Chapter 11

Nonlinear Regression Models

Exercises

1. We cannot simply take logs of both sides of the equation as the disturbance is additive rather than
multiplicative. So, we must treat the model as a nonlinear regression. The linearized equation is

y~ a®% +xF (@ - a®) +a’(log x)x* (B - p°)
where o and B° are the expansion point. For given values of o® and p°, the estimating equation would be

y-a’%"" +a’%" + o (log x)x"* =°‘(XBO)+B(a°aog x)xBD) ve

or y+a®(log x)x* :a(XB0)+B(aO(IOg x)xﬁo) +g.

Estimates of o and 3 are obtained by applying ordinary least squares to this equation. The process is repeated
with the new estimates in the role of o” and p°. The iteration could be continued until convergence. Starting

values are always a problem. If one has no particular values in mind, one candidate would be a° = y and p° =

0or B° =1 and o either X'y/x’x or y / x . Alternatively, one could search directly for the o and B to minimize

the sum of squares, S(a,p) = Zi(yi - ax’)? = ;5% The first order conditions for minimization are
S(a,B)do = 2% (yi-axP)x* = 0 and 8S(a,B)AP = -2Zi(yi - oxP)a(inx)xP = 0.
Methods for solving nonlinear equations such as these are discussed in Appendix E..

2. The proof can be done by mathematical induction. For convenience, denote the ith derivative by f;. The
first derivative appears in Equation (10-34). Just by plugging in i=1, it is clear that f; satisfies the relationship.
Now, use the chain rule to differentiate f;,

f, = (-1 (Inx) - xP] + (L/A)[(InX)x*(Inx) - f,]
Collect terms to yield f, = (LW + WW[XInX)? -] = @/A)[XHInX)? - 2f,].
So, the relationship holds for i = 0, 1, and 2. We now assume that it holds for i = K-1, and show that if so, it
also holds for i = K. This will complete the proof. Thus, assume

fia = WAX(IM) - (K-1)fic]
Differentiate thisto give  fx = (-1/A)ft + (L/A)[(INX)X*(INX)<™ - (K-1)f.a].

Collect terms to give fc = (UA)[X(INX)" - Kfi.1], which completes the proof for the general case.
Now, we take the limiting value
limy o fi = limy_o [X*(INX)' - ifi1]/A.
Use L'Hospital's rule once again.
limyofi = limy_o d{[X"(Inx)’ - if.o]/dA}/lim, o dA/dA.
Then, lim,_ofi = lim o {[X"(INX)™* - if ]}
Just collect terms, (i+D)lim o = lim,_o [X"(INX)"™*]
or lim,of; = limy_o [X"(INX)™J/(i+1) = (Inx)"(i+1).
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Applications

1. First, the two simple regressions produce

Standard Error

Linear Log-linear
114.338 1.17064
(173.4) (.3268)
2.33814 .602999
(1.039) (.1260)
471043 37571
(.1124) (.08535)
.9598 .9435
469.86 .1884

In the regression of Y on 1, K, L, and the predicted values from the loglinear equation minus the predictions
from the linear equation, the coefficient on o is -587.349 with an estimated standard error of 3135. Since this
is not significantly different from zero, this evidence favors the linear model. In the regression of InY on 1,
InK, InL and the predictions from the linear model minus the exponent of the predictions from the loglinear
model, the estimate of o is .000355 with a standard error of .000275. Therefore, this contradicts the preceding
result and favors the loglinear model. An alternative approach is to fit the Box-Cox model in the fashion of
Exercise 4. The maximum likelihood estimate of A is about -.12, which is much closer to the log-linear model
than the lonear one. The log-likelihoods are -192.5107 at the MLE, -192.6266 at =0 and -202.837 at A = 1.
Thus, the hypothesis that & = 0 (the log-linear model) would not be rejected but the hypothesis that A = 1 (the
linear model) would be rejected using the Box-Cox model as a framework. [

2. The search for the minimum sum of squares produced the following results:

A
-.500
-.400
-.300
-.250
-.245
-.244
-.243
-.242
-.241
-.240
-.239
-.238
-.237
-235
-.225
-.200
-.100
0.000

.100

e'e

18477
.67033
.60587
59479
59451
.59447
.59444
.59441
59439
.59438
.59437
.59436
59437
.59440
.59492
.59897
.65598

.78143

97742

.200 1.24354

E'E

1.25

-.50 -.25 .00 25
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The sum of squared residuals is minimized at A = -.238. At this value, the regression results are as follows:

Parameter Estimate OLS Sstd.Error Correct Std.Error
o 2.06092 .07718 .09723
By 178232 .04638 .04378
B .737988 .06996 12560
A -.238 .07710
Estimated Asymptotic Covariance Matrix
a B B A
o .00945

Bx .00262 .00192
B .00511 -.00199 .01578
A .00500 .00037 .00825 .00594

The output elasticities for this function evaluated at the sample means are

aInY/inK = BK* = (.178232).175905 8 = 2695

olnv/einL = BL- = (4439547379882 = 7740,
The estimates found for Zellner and Revankar's model were .254 and .882, respectively, so these are quite
similar. For the simple log-linear model, the corresponding values are .2790 and .927. [

3. The Wald test is based on the unrestricted model. The statistic is the square of the usual t-ratio,
W = (-232/.0771)> = 9.0546. The critical value from the chi-squared distribution is 3.84, so the
hypothesis that A = 0 can be rejected. The likelihood ratio statistic is based on both models. The sum of
squared residuals for both unrestricted and restricted models is given above. The log-likelihood is
InL = -(n/2)[1 + In(2x) + In(e’e/n)], so the likelihood ratio statistic is

LR = n[in(e’e/n)|]A=0 - In(e’e/n)| A=-.238] = niIn[(e’e|A=0) / (e'e|A=-.238)

= 25In(.78143/.54369) = 6.8406.

Finally, to compute the Lagrange Multiplier statistic, we regress the residuals from the log-linear regression on
a constant, InK, InL, and (1/2)(byIn?K + bIn’L) where the coefficients are those from the log-linear model
(.27898 and .92731). The R? in this regression is .23001, so the Lagrange multiplier statistic is LM = nR? =
25(.23001) = 5.7503. All three statistics suggest the same conclusion, the hypothesis should be rejected. [

4. Instead of minimizing the sum of squared deviations, we now maximize the concentrated log-likelihood
function, InL = -(n/2)In(1+In(2r)) + (A - D)Z; InY; - (n/2)In(e’e/n).

The search for the maximum of InL produced the results on the next page

The log-likelihood is maximized at A =.124. At this value, the regression results are as follows:

Parameter Estimate OLS Std.Error Correct Std.Error
o 2.59465 .1283 7151

B .378094 .1070 .3228

B 1.13653 1117 4121

A 124 .2482

o’ .036922 0179

Estimated Asymptotic Covariance Matrix
a P Bi A o’
o 5114

Bk 2203 .1042

By .2612 .0951 .1698

A 1747 0730 .0953 .0617

o’ .0104 .0044 0059 .0038 .00032
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A InL
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The output elasticities for this function evaluated at the sample means, K = .175905, L = .737988, Y =
2.870777, are  aInY/oInK = b(KIY)" = .2674

alny/ainL = by(L/Y)* = .9017.
These are quite similar to the estimates given above. The sum of the two output elasticities for the states given
in the example in the text are given below for the model estimated with and without transforming the
dependent variable. Note that the first of these makes the model look much more similar to the Cobb Douglas
model for which this sum is constant.

State  Full Box-Cox Model InQ on left hand side

Florida 1.2840 1.6598
Louisiana 1.2019 1.4239
California 1.1574 1.1176
Maryland 1.1657 1.0261
Ohio 1.1899 .9080
Michigan 1.1604 .8506

Once again, we are interested in testing the hypothesis that . = 0. The Wald test statistic is

W = (.123/.2482)* = .2455. We would now not reject the hypothesis that A = 0. This is a surprising
outcome. The likelihood ratio statistic is based on both models. The sum of squared residuals for the
restricted model is given above. The sum of the logs of the outputs is 19.29336, so the restricted
log-likelihood is InL° = (0-1)(19.29336) - (25/2)[1 + In(2x) + In(.781403/25)] = -11.44757. The likelihood
ratio statistic is -2[ -11.13758 - (-11.44757)] = .61998. Once again, the statistic is small.  Finally, to
compute the Lagrange multiplier statistic, we now use the method described in Example 11.8. The result is
LM = 1.5621. All of these suggest that the log-linear model is not a significant restriction on the Box-Cox
model. This rather peculiar outcome would appear to arise because of the rather substantial reduction in the
log-likelihood function which occurs when the dependent variable is transformed along with the right hand
side. This is not a contradiction because the model with only the right hand side transformed is not a
parametric restriction on the model with both sides transformed. Some further evidence is given in the next
exercise.
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5. -->nlsq ;

lhs = y ;

labels

= bl,b2 ;

; start = 500, .0001 ;output=2$%

fcn=b1*(1 - 1/sqr(1+2*b2*x))

Begin NLSQ iterations. Linearized regression.
Iteration= 1; Sum of squares= 11603.0164 ; Gradient= 11602.9326
Iteration= 2; Sum of squares= 19821.5463 ; Gradient= 19821.4534
Iteration= 3; Sum of squares= 331169.005 ; Gradient= 331144.576
Iteration= 4; Sum of squares= 356630.271 ; Gradient= 356504.582
Iteration= 5; Sum of squares= 14997.8506 ; Gradient= 14938.8590
Iteration= 6; Sum of squares= 449.855530 ; Gradient= 442.701921
Iteration= 7; Sum of squares= 102026.884 ; Gradient= 102026.775
Iteration= 8; Sum of squares= 12887.7536 ; Gradient= 12886.6539
Iteration= 9; Sum of squares= 14263101.5 ; Gradient= 14263101.0
Iteration= 10; Sum of squares= 10203.1920 ; Gradient= 10202.6789
Iteration= 11; Sum of squares= 144.393444 ; Gradient= 144.338425
Iteration= 12; Sum of squares= 258.186688 ; Gradient= 258.145522
Iteration= 13; Sum of squares= .154284512 ; Gradient= .113316151
Iteration= 14; Sum of squares= _409681292E-01; Gradient= _.129216769E-05
Iteration= 15; Sum of squares= _409668370E-01; Gradient= .439070450E-13
Iteration= 16; Sum of squares= .409668370E-01; Gradient= .211594637E-18
Iteration= 17; Sum of squares= _409668370E-01; Gradient= .107898463E-24
Convergence achieved
g +
Nonlinear least squares regression
LHS=Y Mean = 43.34071
| Standard deviation = 22.80652 |
WTS=none Number of observs. = 14
Model size Parameters = 2
Degrees of freedom = 12
| Residuals Sum of squares = -4096684E-01 |
Standard error of e = .5409439E-01
Fit R-squared = .9999939
Not using OLS or no constant. Rsqd & F may be < O.
o +
Fom———— o o Fom Fomm———— +
|variable| Coefficient | Standard Error |b/St._Er.|PL[]|Z]>z]1]
Fom e - o o Fom - Fom o - +
B1 | 636.427250 4.31789336 147 .393 -0000
B2 | -00020814 -164134D-05 126.809 -0000
-->nlsqg ; lhs =y ; labels = bl,b2 ; fcn=bl*(1 - 1/sqr(1+2*b2*x))
; start = 600,.0002 ;output=2%
Begin NLSQ iterations. Linearized regression.
Iteration= 1; Sum of squares= 262.456583 ; Gradient= 262.415454
Iteration= 2; Sum of squares= .155984704 ; Gradient= .115016579
Iteration= 3; Sum of squares= .409675977E-01; Gradient= .760690867E-06
Iteration= 4; Sum of squares= _409668370E-01; Gradient= _.379981726E-13
Iteration= 5; Sum of squares= _409668370E-01; Gradient= _.186919870E-18
Iteration= 6; Sum of squares= _409668370E-01; Gradient= _.150578559E-23
Convergence achieved
——  —____ +
| Nonlinear least squares regression |
| LHS=Y Mean = 43.34071 |
| Standard deviation = 22.80652 |
| Residuals Sum of squares = -4096684E-01 |
| Standard error of e = -5409439E-01 |
| Fit R-squared = -9999939 |
| Adjusted R-squared = -9999944 |
——  —____ +
Fomm_— o o Fomm Fomm———— +
|variable] Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]]
Fom o o Fom Fom e —— +
B1 | 636.427250 4.31789336 147 .393 -0000
B2 | -00020814 -164134D-05 126.809 -0000
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Chapter 12

Instrumental Variables Estimation

Exercises

1. There is no need for a separate proof different from the usual for OLS. Formally, however, it follows
from the results at (12-4) that

’ -1 '
b = l3+(xxj (ij
n n
. XX\ X'e
b-plimb=| 22| [ 22 |-0Q¢

Jn(b-plimb)= \/HKX_:()*(X%)_QX%}

Then,

and

n
The large sample distribution of this statistic will be the same as the large sample of the statistic with X'X/n
replaced with its probablity limit, which is Qxx. Thus,

Jn(b-plimb) - Qx;ﬁ[(xfj—y}

To deduce the large sample behavior of this statistic, we can invoke the results from chapter 4. The only
change here is the nonzero mean (probability limit) of the vector in brackets. [See (12-3).] Thus, the same
proof applies. The consistency, asymptotic normality and asymptotic covariance matrix equal to
Asy.Var[b] = .2 (X'X)*

2. A logical solution to this one is simple. For y and x*,

Cov’(yx*)/[Var(y)Var(x*)] = B*(c+*)*/[(B*c+"+5.7)(c+")]

CoVv(y,x) /[Var(y)Var(x)] = Cov[px*+e,x*+u] / [Var(y)Var(x)]

= {Cov[y,x*] +Cov[y,u]}*/ [Var(y)Var(x)] .

The second term is zero, since y=px*+¢ which is uncorrelated with u. Thus,
Covi(y,x) /[Var(y)Var(x)] = Cov[y,x*]/ [Var(y)Var(x)].
The numerator is the same. The denominator is larger, since [Var(y)Var(x)] = Var[y](Var[x*] + Var[u]),
so the squared correlation must be smaller. If both variables are measured with errors, then we are
comparing Cov3(y* x*)/{Var[y*]Var[x*]} to Cov*(y,x)/{Var[y]Var[x]}.
The numerator is the covariance of (Bx* + ¢ + v) with (x* + u), so the numerator of the fraction is still
B%(c+*)%. The denominator is still obviously larger, so the same result holds when both variables are
measured with error.

3. We work off (12-16), using repeatedly the result X, = (c,j)(c.j)’ Where j has a 1 in the first
position and 0 in the remaining K-1. From (12-16),

plimb = B - [Q* + Zu,]'Zuf. The vector is Z,,p equals [6,°1,0,....0]'. The inverse matrix is

1
1+ (0,0) (Q*) " (o,J)

[Q* + =] ™ = | (Q%)" (Q*) " (c,i)(G,i) (Q*)"
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This can be simplified since the quadratic form in the denominator just picks off the 1,1 diagonal element.
Thus,

[Q* + T ]" = {(Q*)'l —ﬁ(@*)‘l (cuj)(ouj)'(Q*)‘l}
Then
[O% + ] Suf= {(Q*)l —ﬁ(@*)l (cuj)(cuj)'(Q*)l} (c.D)o,)) B

Q%) (i), i) B - #(Q*)l (0,0)(0,0) (Q*) (0,i)(c.J)' B

Q%) j 0Py - “qqm (Q*) ' o%B,

-l ﬁqu 2
(Q ) J {l 1+ q*n}cu Bl
{ A }

Finally, (Q*)"j equals the first column of (Q*)" = [q*", g**.,...q*"]. Therefore, the first element,
given by (12-17a) is

1
/-\

B 2 ] 2 %11
lim by = Oy | etz g O
p 1 Bl 1+qu 11 q Bl 1+o uq 11

For (12-17b),
GzBl *kl

pllm b2 = BZ - 1+02q 11 q

4. To obtain the result, note first:
plimb =B + Qxxy
Asy.Var[b] = (6?/n)Qxx*
Asy.Var[ba] = (6°/n)Qzx ' QzzQxz ™.
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The mean squared error of the OLS estimator is the variance plus the squared bias,

M(IB) = (c°/M)Qxx ™ + Qux 1y’ Qux
the mean squared error of the 2SLS estimator equals its variance. For OLS to be more precise then 2SLS,
we would have to have

(M Q" + Qux 1Y Qux ™™ << (6°M)Q2x " QzzQxz ™
For convenience, let 8 = Qux'y s0 M(b|B) = (c°/n)Qxx™ + 88'. If the mean squared error matrix of the
OLS estimator is smaller than that of the 2SLS estimator, then its inverse is larger. Use (A-66) to do the
inversion. The result would be

[(c?/N)Qxx " + 88T >> [(6°/N)Qzx ' QzzQxz ' T*

Now, use A-66
1
2In)Qux* + 88T = (n/o? - n/c? 88'(nlc®

[(c/n)Qxx 1 (n/6°) Qxx 1+6’(n/62)Qxx8 (n/6%) Qxx88'(n/5°) Qxx

Reinsert & = Qxx'ly and the right hand side above reduces to
1
n/ 2 R — Y 2\2 o1
(n/5%) Qxx 1+(H/GZ)Y'QQXY (n/s) vy

Therefore, if the mean squared error matrix of OLS is smaller, then
1
n/c® . E— VI S VR SN (o4 1
(n/5®) Qxx 1+ ("o )y Qly (n/c®) vy (n/6°)QxzQzz " Qzx
Collect the terms, and this implies
(/6?)[ Qxx - QxzQzz ' Qzx] >>
divide both sides by (n/c?),

Qxx - QxzQz7'Qzx >>

1

n/ 2\2 ’
L (no?yyQiy VoI

(n/c?)

L+ (/o' Qir
and divide numerator and denominator of the fraction by n/c?

1 1 ,

Qxx - QxzQzz Qzx >> (&N +yQly Y
which is the desired result. Is it possible? It is possible, since

Qxx - QuzQz7 ' Qzx = plim (1n)[X'X - X'2(2'2)*Z'X]

= plim (1/n) X'MzX

which is a positive definite matrix. Slnce y varies independently of Z and X, certainly there is some
configuration of the data and parameters for which this is the case. The result is that it is, indeed, possible
for OLS to be more precise, in the mean squared error sense, than 2SLS.

5. The matrices are X = [i,x] and Z =[i,z]. For the OLS estimators, we know from chapter 2 that
a = y-bx and b = Cov[x,y]/var[x].

For the IV estimator, (Z'X)*Z'y, we obtain the result in detail. Given the forms,

%) :{n X, }:{n ni} %) = E _ {nlx1 —nx} Z’y:{ nz}
noXX n. nx nn, (X -X) [ -1, n Y,

where subscript 1 indicates the mean of the observations for which z equals 1, and n; is the number of
observations. Multiplying the matrix times the vector and cancelling terms produces the solutions

*Yi and b, = %°

XY -
X —X X —X

av=ay =
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Application

a. The statement of the problem is actually a bit optimistic. Glven the way it is stated, it would imply that
the exogenous variables in the “demand” equation would be, in principle, (Ed, Union, Fem) which are also

in the supply equation, plus the remainder, (Exp, Exp? Occ, Ind, South, SMSA, BIk). The problem is that

the model as stated would not be identified — the supply equation would, but the demand equation would
not be. The way out would be to assume that at least one of (Ed, Union, Fem) does not appear in the
demand equation. Since surely education would, that leaves one or both of Union and Fem. We will
assume both of them are omitted. So, our equation is

InWage;; =

NAMELIST ; X =
NAMELIST ; Z =
Regress ; Lhs
2SLS ; Lhs

o + 0Edi + 0EXPy + 0EXpy” + asOCCi +

()Lglndit + a;South; + agSMSA;; + OLgBlkit +y WKks;; + Uit.
one,Ed,Exp,Expsq,Occ, Ind,South,SMSA,Blk,Wks $
one,Ed,Exp,expsq,Occ, Ind,south,SMSA,Blk,Union,Fem $

= lwage ; Rhs
= lwage ; Rhs

X$
X ; Inst

:Z$

E ; cls:b(10)=0,b(11)=0%

REGRESS ; Lhs Wks ; Rhs =
R +
Ordinary least squares regression
LHS=LWAGE Mean = 6.676346
| Standard deviation = -4615122 |
WTS=none Number of observs. = 4165
Model size Parameters = 10
Degrees of freedom = 4155
| Residuals Sum of squares = 581.2717 |
Standard error of e = -3740280
Fit R-squared = .3446066
Adjusted R-squared = .3431870
| Model test F[ 9, 4155] (prob) = 242.74 (.0000) |
R +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fomm o o Fomm Fomm—— - Fommm +
Constant 5.13171052 -07238152 70.898 -0000
ED -06112766 -00277226 22.050 .0000 12.8453782
EXP -04291665 -00229783 18.677 .0000 19.8537815
EXPSQ | -.00070803 -506204D-04  -13.987 -0000 514.405042
occ -.07814434 -01502100 -5.202 -0000 .51116447
IND -09066812 .01247863 7.266 -0000 -39543818
SOUTH -.07629062 -01318346 -5.787 -0000 -29027611
SMSA | -13789225 -01278553 10.785 -0000 .65378151
BLK -.26269494 -02304380 -11.400 -0000 .07226891
WKS -00484184 -00113470 4.267 .0000 46.8115246
e —___ +
| Two stage least squares regression |
LHS=LWAGE Mean = 6.676346
Standard deviation = -4615122
WTS=none Number of observs. = 4165
| Model size Parameters = 10 |
Degrees of freedom = 4155
Residuals Sum of squares = 602.3138
Standard error of e = -3807377
| Fit R-squared = -3192467 |
Adjusted R-squared = 3177722
Model test F[ 9, 4155] (prob) = 216.50 (.0000)
e —___ +
Instrumental Variables:
ONE ED EXP EXPSQ occ IND SOUTH SMSA
BLK UNION FEM
Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
Fomm———— Fom o Fom Fom—_———— Fomm +
Constant]| 4.46105888 .27680953 16.116 -0000
ED | -06167266 -00283031 21.790 .0000 12.8453782

88



EXP |
EXPSQ |
occ I
IND |
SOUTH |
SMSA I
BLK I
WKS |

.04207640 .00236282
-.00068241 .525268D-04
-.07605669 -01531301

-08348143 -01302032
-.08242895 .01364036

.13244624 .01319402
-.25212290 -02383132

-01922950 -00583960

17.808
-12.992
-4.967
6.412
-6.043
10.038
-10.579
3.293

This is the test of relevance of the instrumental

variables.
of WKS on the full set of exogenous variables, we test the hypothesis that the
coefficients on the instruments, UNION and FEM are jointly zero.

show that the hypothesis is rejected. We conclude that the

relevant.
e +
Linearly restricted regression
Ordinary least squares regression
LHS=WKS Mean = 46.81152
| Standard deviation = 5.129098 |
WTS=none Number of observs. = 4165
Model size Parameters = 9
Degrees of freedom = 4156
| Residuals Sum of squares = 108653.5 |
Standard error of e = 5.113097
Fit R-squared = .8138966E-02
Adjusted R-squared = .6229705E-02
| Model test F[ 8, 4156] (prob) = 4.26 (-0000) |
Restrictns. F[ 2, 4154] (prob) = 84.57 (.0000)

Not using OLS or no constant. Rsqd & F may be < O.

Note, with restrictions imposed, Rsqd may be < O.

19.8537815
514.405042
-51116447
-39543818
.29027611
.65378151
-07226891
46.8115246

In the regression

e +
o ——— T . o o ——— B T - +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]1] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] 46.6129896 -67547781 69.007 0000
ED -.03787988 -03789322 -1.000 .3175 12.8453782
EXP .05840099 .03139904 1.860 .0629  19.8537815
EXPSQ -.00178055 .00069145 -2.575 0100 514.405042
0ocC | -.14509978 -20533021 -.707 -4798 51116447
IND -49950389 -17041135 2.931 0034 -39543818
SOUTH .42663864 .18010107 2.369 .0178 -29027611
SMSA .37851979 .17468415 2.167 .0302 .65378151
BLK | -.73479892 -31481083 -2.334 .0196 -07226891
UNION .444089D-15 -182255D-08 .000 1.0000 -36398559
FEM .000000  ...... (Fixed Parameter).......

The results
instruments are

89



Chapter 13
Simultaneous Equations Models

1. (a) Since nothing is excluded from either equation and there are no other restrictions, neither equation
passes the order condition for identification.

(1) We use (13-12) and the equations which follow it. For the first equation, [As',As'] = By, a scalar
which has rank M-1 = 1 unless B, = 0. For the second, [As',As'] = Ba;. Thus, both equations are identified.

(2) This restriction does not restrict the first equation, so it remains unidentified. The second
equation is now identified, as [As",As'] = [B11.B21] has rank 1 if either of the two ceofficients are nonzero.

(3) If v, equals 0, the model becomes partially recursive. The first equation becomes a regression
which can be estimated by ordinary least squares. However, the second equation continues to fail the order
condition. To see the problem, consider that even with the restriction, any linear combination of the two
equations has the same variables as the original second eqation.

(4) We know from above that if B3, = 0, the second equation is identifiable. If it is, then vy, is
identified. We may treat it as known. As such, y; is known. By regressing y; - y1y, on the xs, we would
obtain estimates of the remaining parameters, so these restrictions identify the model. It is instructive to
analyze this from the standpoint of false structures as done in the text. A false structure which incorporates

1 —v]
-2 1 P
the known restrictions would be | By, By x{ fll flz} . If the false structure is to obey the restrictions,
B21 BZZ 2 2
BSl 0

then fll - 'Yfz]_ = 1, f22 - 'Yflz = 1, f21 - yfll = le - 'Yfzz, Bgl f12 =0. It follows then that f12 =0so fll =1. Then, f21 -
vfiu = -y or fy = (fir - L)y sothat fy - yz(fﬂ - 1) = 1. This can only hold for all values of vy if f;; = 1 and,
then, f,; = 0. Therefore, F = | which establishes identification.

(5) If B3y = 0, the first equation is identified by the usual rank and order conditions. Consider, then,
the off-diagonal element of T = I'QI'. Q is identified since it is the reduced form covariance matrix. The
Of‘f-diagonal element is C12 = MW + 0 - (’Yl + ’Yz)(t)lz = 0. Since Y1 is zero, Y2 = (012/(0)11 + (022). With Y2
known, the remaining parameters are estimable by least squares regression of (y. - y,y;) on the xs. Therefore,
the restrictions identify the model.

(6) Since this is only a single restriction, it will not likely identify the entire model. Consider again
the false structure. The restrictions implied by the theory are fy; - yofo; = 1, foo-yifio = 1, Bafis + Baofor =
Bafio + Baofe. The three restrictions on four unknown elements of F do not serve to pin down any of them.
This restriction does not even partially identify the model.

(7) The last four restrictions remove x, and x3 from the model. The remaining model is not
identified by the usual rank and order conditions. From part (5), we see that the first restriction implies 61, =
w11+ 02 - (71 + v2)o1, = 0. But, with neither y; nor y, specified, this does not identify either parameter.

(8) The first equation is identified by the conventional rank and order conditions. The second
equation fails the order condition. But, the restriction o1, = 0 provides the necessary additional information
needed to identify the model. For simplicity, write the model with the restrictions imposed as

y1=r1Y2 +erand Yo =y5y1 + BX + €.
The reduced form is y1=mX + vy and y, = moX + Vs
where 1t; = y1/A and m, = B/A with A = (1 - y1y,), and vy = (g1 + y182)/A and v, = (g, + y261)/A. The reduced
form variances and covariances are wy; = (y1202 + 611)/A?, 0z = (122011 + 622)/A%, 015 = (11622 + Y2011)/A.
All reduced form parameters are estimable directly by using least squares, so the reduced form is identified in
all cases. Now, y; = my/m,. o1y is the residual variance in the eugation (y; - y1Y2) = €1, SO 11 must be estimable
(identified) if y; is. Now, with a bit of manipulation, we find that y;my, - ®1; = -o14/A. Therefore, with o1; and
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v1 "known" (identified), the only remaining unknown is y,, which is therefore identified. With y; and y, in
hand, B may be deduced from m,. With y, and B in hand, o,; is the residual variance in the equation (y; - px -
Y2Y1) = &, Which is directly estimable, therefore, identified. [

2. Following the method in Example 13.6, for identification of the investment equation, we require that the
M @ 6 @& 6 6 7 6 O
-1 a3 0 0 a3 0 O O O

10 =1y, 0 0 0 0 v v
matrix have rank 5. Columns (1), (4), (6), (7), and (8) each

0o 0o -1 0 0 1 0 0 O

0o -1 1 0 0 0O -1 0 O

0o 0 0 1 0o O O o0 O

have one element in a different row, so they are linearly independent. Therefore, the matrix has rank five. For

@ 2 3 @ 6 ©® 7 6 (9 @]
-1 0 o4 0 a3 0 O O a, O
0 -1 0 0 0 0 O
the third equation, the required matrix is P P Ps Columns
1 1 0 0 0 0 0o o o0 O
0 -1 0 0 0 -1 0 0 O
0o 1.0 -10 0 0 0 O ]
(4), (6), (7), (9), and (10) are linearly independent. [J
3. We find [As’,As"]’ for each equation.
1) ) ©) (4)
1 1 0
“[gsz A 3[;34 ) 112 . 1 vy, O
12 13 14 41 42
1 0 1 1
0 Bu P [0 Bus Buas] B, 1 0 Ba1 [;32 Bgs
B32 O O 0 B52 OO 52

Identification requires that the rank of each matrix be M-1 = 3. The second is obviously not identified. In (1),
none of the three columns can be written as a linear combination of the other two, so it has rank 3. (Although
the second and last columns have nonzero elements in the same positions, for the matrix to have short rank,
we would require that the third column be a multiple of the second, since the first cannot appear in the linear
combination which is to replicate the second column.) By the same logic, (3) and (4) are identified. [

4. Obtain the reduced form for the model in Exercise 1 under each of the assumptions made in parts (a) and
(b1), (b6), and (09).
(1) The model is Y1 =7v1Y2 + Bllxl + B21X2 + B31X3 +g
Y2 = y2y1 + ProXy + PaoXo + PaXs + €2,

—Bu B
Therefore, T = {_1 _IZ} and B = 011 - Bz and X is unrestricted. The reduced form is
' ~Ba O
Brr+vaPar  VoPra+Pr2
II= VP22 P2 and

1-v17,
Ba1 YB3
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B 2
G11+Y102 Y2011 +Y102
1 +2y,04, +(y1+72)012

Q=CYHYZT )= ——
) (1—Y1Y2)2

Y201 +V102 Y501 +0y
[+ (ri+v2)012  +2y504,
(6) The model is y; = BuX; + BorXo + PaXs + &1

Y2 = yY1 + PrXe + BaoXe + BaoXs t &2
The first equation is already a reduced form. Substituting it into the second provides the second reduced form.

Bir Bz +7v2Pu {

1 c G
The coefficient matrix is P=| B, By +7oBoy |, T = yz} s0Q =Tz :[ v, Y2ou }
0 1 Y2011 Y2011t O
Bar Bao +v2Pa

(9) The model is
Yi=11Y2 t &
Yo = 1o¥1 + PXs + &

2
+ +
Then, IT= -BI™ = [Pun/(1-v72) Pral(-yy)] and Q = { outihon 12 ”’22}- 0
Y2011+ Y1022 Y2011 tO2

5 2 3 4 3
5. The relevant submatrices are X’X = {2 10 8 |, X'y; =|3|, X'y, =6, yi'y1 =20, y,'y, = 10,
3 8 15 5 7
3 5 4 2 3 0 3 10 3 5
vi'y, = 6,X'Z,=|6 2|,XZ,=|3 10 8 21’21:{3 5]22’22 =3 10 8],
7 3 5 8 15 5 8 15
6 6 7] 6 10 20 6
VAWAE {4 ) 3 WAL {4]21')/2 :{3}122')/1: : 2y = s :

The two OLS coefficient vectors are
d; = (X’X)*X'y; = [.439024,.536585] '
d, = (X’X)*X"y, = [.193016,.384127,.19746] ".
The two stage least squares estimators are
81= [Z XX X)X Z I Z XK X) X y,] = [.368816,.578711] .
82= [Z XX X)X Z) [ Z XX X) Xy, = [.484375,.367188,.109375] .

G11= (Yr'y1 - 21281 + 81'Z1Z,81) 125 = 610397, G2 = .268384.

The estimated asymptotic covariance matrices are

129036 1995
132423 -.007699 -.040035
EstVar[EstVar[8,]] = | -007688 047259 —022538|.
—.040035 -.022638 .043311
The three stage least squares estimate is

AA 215858 129035
EstVar[81] = o11 [Z/X(X'X)"X'Z,]* :{ }
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oM[Z X(X' X)Xy, 1+

A A /iZan X|X_1X.
SHZ XX X)IXZ,] o[z XX X)Xz, | | O A XXX

12 . AR 22 . Py 1y
Z5' X(X'X) " X'Z Z5' X(X'X) " X'Z o
o [Z," X( ) 1] o7 [Z," X( ) 2] GlZ[ZZ'X(X'X)71X'y1]+

|Z[Z,' X(X'X) X' Z,] |

= [.368817,.578708,.4706,.306363,.168294]" .
The estimated standard errors are the square roots of the diagonal elements of the inverse matrix,
[.4637,.4466,.3626,.1716,.1628], compared to the 2SLS values, [.4637,.4466,.3639,.2174,.2081].
To compute the limited information maximum likelihood estimator, we require the matrix of sums of
squares and cross products of residuals of the regressions of y; and y, on x; and on Xy, X,, and Xs. These are

165 360 WE =YY - YOOy = 162872 255312
360 820| - YX(XX) T 255312 53617 |

The two characteristic roots of (W)W are 1.53157 and 1.00837. We carry the smaller one into the k-class
computation [see, for example, Theil (1971) or Judge, et al (1985)];

A {10 —100837(5.3617) 3}_1{6 - 100837(2.55312)} B {367116}

Wo =YY - Y'Xl(Xl’Xl)'lxl’Y = |:

- 3 5 4 57973

1k =
Finally, the two estimates of the reduced form are
680851 .329787

(OLS) P = |.010638 .37243
191489 202128

-578711 0 _1 |.704581 341281
A 1 —484375
and (2SLS) = 0 -.367188 =1.104880 .447051].
-.368816 1
0 -109375 049113 133164
6. For the model Y1 =7v1Y2 + Bqu + [_))21X2 +g

Y2 = v2y1 + PaXs + PaXs t &2
show that there are two restrictions on the reduced form coefficients. Describe a procedure for estimating the
model while incorporating the restrictions.

Bll 0
. 1 -
The structure is [y; V2] { yz}[x1 Xy X3 X4] Pay =[g; €]
Y1 1 0 Ba
0 B
ory' T +x'B = ¢'. The reduced form coefficient matrix is
Bir VB M1 T
T T
M= -Brt = 1 Pa voba| _ |ma T The two restrictions are m,/my; = Tyl and
1-v1v2|v1Bs2  Ba2 31 T3
YiBs2  Baz Ty Ty

Ta/T3, = Taalmap. |f we write the reduced form as

Y1 = mXy + moXp + MaXs + maXe + V3

Y2 = MiXp + MpXy t MapXg + TMapXy + Vo
We could treat the system as a nonlinear seemingly unrelated regressions model. One possible way to handle
the restrictions is to eliminate two parameters directly by making the substitutions

Ty = MMl and Ty = MgMan/ma,.
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The pair of equations would be
Y1 = muXs + TaaXe + (Mamar/Ta)Xs + TarXe + Vi
Y2 = (mumlmon)Xy + MpXe + TiapXs + TgoXy + Vo

This nonlinear system could now be estimated by nonlinear GLS. The function to be minimized would be
T, ViPot + Vip’eP + 2vpVipo e = nitr(Z7W).

Needless to say, this would be quite involved. []

7. We would require that all three characteristic roots have modulus less than one. An intuitive guess that the
diagonal element greater than one would preclude this would be correct. The roots are the solutions to

-1899-2  -.9471 —8991
det 0 10287 - & 0 = 0. Expanding this produces -(.1899 + 2)(1.0287 - 1)(.0952 - 1)
—.0656 -0791 .0952-A

-.0565(1.0287 - 1.).8991 = 0. There is no need to go any further. It is obvious that A = 1.0287 is a solution, so
there is at least one characteristic root larger than 1. The system is unstable.

8. Prove plim Y{'e/T = w; - Q;y;.
Consistent with the partitioning y' = [y; Y{ Y;"], partition Q into

’

o o) o
Q= o Q; Q
®] Q; o
1
and, as in the equation preceding (13-8), partition the jth column of "asI'j = |-y |. Since the full set of
0

reduced form disturbances is V = EI'?, itfollows that E = VI. In particular, the jth column of E is g =
VI In the reduced form, now referring to (15-8),  Y; = XIL + Vj, where II; is the M; columns of II
corresponding to the included endogenous variables and V; is the TxM; matrix of their reduced form
disturbances. Since X is uncorrelated with all columns of E, we have

1
plim Yi'g/T =plim V' T{/T = [ay Q; Q*] | -7 | = ;- Qy; as required.
0

9. Prove that an underidentified equation cannot be estimated by two stage least squares.
If the equation fails the order condition, then the number of excluded exogenous variables is less than
the number of included endogenous. The matrix of instrumental variables to be used for two stage least

squares is of the form Z = [XA,Xj], where XA is M; linear combination of all K columns in X and X; is K;
columns of X. In total, K = K;” + K;. If the equation fails the order condition, then K;” < M, so Z is M; + K;
columns which are linear combinations of K = K;" + K; < M; + K;. Therefore, Z cannot have full column

rank. In order to compute the two stage least squares estimator, we require (Z'Z )™, which cannot be
computed.
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Application

Application 13.1 - Simultaneous Equations

Read the data

For convenience, rename the variables so they correspond
to the example in the text.

sample ; 1 - 204 $

NN ) N N

-~

create ; ct=realcons$

create ; it=realinvs$

create ; gt=realgovt$

create ; rt=tbilrate $

? Impose (artifically) the adding up condition on total demand.
create ; yt=ct+it+gt $

create ; ctil=ct[-1] $

create ; ytl = yt[-1] $

create ; dyt = yt - ytl $

sample ; 2-204 $

names ; xt = one,gt,rt,ctl,ytl$

? Estimate equations by 2sls and save coefficients with
? the names used in the example.
2sls ; Ihs = ct ; rhs=one,yt,ctl ; inst = xt $

e +
| Two stage least squares regre55|on |
| LHS=CT Mean =  3008.995 |
| Standard deviation = 1456.900 |
| WTS=none Number of observs. = 203 |
| Model size Parameters = 3 |
| Degrees of freedom = 200 |
| Residuals Sum of squares = 75713.32 |
| Standard error of e =  19.45679 |
| Fit R-squared = -9998208 |
| Adjusted R-squared = -9998190 |
| = |

Model test F[L 2, 200] (prob) =******x (_0000)

e +
Instrumental Variables:

| ONE GT RT CT1 YT1

o ——— T . o o ——— B T - +

|variable| Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X]|

Fom e - o o +

Constant] -13.8657181 5.31536302 —2-609 -0091

YT | -05843862 -01790473 3.264 .0011 4663.67389

CT1 | -92200662 .02657199 34.698 .0000 2982.97438

calc a0=b(1) ; al=b(2) ; a2=b(3) $

2sls lhs = it ; rhs=one,rt,dyt ; inst = xt $
e +
Two stage least squares regre35|on
LHS=IT Mean = 654.5296
| Standard deviation = 391.3705 |
WTS=none Number of observs. = 203
Model size Parameters = 3
Degrees of freedom = 200
| Residuals Sum of squares = _7744227E+08 |
Standard error of e = 622.2631
Fit R-squared = -1.540485
Adjusted R-squared = -1.565889
e +
Instrumental Variables:
ONE GT RT CT1 YT1
Fom e - o o Fom - Fom—— - Fom e — +

|variable] Coefficient | Standard Error |b/St Er. |P[|Z|>z]| Mean of X|
Fommm o o

Constant]| -300.699429 125.980850 —2.387 .0170
RT | 56.5192542 15.4643912 3.655 .0003  5.24965517
DYT | 16.5359646 2.02509785 8.166 -0000  39.8236453

calc ; bO=b(1) ; bl=b(2) ; b2=b(3) $
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?
? Create the coefficients of the reduced form. We only need the parts

? for the dynamics. These are in the second half of the example.

calc ; a=l-al-b2 $

?

? Construct the matrix that governs the dynamics of the system. Note that
? the 1 equation is static. It is a function of y(t-1) and c(t-1) but not
? of I(t-1). This is the DELTA(1) submatrix in (13-42). The dominant

? root is the largest rood of DELTA(1).

calc ; list ; Cl1=(1-b2)/a ; Cl2=-al*b2/a ; C21=a2/a ; C22=-b2/a $
matrix ; C = [cl11,cl2 / c21,c22] $
Ry +
| Listed Calculator Results |
+—— +
C11 = -996253
C12 = -061967
c21 = -.059124
c22 = 1.060378
Matrix ; list ; roots = cxrt(c)$
Calc ; list ; domroot = sqr(roots(1,1)"2 + roots(1,2)"2)$
--> Matrix ; list ; roots = cxrt(c)$
Matrix ROOTS has 2 rows and 2 columns.
1 2

T~

1] 1.02832 -.05134

2] 1.02832 -05134
--> Calc ; list ; domroot = sqr(roots(1,1)"2 + roots(1,2)"2)$
Sy +
| Listed Calculator Results |
e +
DOMROOT = 1.029596

? The largest root is larger than on in absolute value. The system is unstable.

3sls ; Ihs = ct,it ; egl=one,yt,ctl ; eq2=one,rt,dyt ; inst=xt ; maxit=0 $

e +
| Estimates for equation: CT |
| Instvar/GLS least squares regression |
=  3008.995 |

|

|

| LHS=CT Mean =

| Residuals Sum of squares = 73370.06

| Standard error of e = 19.15334
e +
Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
Fommm o Fomm e Fomm e Fom +
Constant]| -17.4780776 4.55837624 -3.834 .0001

YT | .07312129 -01415744 5.165 .0000 4663.67389
CT1 | -90026227 .02103720 42.794 .0000 2982.97438
T T +

| Estimates for equation: IT |

| InstvVar/GLS least squares regression |

| LHS=IT Mean = 654.5296 |

| Residuals Sum of squares = -9735005E+08 |

| Standard error of e = 697.6749 |

——  —___ +

S o R - TS R S TS +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +
Constant] -236.744328 122.661644 -1.930 -0536

RT | 30.5417941 12.9861014 2.352 .0187  5.24965517
DYT | 18.3544221 1.93633720 9.479 .0000 39.8236453
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Chapter 14

Estimation Frameworks in
Econometrics

Exercise

1. A fully parametric model/estimator provides consistent, efficient, and comparatively precise results.
The semiparametric model/estimator, by comparison, is relatively less precise in general terms. But, the
payoff to this imprecision is that the semiparametric formulation is more likely to be robust to failures of
the assumptions of the parametric model. Consider, for example, the binary probit model of Chapter 21,
which makes a strong assumption of normality and homoscedasticity. If the assumptions are correct, the
probit estimator is the most efficient use of the data. However, if the normality assumption or the
homoscedasticity assumption are incorrect, then the probit estimator becomes inconsistent in an unknown
fashion. Lewbel’s semiparametric estimator for the binary choice model, in contrast, is not very precise in
comparison to the probit model. But, it will remain consistent if the normality assumption is violated, and it
is even robust to certain kinds of heteroscedasticity.

Applications

1. Using the gasoline market data in Appendix Table F2.2, use the partially linear regression method in
Section 16.3.3 to fit an equation of the form

In(G/Pop) = Aln(Income) + BoInPrew cars + BalNPused cars + 9(INPgasoline) + &€

crea;gp=1g; ip=1ly;ncp=1lpnc;upp=1lpuc;pgp=1pg$
sort; lhs=pgp;rhs=gp, ip, ncp, upps

crea;dgp=.809*gp - .5*gp[-1] - .309*gp[-2]$

crea;dip=.809*ip - .5*ip[-1] - .309*ip[-2]1%

crea;dnc=.809*ncp -.5*ncp[-1]1-.309*ncp[-2]1%

crea;duc=.809*upp -.5*upp[-11-.309*uppl[-21%

samp;3-36$

regr; lhs=dgp;rhs=dip, dnc, duc; res=es$

o +
Ordinary least squares regression Weighting variable = none
Dep. var. = DGP Mean= .9708646870E-02, S.D.= .4738748109E-01
Model size: Observations = 34, Parameters = 3, Deg.Fr.= 31

| Residuals: Sum of squares= .1485994289E-01, Std.Dev.= -02189 |
Fit: R-squared= .799472, Adjusted R-squared = .78653
Model test: F[ 2, 31] = 61.80, Prob value = .00000
Diagnostic: Log-L = 83.2587, Restricted(b=0) Log-L = 55.9431

| LogAmemiyaPrCrt.= -7.559, Akaike Info. Crt.= -4.721 |
Model does not contain ONE. R-squared and F can be negative!
Autocorrel: Durbin-Watson Statistic = 1.34659, Rho = .32671

L ______ +

Fomm o S Fomm———— Fomm o +

|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]|

Fom e o TRy Fom Fom e Fom e +
DIP -9629902959 -11631885 8.279 -0000 .14504254E-01
DNC -.1010972781 -87755182E-01 -1.152 .2581 .20153536E-01
DUC -.3197058148E-01 .51875022E-01 -.616 .5422 _35656776E-01

--> matr;varpl={1+1/(2*2) }*varb$

--> matr;stat(b,varp)$

g +
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|[Number of observations in current sample = 34 |
|[Number of parameters computed here = 31
|[Number of degrees of freedom = 31 |
- +
Fom e o e Fom e +

|variable | Coefficient | Standard Error |b/St.Er.|P[|Z]>z] |
o N o o o +

B 1 -9629902959 -13004843 7.405 -0000
B 2 -.1010972781 -98113277E-01 -1.030 -3028
B_3 -.3197058148E-01 .57998037E-01 -.551 .5815
2.
S +

Nonparametric Regression for G

Observations = 36

Points plotted = 36
| Bandwidth = -468092 |

Statistics for abscissa values----

Mean = 2.316611

Standard Deviation = 1.251735
| Minimum = -914000 |

Maximum = 4._.109000

Kernel Function = Logistic
| Cross val. M.S_.E. = 121.084982 |
| Results matrix = KERNEL |
ey +

Nonparametric Regression for G

120 T T T T T T T
1 » | al | | | |
1o B ! : L |
1 | | | 1% | |
1 [ | | | ol | |
1104 - - - — - - - — — — [ \73777P7777P7i77;7777
i Ia | | |
| | |
[ | | |
1 ! ! |
Io | | |
—_— 100 -~~~ ~----~ (N T T | | [
'z 1 | | | | |
x | | | | | |
3 | | | | | |
1 | | | | | |
w 90------ == === == === === == === I e
1 | | | | | | |
) | | | | | |
ol | | | | | |
i | | | | | | |
[ Y D I ___ o _ [ s A
807 | | | | | | |
o | | | | | |
ol | | | | | |
e | | | | | |
1 g | | | | | |
70 T T T T T T T
50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

3. A. Using the probit model and the Klein and Spady semiparametric models, the two sets of coefficient
estimates are somewhat similar.

+
| Binomial Probit Model |
| Maximum Likelihood Estimates |
| Model estimated: Jul 31, 2002 at 05:16:40PM.|
| Dependent variable P |
| Weighting variable None |
| Number of observations 601 |
| Iterations completed 5 |
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Log likelihood function -307.2955

| I

| Restricted log likelihood -337.6885 |

| Chi squared 60.78608 |

| Degrees of freedom 5 |

| Prob[ChiSgd > value] = .0000000 |

| Hosmer-Lemeshow chi-squared = 5.74742 |

| P-value= _67550 with deg.-fr. = 8 |

A e +

Fom e o TRy Fom Fom e Fom e +
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z]>z] | Mean of X]
T —— - e T —— O - +

Index function for probability

z2 -.2202376072E-01 .10177371E-01 -2.164 .0305 32.487521
Z3 -5990084920E-01 .17086004E-01 3.506 -0005 8.1776955
zZ5 -.1836462412 -51493239E-01 -3.566 .0004 3.1164725
z7 .3751312008E-01 .32844576E-01 1.142 .2534 4.1946755
Z8 -.2729824396 .52473295E-01 -5.202 -0000 3.9317804
Constant .9766647244 -36104809 2.705 -0068
e i +

Seimparametric Binary Choice Model
Maximum Likelihood Estimates
Model estimated: Jul 31, 2002 at 11:01:24PM.

| Dependent variable P |
Weighting variable None
Number of observations 601
Iterations completed 13

| Log likelihood function -334.7367 |
Restricted log likelihood -337.6885
Chi squared 5.903551
Degrees of freedom 4

| Prob[ChiSqd > value] = -2064679 |

Hosmer-Lemeshow chi-squared = 118.69649

P-value= .00000 with deg.fr. = 8

Logistic kernel fn. Bandwidth = .34423
™ +
Fommm e Fomm e o Fomm e Fmmm e +
|variable | Coefficient | Standard Error |b/St.Er.|P[]1Z]>z] | Mean of X]|
Fomm—_—— e o Fom o — - Fom Fom e +

Characteristics in numerator of Prob[Y = 1]

z2 -.3284308221E-01 .52254249E-01 -.629 .5297 32.487521
Z3 -1089817386 -86483083E-01 1.260 .2076 8.1776955
Z5 -.2384951835 .23320058 -1.023 -3064 3.1164725
z7 -.1026067037 -17130225 -.599 .5492 4.1946755
z8 -.1892263132 .21598982 -.876 .3810 3.9317804

Constant .0000000000 ........ (Fixed Parameter)........



The probit model produces a set of marginal effects, as discussed in the text. These cannot be computed

for the Klein and Spady estimator.

| Partial derivatives of E[y] = F[*] with
| respect to the vector of characteristics.
| They are computed at the means of the Xs.
| Observations used for means are All Obs.

|variable | Coefficient | Standard Error |b/St.Er.|P[|Z]>z] |
o N o o o o +

Index function for probability
z2 -.6695300413E-02 .30909282E-02
Z3 -1821006800E-01 .51704684E-02
zZ5 -.5582910069E-01 .15568275E-01
z7 -1140411992E-01 .99845393E-02
Z8 -.8298761795E-01 .15933104E-01
Constant -2969094977 -11108860

These are the various fit measures for the probit mode

Fit Measures for Binomial Choice Model |
Probit model for variable P
Proportions PO= .750416 P1= .249584

N = 601 NO= 451 N1= 150
LogL = -307.29545 LogLO = -337.6885
Estrella = 1-(L/LO)"(-2L0O/n) = .10056

Cramer Veall/Zim.
.10486 .17359

| I

.10905 | .09000 | .66451
I I
I I

Information Akaike 1.C. Schwarz 1.C.
Criteria 1.04258 652.98248

|
+
|
|
|
|
+
Efron McFadden Ben./Lerman |
|
|
|
+
|
|
+

Frequencies of actual & predicted outcomes
Predicted outcome has maximum probability.
Threshold value for predicting Y=1 = _5000

Predicted
Actual 0 1 | Total
o 237 1| 451
1 130 20 | 150
Total 567 34 | o1

________________________________________ +
Fit Measures for Binomial Choice Model
Observed = P Fitted = KSPROBS

S +
Proportions PO= .750416 P1= .249584
N = 601 NO= 451  Ni1= 150
LogL = -320.37513 LogLO = -337.6885

| Estrella = 1-(L/LO)~(-2L0/n) = .05743 |

e +

Efron | McFadden | Ben./Lerman
-05686 | .05127 | .64117

| Cramer | Veall/Zim. | Rsqrd_ML |

| .03897 | -10295 | .05599 |

Ry +

-2.166
3.522
-3.586
1.142
-5.209
2.673

Mean of X]|

32.487521
8.1776955
3.1164725
4.1946755
3.9317804

100



The first figure below plots the probit probabilities against the Klein and Spady probabilities. The models

are obviously similar, though there is substantial difference in the fitted values.
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Finally, these two figures plot the predicted probabilities from the two models against the respective index

functions, b’x. Note that the two plots are based on different coefficient vectors, so it is not possible to

merge the two figures.
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