X, so
that X'X = I, which we would usually assume for a set of characteristic vectors. The implicit scaling of X is
absorbed in the characteristic roots.) Recall that the characteristic vectors of Q™ are the same as those of Q
while the characteristic roots are the reciprocals. Therefore, X'QX = Ak, the diagonal matrix of the K
characteristic roots which correspond to the columns of X. In addition, X'Q™X = Ac?, so (X'Q*X)™" = Ay,
andX'Qly = Ac™X'y. Therefore, the GLS estimator is simply B = X'y with variance Var[B] = c?Ax. The

OLS estimatoris b = (X'X)™X’y = X'y. Its variance is Var[b] = o*(X'X)" X' QX(X'X)? = 6®A, which
means that OLS and GLS are identical in this case.

6. Writtb = B + (X'X)™X'e and B= B + (X'QX)™X'Q. The covariance matrix is

E[(b-B)(B - B)] = E[(X'X) X'ee’ @ X(X'QX) Y] = (X'X) X (cPQ)QX(X'AX)? = A(X'QX)™
For part (b), e = Me as always, so E[ee'] = c°MQM. No further simplification is possible for the

general case.

For part (c), €= y - XB

y - X[B+ (X'QOX)IX'Q%]
XB +¢- X[+ (X'QX)X'Ql]
= [1- X(X'QX) X' QM.
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Thus, E[€ €7 =[I- X(X'Q™X)*X'QYE[ee'][I - X(X'QX)*X'Q7]’

= [1- X(X'QX)X'Q(PQ)[I - X(X'QX)X'QM!

= [6°Q - AX(X'QIX) X[ - X(X'Q™X)™X'Q™] !
[6°Q - 2 X(X'QX) X[ - QX (XQX) X
6°Q- "X (X'QX) X! - 2X(X'QIX) X! + ?X (X' QX)X QX (X' QX)X
Q2 - X(X'QX) X
The GLS residual vector appears in the preceding part. As always, the OLS residual vectorise = Mg =
[1- X(X"X)"X']e. The covariance matrix is

E[e€'] = E[(I- X(X'X)™X"ee'(I - X(X'QX) X' Q™)
= (1 - X(X'X)™XN)(6’Q)(I - X (X'QX) X"
= 6°Q - A X(X'X)X'Q - PQOTX(X'QIX) X! + 2X (X X)X QO X (X' QX)X
= 6°Q - "X(X'X) X!
= *MQ. [
7. The GLS estimator is p= (X'QX)X"ly = [Zxx/(B'x:)T [Zxyi/(B'%)?]. The log-likelihood for this
model is InL = -ZiIn(B'x) - Ziyil (B'%3)-

The likelihood equations are

aInL/oB = -Si(LB'x)x; + Zilyil(B'x)Ixi = O
or Tyl (BX0)?) = Zxil(B'x5).
Now, write ExI(B'X) = Zxixi BI(B'Xi)%,
so the likelihood equations are equivalent to  Zi(xiyi/(B'x).%) = Zxx/B/(B'x:).% or X'Qly = (X'Q'X)B.
These are the normal equations for the GLS estimator, so the two estimators are the same. We should note,
the solution is only implicit, since Q is a function of B. For another more common application, see the
discussion of the FIML estimator for simultaneous equations models in Chapter 13.

8. The covariance matrix is

1L pp - p
) ,| 7 1 p p
o Q=0"p p 1 Pl
_p p p e l—
The matrix X is a column of 1s, so the least squares estimator of xis Y. Inserting this Q into (10-5), we
2

obtain Var[y]= o (1— p+np). The limit of this expression is po?, not zero. Although ordinary least
n

squares is unbiased, it is not consistent. For this model, X'QX/n =1 + p(n — 1), which does not converge.
Using Theorem 8.2 instead, X is a column of 1s, so X’X = n, a scalar, which satisfies condition 1. To find
the characteristic roots, multiply out the equation Qx = Ax = (1-p)Ix + pii’x = AX. Since i'x = X;x;, consider
any vector X whose elements sum to zero. If so, then it’s obvious that A = p. There are n-1 such roots.
Finally, suppose that x = i. Plugging this into the equation produces A = 1 - p + np. The characteristic roots
of Q are (1 — p) with multiplicity n — 1 and (1 — p + np), which violates condition 2.

9. This is a heteroscedastic regression model in which the matrix X is a column of ones. The efficient
estimator is the GLS estimator, p= (X'Q*X)'™X'Qly = [Zilyix?] / [Zi1%x?] = [Zi(yixA] ! [Zi(1xD)]. As

always, the variance of the estimator is Var[B] = o’(X'Q*X)™ = %/[Zi(1/x?)]. The ordinary least squares
estimator is (X'X)*X’y =y. The variance of y is o(X'X)*(X'QX)(X'X)* = (c¥n?)=ix? To show that the
variance of the OLS estimator is greater than or equal to that of the GLS estimator, we must show that
(0’ IN?)Zix? > o*Zi(LIx?) or () (Ex?)(Zi(1/x2) > 1 or ZiZi(x?/x?) > n’ The double sum contains n terms

AN

equal to one. There remain n(n-1)/2 pairs of the form (xi2/x,- + Xj /x;2). If it can be shown that each of these
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sums is greater than or equal to 2, the result is proved. Just let z; = x2. Then, we require zifz; + zjfzi- 2 > 0.
But, this is equivalent to (z° + z - 2zz)/ziz; > 0or (- z)%/zz; > 0, which is certainly true if z; and z; are
positive. They are since z equals xi°>. This completes the proof.

10. Consider, first, y. We saw earlier that Var[y]= (6n®)=x? = (c%/n)(1/n)=ix?. The expected value is

E[y] = E[(L/n)Zy] = a. If the mean square of x converges to something finite, then y is consistent for o.

That is, if plim(1/n)Zix? = qwhere q is some finite number, then, plim y= a. As such, it follows that s? and
s« = (1/(n-1))Zi(y; - o)? have the same probability limit. We consider, therefore, plim s.2 = plim(1/(n-1))Zis’.
The expected value of s. is E[(1/(n-1)) Zie?] = o*(1/Zix?%). Once again, nothing more can be said without
some assumption about x;. Thus, we assume again that the average square of x; converges to a finite, positive
constant, q. Of course, the result is unchanged by division by (n-1) instead of n, so lim,.,.. E[s] = o%q.
The variance of s is Var[s«?] = ZVar[e]/(n - 1)*. To characterize this, we will require the variances of the
squared disturbances, which involves their fourth moments. But, if we assume that every fourth moment is
finite, then the preceding is (n/(n-1)%) times the average of these fourth moments. If every fourth moment is
finite, then the term is dominated by the leading (n/(n-1)?) which converges to zero. It follows that plim s> =

o2 (. Therefore, the conventional estimator estimates Asy.Var[y]= o?q/n.

The appropriate variance of the least squares estimator is Var[y]: (c%n®)Zix?, which is, of course,
precisely what we have been analyzing above. It follows that the conventional estimator of the variance of the
OLS estimator in this model is an appropriate estimator of the true variance of the least squares estimator.
This follows from the fact that the regressor in the model, i, is unrelated to the source of heteroscedasticity, as
discussed in the text.

11. The sample moments are obtained using, for example, Syx = X'X - nx2and so on. For the two samples,

we obtain y X Sex Syy Sy
Sample 1 6 6 300 300 200
Sample 2 6 6 300 1000 400
The parameter estimates are computed directly using the results of Chapter 6.
Intercept Slope R? §?
Sample 1 2 213 4/9 (1500/9)/48 = 3.472
Sample 2 -2 4/3 16/30  (4200/9)/48 = 9.722

i 100 600 600
The pooled moments based on 100 observations are X'X = , X'y = , Y'Y =4900. The

600 4200 4200

coefficient vector based on these data is [a,b] = [0,1]. This might have been predicted since the two X'X
matrices are identical. OLS which ignores the heteroscedasticity would simply average the estimates. The
sum of squared residuals would be e’e = y'y - b'X’y = 4900 - 4200 = 700, so the estimate of o* is s* =
700/98 = 7.142. Note that the earlier values obtained were 3.472 and 9.722, so the pooled estimate is between
the two, once again, as might be expected. The asymptotic covariance matrix of these estimates is s(X’X)*

07 -01
-01 167

To test the equality of the variances, we can use the Goldfeld and Quandt test. Under the null
hypothesis of equal variances, the ratio F = [e/'ei/(n; - 2))/[e.'ex/(n, - 2)] (or vice versa for the subscripts) is
the ratio of two independent chi-squared variables each divided by their respective degrees of freedom.
Although it might seem so from the discussion in the text (and the literature) there is nothing in the test which
requires that the coefficient vectors be assumed equal across groups. Since for our data, the second sample
has the larger residual variance, we refer F[48,48] = s,%/s;> = 9.722 / 3.472 = 2.8to the F table. The
critical value for 95% significance is 1.61, so the hypothesis of equal variances is rejected.

The method of Example 8.5 can be applied to this groupwise heteroscedastic model. The two step

= 7.142{

estimator is = [(1/s:)X1"Xy + (15X Xl [(1/s%)X1'y1 + (1/5,2)X2'y2]. The X'X matrices are the same in
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tmsmmeﬁomBﬁmmm%toﬁ= [(1/s? + U XX (UsD)Xe'yy + (1/s,7)X,"Y,] . The estimator is,

1 1 50 300" 1 (300 1 300 9469
therefore| | —— +—— —Q + = .
3472 9.722/\300 2100 347212000/ 9.722\2200 8422

o)

? Application 8.1

a. The ordinary least squares regression of Y on a constant, Xy, and X, produces the following results:
Sum of squared residuals  1911.9275
R? .03790
Standard error of regression  6.3780
Variable Coefficient Standard Error t-ratio
One .190394 .9144 .208
Xy 1.13113 .9826 1.151
X2 .376825 4399 .857

b. Covariance Matrix White’s Corrected Matrix
.836212 524589

-.115451 96551 .076578 .282366

-.047133 .051081 .193532 399218 -.091608 1.14447
c. To apply White's test, we first obtain the residuals from the regression of Y on a constant, Xy, and X,. Then,
we regress the squares of these residuals on a constant, Xy, Xo, Xi2, X, and X;X,. The R? in this regression is
.78296, so the chi-squared statistic is 50x0.78296 = 39.148. The critical value from the table of chi-squared
with 5 degrees of freedom is 11.08, so we would conclude that there is evidence of heteroscedasticity.
d. Lagrange multiplier test.

Regress;Lhs=y;rhs=one,x1,x2 ; Res=e ; het $
create ; lmi=e*e/(sumsgdev/n) - 1 $
Name ; x=one,x1,x2 $

Calc ; list ; .5*xss(x,1lmi)s
The result was reported with the regression,

| Br./Pagan LM Chi-sg [ 2] (prob) = 72.78 (.0000) |
e. Two step estimator
read;nobs=50;nvar=1;names=y;byva $
-1.42 2.75 2.10 -5.08 1.49 1.00 216 -1.11 1.66
-.26 -4.87 5.94 2.21 -6.87 .90 1.61 2.11 -3.82
-.62 7.01 26.14 7.39 .79 1.93 1.97 -23.17 -2.52
-1.26 -.15 3.41 -5.45 1.31 1.52 2.04 3.00 6.31
5.51 -15.22 -1.47 -1.48 6.66 1.78 2.62 -5.16 -4.71
-.35 -.48 1.24 .69 1.91
read;nobs=50;nvar=1;names=x1;byva $
-1.65 1.48 77 67 .68 .23 -.40 -1.13 .15
-.63 .34 .35 79 77 -1.04 .28 .58 -.41
-1.78 1.25 .22 1.25 -.12 .66 1.06 -.66 -1.18
-.80 -1.32 .16 1.06 -.60 .79 .86 2.04 -.51
.02 .33 -1.99 .70 -.17 .33 .48 1.90 -.18
-.18 -1.62 -39 217 1.02
read;nobs=50;nvar=1;names=x2;byva $
-.67 .70 .32 2.88 -.19 -1.28 -2.72 -.70 -1.55
-.74 -1.87 1.56 .37 -2.07 1.20 26 -1.34 -2.10
.61 2.32 4.38 2.16 1.51 .30 -.17 7.82 -1.15
1.77 2.92 -1.94 2.09 1.50 -.46 19 -.39 1.54
1.87 -3.45 -.88 -1.53 1.42 -2.70 1.77 -1.89 -1.85
2.01 1.26 -2.02 1.91 -2.23
Regress;Lhs=y;rhs=one,x1,x2 ; Res=e $
e —___ +
| Ordinary least squares regression |
| Model was estimated May 12, 2007 at 08:33:20PM |
| LHS=Y Mean = -3938000 |
| Standard deviation = 6.368374 |
| WTS=none Number of observs. = 50 |
| Model size Parameters = 3 |
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Degrees of freedom = 47
Residuals Sum of squares = 1911.928
| Standard error of e = 6.378033 |
Fit R-squared = -3790450E-01
Adjusted R-squared = -.3035736E-02
Model test F[ 2, 471 (prob) = .93 (-4033)
| Diagnostic Log likelihood = -162.0430 |
Restricted(b=0) = -163.0091
Chi-sq [ 2] (prob) = 1.93 (.3806)
Info criter. LogAmemiya Prd. Crt. = 3.763988
| Akaike Info. Criter. = 3.763844 |
Autocorrel Durbin-Watson Stat. = 1.8560359
Rho = cor[e,e(-1)] = .0719820
e —___ +
Fomm— o o Fomm Fomm———— Fommm +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|
Fom o o e
Constant] -19039401 -91444640 .208 -8360
X1 | 1.13113339 -98260352 1.151 .2555 -10820000
X2 | -37682493 -43992218 .857 -3960 -21500000
Create ; e2 = e*e $
Create ; loge2 = log(e2) $
Regress ; lhs = loge2 ; Rhs = one,x1,x2 ; keep=vi $
Create ; vi = 1/exp(vi) $
Regress ; Lhs =y ; rhs = one,x1,x2 ; wts = vi $
e —___ +
| Ordinary least squares regression |
Model was estimated May 12, 2007 at 08:33:20PM
LHS=Y Mean = -.5316339
Standard deviation = 4.535703
| WTS=VI Number of observs. = 50 |
Model size Parameters = 3
Degrees of freedom = 47
Residuals Sum of squares = 890.9017
| Standard error of e = 4.353775 |
Fit R-squared = -1162193
Adjusted R-squared = .7861157E-01
Model test F[ 2, 4771 (prob) = 3.09 (.0548)
| Diagnostic Log likelihood = -150.0732 |
Restricted(b=0) = -153.1619
Chi-sq [ 2] (prob) = 6.18 (.0456)
Info criter. LogAmemiya Prd. Crt. = 3.000355
| Akaike Info. Criter. = 3.285051 |
Autocorrel Durbin-Watson Stat. = 1.9978648
Rho = corf[e,e(-1)] = .0010676
e —___ +
Fomm— o o Fomm Fomm———— Fommm +
|variable] Coefficient | Standard Error |t ratio |P[|T|>t]| Mean of X|
Fom o PRy
Constant] -16662621 .71981411 .231 .8179
X1 | .77648745 .63883379 1.215 .2303 -.51884171
X2 | -84717700 -36328984 2.332 .0240 -.34867101
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Applications

Application 8.2 Gasoline Consumption

) N N

?
C
?
N
?

Rename variable for convenience
reate ; y=Ilgaspcar $
RHS of new regression
amelist ; x = one,lincomep, lrpmg, Icarpcap $
Base regression. 1Is cars per capita significant?

Regress ; Lhs =y ; Rhs = x $

e +

| Ordinary least squares regression |

| LHS=Y Mean = 4.296242 |

| Standard deviation = -5489071 |

| WTS=none Number of observs. = 342 |

| Model size Parameters = 4 |

| Degrees of freedom = 338 |

| Residuals Sum of squares = 14.90436 |

| Standard error of e = -2099898 |

| Fit R-squared = .8549355 |

| Adjusted R-squared = -8536479 |

| Model test F[L 3, 338] (prob) = 664.00 (-0000) |

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

Fommm o Fomm e Fomm e Fom +
Constant]| 2.39132562 -11693429 20.450 -0000

L INCOMEP] -88996166 -03580581 24 .855 -0000 -6.13942544
LRPMG | -.89179791 .03031474  -29.418 .0000 -.52310321
LCARPCAP| -.76337275 .01860830 -41.023 .0000 -9.04180473Calc ;

= rsgrd $

Namelist ; Cntry=c2,c3,c4,c5,c6,c7,c8,c9,cl10,c11,cl12,c13,cl4,c15,cl6,cl7,cl8%

Regress; lhs=y;rhs=x,cntry ; Res = e $

Ordinary least squares regression

LHS=Y Mean =

| Standard deviation =

WTS=none Number of observs. =

Model size Parameters =

Degrees of freedom =

| Residuals Sum of squares =

Standard error of e =

Fit R-squared =

Adjusted R-squared =
| Model test F[ 20, 321] (prob) = 58
e
Fom o Ry
|variable] Coefficient | Standard Error
Fomm o o
Constant 2.28585577 .22832349
L INCOMEP .66224966 -07338604
LRPMG -.32170246 -04409925
LCARPCAP] -.64048288 -02967885
c2 -.12030455 -03414942
C3 .75598453 -04074554
C4 -10360026 -03660467
C5 | -.08108439 -03356343
C6 -.13598740 -03187957
c7 -05125389 .04152961
(613] -30646950 -03529373
C9 | -.05330785 -03711258
C10 -09007170 -03860659
C11 -.05106438 -03357607
C12 -.06915517 .04040779

4.296242
5489071 I
342

21

321
2.736491
.9233035E-01
9733657
9717062
6.56 (.0000) |

|t-ratio |PL[]T|>t]] Mean of X]|
+ + + +

10.011 0000
9.024 0000 -6.13942544
-7.295 0000 -.52310321
-21.580 0000 -9.04180473
-3.523 0005 -05555556
18.554 0000 -05555556
2.830 .0049 -05555556
-2.416 0163 -05555556
-4.266 0000 -05555556
1.234 2180 -05555556
8.683 0000 -05555556
-1.436 1519 -05555556
2.333 0203 -05555556
-1.521 1293 -05555556
-1.711 .0880 -05555556

ro
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C13 | -.60407878 -09122015 -6.622 -0000 -05555556
Ci14 | .74048679 -18008419 4.112 -0000 -05555556
C15 | -11664698 -03471246 3.360 -0009 -05555556
C16 | .22413229 .04764432 4.704 -0000 -05555556
C17 | -05959184 .03018816 1.974 .0492 -05555556
Cc18 | .76939510 .04457642 17.260 -0000 -05555556
Calc ; r1 = rsqgrd $
Calc ; list ; Fstat = ((r1 - r0)/17) /7 ((1-r1)/(n-4-17)) $
Calc ; list ; Fc =ftb(.95,17,(n-4-17)) $
+—— +
| Listed Calculator Results |
Ry +
FSTAT = 83.960798
FC = 1.654675
Plot ; lhs = country ; rhs = e ; Bars = 0
;Title=Plot of OLS Residuals by Country $
= Plot of OLS Residuals by Country
8
Z Lo
e oml i b e p Bd g EEREEE
N LA B EREREEE
B0 8 : 8
) T T T
Regress; Ihs=y;rhs=x,cntry ; Het $
R +
Ordinary least squares regression
LHS=Y Mean =  4.296242
| Standard deviation = -5489071 |
WTS=none Number of observs. = 342
Model size Parameters = 21
Degrees of freedom = 321
| Residuals Sum of squares = 2.736491
Standard error of e = -9233035E-01
Fit R-squared = .9733657
Adjusted R-squared = -9717062
| Model test F[ 20, 321] (prob) = 586.56 (-0000) |
White heteroscedasticity robust covariance matrix
Br./Pagan LM Chi-sq [ 20] (prob) = 338.94 (.0000)
e ___ +
Fomm_— o o Fomm———— Fomm———— o +
|Variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
Fom o e Fom Fomm—— Fom e +
Constant] 2.28585577 .22608070 10.111 0000
LINCOMEP] .66224966 -07277408 9.100 0000 -6.13942544
LRPMG | -.32170246 -05381258 -5.978 0000 -.52310321
LCARPCAP] -.64048288 .03876145 -16.524 0000 -9.04180473
c2 | -.12030455 -03160815 -3.806 -0002 -05555556
C3 | .75598453 -03692877 20.471 0000 -05555556
C4 | -10360026 -03642008 2.845 0047 -05555556
C5 | -.08108439 .03252022 -2.493 0132 -05555556
C6 | -.13598740 -03504274 -3.881 -0001 -05555556
Cc7 | -05125389 -05768530 -889 3749 -05555556
(01] | -30646950 -03516370 8.716 0000 -05555556
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C9 -.05330785 .04078467 -1.307 .1921 -05555556
C10 -09007170 -05606508 1.607 -1091 -05555556
C11 | -.05106438 -03228064 -1.582 -1147 -05555556
C12 -.06915517 -03857838 -1.793 -0740 -05555556
C13 -.60407878 -09798870 -6.165 -0000 -05555556
C14 .74048679 .18836593 3.931 -0001 -05555556
C15 | -11664698 -03500336 3.332 -0010 -05555556
C16 .22413229 -08147015 2.751 -0063 -05555556
C17 -05959184 .03166823 1.882 -0608 -05555556
ci18 .76939510 .04121364 18.668 -0000 -05555556
Create ; e2 = e*e $
Regress ; Lhs = e2 ; Rhs = one,cntry $
Calc ; List ; White = n*rsqrd ; cth(.95,17) $
S +
| Listed Calculator Results |
e +
WHITE = 131.209847
Result = 27.587112
Calc ; s2 = e"e/n $
Matrix ; s2g = {1/19} * cntry“e2
; s2g = 1/s2 * s2g
;g=s2g -1
; List ; Imstat = {19/2}*g"g $
Matrix LMSTAT has 1 rows and 1 columns.
R ——
1] 277.00947
Name ; Al = cl,cntry $
Matrix ; vg = 1/19*all"e2 $
Create ; wt = 1/vg(country) $
Regress ; Lhs = y ; rhs = x,cntry;wts=wt $
e +
Ordinary least squares regression
LHS=Y Mean = 4.460122
| Standard deviation = -4535009 |
WTS=WT Number of observs. = 342
Model size Parameters = 21
Degrees of freedom = 321
| Residuals Sum of squares = -5901434
Standard error of e = .4287719E-01
Fit R-squared = .9915851
Adjusted R-squared = -9910608
| Model test F[ 20, 321] (prob) =1891.29 (.0000) |
e +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o Sy Ry Fomm o o +
Constant 2.43706653 -11308370 21.551 0000
L INCOMEP -57506962 .02926687 19.649 0000 -5.84790214
LRPMG -.27967108 .03518536 -7.949 0000 -.87736963
LCARPCAP] -.56540465 -01613491 -35.042 0000 -8.34742189
c2 -.12007208 -02789011 -4.305 0000 -08866789
C3 .76945446 -03011060 25.554 0000 .34252221
C4 .11000512 .03169158 3.471 0006 -01995470
C5 | -.09845013 -02921659 -3.370 0008 .05724878
C6 -.13641007 -03387520 -4.027 -0001 -01079455
c7 -13502296 .04413211 3.060 .0024 -00604952
(613] -28669153 -03200056 8.959 0000 .01577251
C9 | -.08901681 -03324265 -2.678 -0078 -01701683
C10 -15281210 -05659004 2.700 -0073 -00228044
C11 -.04087890 .02882321 -1.418 1571 -03809105
Cc12 -.05220341 .02952832 -1.768 .0780 -09438377
C13 | -.53400193 -06166458 -8.660 0000 -01328985
C14 .64117855 -10737812 5.971 0000 -06594614
Ci15 .12783552 -03189740 4.008 -0001 -02454617
C16 .38638811 .05013313 7.707 0000 .00712693
C17 | -04507072 -03121765 1.444 -1498 -01629698
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ci8 | .77812476 .03277077 23.744 -0000 -17152029

)

2 Application 8.3 Iterative estimator

create ; logc = log(c) ; logg=log(q) ; logg2=logg™2 ; logp=log(pf) $
Name ; x = one,logq,logg2,logp $

Regress ; Ihs = logc ; rhs = x ; Res = e $

Matrix ; bO=b $

Procedure$

Create ; e2 = e*e

; le = e2/(sumsqdev/n)-1 $ (MLE)

?le = log(e2) $ (Iterative two step)
Regress ; quiet ; lhs=le ; rhs=one,If ; keep = s2i $
Create ; wi = 1/exp(s2i) $

Regress ; lIhs = logc ; rhs = x ; wts=wi ; res=e $
Matrix ; db = b-b0 ; bO = b $

Calc ; list ; db2 = db"db $

Endproc $

Exec ; n =10 $

These are the two step estimators from Example 8.4

e +
Ordinary least squares regression
LHS=LOGC Mean = 12.92005
| Standard deviation = 1.192244 |
WTS=W1 Number of observs. = 90
Model size Parameters = 4
Degrees of freedom = 86
| Residuals Sum of squares = 1.212889 |
Standard error of e = -1187576
Fit R-squared = .9904126
Adjusted R-squared = -9900782

| Model test F[ 3, 86] (prob) =2961.37 (-0000) |
A e e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

o Sy Ry Fomm o o +
Constant] 9.27731457 -20978736 44 _222 -0000

LOGQ | -91610564 -03299348 27.766 .0000 -1.56779393
LOGQ2 | .02164855 .01101812 1.965 .0527  3.87530677
LOGP | -40174171 -01633292 24.597 .0000 12.4336185

These are the maximum likelihood estimates

e +

| Ordinary least squares regression |

| Residuals Sum of squares = 1.347926 |

| Standard error of e = -1251941 |

| Fit R-squared = -9892110 |

| Adjusted R-squared = .9888346 |

| Model test F[ 3, 86] (prob) =2628.35 (.0000) |

e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o Sy Ry Fomm o o +
Constant] 9.24395222 -21962091 42.090 -0000

LOGQ | -92163069 -03302261 27.909 .0000 -1.43646434
LOGQ2 | .02461767 .01143734 2.152 .0342  3.46800689
LOGP | -40366011 -01701993 23.717 -0000 12.5455161
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Chapter 9
Models for Panel Data

1. The pooled least squares estimator is

y=  -747476 +  1.058959x e'e = 120.6687
(.95595) (.058656)

The fixed effects regression can be computed just by including the three dummy variables since the sample
sizes are quite small. The results are

y= -1.4684i, - 2.8362i, + .12166i; + 1.102192x  e'e = 79.183.
(.050719)
The F statistic for testing the hypothesis that the constant terms are all the same is
F[26,2] = [(120.6687 - 79.183)/2]/[79.183/26] = 6.811.
The critical value from the F table is 19.458, so the hypothesis is not rejected.
In order to estimate the random effects model, we need some additional parameter estimates. The
group means are y X
Group 1 15.502 14.962
Group 2 15.415 16.559
Group 3 14.373 12.930
In the group means regression using these three observations, we obtain
yi= 10.665 + .29909 X ; With e«'ew = .19747.

There is only one degree of freedom, so this is the candidate for estimation of 5,%/T + ,°. In the least squares

dummy variable (fixed effects) regression, we have an estimate of c,% of 79.183/26 = 3.045. Therefore, our
2

estimate of 6,2 is oy = .19747/1 - 3.045/10 = -.6703. Obviously, this won't do. Before abandoning the
random effects model, we consider an alternative consistent estimator of the constant and slope, the pooled
ordinary least squares estimator. Using the group means above, we find
23, [y - (-747476) - 1.058959 X ;¥ = 3.9273.

One ought to proceed with some caution at this point, but it is difficult to place much faith in the group means
regression with but a single degree of freedom, so this is probably a preferable estimator in any event. (The
true model underlying these data -- using a random number generator -- has a slope,  of 1.000 and a true
constant of zero. Of course, this would not be known to the analyst in a real world situation.) Continuing, we

now use o2 = 3.9273 - 3.045/10 = 3.6227 as the estimator. (The true value of p = 6,%/(c.*+c,%) is .5.) This
leadsto 6 = 1 - [3.0455"%/(10(3.6227) + 3.045)¥%] = .721524. Finally, the FGLS estimator computed

according to (16-48) is y = -1.3415(.786) + 1.0987 (.028998)x.

For the LM test, we return to the pooled ordinary least squares regression. The necessary quantities
aree’e = 120.6687, ey = -.55314, Xien = -13.72824, X.ey = 14.28138. Therefore,

LM = {[3(10)V[2(9)]}{[(-.55314)* + (13.72824) + (14.28138)?]/120.687 - 1}* = 8.4683
The statistic has one degree of freedom. The critical value from the chi-squared distribution is 3.84, so the
hypothesis of no random effect is rejected. Finally, for the Hausman test, we compare the FGLS and least
squares dummy variable estimators. The statistic is x> = [(1.0987 - 1.058959)2)/[(.058656) - (.05060)*] =
1.794373. This is relatively small and argues (once again) in favor of the random effects model. [
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2. There is no effect on the coefficients of the other variables. For the dummy variable coefficients, with the
full set of n dummy variables, each coefficient is

yi * = mean residual for the ith group in the regression of y on the xs omitting the dummy variables.
(We use the partitioned regression results of Chapter 6.) If an overall constant term and n-1 dummy variables
(say the last n-1) are used, instead, the coefficient on the ith dummy variable is simply y* - y* while the

constant term is still y * For a full proof of these results, see the solution to Exercise 5 of Chapter 8 earlier in
this book.

3. (@ The pooled OLS estimator will be b=[2F:1X{Xi]fl[2{‘:lxi’yi]Where X; and y; have T,

observations. It remains true that y; = Xip + & + uii, where Var[g; + u;i|X;] = Var[wj|Xi] = o2l + o /i’ and,
maintaining the assumptions, both ¢; and u; are uncorrelated with X;. Substituting the expression for y; into
that of b and collecting terms, we have

b=p+[Z, 'x] [z Xiw, |.

Unbiasedness follows immediately as long as E[w;|X;] equals zero, which it does by assumption. Consistency,
as mentioned in Section 9.3.2, is covered in the discussion of Chapter 4. We would need for the matrix Q

=[ ,”Hl XiX; ] to converge to a matrix of constants, or not to degenerate to a matrix of zeros. The

requirements for the large sample behavior of the vector in the second set of brackets is quite the same as in
our earlier discussions of consistency. The vector (1/n)Z!", X'w; = (1/n)X,v, has mean zero. We would
require the conditions of the Lindeberg-Feller version of the central theorem to apply, which could be
expected.
(b) We seek to establish consistency, not unbiasedness. As such, we will ignore the degrees of freedom
correction, -K, in (9-37). Use n(T-1) as the denominator. Thus, the question is whether
Rl DA

n(T -1) E
If so, then the estimator in (9-37) will be consistent. Using (9-33) and e - & =Y, —Xb—a,, it follows that
e, —& =¢, —¢ — (X, —X;)(b—PB) . Summing the squares in (9-37), we find that the estimator in (9-37)

>l (e, —8) _1 N oap B
n(l'—l) _HZizlc (I)+(b B)|: zl 1T Zt 1(Xlt X)(Xlt X):|(b B)

-2(b—ﬁ)[ IS IO e)}

The second term will converge to zero as the center matrix converges to a constant Q and the vectors converge
to zero as b converges to . (We use the Slutsky theorem.) The third term will converge to zero as both the
leading vector converges to zero and the covariance vector between the regressors and the disturbances
converges to zero. That leaves the first term, which is the average of the estimators in (9-34). The terms in
the average are independent. Each has expected value exactly equal to 2. So, if each estimator has finite
variance, then the average will converge to its expectation. Appendix D discusses various different conditions
underwhich a sample average will converge to its expectation. For example, finite fouth moment of ; would
be sufficient here (though weaker conditions would also suffice). Note that this derivation follows through for

any consistent estimator of B, not just for b.

plim

4. To find plim(1/n)LM = plim [T/(2(T-1){[Zi(Ze)’V[ZiZeid] - 1} we can concentrate on the sums inside
the curled brackets. First, Zi(Zer)® = nT{UMZ[(WMZed’} and ZZed = nT@/(nT))ZiZei’. The ratio
equals [ZiZen)’V[ZZed] = T{N)Z[WT)Zed’¥{@/(nT))ZiZei}. Using the argument used in Exercise
8 to establish consistency of the variance estimator, the limiting behavior of this statistic is the same as that
which is computed using the true disturbances since the OLS coefficient estimator is consistent. Using the

true disturbances, the numerator may be written (U/n)Zi[(UT)Ze]® = (1/n)2iEf Since E[ei] = O,

55



plim(1/n)%; Eiz, = Var[Ei,] = o/T + o,’The denominator is simply the usual variance estimator, so
plim(1/(nT))ZZei = Var[ex] = o.2+ o Therefore, inserting these results in the expression for LM, we find
that plim (I/nN)LM = [T/Q(T-D)K[T(c’T + o A)[o:2+ o,2] - 1} Under the null hypothesis that 5,2 = 0,
this equals 0. By expanding the inner term then collecting terms, we find that under the alternative hypothesis
that 2 is not equal to 0, plim (1/n)LM = [T(T-1)/2][ o.2/(c.’+5.%)]%. Within group i, Corr[gi,ei] = p> =
o ll(c+ 62 soplim (Un)LM = [T(T-1)/2](p>)> It is worth noting what is obtained if we do not divide the
LM statistic by n at the outset. Under the null hypothesis, the limiting distribution of LM is chi-squared with
one degree of freedom. This is a random variable with mean 1 and variance 2, so the statistic, itself, does not
converge to a constant; it converges to a random variable. Under the alternative, the LM statistic has mean
and variance of order n (as we see above) and hence, explodes. It is this latter attribute which makes the test a
consistent one. As the sample size increases, the power of the LM test mustgoto 1. [

5. The ordinary least squares regression results are
R® = .92803, e’e= 146.761, 40 observations

Variable Coefficient Standard Error
Xy 446845 .07887
X2 1.83915 1534
Constant 3.60568 2.555
Period 1 -3.57906 1.723
Period 2 -1.49784 1.716
Period 3 2.00677 1.760
Period 4 -3.03206 1.731
Period 5 -5.58937 1.768
Period 6 -1.49474 1.714
Period 7 1.52021 1.714
Period 8 -2.25414 1.737
Period 9 -3.29360 1.722
Group 1 -.339998 1.135
Group 2 4.39271 1.183
Group 3 5.00207 1.125
Estimated covariance matrix for the slopes:

B1 B2
By .0062209
B> .00030947 .023523

For testing the hypotheses that the sets of dummy variable coefficients are zero, we will require the sums of
squared residuals from the restrictions. These are

Regression Sum of squares
All variables included 146.761
Period variables omitted 318.503
Group variables omitted 369.356

Period and group variables omitted 585.622
The F statistics are therefore,

(1) F[9,25] = [(318.503 - 146.761)/9)/[146.761/25] = 3.251
(2) F[3,25] = [(369.356 - 146.761)/3)/[146.761/25] = 12.639
(3) F[12,25] = [(585.622 - 146.761)/12)/[146.761/25] = 6.23

The critical values for the three distributions are 2.283, 2.992, and 2.165, respectively. All sample statistics
are larger than the table value, so all of the hypotheses are rejected. [

6. The covariance matrix would be
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i=1lt=1 i=1t=2 i=2,t=1 i=2,t=2

i=Lt=1 o’+02+0> o2 ol 0
i=1t=2 o2 62 +c’ +c2 0 ol
i=2t=1 ol 0 o2 +02+02 o2
i=2t=2 0 o2 ol 62 +02+02
7. The two separate regressions are as follows:
Sample 1 Sample 2

b = x'y/xX'x 4/5=.8 6/10=.6
g'e =y'y - bx'y 20 - 4(4/5) = 84/5 10 - 6(6/10) = 64/10
R*=1-¢ely'y 1-(84/5)/20 =.16 1-(64/10)/10=.36
s?=e'e/(n-1) (84/5)/19 = .88421 (64/10)/19 = .33684
Est.Var[b] = s%/xx .88421/5 =.17684 .33684/10 = .033684

To carry out a Lagrange multiplier test of the hypothesis of equal variances, we require the separate
and common variance estimators based on the restricted slope estimator. This, in turn, is the pooled least
squares estimator. For the combined sample, we obtain

b = [X/y1 + X'Vo)/[X'X1 + Xo'%,] = (4+6)/(5+10)=2/3.
Then, the variance estimators are based on this estimate. For the hypothesized common variance,

e'e = (Y1'y1 +Y2'Y2) - b(Xi'y1 + %,'y2) = (20 + 10) - (2/3)(4 + 6) = 70/3,
so the estimate of the common variance is e'e/40 = (70/3)/40 = .58333. Note that the divisor is 40, not 39,
because we are comptuting maximum likelihood estimators. The individual estimators are

e,'e1/20 = (y1'y: - 2b(X1'y1) + b2 (x/x1))/20 = (20 - 2(2/3)4 + (2/3)°5)/20 = .84444
and 8,'8,/20 = (y2'Y2 - 2b(X2'Y) + b?(X2'%2))/20 = (10 - 2(2/3)6 + (2/3)?10)/20 = .32222.

The LM statistic is given in Example 16.3,

LM = (T/2)[(s:%s° - 1) + (s5,°/s? - 1)°] = 10[(.84444/.58333 - 1)* + (.32222/.58333 - 1)?] = 4.007.
This has one degree of freedom for the single restriction. The critical value from the chi-squared table is 3.84,
so we would reject the hypothesis.

In order to compute a two step GLS estimate, we can use either the original variance estimates based
on the separate least squares estimates or those obtained above in doing the LM test. Since both pairs are
consistent, both FGLS estimators will have all of the desirable asymptotic properties. For our estimator, we

used & ;2= &/'ej/T from the original regressions. Thus, o= 84 and 6= 32. The GLS estimator is
B= [(U6 2 )xe'ys + (U6 A%yl (U6 12 xa'x + (U & 2)Xs'xs] = [41.84 + 6/.32)/[5/.84 + 10/.32] = .632.

AN AN
The estimated sampling variance is 1/[ (1/ o 1> )xy'x; + (1/ 6 2°)x;'x;] = .02688. This implies an asymptotic
standard error of (.02688)° = .16395. To test the hypothesis that p = 1, we would refer z = (.632 - 1) /
16395 = -2.245 to a standard normal table. This is reasonably large, and at the usual significance levels,
would lead to rejection of the hypothesis.
The Wald test is based on the unrestricted variance estimates. Using b = .632, the variance

estimatorsare & 12= [y1'ys - 2b(xe'ya) + bA(xy'%)]/20 = 847056
and 822= [y2'yz - 2b(x"ys) + b%(Xx'%2)]/20 = .320512
while the pooled estimator would be cAsZ= [y'y - 2b(xy) + b*(X'x)]/40 = .583784. The statistic is given at the

end of Example 16.3, W =(T/2)[(c /0 *-1)*+ (o /0,2 - 1)F]
= 10[(.583784/.847056 - 1)* + (.583784/.320512 - 1)]] = 7.713.
We reach the same conclusion as before.
To compute the maximum likelihood estimators, we begin our iterations from the two separate

ordinary least squares estimates of b which produce estimates o ;* = .84 and o ,°= .32. The iterations are

Iteration G G B
0 .840000 .320000 .632000
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1 .847056 .320512 .631819
2 .847071 .320506 .631818
3 .847071 .320506 converged

Now, to compute the likelihood ratio statistic for a likelihood ratio test of the hypothesis of equal variances,
we refer x* = 40In.58333 - 20In.847071 - 20In.320506 to the chi-squared table. (Under the null hypothesis,
the pooled least squares estimator is maximum likelihood.) Thus, 3 = 4.5164, which is roughly equal to the
LM statistic and leads once again to rejection of the null hypothesis.

Finally, we allow for cross sectional correlation of the disturbances. Our initial estimate of b is the
pooled least squares estimator, 2/3. The estimates of the two variances are .84444 and .32222 as before while
the cross sectional covariance estimate is

e1'€,/20 = [y1'y2 - b(Xi'y2 + Xo'yq) + bz(xl’xz)]/ZO = .14444.
Before proceeding, we note, the estimated squared correlation of the two disturbances is

r = .14444 [ [(.84444)(.32222)]"? = 277,
which is not particularly large. The LM test statistic given in (16-14) is 1.533, which is well under the critical
value of 3.84. Thus, we would not reject the hypothesis of zero cross section correlation. Nonetheless, we
proceed. The estimator is shown in (16-6). The two step FGLS and iterated maximum likelihood estimates

appear below. lteration 6 6, G 1 B
0 .84444 32222 14444 5791338
1 .8521955 3202177 1597994 5731058
2 .8528702 3203616 .1609133 5727069
3 .8529155 3203725 .1609873 5726805
4 .8529185 .3203732 .1609921 5726788
5 .8529187 3203732 .1609925 converged

Because the correlation is relatively low, the effect on the previous estimate is relatively minor. [

8. If all of the regressor matrices are the same, the estimator in (8-35) reduces to

AN

B= (XX iy {We)E [y WXy = =Ly wiby
a weighted average of the ordinary least squares estimators, b; = (X'X)™X'y; with weights
w, = (Us?)[Z §_; (Usf)]. If it were necessary to estimate the weights, a simple two step estimator could be

based on individual variance estimators. Either of s = e/e/T based on separate least squares regressions
(with different estimators of ) or based on residuals computed from a common pooled ordinary least squares
slope estimator could be used. [

9. The various least squares estimators of the parameters are

Sample 1 Sample 2 Sample 3 Pooled

a 11.6644 5.42213 1.41116 8.06392
(9.658) (10.46) (7.328)

b .926881 1.06410 1.46885 1.05413
(.4328) (.4756) (.:3590)

e'e 452.206 673.409 125.281
(464.288) (732.560) (171.240) (1368.088)

(Values of e’e in parentheses above are based on the pooled slope estimator.) The FGLS estimator and its
estimated asymptotic covariance matrix are

717889 228049 -10629
= , Est.Asy.Var[b] =
113792 —10629 0.05197

Note that the FGLS estimator of the slope is closer to the 1.46885 of sample 3 (the highest of the three OLS
estimates). This is to be expected since the third group has the smallest residual variance. The LM test
statistic is based on the pooled regression,

LM = (10/2){[(464.288/10)/(1368.088/30) - 1]° + ...} = 3.7901
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To compute the Wald statistic, we require the unrestricted regression. The parameter estimates are given
above. The sums of squares are 465.708, 785.399, and 145.055 for i = 1, 2, and 3, respectively. For the
common estimate of 6, we use the total sum of squared GLS residuals, 1396.162. Then,

W = (10/2){[(1396.162/30)/(465.708/10) - 1]* + ..} = 25.21.
The Wald statistic is far larger than the LM statistic. Since there are two restrictions, at significance levels of
95% or 99% with critical values of 5.99 or 9.21, the two tests lead to different conclusions. The likelihood
ratio statistic based on the FGLS estimates is 3 = 30In(1396.162/30) - 10In(465.708/10) ... = 6.42
which is between the previous two and between the 95% and 99% critical values.

Applications

As usual, the applications below require econometric software. The computations can be done with any
modern software package, so no specific program is recommended.

-—> read $

Last observation read from data file was 200
End of data listing in edit window was reached
--> REGRESS ; Lhs = I ; Rhs = F,C,one $

e —___ +

| Ordinary least squares regression |
LHS=1 Mean =  145.9582
Standard deviation =  216.8753
WTS=none Number of observs. = 200

| Model size Parameters = 3 |
Degrees of freedom = 197
Residuals Sum of squares = 1755850.
Standard error of e = 94.40840

| Fit R-squared = -8124080 |
Adjusted R-squared = -8105035

Model test F[ 2, 1971 (prob) 426.58 (.0000)

|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +

F | -11556216 .00583571 19.803 .0000 1081.68110
C | -23067849 -02547580 9.055 -0000 276.017150
Constant]| -42.7143694 9.51167603 -4.491 -0000

--> CALC ; RO=Rsqgrd $
--> REGRESS ; Lhs = 1 5 Rhs = F,C,One : Cluster = 20 $

——  —____ +

| Ordinary least squares regression |
LHS=1 Mean =  145.9582
Standard deviation =  216.8753
WTS=none Number of observs. = 200

| Model size Parameters = 3 |
Degrees of freedom = 197
Residuals Sum of squares = 1755850.
Standard error of e = 94.40840

| Fit R-squared = -8124080 |
Adjusted R-squared = -8105035

Model test F[ 2, 1971 (prob) 426.58 (-.0000)

——  —____ +
N i hdi ii B i e i il i i i ii B B +
Covariance matrix for the model is adjusted for data clustering. |
Sample of 200 observations contained 10 clusters defined by |
20 observations (fixed number) in each cluster. |

| Sample of 200 observations contained 1 strata defined by |
| 200 observations (fixed number) in each stratum. |
o +
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Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

R, o o o o o +
F | .11556216 .01589434 7.271 .0000 1081.68110
C | .23067849 .08496711 2.715 .0072 276.017150
Constant] -42.7143694 20.4252029 -2.091 .0378

The standard errors increase substantially. This is at least suggestive that
there is correlation across observations within the groups. A formal test would
be based on one of the panel models below. When the random effects model is fit
by maximum likelihood, for example, the log likelihood function is -1095.257.
The log likelihood function for the pooled model is -1191.802. Thus, the
correlation is highly significant. The Lagrange multiplier statistic reported
below is 798.16, which is far larger than the critical value of 3.84. Once
again, these results do suggest within groups correlation.

--> REGRESS ; Lhs = I ; Rhs = F,C,one ; Panel ; Pds=20 ; Fixed $

e —___ +
| Least Squares with Group Dummy Variables |
Ordinary least squares regression
LHS=1 Mean =  145.9583
Standard deviation = 216.8753
| WTS=none Number of observs. = 200 |
Model size Parameters = 12
Degrees of freedom = 188
Residuals Sum of squares = 523478.1
| Standard error of e = 52_.76797 |
Fit R-squared = -9440725
Adjusted R-squared = .9408002

Model test F[ 11, 188] (prob) 288.50 (-0000)

e +
e +
Panel :Groups Empty o, Valid data 10
Smallest 20, Largest 20
| Average group size 20.00 |
e +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
o Sy Ry Fomm o o +
F | -11012380 -01185669 9.288 .0000 1081.68110
C | -31006534 -01735450 17.867 .0000 276.017150
. ____ +
| Test Statistics for the Classical Model |
e +
Model Log-Likelihood Sum of Squares R-squared
(1) Constant term only -1359.15096 .9359943929D+07 -0000000
1(2) Group effects only -1216.34872 .2244352274D+07 .7602173 |
(3) X - variables only -1191.80236 .1755850484D+07 -8124080
(4) X and group effects -1070.78103 .5234781474D+06 .9440725
. ____ +
| Hypothesis Tests |
Likelihood Ratio Test F Tests
Chi-squared d.f. Prob. F num. denom. P value
@) vs (D 285.604 9 .00000 66.932 9 190 -00000
1(3) vs (D 334.697 2 .00000 426.576 2 197 -00000 |
@ vs O 576.740 11 .00000 288.500 11 188 -00000
@) vs (@ 291.135 2 .00000 309.014 2 188 -00000
@) vs (3) 242.043 9 .00000 49.177 9 188 -00000
S +
--> CALC ; R1 = Rsqgrd $
--> MATRIX ; bf = b(1:2) ; vf = varb(1:2,1:2) $
--> CALC ; List ; Fstat=((R1-R0)/9)/((1-R1)/(n-2-10))
; FC=Ftb(.95,9,(n-2-10)) %
e +
| Listed Calculator Results |
+—— +
FSTAT = 49.176625

60



FC = 1.929957

The F statistic of 49.18 is far larger than the critical value, so the
hypothesis of equal constant terms is rejected.

--> REGRESS
; Panel

Lhs = I ; Rhs = F,C,one
Pds=20 ; Random $

Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = .278446D+04
| Var[u] = .612849D+04 |
Corrv(i,t),v(i,s)] = .687594

Lagrange Multiplier Test vs. Model (3) = 798.16

( 1 df, prob value = .000000)
| (High values of LM favor FEM/REM over CR model.) |
Sum of Squares -184029D+07
R-squared .803387D+00
. ______ +
S o R TS R S TS +

|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +

F | -10974919 .01031952 10.635 .0000 1081.68110
C | -30780890 -01715154 17.946 -0000 276.017150
Constant]| -57.7159079 27.1118671 -2.129 -0333

The LM statistic, as noted earlier, is very large, so the hypothesis of no
effects iIs rejected.

--> MATRIX ; br = b(1:2) ; vr = varb(1:2,1:2) $
--> MATRIX ; db = bf-br ; vdb = vf-vr ; List ; Hausman=db"<vdb>db $
1
S
1] 2.45500
--> CALC ; List ; Ctb(.95,2) $
- +
| Listed Calculator Results |
e +
Result = 5.991465

The Hausman statistic is quite small, which suggests that the random
effects approach is consistent with the data.



2.
create ; logc=log(cost/pfuel)

; logpl=log(pmtl/pfuel)

; logp2=log(peqpt/pfuel)

; logp3=log(plabor/pfuel)

; logp4=log(pprop/pfuel)

; logp5=log(kprice/pfuel)

; logg=log(output)

; logg2=.5*logq™2 $
Namelist ; cd = logpl,logp2,logp3, logp4,logp5 $
create

; pl1l=.5* logpl~"2

; p22=.5* logp2"2

; p33=.5* logp3"2

; p44=.5* logp4"2

; p55=.5* logp5°2

; pl2=logpl*logp2

; p13=logpl*logp3

; pl4a=logpl*logp4

; pl5=logpl*logp5

; p23=logp2*logp3

5 p24=logp2*logp4

5 p25=logp2*logp5

; p34=logp3*logp4

; p35=logp3*logp5

; p45=logp4*logp5 $
Namelist ; tl = pl1,pl2,p13,pl4,pl5,p22,p23,p24,p25,p33,p34,p35,p44,p45,p55%
Namelist ; z = loadfctr,stage,points $
regress; lhs=logc;rhs=one, logq, logg2,cd,z $

e —___ +

| Ordinary least squares regression |
LHS=LOGC Mean = .7723984
Standard deviation = 1.074424
WTS=none Number of observs. = 256

| Model size Parameters = 11 |
Degrees of freedom = 245
Residuals Sum of squares = 2.965806
Standard error of e = -1100242

| Fit R-squared = -9899249 |
Adjusted R-squared = -9895136

Model test F[ 10, 2451 (prob) =2407.23 (.0000)

|Variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +

Constant]| 20.3856176 22.8643711 -892 .3735

LOGQ | -95227889 -01832119 51.977 -0000 -1.11237037
LOGQ2 | -06568531 -01060839 6.192 -0000 1.45687077
LOGP1 | -.32662031 1.17956412 -.277 .7821 -37999226
LOGP2 | -.28619766 .56614750 -.506 .6136 -.25308254
LOGP3 | -16012937 -08634095 1.855 -0649 .66688211
LOGP4 | -.00519153 -07328859 -.071 .9436 -2.14504306
LOGP5 | 1.43718160 1.78896723 -803 .4225 -12.6860637
LOADFCTR] -.94688632 .18441822 -5.134 .0000 -54786115
STAGE | -.00021794 -402227D-04 -5.418 -0000 507.879666
POINTS | -00199712 -00031682 6.304 -.0000  72.9843750

?

2 Turns out the translog model cannot be computed with the firm
? dummy variables. 1711 use the Cobb Douglas form.
?

fegress;lhszlogc;rhs: one,logqg,logg2,cd ; panel ; pds=ti $

e —___ +
| OLS Without Group Dummy Variables |
| Ordinary least squares regression |
| LHS=LOGC Mean = .7723984 |
| Standard deviation = 1.074424 |
| WTS=none Number of observs. = 256 |
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| Model size Parameters = 8 |
| Degrees of freedom = 248 |
| Residuals Sum of squares = 4.190133 |
| Standard error of e = -1299834 |
| Fit R-squared = -9857657 |
| Adjusted R-squared = .9853639 |
| Model test F[ 7, 248] (prob) =2453.53 (.0000) |
A e e +
e +
| Panel Data Analysis of LOGC [ONE way] |
| Unconditional ANOVA (No regressors) |
| Source Variation Deg. Free. Mean Square |
| Between 272.013 24. 11.3339 |
| Residual 22.3551 231. .967752E-01 |
| Total 294.368 255. 1.15439 |
A e +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
T S - T  ——— - +
LOGQ | -93708702 .01772733 52.861 0000 -1.11237037
LOGQ2 | .07754607 .01211431 6.401 0000 1.45687077
LOGP1 | -.94586281 1.38855410 -.681 4964 -37999226
LOGP2 | -.79081045 .66530892 -1.189 2357  -.25308254
LOGP3 | -01998606 -09963618 .201 .8412 .66688211
LOGP4 | .08893118 .08543313 1.041 2989 -2.14504306
LOGP5 | 2.63118115 2.10504302 1.250 2125 -12.6860637
Constant] 35.4178566 26.9017806 1.317 1892
A e e +
Least Squares with Group Dummy Variables
Ordinary least squares regression
| LHS=LOGC Mean = .7723984 |
Standard deviation = 1.074424
WTS=none Number of observs. = 256
Model size  Parameters = 32
| Degrees of freedom = 224 |
Residuals Sum of squares = -9373686
Standard error of e = .6468911E-01
Fit R-squared = -9968157
| Adjusted R-squared = -9963750 |
| Model test F[ 31, 2241 (prob) =2261.94 (.0000) |
e +
e —___ +
| Panel:Groups Empty o, Valid data 25 |
| Smallest 2, Largest 15 |
| Average group size 10.24 |
e —___ +
S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +
LOGQ | .66448665 -03580894 18.556 0000 -1.11237037
LOGQ2 | -.00955723 .01280811 -.746 .4563  1.45687077
LOGP1 | 1.84750938 .76113884 2.427 0159 -37999226
LOGP2 | .73986763 .37612716 1.967 0503  -.25308254
LOGP3 | -.05323942 -06396335 -.832 -4060 .66688211
LOGP4 | .22763995 .04625120 4.922 0000 -2.14504306
LOGP5 | -1.83738098 1.16995945 -1.570 1176 -12.6860637
gy +
| Test Statistics for the Classical Model |
S T i il i i i - i  libiiiBh +
| Model Log-Likelihood Sum of Squares R-squared |
| (1) Constant term only -381.12407 .2943684435D+03 -0000000 |
1(2) Group effects only -51.16832 .2235506489D+02 -9240575 |
I(3) X - variables only 163.14470 .4190132631D+01 -9857657 |
|(4) X and group effects 354.81332 .9373685874D+00 -9968157 |

| Hypothesis Tests |
| Likelihood Ratio Test F Tests |



Chi-squared d.f. Prob. F num. denom. P value |
@) vs (D 659.911 24 .00000 117.116 24 231 -00000 |
(3 vs (1) 1088.538 7 .00000 2453.527 7 248 -00000 |
(4) vs (1) 1471.875 31 .00000 2261.945 31 224 -00000 |
@) vs (2) 811.963 7 .00000 731.160 7 224 -00000 |
@) vs (3 383.337 24 .00000 32.388 24 224 -00000 |
R i i i Vi i A e e i  E i A  l]iliilit +
A e +
Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = -418468D-02
| Var[u] = -127110D-01 |
Corrv(i,t),v(i,s)] = .752323
Lagrange Multiplier Test vs. Model (3) = 479.37
( 1 df, prob value = .000000)
| (High values of LM favor FEM/REM over CR model.) |
Baltagi-Li form of LM Statistic = 174.85
Fixed vs. Random Effects (Hausman) = 40.99
( 7 df, prob value = .000001)
| (High (low) values of H favor FEM (REM).)
Sum of Squares .648771D+01
R-squared .978056D+00
. ______ +
S o R TS R S TS +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +
LOGQ | .79769706 -02494671 31.976 0000 -1.11237037
LOGQ2 | .02011534 -01130089 1.780 .0751  1.45687077
LOGP1 | 1.11671466 . 74579390 1.497 1343 -37999226
LOGP2 | .27128619 .36294718 747 4548  -.25308254
LOGP3 | -.10761385 -06138583 -1.753 .0796 .66688211
LOGP4 | .18385724 .04550246 4.041 .0001 -2.14504306
LOGP5 | -.49374865 1.13625272 -.435 .6639 -12.6860637
Constant]| -4.53328730 145229534 -.312 . 7549
regress; lhs=logc;rhs=z,one, logq, logg2,cd ; panel ; pds=ti $
s —— +
OLS Without Group Dummy Variables
Ordinary least squares regression
LHS=LOGC Mean = .7723984
| Standard deviation = 1.074424 |
WTS=none Number of observs. = 256
Model size  Parameters = 11
Degrees of freedom = 245
| Residuals Sum of squares = 2.965806 |
Standard error of e = -1100242
Fit R-squared = .9899249
Adjusted R-squared = -9895136
| Model test F[ 10, 2451 (prob) =2407.23 (.0000) |
e e +
e +
| Panel Data Analysis of LOGC [ONE way] |
| Unconditional ANOVA (No regressors) |
| Source Variation Deg. Free. Mean Square |
| Between 272.013 24. 11.3339 |
| Residual 22.3551 231. .967752E-01 |
| Total 294.368 255. 1.15439 |
A e +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
T S - T  ——— - +
LOADFCTR] -.94688632 .18441823 -5.134 0000 -54786115
STAGE | -.00021794 .402227D-04 -5.418 0000 507.879666
POINTS | .00199712 -00031682 6.304 0000  72.9843750
LOGQ | .95227889 .01832119 51.977 0000 -1.11237037
LOGQ2 | -06568531 -01060839 6.192 0000 1.45687077
LOGP1 | -.32662033 1.17956418 -.277 .7821 -37999226
LOGP2 | -.28619767 -56614753 -.506 6136  -.25308254
LOGP3 | -16012937 .08634095 1.855 0649 .66688211
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( 1 df, prob value = .000000)
(High values of LM favor FEM/REM over CR model.)

| Baltagi-Li form of LM Statistic = 170.10
Fixed vs. Random Effects (Hausman) = 44.65
(10 df, prob value = .000003)

(High (low) values of H favor FEM (REM).)
| Sum of Squares -451094D+01

LOGP4 | -.00519153 .07328859 -.071 .9436 -2.14504306
LOGP5 | 1.43718164 1.78896732 -803 .4225 -12.6860637
Constant] 20.3856181 22.8643723 -892 .3735
A e e +
Least Squares with Group Dummy Variables
Ordinary least squares regression
| LHS=LOGC Mean = .7723984 |
Standard deviation = 1.074424
WTS=none Number of observs. = 256
Model size  Parameters = 35
| Degrees of freedom = 221 |
Residuals Sum of squares = . 7726037
Standard error of e = -5912651E-01
Fit R-squared = .9973754
| Adjusted R-squared = -9969716 |
| Model test F[ 34, 221] (prob) =2470.05 (.0000) |
e +
e —___ +
| Panel:Groups Empty o, Valid data 25 |
| Smallest 2, Largest 15
| Average group size 10.24 |
e —___ +
S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +
LOADFCTR] -.89457348 -14242570 -6.281 0000 -54786115
STAGE | -.00022827 -894260D-04 -2.553 .0113 507.879666
POINTS | -00010341 .00041551 -249 8037  72.9843750
LOGQ | . 75278467 .03923479 19.187 0000 -1.11237037
LOGQ2 | -.00324835 -01306645 -.249 8039  1.45687077
LOGP1 | 1.38217070 .72421015 1.909 .0575 -37999226
LOGP2 | .61609241 -35323609 1.744 0824  -.25308254
LOGP3 | -00706546 .05918620 -119 .9051 .66688211
LOGP4 | -14433953 -04404683 3.277 -.0012 -2.14504306
LOGP5 | -1.25331458 1.10477945 -1.134 2577 -12.6860637
e +
| Test Statistics for the Classical Model |
. ____ +
| Model Log-Likelihood Sum of Squares R-squared |
(1) Constant term only -381.12407 .2943684435D+03 -0000000
(2) CGroup effects only -51.16832 .2235506489D+02 .9240575
(3) X - variables only 207.37940 .2965806000D+01 -9899249
|(4) X and group effects 379.55705 _7726036853D+00 -9973754 |
e e +
Hypothesis Tests
Likelithood Ratio Test F Tests
Chi-squared d.f. Prob. F num. denom. P value |
@) vs (D 659.911 24 .00000 117.116 24 231 -00000
@3) vs (1) 1177.007 10 .00000 2407.226 10 245 -00000
(4) vs (1) 1521.362 34 .00000 2470.054 34 221 -00000
1(4) vs (2) 861.451 10 .00000 617.357 10 221 -00000 |
1(4) vs (3) 344.355 24 .00000 26.140 24 221 -00000 |
gy +
R A RS i +
Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = .349594D-02
Var[ul = -860939D-02
| Corr[v(i,t),v(i,s)] = .711206 |
Lagrange Multiplier Test vs. Model (3) = 466.36
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| R-squared -984812D+00 |

|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +

LOADFCTR] -1.07921018 .13264921 -8.136 -0000 .54786115
STAGE | -.00016415 .672354D-04 -2.441 .0146  507.879666
POINTS | -00044792 -00035950 1.246 .2128  72.9843750
LOGQ | -86611837 .02783747 31.113 .0000 -1.11237037
LOGQ2 | .02222380 .01102947 2.015 .0439 1.45687077
LOGP1 | -92719911 .70150544 1.322 -1863 -37999226
LOGP2 | -30782803 -33937387 -907 .3644  -.25308254
LOGP3 | -.02581955 .05671735 -.455 .6489 .66688211
LOGP4 | .09284095 .04277517 2.170 .0300 -2.14504306
LOGP5 | -.36595849 1.06514141 -.344 .7312 -12.6860637
Constant] -2.36774378 13.6315073 -.174 .8621
matrix ; List ; bz=b(1:3);vz=varb(1:3,1:3) ; wald = bz"<vz>bz $
Matrix WALD has 1 rows and 1 columns.
1

1]  74.33957



Chapter 10
Systems of Regression Equations

1. The model can be written as Bl} = Hu + {:1} . Therefore, the OLS estimator is
2 2
m = [+ 1)y +i'y) = (VY +ny,)/(0+0) = (y;+y,)/2 =15.
The sampling variance would be Var[m] = (1/2)*{Var[y, ]+ Var[y,]+2Cov[(y;1, ¥,)I}-
We would estimate the parts with  Est.Var[ 91] = sp/n = ((150 - 100(1)3/99)/100 = .0051
EstVar[y,] = sp/n = ((550 - 100(2)%)/99)/100 = .0152
EstCov[y,, Y,] = sw/n = ((260 - 100(1)(2))/99)/100 = .0061

Combining terms, Est.Var[m] = .0079.
The GLS estimator would be

[(Gll + Glz)ilyl + (622 + Glz)i’yz]/[(cll + Glz)i'i + (022 + Glz)ili] - Wyl"' (l-W) 92

where w= (6™ +62) / (61 + 62 + 26%). Denoting = — {611 012} yi= ;2{ oF) 612}
C12 O G110 =012 [~ C12 On

The weight simplifies a bit as the determinant appears in both the denominator and the numerator. Thus,

W = (o - o)/ (o1 + o2 - 201). For our sample data, the two step estimator would be based on the

variances computed above and s;; = .5051, s, = 1.5152, s, = .6061. Then,w = 1.1250. The FGLS

estimate is 1.125(1) + (1 - 1.125)(2) = .875. The sampling variance of this estimator is

wAVar[y,] + (1 - wVar[y,] + 2w(l - w)Cov[y,, y,] = .0050 as compared to .0079 for the OLS
estimator.
i 0 [ | |
2. The model is y = {yl} = XB+e = { }(Blj . 81] 50 = [011 1 }
Y2 0 x]\B2/ e, o1l Ol

The generalized least squares estimator is

a 1 20, 7Y 11 124
B =[x QXX Qly |:G il oi'x (0 i'y, +o IyZ)

Glzi'X GZZX'X Glleyl +622X'y2

_\1 _ _
n( 011 612X j n( 611 y,+ 012 yzj
o¥x o?%s,, 0?5, +0%%s,,

where Six = X'XIN, S, = X'yi/n, S = X'yo/n

and o' = the ijth element of the 2x2 £,

To obtain the explicit form, note, first, that all terms o are of the form cjil(61102 - c%,) But, the denominator
in these ratios will be cancelled as it appears in both the inverse matrix and in the vector. Therefore, in terms
of the original parameters, (after cancelling n), we obtain

-1 — _ _ _ _
ﬁ - { G ~—Op X} { G2Y1~0nrY; } - 1 |:Gllsxx G1p X}( G2Y1~012Y>2 j
_ = X )
—O1pX O35 — G851 + 0115 0110258« —(012X)" | 012X O \— 0158 + 0115

AN p— —_— — —
The two elements are B1= [0118x(022 Y1 - G12Y,) - O12 X (G1281 ~C115x2) 1/ [G115228xx - (G212 X )]

A J— p— —_— —
B,= [012X (022Y1 -612Y;) - 622(5125x - 611542)|/[6115228x - (512 X )2]

The asymptotic covariance matrix is
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11
1 12
- c o X
[X'Q'X]t= n( b » j
c G Sk 011522 512

The OLS estimatoris b = (X'X)*X'y = (

-1
— 012 XJ
—Op X G115«

] The sampling variance is
X

x|

X'y /XX

-1
n o0
(xlx)-lxlgx(xlx)-l :|: :| |:Glln 612n

-1
n 0
. The ns are carried outside the product
0 NSy | | o1oNX G NSy,

0 ns,

and reduce to (1/n). This leaves Var[b] = { ou /n GlZX/(nSXXz}.
G12)(/(ns><><) Gzzl(nsxx)

Using the results above, the OLS coefficients are b, =§1 =150/50 = 3 and b, = x"y,/x'x = 50/100 = 1/2.
The estimators of the disturbance (co-)variances are
Su = Zi(yin-y;)n = (500 -50(3)2)/50 = 1
S22 = Zi(yiz - bx)n = (90 - (1/2)50)/50 = 1.3
S = Zi(Yin -y )iz - bax)n = [y/ya-ny, yz byX"y; +nb, y; X I/

= (40-50(3)(1) - (1/2)60 + 50(1/2)(3)(2)/50 = .2
Therefore, we estimate the asymptotic covariance matrix of the OLS estimates as

1/50 2(2)[50(90)] | 02 .0000888
2(2)[50/90] 13/90 ~|.0000888 01444
To compute the FGLS estimates, we use our results from part a. The necessary statistics for the

Est.Var[b] = {

computationare s;; = 1, S» = 1.3, S = 2,8 = 100/50 = 2, x = 100/50 = 2,
y, = 150/50 = 3, y,= 50/50 = 1
S, = 60/50 = 1.2, S = 50/50 =1

Then, ﬁlz {1(2Q)[1.3(3) - .2(1)] - .2(2)[.2(1.2) - L)]M{1(1.3) - [.2(2)]*} = 3.157

B,= {2(2[13@3) - .2(1)] - L3[2(L.2) - (WI}AL(L3) - [2Q)13 = 1011

The estimate of the asymptotic covariance matrix is
1/50)[1(1.3) - (.2)1{1(1.3)2 - [2(2))? = . Notice that the
( L3 - (TALL3) [2(2)] }{2(2) 13 004131 .007945} !

estimated variance of the FGLS estimator of the parameter of the first equation is larger. The result for the
true GLS estimator based on known values of the disturbance variances and covariance does not guarantee
that the estimated variances will be smaller in a finite sample. However, the estimated variance of the second
parameter is considerably smaller than that for the OLS estimate.

Finally, to test the hypothesis that B, = 1 we use the z-statistic (asymptotically distributed as standard
normal), z = (1.011 - 1)/ (.007945)> = .123. The hypothesis cannot be rejected. [

1(2) .2(2)}_[.020656 004131

3. The ordinary least squares estimates of the parameters are
bl = X1’y1/X1’X1 = 4/5 =.8 and b2 = X2’y2/X2'X2 = 6/10=.6
Then, the variances and covariance of the disturbances are
S11 = (Y1'Y1 - blxlly]_)/n = (20 - 8(4))/20 = .84
Sz = (Y2'Y2 - baX2'y)/in = (10 - .6(6))/20 = .32
S12 = (Y1'Y2 - boXo'ys - bixy'y, + biboxy "%, )/in = (6 - .6(3) - .8(3) +.8(.6)(2))/20 = .246
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84 246
246 .32

A -1
11, 12, 11, 12,
LBIJ _ |:S X1 X1 §Xq X2:| |:S X1Y1+S57X1'Y,

B/\z 312)(1-.)(2 SZZXZ-XZ 812X2|yl + SZZXZ-yZ

-1 1 12
We will require S* = [ } = {S } . Then, the FGLS estimator is

812 Sll
] Inserting the values given in the problem produces

the FGLS estimates, 3, = .505335, B, = .541741 with estimated asymptotic covariance matrix equal to the

132565 0077645 i
. To test the hypothesis, we use the t
0077645 0252505

statistic, t = (505335 - .541741)/[.132565 + .0252505 - 2(.0077645)]* = -.0965 which is quite small. We
would not reject the hypothesis.

To compute the maximum likelihood estimates, we would begin with the OLS estimates of 613, 62,
and c1,. Then, we iterate between the following calculations

(1) Compute the 2x2 matrix, S™

inverse matrix shown above, Est.Var[ﬁ}{

1

11, 12,
(2) Compute the 2x2 matrix [X'(S*®1)X] {s le X1 522x1 XZ}
STX1'Xy  STX,'X,

11y, 12,
. 1 STX'Y+SXY
MS@M_lﬁ} 232
§TX Y1 +87X5 Y,

(3) Compute the coefficient vector = [X'(S'®)X][X"(S*®I)y]

Compare this estimate to the previous one. If they are similar enough, exit the iterations.
(4) Recompute S using Sij = yi’yj - Bixi,yj - BJ Xj'yi + Bi BJ Xi'Xj, I,j =12
(5) Go back to step (1) and continue.

Our iterations produce the two slope estimates

505335 .541741

.601889 .564998

.614884 .566875

.616559 .567186

616775 .567227

616803 .567232

: .616807 .567232 converged.

At convergence, we find the estimate of the asymptotic covariance matrix of the estimates as

155355 00576887 . 18483899 1573814
00576887 .029348 | 1573814 3205369 |

To use the likelihood ratio method to test the hypothesis, we will require the restricted maximum
likelihood estimate. Under the hypothesis,the model is the one in Section 15.2.2. The restricted estimate is
given in (15-12) and the equations which follow. To obtain them, we make a small modification in our
algorithm above. We replace step (3) with

NoghRhwhRE

[XN(S'®DX]* = [

A
(3) B = [s"%1"y1 + $2X2Y2 + ST(Xy'Ya + X'yn)V[ST XXy + X5 Xz + 28™%4"%,].

Step 4 is then computed using this common estimate for both $, and 3, . The iterations produce

5372671
5703837
5725274
5726687
5726780
5726786 converged.

oukhwnRE
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8529188 1609926
1609926 .3203732

Using our unconstrained and constrained estimates, we find |W,| = .2471714 and |W,| = .2473338. The
statistic is . = 20(In.2473338 - In.2471714) = .0131. This is far below the critical value of 3.84, so once
again, we do not reject the hypothesis.

At this estimate, the estimate of Z is [ } The likelihood ratio statistic is given in (15-56).

4. The GLS estimator is
A leMXIX XX - oMX'y, + X'y,
B_LlZX'x GZZX'X:| LlZX'ylmZZX'yJ
The matrix to be inverted equals [ @X'X]™. But, [Z'@X'X]? = Z&(X'X)™. (See (2-76).) Therefore,
2 [oux ) o X) ] oty + 62Xy,
ﬁ_le(X'X)'l 6zz(xlx)-l} LHX'YPLGZZX'YJ

We now make the replacements X'y; = (X'X)b; and X'y, = (X'X)b,. After multiplying out the product,
we find that

A |:GllGllb1 + GllGlzbz + GlzGlel + 012622b2 } B |:(611011 + GlzGlz)bl + (611612 + GlZGZZ)bZ }

GlZGllbl + Glzclzbz + GZZGlel + 622622b2 (61261l + czzclz)bl + ((512612 + (522(522)b2

A (b
The four scalar terms in the matrix product are the corresponding elements of =™ = I. Therefore, B = (blj .
2

5. The algebraic result is a little tedious, but straightforward. The GLS estimator which is computed is
[BAIJ _ {Gllxllxl 6%,y }_l{ oM%Yy + 61Xy, :l
BAz %%, %, 67X, %y | | 6%X,'yy + 672X,y |
It helps at this point to make some simplifying substitutions. The elements in the inverse matrix, c’, are all

equal to elements of the original matrix divided by the determinant. But, the determinant appears in the
leading matrix, which is inverted and in the trailing vector (which is not). Therefore, the determinant will

cancel out. Making the substitutions, {ElJ :{
P2

we are concerned with probability limits. We divide every element of the matrix to be inverted by n, then
because of the inversion, divide the vector on the right by n as well. Suppose, for simplicity, that

} ={ G011 _(512(112}_l plim{ OX1' Y1/ N=01,%"y, I }

' ' -1 \ '
GpXp X1 — 0%y Xz} { G2oX1 Y1 =012X1 Y2

, . i i } Now,
—OpXy Xy O11Xp Xp — 012Xy Y1 00Xy Y,

lim, ,..x/x/n = ;i =1,2,3. Then, plim| P1 , ,
—012012 Ol —0X'Y1 IN+oX'y, In

7
Then, we will use plim (1/n)x,"y; = P10y + plim (1/n)x;Ne; = B101y
plim (1/n)X4'y2 = Baliz + Bstas

plim (1/n)Xz"y1 = Bid

plim (1/n)X,"y, = Palzz + PsQaa.
Therefore, after multiplying out all the terms,

A -1
p"m(ﬁlJ :{ 62201 — 012‘112} { B1022011 ~ B2612012 — B3O 12013 }

B, — 00, Ol —B1612012 +B2011022 + B3011023

The inverse matrix is ! {

2
611022011022 — (012012)

611022 C12U12

] SOWith A = (c11F22011022 - (F12012)°)
612012 G202
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A\ 0,0, Oyl —P161201, +B201,0z, + B301,0;

B,

separately and collecting terms,

~ -1
p"m[BlJ _ {i{ﬁllqzz Glzqizjjl |: B10201 —B,01,0;, _Bsﬁlqus } Taking the first coefficient

plimpB, = B1[61162201102-(012012) T/A + B2[611022612012 + G12012611022)/A + Ba[ 611022612013 + G12012611G25)/A
The first term in brackets equals A while the second equals 0. That leaves
plim [§1= B1 - Ba[o11612(022013 - T12023)1/A which is not equal to B;. There are two special cases worthy of

note, though. The right hand side does equal B, if either (1) o1, = O; the regressions are actually unrelated,
or (2) g = quz = O; the regressors in the two equations are uncorrelated. The second of these is similar to
our finding for omitted variables in the classical regression model. [

251

6. The model is {yl} = {OI X 0} B {81] The GLS estimator of the full coefficient vector, 6, is
2 0 i o, €,
_ -1 _ _
R cll[ n nxj G12( n_} cll[ ny1]+012[nY2]
0= nx X'x nx X'y, X'y, . Let g« equal x'x/n, g, = X'ys/n and, gy, =
clz(n n?) o?n 012n§1 + 022n§2

X'y,/n. The ns in the inverse and in the vector cancel. Also, as suggested, we assume that x= 0. Asin the
previous exercise, we replace elements of the inverse with elements from the original matrix and cancel the
determinant which multiplies the matrix (after inversion) and divides the vector. Thus,

-1 - -
. O11 0 —Op G2Y1=01Y;
0= 0 00y 0 611041 — O120x2 | The inverse of the matrix is straightforward. Proceeding
—Op 0 11 —O012Y1+0nuY>
-1 - -
N 1 G110220xx 0 G120 220 xx G2Y1—01Y;

2
G220y (01102 — G13)
G120 220xx 0 G220« —O1Y+t0ony,

It remains only to multiply the matrices and collect terms. The result is

oclzyl, (12:;2,[3: [(Oxa/Ox) - (012622) (el )] = b1 -y, [

7. Once again, nothing is lost by assuming that x=0. Now, the OLS estimators are
a =y,, & =Y,, ag =Yz, b = Xy/x'x.
The vector of residuals is  ej; = i1 - Vl- bx;
€2 = VYi2 - 92
€z = Vis - ys
Now, if yi, + yis = 1 at every observation, then (1/n)Zi(yi + Yis) = Y,+ Y3= 1 as well. Therefore, by just

adding the two equations, we see that e, + e;3 = 0 for every observation. Let e; be the 3x1 vector of
residuals. Then, ec = 0, where ¢ = [0,1,1]. The sample covariance matrix of the residuals is

S = [(/n)Zieef]. Then, Sc = [(I/n)Ziee’lc = [(IUn)Ziee’c] = [(L/n)Ziex0] = 0, which
means, by definition, that S is singular.

We can proceed simply by dropping the third equation. The adding up condition implies that o3 = 1
- ap. S0, we can treat the first two equations as a seemingly unrelated regression model and estimate a; using
the estimate of o.
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Applications

1. By adding the share equations vertically, we find the restrictions
Br +PB2 +Ps =1
O11+0812+813=0
1+ 8+ 083 =0
O13+08;3+0333 =0
Yitve tyys = 0.
Note that the adding up condition also implies ¢, +¢, +&3 = 0.
We will eliminate the third share equation. The restrictions imply

Bz =1-P1-PB
d13 = -011- 312
023 = -812- 02
B33 = - 013~ 23 = 811 + O + 2012
Yy3 = =Yy~ Vye
By inserting these in the three share equations, we find
S1 = Bl + 811|np1 + 812|np2 - 611|Hp3 - 812|np3 + ’YyllnY +g

B1 + S11In(p1/ps) + S12IN(P2/p3) + yaInY + &1

S = Bz + 812|np1 + 822lnp2 - 612|np3 - 822lnp3 + ’szlnY + &
= Bo+ S12In(pa/ps) + 822IN(P2/P3) + 1yoInY + &5
Sz = 1- By - Bz - dulnp; - 12Inp; - S12INpP; - S2INP; + 8111NP3 + 510INP3 + 312INps
+ 822|np3 - 'Yyllnpg - ’szlnpg -€1-8&
=1- Sl - Sz
For the cost function, making the substitutions for B, 813, 83, 833, and yys produces
InC = o+ By(Inp; - Inps) + Bo(Inp; - Inp3)

+81((In°p1)/2 - InpyInps + (IN*pg)/2)
+ 85((I°p2)/2 - Inpalnps + (In°p3)/2) + S1o(Inpalnp; - InpsInps - Inp,Inp; + (In*ps))
+ yInY(Inpy - Inpg) + yyInY(INp; - Inp3) + ByInY + Byy(lnzY)/Z + g
= o+ BaIn(ps/pa) + B2In(p2/ps)
+ 811 (IN°(P1/p3))/2 + S2(IN*(P2/P3))/2 + S12IN(p/ps) IN(P2/Ps)
+1,InYIN(py/ps) + y,2InYIN(po/ps) + ByINY + By (IN°Y)/2 + &

The system of three equations (cost and two shares) can be estimated as discussed in the text.
Invariance is achieved by using a maximum likelihood estimator. The five parameters eliminated by the
restrictions can be estimated after the others are obtained just by using the restrictions. The restrictions are
linear, so the standard errors are also striaghtforward to obtain.

The least squares estimates are shown below. Estimated standard errors appear in parentheses.

Variable Cost Function Capital Share Labor Share
One 51.32 (45.91) -.0174 (-4697) .2172 (.2408)
In(p/ps) -21.74 (20.14) -2380 (-1045) -0033 (-0534)
In(pi/ps) 32.39 (21.81) -0065 (-1059) -0168 (-0542)
IN“(p/pPe)/2 4.596 (4.604) -.0007 (.0098) -.0117 (-0050)
In2(pi/ps)/2 8.216 (5.159)

In(p/pe) IN(P1/Pr) -6.238 (4-684)

InY 1.674 (-9297)

In?v/2 ,006997 (.0313)

InYIn(pe/pr) -.3223 (.2652)

InYIn(pi/ps) -08631 (-1981)

The estimates do not even come close to satisfying the cross equation restrictions. The parameters in the cost
function are extremely large, owing primarily to rather severe multicollinearity among the price terms.

The results of estimation of the system by direct maximum likelihood are shown. The convergence
criterion is the value of Belsley (discussed near the end of Section 5.5). The value o shown below is g'H™g
where g is the gradient and H is the Hessian of the log-likelihood.

Iteration 0, F=46.76391, In*S*= -7.514268, o= 2.054399
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Iteration 1, F=136.7448, In*S*= -16.51236, o= .5796486
Iteration 2, F=146.9803, In*S*= -17.53591, o= .02179947
Iteration 3, F=147.2268, In*S*= -17.56055, o= .0004222
Residual covariance matrix
Cost Capital Labor
Cost .0145572
Capital 000304768 .00303853
Labor -.000317554 -.000887258 .000798128
Coefficient Estimate Std. Error
o -6.41878 .6637
Bk -.0546555 .2422
B .250976 .2138
S .245259 .06904
S .0245770 .04788
Sk -.00403448 .04779
By 572452 .1340
Byy .0456587 .01908
YTyk -.00124236 .008409
Ty -.0116921 .004442
B -8036795
Ok -.2412245
Sif -.0205425
Off .261767
Yyf .0129345

The means of the variables are: Y = 3531.8, p,= 169.35, p, = 2.039, p; =26.41. The

three factor shares computed at these means are Sy = .4182, S, = .0865, S = .4953. (The sample means are
411, .0954, and .4936.) The matrix of elasticities computed according to (15-72) is

k I f
.01115 K
Y= .8885 -7.2756 |
-1646 5206 .04819 f

(Two of the three diagonals have the “wrong' sign. This may be due to the very small sample size. The cross
elasticities however do conform to what one might expect, the primary one being the evident substitution
between capital and fuel.

To test the hypothesis that y,; = 0, we reestimate the model without the interaction terms between InY

and the prices in the cost function and without InY
restricted model are shown below.

in the factor share equations. The iterations for this

Iter.= 0, F=46.76391, log|S|= -7.514268, o= 1.912223
Iter.= 1, F=123.7521, log|S|= -15.21308, o= .5888180
Iter.= 2, F=136.3410, log|S|=-16.47198, a= .2771995
Iter.= 3, F=141.3491, log|S|=-16.97279, a= .08024513
Iter.= 4, F=142.5591, log|S|=-17.09379, o= .01636212

Converged achieved

Since we are interested only in the test statistic, we have not listed the parameter estimates. The test
statistic given in (17-26) is A = T(In|Sy| - In|Sy|) = 20(-17.09379 - (-17.56055)) = 9.3352. There are two
restrictions since only two of the three parameters are free. The critical value from the chi-squared table is
5.99, so we would reject the hypothesis.
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Application 10.2

a. Separate regressions and aggregation test.
? This saves the residuals to be used later.
CALC ; SS1=0 $

MATRIX ; EOLS = Init(20,10,0) $

PROCEDURE $

Include ; new ; Firm = company $
REGRESS ; Lhs =1 ; Rhs = F,C,one ; Res = e$
CALC ; SS1=SS1 + Sumsqdev $
MATRIX ; EOLS(*,company) = e $
ENDPROC $
EXECUTE ; Company=1,10 $
SAMPLE ; 1-200 $
A e +
| Residuals Sum of squares = 143205.9 |
Standard error of e = 91.78167 |
| Fit R-squared = -9213540 |
e +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]
T S - T  ——— - +
F | -11928083 .02583417 4.617 .0002  4333.84500
C | .37144481 .03707282 10.019 .0000 648.435000
Constant]| -149.782453 105.842125 -1.415 .1751
R S SSSSSSHiiinnw +
| Residuals Sum of squares = 158093.3 |
Standard error of e =  96.43445
| Fit R-squared = .4708624 |
s S +
R o Fomm e Fomm Fomm e R +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
F | -17485602 .07419805 2.357 .0307 1971.82500
C | -38964189 -14236688 2.737 .0140  294.855000
Constant]| -49.1983219 148.075365 -.332 .7438
e —___ +
| Residuals Sum of squares = 13216.59 |
| Standard error of e = 27.88272 |
| Fit R-squared = .7053067 |
| Adjusted R-squared = .6706369 |
i i'iss +
R o Fomm e Fomm Fomm e R +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
F | .02655119 .01556610 1.706 .1063  1941.32500
C | -15169387 -02570408 5.902 .0000 400.160000
Constant]| -9.95630645 31.3742491 -.317 .7548
e —___ +
| Residuals Sum of squares = 2997.444 |
Standard error of e = 13.27856
| Fit R-squared = -9135784 |
e —___ +
S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]
Fom o o Fom Fomm—— Fom e +
F | .07794782 .01997330 3.903 -.0011  693.210000
C | -31571819 .02881317 10.957 .0000 121.245000
Constant] -6.18996051 13.5064781 -.458 .6525
e +
| Residuals Sum of squares = 1396.836 |
Standard error of e = 9.064592 |
| Fit R-squared = .6804076 |
e +
Fom e - o o Fom - Fom—— - Fom e — +

|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]



Fom o o Fom Fomm—— Fom e +
F | -16237770 -05703645 2.847 0111  231.470000
C | .00310174 .02196531 -141 8894  486.765000
Constant] 22.7071160 6.87207605 3.304 .0042

e +
| Residuals Sum of squares = 1110.533 |

Standard error of e = 8.082418 |

| Fit R-squared = .9521422 |

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

Fommm o Fomm e Fomm e Fom +
F | .13145484 .03117234 4.217 .0006  419.865000
c | .08537427 -10030597 .851 .4065  104.285000
Constant] -8.68554338 4.54516804 -1.911 .0730

A e e +
| Residuals Sum of squares = 1507.403 |

Standard error of e = 9.416516 |

| Fit R-squared = . 7635009 |

e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

T S - T  ——— - +
F | .08752720 .06562593 1.334 .1999  149.790000
C | .12378141 .01706483 7.254 .0000  314.945000
Constant]| -4.49953436 11.2893942 -.399 .6952

R S SSSSSSHiiinnw +
| Residuals Sum of squares = 1773.234 |

Standard error of e = 10.21312 |

| Fit R-squared = .7444461 |

s S +

R o Fomm e Fomm Fomm e R +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]

Fom e - o o Fom - Fom—— - Fom e — +
F | .05289413 -01570650 3.368 .0037  670.910000
C | -09240649 -05609897 1.647 .1179  85.6400000
Constant]| -.50939018 8.01528894 -.064 -9501

e —___ +
| Residuals Sum of squares = 1407 .360 |

Standard error of e = 9.098674 |

| Fit R-squared = .6655145 |

e —___ +

S o R TS R S TS +
|variable] Coefficient | Standard Error |t-ratio |P[|T|>t]] Mean of X]

Fom o o Fom Fomm—— Fom e +
F | -07538794 .03395227 2.220 .0403  333.650000
C .08210356 .02799168 2.933 .0093  297.900000
Constant] -7.72283708 9.35933952 -.825 .4207

e +
| Residuals Sum of squares = 20.02673 |

Standard error of e = 1.085377 |

| Fit R-squared = .6431578 |

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

Fommm o Fomm e Fomm e Fom +
F | .00457343 .02716079 -168 .8683  70.9210000
c | -43736919 -07958891 5.495 .0000 5.94150000
Constant] -16151857 2.06556414 -078 -9386
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| Ordinary least squares regression |
| LHS=I Mean =  145.9582 |
| Standard deviation = 216.8753 |
| WTS=none Number of observs. = 200 |
| Model size Parameters = 3 |
| Degrees of freedom = 197 |
| Residuals Sum of squares = 1755850. |
| Standard error of e = 94.40840 |
| Fit R-squared = .8124080 |
| Adjusted R-squared = -8105035 |
| = |

Model test F[L 2, 197] (prob) 426.58 (-0000)

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

Fommm o Fomm e Fomm e Fom +
F | -11556216 .00583571 19.803 .0000 1081.68110
c | .23067849 -02547580 9.055 .0000 276.017150
Constant] -42.7143694 9.51167603 -4.491 -0000

? b. Aggregation test
REGRESS ; LHS = 1 ; RHS = F,C,one $
CALC ; SSO=Sumsqdev $

; List ; Fstat =

: FC Ftb(.95,27,170) $
e +
| Listed Calculator Results |
e +
FSTAT = 5.131854
FC = 1.551534
? c¢. SUR model
NAMELIST ; X1=F1,Cl,one $
NAMELIST ; X2=F2,C2,one $
NAMELIST ; X3=F3,C3,one $
NAMELIST ; X4=F4,C4,one $
NAMELIST ; X5=F5,C5,one $
NAMELIST ; X6=F6,C6,one $
NAMELIST ; X7=F7,C7,one $
NAMELIST ; X8=F8,C8,one $
NAMELIST ; X9=F9,C9,one $
NAMELIST ; X10=F10,C10,one $
NAMELIST ; Y=11,12,13,14,15,16,17,18,19,110 $
SAMPLE ; 1 - 20 %
s

SURE ; Lhs =Y ; Eql=X1;Eq2=X2;Eq3=X3;Eq4=X4;Eq5=X6;Eq6=X6
s Eq7=X7;Eq8=X8;Eq9=X9;Eq10=X10
; Maxit=0 ; OLS $

Criterion function for GLS is log-likelihood.

lteration 0, GLS = -737.6463

lteration 1, GLS = -730.1070

e +

| Estimates for equation: I1 |

e +

o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
F1 | -12472490 -01490044 8.371 .0000  4333.84500
Cc1 | -37951869 -02912686 13.030 .0000 648.435000
Constant]| -178.611571 65.7890483 -2.715 .0066
e —___ +

| Estimates for equation: 12 |

e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
o Sy Ry Fomm o o +
F2 | -16828512 .04057787 4.147 .0000 1971.82500
c2 | .33587688 -10299836 3.261 .0011  294.855000
Constant] -20.3887867 83.2537952 -.245 .8065
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A e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]

T S - T  ——— - +
F3 | .03425481 -00925706 3.700 .0002  1941.32500
Cc3 | .12538119 .02040101 6.146 .0000 400.160000
Constant]| -14.3822597 20.6146424 -.698 .4854

R S SSSSSSHiiinnw +

| Estimates for equation: 14 |

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X]|

Fommm o o +
F4 | -06760969 .01597735 4.232 .0000 693.210000
Cc4 | -30752805 -02536245 12.125 -.0000 121.245000
Constant] 1.96954637 11.0026359 -179 .8579

A e e +

| Estimates for equation: 15 |

e —___ +

S o R TS R S TS +
|variable] Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X]|

Fom o PRy +
F6 | -00635232 -02903793 .219 .8268  419.865000
C6 | -12737505 .09456013 1.347 .1780  104.285000
Constant] 45.8520779 4.86959707 9.416 -0000

e +

| Estimates for equation: 16 |

=Bl U S +

R o Fomm e Fomm Fomm e R +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]

Fom e - o o Fom - Fom—— - Fom e — +
F6 | -12891587 .01798607 7.168 .0000 419.865000
c6 | -06768693 -06029084 1.123 .2616  104.285000
Constant]| -5.77499083 3.44886478 -1.674 .0940

e —___ +

| Estimates for equation: 17 |

A e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]

T S - T  ——— - +
F7 | -09106397 .04535783 2.008 .0447  149.790000
c7 | .12913287 .01446995 8.924 .0000  314.945000
Constant] -6.71472214 8.72476796 -.770 .4415

R S SSSSSSHiiinnw +

| Estimates for equation: 18 |

e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X]|

Fommm o o +
F8 | .05179274 .00835658 6.198 .0000 670.910000
c8 | -04729955 .03473521 1.362 .1733  85.6400000
Constant] 4.09249729 5.09237714 -804 .4216

A e e +

| Estimates for equation: 19 |

e —___ +

S o R TS R S TS +
|variable] Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X]|

Fom o PRy +
F9 | -07275469 -02111017 3.446 .0006  333.650000
(of°] | .06640816 .02194422 3.026 .0025  297.900000
Constant] -2.16859331 7.30885683 -.297 .7667

e +

| Estimates for equation: 110 |

=Bl U S +
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Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]

R, o o o o o +
F10 | -.01695668 .01550963 -1.093 2743 70.9210000
C10 | .37466423 .05739586 6.528 .0000 5.94150000
Constant] 2.06101718 1.16003699 1.777 .07567?

c. Aggregation test according to (10-15)

MATRIX ; Z=Init(3,3,0) ; J=lden(3); L=-1*J $
MATRIX ; R=[},z,2,2,2,2,2,2,2,1 /
z,§.2,2,2,2,2,z,z,1 /
z,2,§,2,2,2,2,2,z,1 /
z,2,2,§,2,2,2,2,2,1 /
z,2,2,2,3,2,2,2,2,1 /
z,2,2,2,2,§,2,2,2,1 /
z,2,2,2,2,2,3,2,z,1 /
z,2,2,2,2,2,2,§,z,1 /
z,2,2,2,2,2,2,Z,j,1 ]
;d=R*b ; Vd = R*Varb*R"
; list ; AggF = 1/27 * d"<vd>d $
Matrix AGGF has 1 rows and 1 columns.
1

1]  98.53777
CALC  ; List ; Ftb(.95,27,(200-10*3)) $
S +

Result = 1.551534
? d. Using separate OLS regressions, compute LM statistic
? OLS residuals were saved in matrix EOLS earlier.
MATRIX ; VEOLS = 1/20*EOLS"EOLS
; VI = Diag(VEOLS) ; SDI = ISQR(VI)
; ROLS = SDI*VEOLS*SDI
; RR = ROLS"™ *ROLS $
; List ; LMStat = (20/2)*(Trc(RR)-10)
; Ctb(.95, (9*10/2))%

LMSTAT
Result

97.617948
61.656233

? Constrained Sur model with one coefficient vector.
? This is the unconstrained model in (10-19)-(10-21)
SAMPLE ; 1 - 200 $

REGRESS; Lhs = 1 ; Rhs = F,C,one $

R +
Ordinary least squares regression
LHS=1 Mean = 145.9582
| Standard deviation = 216.8753 |
WTS=none Number of observs. = 200
Model size Parameters = 3
Degrees of freedom = 197
| Residuals Sum of squares = 1755850. |
Standard error of e = 94.40840
Fit R-squared = .8124080
Adjusted R-squared = .8105035

| Model test F[ 2, 197] (prob) 426.58 (-0000) |
A e e +

Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |t-ratio |P[|T]|>t]] Mean of X]

o Sy Ry Fomm o o +
F | .11556216 .00583571 19.803 -0000 1081.68110
C | .23067849 .02547580 9.055 .0000 276.017150
Constant] -42.7143694 9.51167603 -4.491 .0000

TSCS : Lhs =1 ; Rhs = F,C,one ; Pds=20 ; Model=S2,RO $
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Groupwise Regression Models

Estimator =

2 Step GLS

Groupwise Het. and Correlated
Nonautocorrelated disturbances

| |
| |
| (52) |
| rrel i (RO) |
| Test statistics against the correlation |
| |
| |
| |
| |

Deg.Fr. = 45 C*(.95) = 61.66 C*(.99) = 69.96
Test statistics against the correlation
Likelihood ratio statistic = 320.2052
Log-likelihood function = -853.084972
R R SSSSiini +
R o Fomm e Fomm Fomm e +
|variable| Coefficient | Standard Error |b/St._Er.|P[]|Z]>z]1]
Fom e - o o Fom - Fom—— - +
F | -10806238 .00241169 44.808 -0000
C | -15079551 -00386063 39.060 -0000
Constant]| -20.1588844 .79950153 -25.214 -0000

CREATE ; WI = (SDI(CFirm,Firm))"2 $
1 ; Rhs = F,C,one ; Wts = WI $

REGRESS; Lhs

e +
Ordinary least squares regression
LHS=1 Mean = 6.993136
| Standard deviation = 18.01824 |
WTS=W1 Number of observs. = 200
Model size Parameters = 3
Degrees of freedom = 197
| Residuals Sum of squares = 11690.82 |
Standard error of e = 7.703521
Fit R-squared = .8190465
Adjusted R-squared = .8172094
e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |t-ratio |PL|T|>t]l] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
F | -07847124 -00459121 17.092 -0000 96.8424912
C -09896094 -00761314 12.999 -0000 23.8374846
Constant]| -2.96519441 .66964256 -4.428 -0000
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