
 

Chapter 11 
 

Nonlinear Regression Models 
 

Exercises 
 
1.  We cannot simply take logs of both sides of the equation as the disturbance is additive rather than 
multiplicative.  So, we must treat the model as a nonlinear regression.  The linearized equation is 
  y ≈ α α α α ββ β β0 0 00 0 0

x x x x+ − + −( ) (log ) (  β0 )
where α0 and β0 are the expansion point.  For given values of α0 and β0, the estimating equation would be 

   ( ) ( )y x + ε* x x x x x x− + + = +α α α α β αβ β β β β0 0 0 00 0 0 0 0
(log ) (log )

or  ( ) ( )y x x x x x+ = +α α β αβ β0 00 0
(log ) (log ) β0

 + ε*. 

Estimates of α and β are obtained by applying ordinary least squares to this equation.  The process is repeated 
with the new estimates in the role of α0 and β0.  The iteration could be continued until convergence.  Starting 
values are always a problem.  If one has no particular values in mind, one candidate would be α0 = y and β0 = 

0 or β0 = 1 and α0 either x′y/x′x or y / x .  Alternatively, one could search directly for the α and β to minimize 
the sum of squares,  S(α,β)  =  Σi (yi - αxβ)2  =  Σi εi

2.  The first order conditions for minimization are 
 ∂S(α,β)/∂α  =  -2Σi (yi - αxβ)xβ  =  0    and    ∂S(α,β)/∂β  =  -2Σi (yi - αxβ)α(lnx)xβ  =  0. 
Methods for solving nonlinear equations such as these are discussed in Appendix E..   
 
2.   The proof can be done by mathematical induction.  For convenience, denote the ith derivative by fi.  The 
first derivative appears in Equation (10-34).  Just by plugging in i=1, it is clear that f1 satisfies the relationship.  
Now, use the chain rule to differentiate f1, 
   f2  =  (-1/λ2)[xλ(lnx) - x(λ)] + (1/λ)[(lnx)xλ(lnx) - f1] 
Collect terms to yield f2  =  (-1/λ)f1 + (1/λ)[xλ(lnx)2 - f1]  =  (1/λ)[xλ(lnx)2 - 2f1]. 
So, the relationship holds for i = 0, 1, and 2.  We now assume that it holds for i = K-1, and show that if so, it 
also holds for i = K.  This will complete the proof.  Thus, assume 
   fK-1  =  (1/λ)[xλ(lnx)K-1 - (K-1)fK-2] 
Differentiate this to give fK  =  (-1/λ)fK-1 + (1/λ)[(lnx)xλ(lnx)K-1 - (K-1)fK-1]. 
Collect terms to give fK  =  (1/λ)[xλ(lnx)K - KfK-1], which completes the proof for the general case. 
Now, we take the limiting value 
   limλ→0 fi  =  limλ→0 [xλ(lnx)i - ifi-1]/λ. 
Use L'Hospital's rule once again. 
   limλ→0 fi  =  limλ→0 d{[xλ(lnx)i - ifi-1]/dλ}/limλ→0 dλ/dλ. 
Then,   limλ→0 fi  =  limλ→0 {[xλ(lnx)i+1 - ifi]} 
Just collect terms,  (i+1)limλ→0 fi  =  limλ→0 [xλ(lnx)i+1] 
or   limλ→0 fi  =  limλ→0 [xλ(lnx)i+1]/(i+1)  =  (lnx)i+1/(i+1).    
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Applications 
  
1.  First, the two simple regressions produce 
    Linear  Log-linear 
  Constant  114.338  1.17064 
     (173.4)  (.3268) 
  Labor           2.33814       .602999 
                         (1.039)      (.1260) 
  Capital        .471043        .37571 
                          (.1124)        (.08535) 
  R2            .9598       .9435 
  Standard Error   469.86          .1884 
In the regression of Y on 1, K, L, and the predicted values from the loglinear equation minus the predictions 
from the linear equation, the coefficient on α is -587.349 with an estimated standard error of 3135.  Since this 
is not significantly different from zero, this evidence favors the linear model.  In the regression of lnY on 1, 
lnK, lnL and the predictions from the linear model minus the exponent of the predictions from the loglinear 
model, the estimate of α is .000355 with a standard error of .000275.  Therefore, this contradicts the preceding 
result and favors the loglinear model.  An alternative approach is to fit the Box-Cox model in the fashion of 
Exercise 4. The maximum likelihood estimate of λ is about -.12, which is much closer to the log-linear model 
than the lonear one.  The log-likelihoods are -192.5107 at the MLE, -192.6266 at λ=0 and -202.837 at λ = 1.  
Thus, the hypothesis that λ = 0 (the log-linear model) would not be rejected but the hypothesis that λ = 1 (the 
linear model) would be rejected using the Box-Cox model as a framework.   � 
 
2.  The search for the minimum sum of squares produced the following results: 
 

 

   λ  e′e 
-.500   .78477 
-.400   .67033 
-.300   .60587 
-.250   .59479 
-.245   .59451 
-.244   .59447 
-.243   .59444 
-.242   .59441 
-.241   .59439 
-.240   .59438 
-.239   .59437 
-.238   .59436 
-.237   .59437 
-.235   .59440 
-.225   .59492 
-.200   .59897 
-.100   .65598 
0.000   .78143 
 .100   .97742 

  .200  1.24354 
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The sum of squared residuals is minimized at λ = -.238.  At this value, the regression results are as follows: 
  Parameter     Estimate     OLS Std.Error     Correct Std.Error 
  α           2.06092  .07718              .09723 
         βk          .178232        .04638              .04378 
  βl          .737988        .06996              .12560 
  λ          -.238            ----               .07710 
  Estimated Asymptotic Covariance Matrix 
   α        βk        βl        λ 
  α   .00945 
  βk  .00262     .00192 
  βl  .00511    -.00199    .01578 
  λ   .00500   .00037    .00825   .00594 
The output elasticities for this function evaluated at the sample means are 
  ∂lnY/∂lnK  =  βkKλ  =  (.178232).175905-.238    =  .2695 
  ∂lnY/∂lnL  =  βlLλ    =  (.443954).737988-.238    =  .7740. 
The estimates found for Zellner and Revankar's model were .254 and .882, respectively, so these are quite 
similar.  For the simple log-linear model, the corresponding values are .2790 and .927.   � 
 
3.   The Wald test is based on the unrestricted model.  The statistic is the square of the usual t-ratio, 
W  =  (-.232 / .0771)2  =  9.0546.  The critical value from the chi-squared distribution is 3.84, so the 
hypothesis that λ = 0 can be rejected.  The likelihood ratio statistic is based on both models.  The sum of 
squared residuals for both unrestricted and restricted models is given above.  The log-likelihood is 
lnL  =  -(n/2)[1 + ln(2π) + ln(e′e/n)], so the likelihood ratio statistic is  
 LR   =  n[ln(e′e/n)|λ=0  -  ln(e′e/n)| λ=-.238]  =  nln[(e′e|λ=0) / (e′e|λ=-.238) 
      =  25ln(.78143/.54369) =  6.8406. 
Finally, to compute the Lagrange Multiplier statistic, we regress the residuals from the log-linear regression on 
a constant, lnK, lnL, and (1/2)(bkln2K + blln2L) where the coefficients are those from the log-linear model 
(.27898 and .92731).  The R2 in this regression is .23001, so the Lagrange multiplier statistic is LM  =  nR2  =  
25(.23001)  =  5.7503.  All three statistics suggest the same conclusion, the hypothesis should be rejected.   � 
 
4.  Instead of minimizing the sum of squared deviations, we now maximize the concentrated log-likelihood 
function,  lnL  =  -(n/2)ln(1+ln(2π)) + (λ - 1)Σi lnYi - (n/2)ln(ε′ε/n). 
The search for the maximum of lnL produced the results on the next page 
The log-likelihood is maximized at λ = .124.  At this value, the regression results are as follows: 
 
  Parameter     Estimate     OLS Std.Error    Correct Std.Error 
  α           2.59465        .1283               .7151 
  βk          .378094        .1070               .3228 
  βl          1.13653        .1117               .4121 
  λ           .124            ----               .2482 
  σ2          .036922         ----               .0179 
   Estimated Asymptotic Covariance Matrix 
                α            βk          βl           λ              σ2 
  α   .5114 
  βk  .2203    .1042 
  βl  .2612    .0951     .1698 
  λ   .1747    .0730     .0953     .0617 
  σ2  .0104    .0044     .0059     .0038     .00032 
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   λ          lnL 
-.200 -13.6284 
-.150 -12.8568 
-.100 -12.2423 
-.050 -11.7764 
0.000 -11.4476 
 .050 -11.2427 
 .100 -11.1480 
 .110 -11.1410 
 .120 -11.1378 
 .121 -11.1377 
 .122 -11.1376 
 .123 -11.1376 
 .124 -11.1375 
 .125 -11.1376 
 .130 -11.1383 
 .140 -11.1423 
 .200 -11.2344 
 .300 -11.6064 
 .400 -12.8371 

  
 
 
The output elasticities for this function evaluated at the sample means, K  = .175905, L  = .737988, Y =  
2.870777,  are   ∂lnY/∂lnK  =  bk(K/Y)λ  =  .2674 
  ∂lnY/∂lnL  =  bl(L/Y)λ   =  .9017. 
These are quite similar to the estimates given above.  The sum of the two output elasticities for the states given 
in the example in the text are given below for the model estimated with and without transforming the 
dependent variable.  Note that the first of these makes the model look much more similar to the Cobb Douglas 
model for which this sum is constant. 
 State      Full Box-Cox Model     lnQ on left hand side 
 Florida  1.2840    1.6598 
  Louisiana 1.2019   1.4239 
 California 1.1574   1.1176 
 Maryland 1.1657   1.0261 
 Ohio  1.1899    .9080 
 Michigan 1.1604    .8506 
 Once again, we are interested in testing the hypothesis that λ = 0.  The Wald test statistic is 
W  =  (.123 / .2482)2  =  .2455.  We would now not reject the hypothesis that λ = 0.  This is a surprising 
outcome.  The likelihood ratio statistic is based on both models.  The sum of squared residuals for the 
restricted model is given above.  The sum of the logs of the outputs is 19.29336, so the restricted 
log-likelihood is  lnL0 =  (0-1)(19.29336) - (25/2)[1 + ln(2π) + ln(.781403/25)]  =  -11.44757.  The likelihood 
ratio statistic is  -2[ -11.13758 - (-11.44757)]  =  .61998.  Once again, the statistic is small.   Finally, to 
compute the Lagrange multiplier statistic, we now use the method described in Example 11.8.  The result is 
LM = 1.5621.  All of these suggest that the log-linear model is not a significant restriction on the Box-Cox 
model.  This rather peculiar outcome would appear to arise because of the rather substantial reduction in the 
log-likelihood function which occurs when the dependent variable is transformed along with the right hand 
side.  This is not a contradiction because the model with only the right hand side transformed is not a 
parametric restriction on the model with both sides transformed.  Some further evidence is given in the next 
exercise.  
 

 83



 

5.   --> nlsq ; lhs = y ; labels = b1,b2 ; fcn=b1*(1 - 1/sqr(1+2*b2*x)) 
     ; start = 500,.0001 ;output=2$ 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  11603.0164    ; Gradient=  11602.9326 
Iteration=  2; Sum of squares=  19821.5463    ; Gradient=  19821.4534 
Iteration=  3; Sum of squares=  331169.005    ; Gradient=  331144.576 
Iteration=  4; Sum of squares=  356630.271    ; Gradient=  356504.582 
Iteration=  5; Sum of squares=  14997.8506    ; Gradient=  14938.8590 
Iteration=  6; Sum of squares=  449.855530    ; Gradient=  442.701921 
Iteration=  7; Sum of squares=  102026.884    ; Gradient=  102026.775 
Iteration=  8; Sum of squares=  12887.7536    ; Gradient=  12886.6539 
Iteration=  9; Sum of squares=  14263101.5    ; Gradient=  14263101.0 
Iteration= 10; Sum of squares=  10203.1920    ; Gradient=  10202.6789 
Iteration= 11; Sum of squares=  144.393444    ; Gradient=  144.338425 
Iteration= 12; Sum of squares=  258.186688    ; Gradient=  258.145522 
Iteration= 13; Sum of squares=  .154284512    ; Gradient=  .113316151 
Iteration= 14; Sum of squares=  .409681292E-01; Gradient=  .129216769E-05 
Iteration= 15; Sum of squares=  .409668370E-01; Gradient=  .439070450E-13 
Iteration= 16; Sum of squares=  .409668370E-01; Gradient=  .211594637E-18 
Iteration= 17; Sum of squares=  .409668370E-01; Gradient=  .107898463E-24 
Convergence achieved 
+----------------------------------------------------+ 
| Nonlinear   least squares regression               | 
| LHS=Y        Mean                 =   43.34071     | 
|              Standard deviation   =   22.80652     | 
| WTS=none     Number of observs.   =         14     | 
| Model size   Parameters           =          2     | 
|              Degrees of freedom   =         12     | 
| Residuals    Sum of squares       =   .4096684E-01 | 
|              Standard error of e  =   .5409439E-01 | 
| Fit          R-squared            =   .9999939     | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 B1      |    636.427250      4.31789336   147.393   .0000 
 B2      |     .00020814     .164134D-05   126.809   .0000 
 
--> nlsq ; lhs = y ; labels = b1,b2 ; fcn=b1*(1 - 1/sqr(1+2*b2*x)) 
 ; start = 600,.0002 ;output=2$ 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  262.456583    ; Gradient=  262.415454 
Iteration=  2; Sum of squares=  .155984704    ; Gradient=  .115016579 
Iteration=  3; Sum of squares=  .409675977E-01; Gradient=  .760690867E-06 
Iteration=  4; Sum of squares=  .409668370E-01; Gradient=  .379981726E-13 
Iteration=  5; Sum of squares=  .409668370E-01; Gradient=  .186919870E-18 
Iteration=  6; Sum of squares=  .409668370E-01; Gradient=  .150578559E-23 
Convergence achieved 
+----------------------------------------------------+ 
| Nonlinear   least squares regression               | 
| LHS=Y        Mean                 =   43.34071     | 
|              Standard deviation   =   22.80652     | 
| Residuals    Sum of squares       =   .4096684E-01 | 
|              Standard error of e  =   .5409439E-01 | 
| Fit          R-squared            =   .9999939     | 
|              Adjusted R-squared   =   .9999944     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 B1      |    636.427250      4.31789336   147.393   .0000 
 B2      |     .00020814     .164134D-05   126.809   .0000 
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Chapter 12 
 

Instrumental Variables Estimation 

 
Exercises 
 
1.  There is no need for a separate proof different from the usual for OLS.  Formally, however, it follows 
from the results at (12-4) that 

  b  =  
1

n n

−′ ′⎛ ⎞ ⎛+ ⎜ ⎟ ⎜
⎝ ⎠ ⎝

X X X ⎞
⎟
⎠

ε
β  

Then, 

  
1

1plim 
n n

−
−′ ′⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
XX

X X Xb b Qε γ  

and 

  ( )
1

1plim n n
n n

−
−

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞− = −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

XX
X X Xb b Qε γ  

The large sample distribution of this statistic will be the same as the large sample of the statistic with X′X/n 
replaced with its probablity limit, which is QXX.  Thus, 

  ( ) 1plim n n
n

− ′⎡ ⎤⎛ ⎞− → −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
XX

Xb b Q ε γ  

To deduce the large sample behavior of this statistic, we can invoke the results from chapter 4.  The only 
change here is the nonzero mean (probability limit) of the vector in brackets.  [See (12-3).]  Thus, the same 
proof applies.  The consistency, asymptotic normality and asymptotic covariance matrix equal to 
Asy.Var[b] = σε

2 (X′X)-1  
 
2.  A logical solution to this one is simple.  For y and x*,  
  Cov2(y,x*)/[Var(y)Var(x*)] = β2(σ*

2)2/[(β2σ*
2+σε

2)(σ*
2)] 

  Cov2(y,x) /[Var(y)Var(x)]   = Cov[βx*+ε,x*+u] / [Var(y)Var(x)]  
      = {Cov[y,x*] +Cov[y,u]}2 / [Var(y)Var(x)] . 
The second term is zero, since y=βx*+ε which is uncorrelated with u.  Thus,  
Cov2(y,x) /[Var(y)Var(x)]   = Cov[y,x*] / [Var(y)Var(x)]. 
The numerator is the same.  The denominator is larger, since [Var(y)Var(x)] = Var[y](Var[x*] + Var[u]), 
so the squared correlation must be smaller. If both variables are measured with errors, then we are 
comparing Cov2(y*,x*)/{Var[y*]Var[x*]} to Cov2(y,x)/{Var[y]Var[x]}. 
The numerator is the covariance of (βx* + ε + v) with (x* + u), so the numerator of the fraction is still 
β2(σ*

2)2.  The denominator is still obviously larger, so the same result holds when both variables are 
measured with error. 
 
3.  We work off (12-16), using repeatedly the result Σuu = (σuj)(σuj)′ where j has a 1 in the first 
position and 0 in the remaining K-1.  From (12-16), 
 
plim b = β - [Q* + Σuu]-1Σuuβ.  The vector is Σuuβ equals [σu

2β1,0,...,0]′.  The inverse matrix is 
 

[Q* + Σuu]-1 = ( )
( )

( ) ( )1 1
1

1* * ( )( ) *
1 ( ) * ( )

u u
u u

− −

−

⎡ ⎤
′− σ⎢ ⎥

′+ σ σ⎢ ⎥⎣ ⎦
Q Q j

j Q j
1−σ j Q  
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This can be simplified since the quadratic form in the denominator just picks off the 1,1 diagonal element.  
Thus, 
 

[Q* + Σuu]-1 = ( ) ( ) ( )1 1
2 *11

1* * ( )( ) *
1 u u

uq
− −⎡ ⎤

′− σ σ⎢ ⎥+ σ⎣ ⎦
Q Q j j 1−Q  

Then 

[Q* + Σuu]-1Σuuβ= ( ) ( ) ( )1 1 1−Q ( )( )u u2 *11

1* * ( )( ) *
1 u u

uq
− −⎡ ⎤

′− σ σ⎢ ⎥+ σ⎣ ⎦
Q Q j j ′σ σj j β 

  =  ( ) 1* −Q ( )( )u u ′σ σj j β - ( ) ( )1 1
2 *11

1 * ( )( ) *
1 u u

uq
− −′σ σ

+ σ
Q j j Q ( )( )u u ′σ σj j β 

  =  ( j σu
2β1 - ) 1* −Q ( )

2 *11
1 2

12 *11 *  
1

u
u

u

q
q

−σ
σ β

+σ
Q j  

  =  ( j ) 1* −Q
2 *11

2 *111
1

u

u

q
q

⎡ ⎤σ
−⎢ ⎥+σ⎣ ⎦

σu
2β1 

  = ( j ) 1* −Q 2 *11

1
1 uq
⎡ ⎤
⎢ ⎥+ σ⎣ ⎦

σu
2β1 

  = ( j ) 1* −Q
2

1
2 *111

u

uq
⎡ ⎤σ β
⎢ ⎥+ σ⎣ ⎦

 

Finally, j equals the first column of (( ) 1* −Q ) 1* −Q  = [q*11, q*21,...,q*k1].  Therefore, the first element, 
given by (12-17a) is 
 

  plim b1 = β1 - 
2

1
2 *111

u

uq
⎡ ⎤σ β
⎢ + σ⎣ ⎦

⎥ q*11 = β1

2 *11

2 *111
1

u

u

q
q

⎡ ⎤σ
−⎢ ⎥+σ⎣ ⎦

 

For (12-17b), 

  plim b2 = β2 - 
2

1
2 *111

u

uq
⎡ ⎤σ β
⎢ ⎥+ σ⎣ ⎦

q*k1 

 
 
4.  To obtain the result, note first: 
 plim b = β + QXX

-1γ 
 Asy.Var[b] = (σ2/n)QXX

-1 
 Asy.Var[b2sls] = (σ2/n)QZX

-1QZZQXZ
-1. 
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The mean squared error of the OLS estimator is the variance plus the squared bias, 
  M(b|β)  =  (σ2/n)QXX

-1 + QXX
-1γγ′QXX

-1 
the mean squared error of the 2SLS estimator equals its variance.  For OLS to be more precise then 2SLS, 
we would have to have 
  (σ2/n)QXX

-1 + QXX
-1γγ′QXX

-1  << (σ2/n)QZX
-1QZZQXZ

-1. 
For convenience, let δ = QXX

-1γ so M(b|β)  =  (σ2/n)QXX
-1 + δδ′.  If the mean squared error matrix of the 

OLS estimator is smaller than that of the 2SLS estimator, then its inverse is larger.  Use (A-66) to do the 
inversion.  The result would be 
  [(σ2/n)QXX

-1 + δδ′]-1 >> [(σ2/n)QZX
-1QZZQXZ

-1]-1 
Now, use A-66 

  [(σ2/n)QXX
-1 + δδ′]-1  = (n/σ2) QXX - 2

1
1 ( / )n′+ σ XXQδ δ

(n/σ2) QXXδδ′(n/σ2) QXX 

Reinsert δ = QXX
-1γ and the right hand side above reduces to 

  (n/σ2) QXX - 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′ 

Therefore, if the mean squared error matrix of OLS is smaller, then  

  (n/σ2) QXX - 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′  >>  (n/σ2)QXZQZZ

-1QZX 

Collect the terms, and this implies 

  (n/σ2)[ QXX - QXZQZZ
-1QZX] >> 2

1
1 ( / )n ′+ σ -1

XXQγ γ
(n/σ2)2 γγ′ 

divide both sides by (n/σ2), 

   QXX - QXZQZZ
-1QZX >> 

2

2

( / )
1 ( / )

n
n

σ
′+ σ -1

XXQγ γ
γγ′ 

and divide numerator and denominator of the fraction by n/σ2 

   QXX - QXZQZZ
-1QZX >> 2

1
( / )n ′σ + -1

XXQγ γ
γγ′ 

which is the desired result.  Is it possible?  It is possible, since 
  QXX - QXZQZZ

-1QZX   =  plim (1/n)[X′X - X′Z(Z′Z)-1Z′X] 
     =  plim (1/n) X′MZX 
which is a positive definite matrix.  SInce γ varies independently of Z and X, certainly there is some 
configuration of the data and parameters for which this is the case.  The result is that it is, indeed, possible 
for OLS to be more precise, in the mean squared error sense, than 2SLS. 
 
5.  The matrices are X = [i,x] and Z = [i,z].  For the OLS estimators, we know from chapter 2 that 
 a  =  y bx−  and b = Cov[x,y]/var[x]. 
For the IV estimator, (Z′X)-1Z′y, we obtain the result in detail.  Given the forms, 

 1 11

1 1 1 1 1 1 1 11

1( ) ,  ( ) ,  
( )

i

z i

n x n nx n x nx ny
n x n n x n n n ynn x x

−

=

Σ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡′ ′= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Σ −−⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦
Z X Z X Z y

⎤′ ⎥
⎦

 

where subscript 1 indicates the mean of the observations for which z equals 1, and n1 is the number of 
observations.  Multiplying the matrix times the vector and cancelling terms produces the solutions 
 

 aIV = 1 1 1

1 1

 and IV IV
x y x y y y

a b
x x x
− −

= =
− − x
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Application 
 
a.  The statement of the problem is actually a bit optimistic.  GIven the way it is stated, it would imply that 
the exogenous variables in the “demand” equation would be, in principle, (Ed, Union, Fem) which are also 
in the supply equation, plus the remainder, (Exp, Exp2, Occ, Ind, South, SMSA, Blk).  The problem is that 
the model as stated would not be identified – the supply equation would, but the demand equation would 
not be.  The way out would be to assume that at least one of (Ed, Union, Fem) does not appear in the 
demand equation.  Since surely education would, that leaves one or both of Union and Fem.  We will 
assume both of them are omitted.  So, our equation is 
 
 lnWageit =  α1 + α2Edit + α3Expit + α4Expit

2 + α5Occit +  
   α6Indit + α7Southit + α8SMSAit + α9Blkit + γ Wksit + uit. 
NAMELIST ; X = one,Ed,Exp,Expsq,Occ,Ind,South,SMSA,Blk,Wks $ 
NAMELIST ; Z = one,Ed,Exp,expsq,Occ,Ind,south,SMSA,Blk,Union,Fem $ 
Regress  ; Lhs = lwage ; Rhs = X $ 
2SLS     ; Lhs = lwage ; Rhs = X ; Inst = Z $ 
REGRESS  ; Lhs = Wks ; Rhs = Z ; cls:b(10)=0,b(11)=0$ 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LWAGE    Mean                 =   6.676346     | 
|              Standard deviation   =   .4615122     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =       4155     | 
| Residuals    Sum of squares       =   581.2717     | 
|              Standard error of e  =   .3740280     | 
| Fit          R-squared            =   .3446066     | 
|              Adjusted R-squared   =   .3431870     | 
| Model test   F[  9,  4155] (prob) = 242.74 (.0000) | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    5.13171052       .07238152    70.898   .0000 
 ED      |     .06112766       .00277226    22.050   .0000   12.8453782 
 EXP     |     .04291665       .00229783    18.677   .0000   19.8537815 
 EXPSQ   |    -.00070803     .506204D-04   -13.987   .0000   514.405042 
 OCC     |    -.07814434       .01502100    -5.202   .0000    .51116447 
 IND     |     .09066812       .01247863     7.266   .0000    .39543818 
 SOUTH   |    -.07629062       .01318346    -5.787   .0000    .29027611 
 SMSA    |     .13789225       .01278553    10.785   .0000    .65378151 
 BLK     |    -.26269494       .02304380   -11.400   .0000    .07226891 
 WKS     |     .00484184       .00113470     4.267   .0000   46.8115246 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=LWAGE    Mean                 =   6.676346     | 
|              Standard deviation   =   .4615122     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =         10     | 
|              Degrees of freedom   =       4155     | 
| Residuals    Sum of squares       =   602.3138     | 
|              Standard error of e  =   .3807377     | 
| Fit          R-squared            =   .3192467     | 
|              Adjusted R-squared   =   .3177722     | 
| Model test   F[  9,  4155] (prob) = 216.50 (.0000) | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      ED       EXP      EXPSQ    OCC      IND      SOUTH    SMSA 
|BLK      UNION    FEM 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    4.46105888       .27680953    16.116   .0000 
 ED      |     .06167266       .00283031    21.790   .0000   12.8453782 
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 EXP     |     .04207640       .00236282    17.808   .0000   19.8537815 
 EXPSQ   |    -.00068241     .525268D-04   -12.992   .0000   514.405042 
 OCC     |    -.07605669       .01531301    -4.967   .0000    .51116447 
 IND     |     .08348143       .01302032     6.412   .0000    .39543818 
 SOUTH   |    -.08242895       .01364036    -6.043   .0000    .29027611 
 SMSA    |     .13244624       .01319402    10.038   .0000    .65378151 
 BLK     |    -.25212290       .02383132   -10.579   .0000    .07226891 
 WKS     |     .01922950       .00583960     3.293   .0010   46.8115246 
 
This is the test of relevance of the instrumental variables.  In the regression 
of WKS on the full set of exogenous variables, we test the hypothesis that the 
coefficients on the instruments, UNION and FEM are jointly zero.  The results 
show that the hypothesis is rejected.  We conclude that the instruments are 
relevant. 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=WKS      Mean                 =   46.81152     | 
|              Standard deviation   =   5.129098     | 
| WTS=none     Number of observs.   =       4165     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =       4156     | 
| Residuals    Sum of squares       =   108653.5     | 
|              Standard error of e  =   5.113097     | 
| Fit          R-squared            =   .8138966E-02 | 
|              Adjusted R-squared   =   .6229705E-02 | 
| Model test   F[  8,  4156] (prob) =   4.26 (.0000) | 
| Restrictns.  F[  2,  4154] (prob) =  84.57 (.0000) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    46.6129896       .67547781    69.007   .0000 
 ED      |    -.03787988       .03789322    -1.000   .3175   12.8453782 
 EXP     |     .05840099       .03139904     1.860   .0629   19.8537815 
 EXPSQ   |    -.00178055       .00069145    -2.575   .0100   514.405042 
 OCC     |    -.14509978       .20533021     -.707   .4798    .51116447 
 IND     |     .49950389       .17041135     2.931   .0034    .39543818 
 SOUTH   |     .42663864       .18010107     2.369   .0178    .29027611 
 SMSA    |     .37851979       .17468415     2.167   .0302    .65378151 
 BLK     |    -.73479892       .31481083    -2.334   .0196    .07226891 
 UNION   |    .444089D-15    .182255D-08      .000  1.0000    .36398559 
 FEM     |       .000000    ......(Fixed Parameter)....... 
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Chapter 13 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Simultaneous Equations Models 
 
 
1.  (a)  Since nothing is excluded from either equation and there are no other restrictions, neither equation 
passes the order condition for identification. 
 (1)  We use (13-12) and the equations which follow it.  For the first equation, [A3′,A5′] = β22, a scalar 
which has rank M-1 = 1 unless β22 = 0.  For the second, [A3′,A5′] = β31. Thus, both equations are identified. 
 (2)  This restriction does not restrict the first equation, so it remains unidentified.  The second 
equation is now identified, as [A3′,A5′] = [β11,β21] has rank 1 if either of the two ceofficients are nonzero. 
 (3)  If γ1 equals 0, the model becomes partially recursive.  The first equation becomes a regression 
which can be estimated by ordinary least squares.  However, the second equation continues to fail the order 
condition.  To see the problem, consider that even with the restriction, any linear combination of the two 
equations has the same variables as the original second eqation.  
 (4)  We know from above that if β32 = 0, the second equation is identifiable.  If it is, then γ2 is 
identified.  We may treat it as known.  As such, γ1 is known.  By regressing y1 - γ1y2 on the xs, we would 
obtain estimates of the remaining parameters, so these restrictions identify the model.  It is instructive to 
analyze this from the standpoint of  false structures as done in the text.  A false structure which incorporates 

the known restrictions would be  × .  If the false structure is to obey the restrictions, 

then f11 - γ f21 = 1, f22 - γ f12 = 1, f21 - γf11 = f12 - γ f22, β31 f12 = 0.  It follows then that f12 = 0 so f11 = 1.  Then, f21 - 
γf 11  =  -γ  or  f21  =  (f11 - 1)γ  so that f11 - γ2(f11 - 1) = 1.  This can only hold for all values of γ if f11 = 1 and, 
then, f21  =  0. Therefore, F = I which establishes identification. 
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 (5)  If β31 = 0, the first equation is identified by the usual rank and order conditions.  Consider, then, 
the off-diagonal element of Σ  =  Γ′ΩΓ.  Ω is identified since it is the reduced form covariance matrix.  The 
off-diagonal element is σ12  =  ω11 + ω22 - (γ1 + γ2)ω12  =  0.  Since γ1 is zero, γ2  =  ω12/(ω11 + ω22).  With γ2 
known, the remaining parameters are estimable by least squares regression of (y2 - γ2y1) on the xs.  Therefore, 
the restrictions identify the model. 
 (6)  Since this is only a single restriction, it will not likely identify the entire model.  Consider again 
the false structure.  The restrictions implied by the theory are f11 - γ2f21  =  1,   f22 - γ1f12  =  1,   β21f11 + β22f21  =  
β21f12 + β22f22.  The three restrictions on four unknown elements of F do not serve to pin down any of them.  
This restriction does not even partially identify the model. 
 (7)  The last four restrictions remove x2 and x3 from the model.  The remaining model is not 
identified by the usual rank and order conditions.  From part (5), we see that the first restriction implies σ12  =  
ω11 + ω22 - (γ1 + γ2)ω12  =  0.  But, with neither γ1 nor γ2 specified, this does not identify either parameter. 
 (8)  The first equation is identified by the conventional rank and order conditions.  The second 
equation fails the order condition.  But, the restriction σ12 = 0 provides the necessary additional information 
needed to identify the model.  For simplicity, write the model with the restrictions imposed as 
 y1 = γ1y2 + ε1 and  y2 = γ2y1 + βx + ε2. 
The reduced form is                                  y1 = π1x + v1 and y2 = π2x + v2  
where π1 = γ1β/Δ and π2 = β/Δ with Δ = (1 - γ1γ2), and v1 = (ε1 + γ1ε2)/Δ and v2 = (ε2 + γ2ε1)/Δ.  The reduced 
form variances and covariances are ω11 = (γ1

2σ22 + σ11)/Δ2, ω22 = (γ2
2σ11 + σ22)/Δ2, ω12 = (γ1σ22 + γ2σ11)/Δ2. 

All reduced form parameters are estimable directly by using least squares, so the reduced form is identified in 
all cases.  Now, γ1 = π1/π2.  σ11 is the residual variance in the euqation (y1 - γ1y2) = ε1, so σ11 must be estimable 
(identified) if γ1 is.  Now, with a bit of manipulation, we find that γ1ω12 - ω11 = -σ11/Δ.  Therefore, with σ11 and 
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γ1 "known" (identified), the only remaining unknown is γ2, which is therefore identified.  With γ1 and γ2 in 
hand, β may be deduced from π2.  With γ2 and β in hand, σ22 is the residual variance in the equation (y2 - βx - 
γ2y1) = ε2, which is directly estimable, therefore, identified.  � 
 
2.  Following the method in Example 13.6, for identification of the investment equation, we require that the 

matrix have rank 5.  Columns (1), (4), (6), (7), and (8) each 

have one element in a different row, so they are linearly independent.  Therefore, the matrix has rank five.  For 

the third equation, the required matrix is .  Columns 

(4), (6), (7), (9), and (10) are linearly independent.   � 
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3.  We find [A3′,A5′]′ for each equation. 
 (1)  (2)  (3)  (4) 
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Identification requires that the rank of each matrix be M-1 = 3.  The second is obviously not identified.  In (1), 
none of the three columns can be written as a linear combination of the other two, so it has rank 3.  (Although 
the second and last columns have nonzero elements in the same positions, for the matrix to have short rank, 
we would require that the third column be a multiple of the second, since the first cannot appear in the linear 
combination which is to replicate the second column.)  By the same logic, (3) and (4) are identified.   � 
 
4.  Obtain the reduced form for the model in Exercise 1 under each of the assumptions made in parts (a) and 
(b1), (b6), and (b9). 
 (1).  The model is y1 = γ1y2 + β11x1 + β21x2 + β31x3 + ε1 
   y2 = γ2y1 + β12x1 + β22x2 + β32x3 + ε2. 

Therefore, Γ =  and B = and Σ is unrestricted.  The reduced form is 
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Ω = (Γ-1)′Σ(Γ-1) = 1
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 (6)  The model is y1  =  β11x1 + β21x2 + β31x3  + ε1 
   y2  =  γ2y1  + β12x1 + β22x2 + β32x3  +  ε2 
The first equation is already a reduced form.  Substituting it into the second provides the second reduced form.  

The coefficient matrix is P= , Γ-1 =  so Ω = (Γ-1)′Σ(Γ-1)   =  
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 (9)  The model is 
  y1  =  γ1y2  +  ε1 
  y2  =  γ2y1  +  β12x1  +  ε2 

Then, Π = -BΓ-1 = [β12γ1/(1-γ1γ2)   β12/(1-γ1γ2)] and Ω = .  � 
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5.   The relevant submatrices are X′X = , X′y1  = , X′y2  = , y1′y1 = 20,  y2′y2  =  10,  

y1′y2  =  6, X′Z1  = , X′Z2  =  Z1′Z1 = , Z2′Z2  = , 
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 Z1′Z2 = , Z1′y1  = , Z1′y2  = , Z2′y1 = , Z2′y2 = . 
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The two OLS coefficient vectors are 
 d1  =  (X′X)-1X′y1  =  [.439024,.536585] ′ 
 d2  =  (X′X)-1X′y2  =  [.193016,.384127,.19746] ′. 
The two stage least squares estimators are 

 = [Z1′X(X′X)-1X′Z1]-1[Z1′X(X′X)-1X′y1]  =  [.368816,.578711] ′. δ
∧
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 = [Z2′X(X′X)-1X′Z2]-1[Z2′X(X′X)-1X′y2]  =  [.484375,.367188,.109375] ′. δ
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 = (y1′y1 - 2y1′Z  + δ ′Z1′Z1 ) / 25  =  .610397,  =  .268384. σ
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The estimated asymptotic covariance matrices are 

 Est.Var[ ] = [Z1′X(X′X)-1X′Z1]-1   =  δ
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The three stage least squares estimate is 
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   =  [.368817,.578708,.4706,.306363,.168294]′ . 
The estimated standard errors are the square roots of the diagonal elements of the inverse matrix, 
[.4637,.4466,.3626,.1716,.1628], compared to the 2SLS values,  [.4637,.4466,.3639,.2174,.2081]. 
 To compute the limited information maximum likelihood estimator, we require the matrix of sums of 
squares and cross products of residuals of the regressions of y1 and y2 on x1 and on x1, x2, and x3.  These are 

W0  =  Y′Y  -  Y′x1(x1′x1)-1x1′Y  = , W1  =  Y′Y  -  Y′X(X′X)-1X′Y  =  
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The two characteristic roots of (W1)-1W0 are 1.53157 and 1.00837.  We carry the smaller one into the k-class 
computation  [see, for example, Theil (1971) or Judge, et al (1985)]; 
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Finally, the two estimates of the reduced form are 
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6. For the model  y1 = γ1y2 + β11x1 + β21x2 + ε1 
   y2 = γ2y1 + β32x3 + β42x4 + ε2 
show that there are two restrictions on the reduced form coefficients.  Describe a procedure for estimating the 
model while incorporating the restrictions. 

 The structure is  [y1 y2]  
1

1 0
0

2

1
1 2 3 4 1 1

−
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].

or y′ Γ + x′B  =  ε′.  The reduced form coefficient matrix is 

Π  =  -BΓ-1   =  1
1 1 2

11 2 11

21 2 21

1 32 32

1 42 42
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γ γ

β γ β
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γ β β
γ β β

  =    The two restrictions are π12/π11 = π22/π21 and  

π31/π32  =  π41/π42.  If we write the reduced form as 

π π
π π
π π
π π

11 21

21 22

31 32

41 42
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  y1  =  π11x1  +  π21x2  +  π31x3  +  π41x4  +  v1 
  y2  =  π12x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
We could treat the system as a nonlinear seemingly unrelated regressions model.  One possible way to handle 
the restrictions is to eliminate two parameters directly by making the substitutions 
  π12  =  π11π22/π21   and   π31  =  π32π41/π42. 
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The pair of equations would be 
  y1  =  π11x1  +  π21x2  +  (π32π41/π42)x3  +  π41x4  +  v1 
  y2  =  (π11π22/π21)x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
This nonlinear system could now be estimated by nonlinear GLS.  The function to be minimized would be 
  Σ i  vi1

2σ11 + vi2
n
=1

2

−

σ22 + 2vi1vi2σ12   =  ntr(Σ-1W). 
Needless to say, this would be quite involved.   � 
 
7.  We would require that all three characteristic roots have modulus less than one.  An intuitive guess that the 
diagonal element greater than one would preclude this would be correct.  The roots are the solutions to  

det
− − − −

−
− −

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
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. . .
.

. . .

1899 9471 8991
0 10287 0

0656 0791 0952

λ
λ

λ
= 0.  Expanding this produces   -(.1899 + λ)(1.0287 - λ)(.0952 - λ) 

- .0565(1.0287 - λ).8991 = 0.  There is no need to go any further.  It is obvious that λ = 1.0287 is a solution, so 
there is at least one characteristic root larger than 1.  The system is unstable.   
 
8.  Prove plim Yj′ε/T  =  ωj - Ωjjγj.  
  Consistent with the partitioning   y′  =  [yj  Yj′  Yi

*′],  partition Ω into 
    ωjj    ωj′ ω*

j′ 
   Ω  = ωj   Ωjj Ωj′ 
    ω*

j  Ω*
j Ωj

* 

and, as in the equation preceding (13-8), partition the jth column of Γ as Γj  =  .  Since the full set of 

reduced form disturbances is  V  =  EΓ-1,  it follows that   E  =  VΓ.  In particular, the jth column of E is  εj  =  
VΓj.  In the reduced form, now referring to (15-8),  Yj  =  XΠj  +  Vj, where Πj is the Mj columns of Π 
corresponding to the included endogenous variables and Vj is the T×Mj matrix of their reduced form 
disturbances.  Since X is uncorrelated with all columns of E, we have 

1
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⎥
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γ
0

plim Yj′εj/T = plim Vj′ Γj /T = [ωj  Ωjj  Ωj* ]  =   ωj - Ωjjγj as required.   
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9.  Prove that an underidentified equation cannot be estimated by two stage least squares. 
 If the equation fails the order condition, then the number of excluded exogenous variables is less than 
the number of included endogenous.  The matrix of instrumental variables to be used for two stage least 

squares is of the form Z =  [XA,Xj], where XA is Mj linear combination of all K columns in X and Xj is Kj 

columns of X.  In total, K = Kj
* + Kj.  If the equation fails the order condition, then Kj

* < Mj, so Z is Mj + Kj 

columns which are linear combinations of K = Kj
* + Kj < Mj + Kj.  Therefore,  cannot have full column 

rank.  In order to compute the two stage least squares estimator, we require ( ′ )-1, which cannot be 
computed.    

∧

∧

Z
∧

Z
∧

Z
∧
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Application 
 
?========================================================= 
? Application 13.1 - Simultaneous Equations 
?========================================================= 
? Read the data 
? For convenience, rename the variables so they correspond  
? to the example in the text. 
sample ; 1 - 204 $ 
create ; ct=realcons$ 
create ; it=realinvs$ 
create ; gt=realgovt$ 
create ; rt=tbilrate $ 
? Impose (artifically) the adding up condition on total demand. 
create ; yt=ct+it+gt $ 
create ; ct1=ct[-1] $ 
create ; yt1 = yt[-1] $ 
create ; dyt = yt - yt1 $ 
sample ; 2-204 $ 
names  ; xt = one,gt,rt,ct1,yt1$ 
? Estimate equations by 2sls and save coefficients with 
? the names used in the example. 
2sls   ; lhs = ct ; rhs=one,yt,ct1 ; inst = xt $ 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=CT       Mean                 =   3008.995     | 
|              Standard deviation   =   1456.900     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        200     | 
| Residuals    Sum of squares       =   75713.32     | 
|              Standard error of e  =   19.45679     | 
| Fit          R-squared            =   .9998208     | 
|              Adjusted R-squared   =   .9998190     | 
| Model test   F[  2,   200] (prob) =******* (.0000) | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      GT       RT       CT1      YT1 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -13.8657181      5.31536302    -2.609   .0091 
 YT      |     .05843862       .01790473     3.264   .0011   4663.67389 
 CT1     |     .92200662       .02657199    34.698   .0000   2982.97438 
calc   ; a0=b(1) ; a1=b(2) ; a2=b(3) $ 
2sls   ; lhs = it ; rhs=one,rt,dyt ; inst = xt $ 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=IT       Mean                 =   654.5296     | 
|              Standard deviation   =   391.3705     | 
| WTS=none     Number of observs.   =        203     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =        200     | 
| Residuals    Sum of squares       =   .7744227E+08 | 
|              Standard error of e  =   622.2631     | 
| Fit          R-squared            =  -1.540485     | 
|              Adjusted R-squared   =  -1.565889     | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      GT       RT       CT1      YT1 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -300.699429      125.980850    -2.387   .0170 
 RT      |    56.5192542      15.4643912     3.655   .0003   5.24965517 
 DYT     |    16.5359646      2.02509785     8.166   .0000   39.8236453 
calc   ; b0=b(1) ; b1=b(2) ; b2=b(3) $ 
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? 
? Create the coefficients of the reduced form.  We only need the parts  
? for the dynamics.  These are in the second half of the example. 
calc   ; a=1-a1-b2 $ 
? 
? Construct the matrix that governs the dynamics of the system.  Note that 
? the I equation is static.  It is a function of y(t-1) and c(t-1) but not 
? of I(t-1).  This is the DELTA(1) submatrix in (13-42).  The dominant 
? root is the largest rood of DELTA(1). 
calc   ; list ; C11=(1-b2)/a ; C12=-a1*b2/a ; C21=a2/a ; C22=-b2/a $ 
matrix ; C = [c11,c12 / c21,c22] $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 C11     =       .996253 
 C12     =       .061967 
 C21     =      -.059124 
 C22     =      1.060378 
Matrix ; list ; roots = cxrt(c)$ 
Calc   ; list ; domroot = sqr(roots(1,1)^2 + roots(1,2)^2)$ 
--> Matrix ; list ; roots = cxrt(c)$ 
 
Matrix ROOTS    has  2 rows and  2 columns. 
               1             2 
        +---------------------------- 
       1|    1.02832      -.05134 
       2|    1.02832       .05134 
--> Calc   ; list ; domroot = sqr(roots(1,1)^2 + roots(1,2)^2)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 DOMROOT =      1.029596 
 
? The largest root is larger than on in absolute value.  The system is unstable. 
 
3sls   ; lhs = ct,it ; eq1=one,yt,ct1 ; eq2=one,rt,dyt ; inst=xt ; maxit=0 $ 
+----------------------------------------------------+ 
| Estimates for equation: CT                         | 
| InstVar/GLS least squares regression               | 
| LHS=CT       Mean                 =   3008.995     | 
| Residuals    Sum of squares       =   73370.06     | 
|              Standard error of e  =   19.15334     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -17.4780776      4.55837624    -3.834   .0001 
 YT      |     .07312129       .01415744     5.165   .0000   4663.67389 
 CT1     |     .90026227       .02103720    42.794   .0000   2982.97438 
+----------------------------------------------------+ 
| Estimates for equation: IT                         | 
| InstVar/GLS least squares regression               | 
| LHS=IT       Mean                 =   654.5296     | 
| Residuals    Sum of squares       =   .9735005E+08 | 
|              Standard error of e  =   697.6749     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -236.744328      122.661644    -1.930   .0536 
 RT      |    30.5417941      12.9861014     2.352   .0187   5.24965517 
 DYT     |    18.3544221      1.93633720     9.479   .0000   39.8236453 
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Chapter 14 
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Estimation Frameworks in 
Econometrics 
 

Exercise 
 
1.  A fully parametric model/estimator provides consistent, efficient, and comparatively precise results.  
The semiparametric model/estimator, by comparison, is relatively less precise in general terms. But, the 
payoff to this imprecision is that the semiparametric formulation is more likely to be robust to failures of 
the assumptions of the parametric model.  Consider, for example, the binary probit model of Chapter 21, 
which makes a strong assumption of normality and homoscedasticity.  If the assumptions are correct, the 
probit estimator is the most efficient use of the data.  However, if the normality assumption or the 
homoscedasticity assumption are incorrect, then the probit estimator becomes inconsistent in an unknown 
fashion.  Lewbel’s semiparametric estimator for the binary choice model, in contrast, is not very precise in 
comparison to the probit model. But, it will remain consistent if the normality assumption is violated, and it 
is even robust to certain kinds of heteroscedasticity. 
 

Applications 
 
1.  Using the gasoline market data in Appendix Table F2.2, use the partially linear regression method in 
Section 16.3.3 to fit an equation of the form 
 
      ln(G/Pop)  =  β1ln(Income) + β2lnPnew cars + β3lnPused cars + g(lnPgasoline)  +  ε 
 
crea;gp=lg;ip=ly;ncp=lpnc;upp=lpuc;pgp=lpg$ 
sort;lhs=pgp;rhs=gp,ip,ncp,upp$ 
crea;dgp=.809*gp - .5*gp[-1] - .309*gp[-2]$ 
crea;dip=.809*ip - .5*ip[-1] - .309*ip[-2]$ 
crea;dnc=.809*ncp -.5*ncp[-1]-.309*ncp[-2]$ 
crea;duc=.809*upp -.5*upp[-1]-.309*upp[-2]$ 
samp;3-36$ 
regr;lhs=dgp;rhs=dip,dnc,duc;res=e$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DGP      Mean=   .9708646870E-02, S.D.=   .4738748109E-01 | 
| Model size: Observations =      34, Parameters =   3, Deg.Fr.=     31 | 
| Residuals:  Sum of squares= .1485994289E-01, Std.Dev.=         .02189 | 
| Fit:        R-squared=  .799472, Adjusted R-squared =          .78653 | 
| Model test: F[  2,     31] =   61.80,    Prob value =          .00000 | 
| Diagnostic: Log-L =     83.2587, Restricted(b=0) Log-L =      55.9431 | 
|             LogAmemiyaPrCrt.=   -7.559, Akaike Info. Crt.=     -4.721 | 
| Model does not contain ONE. R-squared and F can be negative!          | 
| Autocorrel: Durbin-Watson Statistic =   1.34659,   Rho =       .32671 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 DIP          .9629902959       .11631885    8.279   .0000  .14504254E-01 
 DNC         -.1010972781   .87755182E-01   -1.152   .2581  .20153536E-01 
 DUC      -.3197058148E-01  .51875022E-01    -.616   .5422  .35656776E-01 
--> matr;varpl={1+1/(2*2)}*varb$ 
--> matr;stat(b,varpl)$ 
+---------------------------------------------------+ 
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|Number of observations in current sample =      34 | 
|Number of parameters computed here       =       3 | 
|Number of degrees of freedom             =      31 | 
+---------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 B_1          .9629902959       .13004843    7.405   .0000 
 B_2         -.1010972781   .98113277E-01   -1.030   .3028 
 B_3      -.3197058148E-01  .57998037E-01    -.551   .5815 
 
 
2.   
 
+---------------------------------------+ 
| Nonparametric Regression for G        | 
| Observations       =            36    | 
| Points plotted     =            36    | 
| Bandwidth          =       .468092    | 
| Statistics for abscissa values----    | 
| Mean               =      2.316611    | 
| Standard Deviation =      1.251735    | 
| Minimum            =       .914000    | 
| Maximum            =      4.109000    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =    121.084982    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
 
 

Nonparametric Regression for    G
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3.  A.  Using the probit model and the Klein and Spady semiparametric models, the two sets of coefficient 
estimates are somewhat similar. 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 05:16:40PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                  5     | 
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| Log likelihood function       -307.2955     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    60.78608     | 
| Degrees of freedom                    5     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =   5.74742     | 
| P-value=  .67550 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.2202376072E-01  .10177371E-01   -2.164   .0305     32.487521 
 Z3        .5990084920E-01  .17086004E-01    3.506   .0005     8.1776955 
 Z5          -.1836462412   .51493239E-01   -3.566   .0004     3.1164725 
 Z7        .3751312008E-01  .32844576E-01    1.142   .2534     4.1946755 
 Z8          -.2729824396   .52473295E-01   -5.202   .0000     3.9317804 
 Constant     .9766647244       .36104809    2.705   .0068 
+---------------------------------------------+ 
| Seimparametric Binary Choice Model          | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 11:01:24PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                 13     | 
| Log likelihood function       -334.7367     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    5.903551     | 
| Degrees of freedom                    4     | 
| Prob[ChiSqd > value] =         .2064679     | 
| Hosmer-Lemeshow chi-squared = 118.69649     | 
| P-value=  .00000 with deg.fr. =       8     | 
| Logistic kernel fn. Bandwidth =  .34423     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Characteristics in numerator of Prob[Y = 1] 
 Z2       -.3284308221E-01  .52254249E-01    -.629   .5297     32.487521 
 Z3           .1089817386   .86483083E-01    1.260   .2076     8.1776955 
 Z5          -.2384951835       .23320058   -1.023   .3064     3.1164725 
 Z7          -.1026067037       .17130225    -.599   .5492     4.1946755 
 Z8          -.1892263132       .21598982    -.876   .3810     3.9317804 
 Constant     .0000000000 ........(Fixed Parameter)........ 
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The probit model produces a set of marginal effects, as discussed in the text.  These cannot be computed 
for the Klein and Spady estimator. 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
+-------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.6695300413E-02  .30909282E-02   -2.166   .0303     32.487521 
 Z3        .1821006800E-01  .51704684E-02    3.522   .0004     8.1776955 
 Z5       -.5582910069E-01  .15568275E-01   -3.586   .0003     3.1164725 
 Z7        .1140411992E-01  .99845393E-02    1.142   .2534     4.1946755 
 Z8       -.8298761795E-01  .15933104E-01   -5.209   .0000     3.9317804 
 Constant     .2969094977       .11108860    2.673   .0075 
 
These are the various fit measures for the probit model 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable P          | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -307.29545 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .10056  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .10905 |    .09000  |       .66451  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .10486 |    .17359  |       .09619  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria        1.04258     652.98248  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0       437   14  |    451 
  1       130   20  |    150 
------  ----------  +  ----- 
Total     567   34  |    601 
 
These are the fit measures for the probabilities computed for the Klein and Spady model.  The probit model 
fits better by all measures computed. 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Observed = P        Fitted = KSPROBS   | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -320.37513 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .05743  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .05686 |    .05127  |       .64117  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .03897 |    .10295  |       .05599  | 
+----------------------------------------+ 
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The first figure below plots the probit probabilities against the Klein and Spady probabilities.  The models 
are obviously similar, though there is substantial difference in the fitted values. 
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Finally, these two figures plot the predicted probabilities from the two models against the respective index 
functions, b’x. Note that the two plots are based on different coefficient vectors, so it is not possible to 
merge the two figures. 
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