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Minimum Distance Estimation and The 
Generalized Method of Moments 
 

Exercises 
 
1.       The elements of J are 
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Using the formula given for the moments, we obtain, μ2 = σ2, μ3 = 0, μ4 = 3σ4.  Insert these in the 
derivatives above to obtain 
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Since the rows of J are orthogonal, we know that the off diagonal term in JVJ′ will be zero, which 
simplifies things a bit.   Taking the parts directly, we can see that the asymptotic variance of 1b will be σ-6 
Asy.Var[m3], which will be 

Asy.Var[ 1b ]  =  σ-6(μ6 - μ3
2 + 9μ2

3 - 3μ2μ4 - 3μ2μ4). 
The parts needed, using the general result given earlier, are μ6 = 15σ6, μ3 = 0, μ2 = σ2, μ4 = 3σ4.  Inserting 
these in the parentheses and multiplying it out and collecting terms produces the upper left element of JVJ′  
equal to 6, which is the desired result.  The lower right element will be 
 Asy.Var[b2] = 36σ-4 Asy.Var[m2] + σ-8Asy.Var[m4] - 2(6)σ-6Asy.Cov[m2,m4]. 
The needed parts are 
 Asy.Var[m2] = 2σ4 
 Asy.Var[m4] = μ8 - μ4

2 = 105σ8 - (3σ4)2 
 Asy.Cov[m2,m4] = μ6 - μ2μ4  =  15σ6 - σ2(3σ4). 
Inserting these parts in the expansion, multiplying it out and collecting terms produces the lower right 
element equal to 24, as expected. 
 

2. The necessary data are given in Examples 15.5.  The two moments are 1m′=31.278 and =1453.96.  
Based on the theoretical results m1′ = P/λ and m2′ = P(P+1)/λ2, the solutions are P = μ1′2/(μ2′ - μ1′2) and λ = 
μ1′/(μ2′ - μ1′2).  Using the sample moments produces estimates P = 2.05682 and λ = 0.065759.  The matrix 
of derivatives is 
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The covariance matrix for the moments is given in Example 18.7; 
24.7051 2307.126

2307.126 229,609.5
⎡ ⎤
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3.  a.  The log likelihood for sampling from the normal distribution is 
 logL  =  (-1/2)[nlog2π + nlogσ2 + (1/σ2)Σi (xi - μ)2] 
write the summation in the last term as Σxi

2 + nμ2 - 2μΣixi.  Thus, it is clear that the log likelihood is of the 
form for an exponential family, and the sufficient statistics are the sum and sum of squares of the 
observations. 
b.  The log of the density for the Weibull distribution is  

logf(x) = logα + logβ + (β-1)logxi - αΣi xi
β. 

The log likelihood is found by summing these functions.  The third term does not factor in the fashion 
needed to produce an exponential family.  There are no sufficient statistics for this distribution.   
 c.  The log of the density for the mixture distribution is 
 logf(x,y) = logθ - (β+θ)yi + xilogβ + xilogyi - log(x!) 
This is an exponential family; the sufficient statistics are Σiyi and Σixi.. 
 
4.  The question is (deliberately) misleading. We showed in Chapter 8 and in this chapter that in the 
classical regression model with heteroscedasticity, the OLS estimator is the GMM estimator.  The 
asymptotic covariance matrix of the OLS estimator is given in Section 8.2.  The estimator of the asymptotic 
covariance matrices are s2(X′X)-1 for OLS and the White estimator for GMM. 
 
5.  The GMM estimator would be chosen to minimize the criterion 
 q = n m′Wm 
where W is the weighting matrix and m is the empirical moment, 
 m  =  (1/n)Σi (yi - Φ(xi′β))xi 
For the first pass, we’ll use W = I and just minimize the sumof squares. This provides an initial set of 
estimates that can be used to compute the optimal weighting matrix.  With this first round estimate, we 
compute 
 W  =  [(1/n2) Σi (yi - Φ(xi′β))2 xi xi′]-1 

then return to the optimization problem to find the optimal estimator.  The asymptotic covariance matrix is 
computed from the first order conditions for the optimization.  The matrix of derivatives is 
 G  =  ∂m/∂β′  =  (1/n)Σi -φ(xi′β)xixi′ 
The estimator of the asymptotic covariance matrix will be 
 V  =  (1/n)[G′WG]-1 

 
6.  This is the comparison between (15-12) and (15-11).  The proof can be done by comparing the inverses 
of the two covariance matrices.  Thus, if the claim is correct, the matrix in (15-11) is larger than that in (15-
12), or its inverse is smaller.  We can ignore the (1/n) as well.  We require, then, that 
 1−′ ′ ′ ′> -1G G G WG[G W WG] G WGΦ Φ  
 
7.  Suppose in a sample of 500 observations from a normal distribution with mean μ and standard deviation σ, 
you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate μ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - μ)/σ]  =  .35, or  (2.1 - μ)/σ  =  -.385  ⇒  2.1 - μ  =  -.385σ. 
Likewise, Φ[(3.6 - μ)/σ]  =  .55, or  (3.6 - μ)/σ  =   .126  ⇒  3.6 - μ  =   .126σ. 

The joint solution isμ = 3.2301 andσ = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let xi denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as 

∧ ∧

z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-μ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-μ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
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variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 
must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  

z
i
n
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Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 
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sample estimates, we obtain   Now, ultimately, our 

estimates of μ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 
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Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS-1G′]-1.  The remaining detail is the derivatives, which are just 
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∂m2.1/∂μ = (1/σ)φ((2.1-μ)/σ) and ∂m2.1/∂σ = (2.1-μ)/σ[∂m2.1/∂σ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for μ would be 3.2301 ± 1.96(.10178)2 = 
2.6048 to 3.8554.   
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Chapter 16 
 

Maximum Likelihood Estimation 
 

Exercises 
 
1.  The density of the maximum is 
 
  n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = zndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.   

0

θ
∫

0

θ
∫

lim
n→∞

lim
n→∞

2.  The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as the 

solution to ∂lnL/∂θ = -n/θ  + (1/θ2)  =  0, or 

xii
n
=∑ 1

xii
n
=∑ 1

ˆ
MLθ  =  (1/n) 

1

n
ii

x
=∑ = x .  The asymptotic variance of 

the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}-1.  To find the expected value of this random 

variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.   

xii
n
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3.  The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + yii

n
=∑ 1

xii
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=∑ 1 1

lnn
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The first and second derivatives are  ∂lnL/∂θ    =  n/θ-  yii
n
=∑ 1

     ∂lnL/∂β     =  -  + /β yii
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     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /β2 xii

n
=∑ 1

     ∂2lnL/∂β∂θ  =  0. 
Therefore, the maximum likelihood estimators are ˆ

MLθ  =  1/ y  and β̂  = /x y  and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[xi].   In order to obtain E[xi], it is necessary to obtain the marginal 

distribution of xi, which is f(x)  =  =   This is βx(θ/x!) 

times a gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces 
to 
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    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]x=  β/θ.  Then, the required asymptotic 

covariance matrix is . 
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 The maximum likelihood estimator of θ/(β+θ) is is  
   /( )θ β + θ =  (1/ y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
         V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

   ∂lnL/dγ  =  n/γ - /(1-γ). xii
n
=∑ 1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 
γ̂ =  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

θ

y x y

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = (  so the density has the required form 

with λ = (β+θ).  The integral is .  This integral is a Gamma integral which equals 

Γ(x+1)/λx+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 

)[( ) ] / !( )β θ β θ β θ+ + − +y e xx y

{ }[ ] / !λ λx x e y d+ −
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0

  lnL  =  nlnλ - λ  + lnλ  - yii
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  ∂lnL/∂λ  =  ( + n)/λ  - . xii
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yii
n
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  ∂2lnL/∂λ2  =  -( + n)/λ2. xii
n
=∑ 1

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λ2/n)/(1 +ˆ⎡ ⎤λ⎣ ⎦ x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0

    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ -  yii
n
=∑ 1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide 
the expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β  + lnyii

n
=∑ 1

xii
n
=∑ 1  + x yi ii

n
ln=∑ 1  - ln !xii

n
=∑ 1  

   ∂lnL/∂β  =  -  + /β, yii
n
=∑ 1

xii
n
=∑ 1

from which it follows that  ˆ /x yβ = .   
 
4.  The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1)  - α  log xii

n
=∑ 1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1
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  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, α̂ =  n / , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

xii
n β
=∑ 1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  
First, since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ ] - αE[ ]= 0 log xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].   ~ 
 
5.  As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α = 0, 
we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek the 

value which maximizes logL as given above, where we substitute this expression for each occurrence of α.  
Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   

xii
n β
=∑ 1

  β           logL 
 0.1     -62.386 

 

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 

  1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The implied value of α is 1.179.  The negative of the second derivatives 

matrix at these values and its inverse are  and . I α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟ =

⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .
2555 9 6506

9 6506 27 7552 I-1 α β
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⎝⎜
⎞
⎠⎟
=

−
−
⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .

04506 2673
2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 
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 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α̂ n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
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∂ ∂
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⎡

⎣
⎢

⎤

⎦
⎥

−2 2 2

2 2 2

1

at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
x xii

n log
=∑ i   =  9.400342 

  ∂2logL/∂α2  =  − nx
2  =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.   
 
6.  a.  The full log likelihood is  logL  =  Σ log fyx(y,x|α,β). 
b.  By factoring the density, we obtain the equivalent  logL  =  Σ[ log fy|x (y|x,α,β)  +  log fx (x|α)] 
c.  We can solve the first order conditions in each case.  From the marginal distribution for x, 
   Σ ∂ log fx (x|α)/∂α  =  0   
provides a solution for α.  From the joint distribution, factored into the conditional plus the marginal, we have 
 
    Σ[ ∂log fy|x (y|x,α,β)/∂α  +  ∂log fx (x|α)/∂α   =  0 
    Σ[ ∂log fy|x (y|x,α,β)/∂β        =  0 
 
d.  The asymptotic variance obtained from the first estimator would be the negative inverse of the expected 
second derivative,  Asy.Var[a]  =  {[-E[Σ2∂ log fx (x|α)/∂α2]}-1.  Denote this Aαα

-1.   Now, consider the second 
estimator for α and β jointly.  The negative of the expected Hessian is shown below.  Note that the Aαα from 
the marginal distribution appears there, as the marginal distribution appears in the factored joint distribution. 
 

 
2 0ln

0 0
B B A B BALE
B B B B

+⎡ ⎤ ⎡⎡ ⎤∂
− = + =⎢ ⎥ ⎢⎢ ⎥′ ⎣ ⎦⎣ ⎦ ⎣⎛ ⎞⎛ ⎞

∂ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

αα αβ αα αα αβαα

βα ββ βα ββα α
β β

⎤
⎥
⎦

 

The asymptotic covariance matrix for the joint estimator is the inverse of this matrix.  To compare this to the 
asymptotic variance for the marginal estimator of α, we need the upper left element of this matrix.  Using the 
formula for the partitioned inverse, we find that this upper left element in the inverse is  
 
  [(Aαα+Bαα) - (BαβBββ

-1Bβα)]-1  =  [Aαα  +  (Bαα - BαβBββ
-1Bβα)]-1  

 
which is smaller than Aαα as long as the second term is positive. 
  
e.  (Unfortunately, this is an error in the text.)  In the preceding expression, Bαβ is the cross derivative.  Even if 
it is zero, the asymptotic variance from the joint estimator is still smaller, being [Aαα + Bαα]-1.  This makes 
sense.  If α appears in the conditional distribution, then there is additional information in the factored joint 
likelhood that is not in the marginal distribution, and this produces the smaller asymptotic variance. 
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7.   The log likelihood for the Poisson model is 
 
 LogL  =  -nλ + logλΣi yi - Σi log yi! 
 
The expected value of 1/n times this function with respect to the true distribution is 
 
 E[(1/n)logL]  =  -λ  +  logλ E0[ y ] – E0 (1/n)Σi logyi! 
 
The first expectation is λ0.  The second expectation can be left implicit since it will not affect the solution  
for λ - it is a function of the true λ0.  Maximizing this function with respect to λ produces the necessary 
condition 
 ∂E0 (1/n)logL]/∂λ  =  -1 + λ0/λ = 0 
 
which has solution λ = λ0 which was to be shown. 
 
8.    The log likelihood for a sample from the normal distribution is 
 
 LogL  =  -(n/2)log2π - (n/2)logσ2 – 1/(2σ2) Σi (yi - μ)2. 
 

E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2) E0[(1/n) Σi (yi - μ)2]. 
 
The expectation term equals E0[(yi - μ)2]  =  E0[(yi - μ0)2] + (μ0 - μ)2  =  σ0

2 + (μ0 - μ)2 . Collecting terms, 
 
 E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2)[ σ0

2 + (μ0 - μ)2] 
 
To see where this is maximized, note first that the term (μ0 - μ)2 enters negatively as a quadratic, so the 
maximizing value of μ is obviously μ0.  Since this term is then zero, we can ignore it, and look for the σ2 
that maximizes -(1/2)log2π - (1/2)logσ2 – σ0

2/(2σ2).  The –1/2 is irrelevant as is the leading constant, so we 
wish to minimize (after changing sign) logσ2 + σ0

2/σ2 with respect to σ2.  Equating the first derivative to 
zero produces 1/σ2 = σ0

2/(σ2)2 or σ2 = σ0
2, which gives us the result. 

 
9. The log likelihood for the classical normal regression model is 
 

LogL =  Σi -(1/2)[log2π + logσ2 + (1/σ2)(yi - xi′β)2] 
 
If we reparameterize this in terms of η = 1/σ and δ = β/σ, then after a bit of manipulation, 
 

LogL =  Σi -(1/2)[log2π - logη2 + (ηyi - xi′δ)2] 
 
The first order conditions for maximizing this with respect to η and δ are 
 
 ∂logL/∂η  =  n/η  -  Σi yi (ηyi - xi′δ)  =  0 
 
 ∂logL/∂δ  =              Σi xi (ηyi - xi′δ)  =  0 
 
Solve the second equation for δ, which produces δ  =  η (X′X)-1X′y  =  η b.  Insert this implicit solution 
into the first equation to produce n/η  =  Σi yi (ηyi - ηxi′b).  By taking η outside the summation and 
multiplying the entire expression by η,  we obtain n = η2 Σi yi (yi - xi′b) or η2  =  n/[Σi yi (yi - xi′b)].  This is 
an analytic solution for η that is only in terms of the data – b is a sample statistic.  Inserting the square root 
of this result into the solution for δ produces the second result we need.  By pursuing this a bit further, you 
canshow that the solution for η2 is just n/e′e from the original least squares regression, and the solution for 
δ is just b times this solution for η.  The second derivatives matrix is 
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∂2logL/∂η2  =  -n/η2  -  Σiyi
2 

 
∂2logL/∂δ ∂δ′  =  -Σi xixi′ 
 
∂2logL/∂δ ∂η  =    Σi xiyi. 

 
We’ll obtain the expectations conditioned on X.  E[yi|xi] is xi′β from the original model, which equals 
xi′δ/η.  E[yi

2|xi]  =  1/η2 (δ′xi)2 + 1/η2.  (The cross term has expectation zero.)  Summing over observations 
and collecting terms, we have, conditioned on X, 
 

E[∂2logL/∂η2|X] =  -2n/η2  -  (1/η2)δ′X′Xδ 
 
E[∂2logL/∂δ ∂δ′|X]  =  -X′X 
 
E[∂2logL/∂δ ∂η|X]  =    (1/η)X′Xδ 

 
The negative inverse of the matrix of expected second derivatives is 
 

 
1' (1/ ) '

. [ , ] 2(1/ ) ' ' (1/ )[2 '

η

η η

−−⎡ ⎤
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
Asy Var h

n

X X X X
d

X X X X

δ

δ δ δ
 

 
(The off diagonal term does not vanish here as it does in the original parameterization.) 
 
10.   The first derivatives of the log likelihood function are ∂logL/∂μ = -(1/2σ2) Σi -2(yi - μ).  Equating this 
to zero produces the vector of means for the estimator of μ.  The first derivative with respect to σ2 is 
 
∂logL/∂σ2  =  -nM/(2σ2) + 1/(2σ4)Σi (yi - μ)′(yi - μ).  Each term in the sum is Σm (yim - μm)2.  We already 
deduced that the estimators of μm are the sample means.  Inserting these in the solution for σ2 and solving 
the likelihood equation produces the solution given in the problem.  The second derivatives of the log 
likelihood are 
 
 ∂2logL/∂μ∂μ′  =  (1/σ2)Σ i -I 
 
 ∂2logL/∂μ∂σ2  =  (1/2σ4) Σi -2(yi - μ)  
 
 ∂2logL/∂σ2∂σ2  =  nM/(2σ4) - 1/σ6 Σi (yi - μ)′(yi - μ) 
 
The expected value of the first term is (-n/σ2)I.  The second term has expectation zero.  Each term in the 
summation in the third term has expectation Mσ2, so the summation has expected value nMσ2.  Adding 
gives the expectation for the third term of -nM/(2σ4).  Assembling these in a block diagonal matrix, then 
taking the negative inverse produces the result given earlier.   
 For the Wald test, the restriction is 
 
 H0:  μ - μ0i  =  0. 
 
The unrestricted estimator of μ is x .  The variance of x  is given above, so the Wald statistic is simply 
( x  - μ0i )′ Var[( x  - μ0i )]-1( x  - μ0i ).  Inserting the covariance matrix given above produces the suggested 
statistic. 
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11.  The asymptotic variance of the MLE is, in fact, equal to the Cramer-Rao Lower Bound for the variance 
of a consistent, asymptotically normally distributed estimator, so this completes the argument. 
 In example 4.9, we proposed a regression with a gamma distributed disturbance, 
 
    yi = α + xi′β + εi 
where, 
    f(εi)  =  [λP/Γ(P)] εi

P-1 exp(-λεi), εi > 0, λ > 0, P > 2. 
 
(The fact that εi is nonnegative will shift the constant term, as shown in Example 4.9.  The need for the 
restriction on P will emerge shortly.)  It will be convenient to assume the regressors are measured in 
deviations from their means, so Σixi = 0.   The OLS estimator of β remains unbiased and consistent in this 
model, with variance 
 
    Var[b|X] = σ2(X′X)-1 
 
where σ2 = Var[εi|X] = P/λ2.  [You can show this by using gamma integrals to verify that E[εi|X] = P/λ and 
E[εi

2|X] = P(P+1)/λ2.  See B-39 and (E-1) in Section E2.3.  A useful device for obtaining the variance is 
Γ(P) = (P-1)Γ(P-1).]  We will now show that in this model, there is a more efficient consistent estimator of 
β.  (As we saw in Example 4.9, the constant term in this regression will be biased because E[εi|X] = P/λ; a 
estimates α+P/λ.  In what follows, we will focus on the slope estimators. 
 The log likelihood function is 
    Ln L =  

1
ln ln ( ) ( 1) lnn

i ii
P P P

=
λ − Γ + − ε − λε∑  

The likelihood equations are 
 
    ∂ lnL/∂α   =   Σi [-(P-1)/εi + λ] = 0, 
    ∂ lnL/∂β   =   Σi [-(P-1)/εi + λ]xi = 0, 
    ∂ lnL/∂λ    =   Σi [P/λ - εi] = 0, 
    ∂ lnL/∂P    =   Σi [lnλ - ψ(P) - εi] = 0. 
 
The function ψ(P) = dlnΓ(P)/dP is defined in Section E2.3.)  To show that these expressions have 
expectation zero, we use the gamma integral once again to show that E[1/εi] = λ/(P-1).  We used the result 
E[lnεi] = ψ(P)-λ in Example 15.5.  So show that E[∂lnL/∂β] = 0, we only require E[1/εi] = λ/(P-1) because 
xi and εi are independent.  The second derivatives and their expectations are found as follows:  Using the 
gamma integral once again, we find E[1/εi

2] = λ2/[(P-1)(P-2)].  And, recall that Σixi = 0.  Thus, conditioned 
on X, we have 
  -E[∂2lnL/∂α2]     =  E[Σi (P-1)(1/εi

2)] = nλ2/(P-2), 

  -E[∂2lnL/∂α∂β]  =  E[Σi (P-1)(1/εi
2)xi] = 0, 

  -E[∂2lnL/∂α∂λ]  =  E[Σi (-1)]  = -n, 
  -E[∂2lnL/∂α∂P] =  E[Σi (1/εi)]  = nλ/(P-1), 
  -E[∂2lnL/∂β∂β′] =  E[Σi (P-1)(1/εi

2)xixi′] = Σi [λ2/(P-2)]xixi′  = [λ2/(P-2)](X′X), 
  -E[∂2lnL/∂λ∂β]  =  E[Σi (-1)xi]  =  0, 
  -E[∂2lnL/∂P∂β] =  E[Σi (1/εi)xi]  =  0, 
  -E[∂2lnL/∂λ2]  =  E[Σi (P/λ2)]  = nP/λ2, 
  -E[∂2lnL/∂λ∂P]  =  E[Σi (1/λ)]  = n/λ, 
  -E[∂2lnL/∂P2] =  E[Σi ψ′(P)]  = nψ′(P). 
 
Since the expectations of the cross partials witth respect to β and the other parameters are all zero, it 
follows that the asymptotic covariance matrix for the MLE of β is simply 
 
   Asy.Var[ ˆ

MLEβ ]  =  {-E[∂2lnL/∂β∂β′]}-1  =  [(P-2)/λ2](X′X)-1. 
 
Recall, the asymptotic covariance matrix of the ordinary least squares estimator is 
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   Asy.Var[b]  =   [P/λ2](X′X)-1. 
 
(Note that the MLE is ill defined if P is less than 2.)  Thus, the ratio of the variance of the MLE of any 
element of β to that of the corresponding element of b is (P-2)/P which is the result claimed in Example 
4.9. 
 
 
Applications 
 
1. a.  For both probabilities, the symmetry implies that 1 – F(t) = F(-t).  In either model, then, 
 
   Prob(y=1) = F(t) and Prob(y=0) = 1 – F(t) = F(-t). 
 
These are combined in Prob(Y=y) = F[(2yi-1)ti] where ti = xi′β.  Therefore,  
 
   ln L = Σi ln F[(2yi-1)xi′β] 
 

b.    ∂lnL/∂β = 
1

[(2 1) ] (2 1)
[(2 1) ]

n i i
i ii

i i

f y y
F y=

′−
−

′−∑ x x
x
β
β

= 0 

where f[(2yi-1)xi′β] is the density function.  For the logit model, f = F(1-F).  So, for the logit model, 
  ∂lnL/∂β = = 0 

1
{1 [(2 1) ]}(2 1)n

i i i ii
F y y

=
′− − −∑ x xβ

  
Evaluating this expression for yi = 0, we get simply –F(xi′β)xi.  When yi = 1, the term is  
[1- F(xi′β)]xi.  It follows that both cases are [yi - F(xi′β)]xi, so the likelihood equations for the logit model 
are 
  ∂lnL/∂β = = 0. 

1
[ ( )]n

i ii
y

=
′− Λ∑ x xβ i

 
For the probit model, F[(2yi-1)xi′β] = Φ[(2yi-1)xi′β] and f[(2yi-1)xi′β] = φ[(2yi-1)xi′β], which does not 
simplify further, save for that the term 2yi inside may be dropped since φ(t) = φ(-t).  Therefore, 
 

  ∂lnL/∂β = 
1

[(2 1) ] (2 1)
[(2 1) ]

n i i
i ii

i i

y y
y=

′φ −
−

′Φ −∑ x x
x
β
β

= 0 

 
c.  For the logit model, the result is very simple. 
 
  ∂2lnL/∂β∂β′= 

1
( )[1 ( )]n

i ii= i′ ′− Λ − Λ∑ x xβ β x . 
 
For the probit model, the result is more complicated.  We will use the result that 
 
  dφ(t)/dt = -tφ(t). 
 
It follows, then, that d[φ(t)/Φ(t)]/dt = [-φ(t)/Φ(t)][t + φ(t)/Φ(t)].  Using this result directly, it follows that 
 

   ∂2lnL/∂β∂β′= 2
1

[(2 1) ] [(2 1) ](2 1) (2 1)
[(2 1) ] [(2 1) ]

n i i i i
i i i ii

i i i i

y yy y
y y=

′ ′⎛ ⎞⎛ ⎞φ − φ −
i′ ′− −⎜ ⎟⎜ ⎟′ ′Φ − Φ −⎝ ⎠⎝ ⎠

∑ x xx x
x x
β β

β +
β β

− x = 0 

 
This actually simplifies somewhat because (2yi-1)2 = 1 for both values of yi and [(2 1) ]i iy ′φ − x β = ( )i′φ x β  
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d.  Denote by H the actual second derivatives matrix derived in the previous part.  Then, Newton’s method 
is 

   { } 1 ˆln [ ( )]ˆ ˆ ˆ( 1) ( ) ( ) ˆ ( )
L jj j j

j

− ⎡ ⎤∂⎡ ⎤+ = − ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
H β

β β β
β

 

 
where the terms on the right hand side indicate first and second derivatives evaluated at the “previous” 
estimate of β. 
 
e.  The method of scoring uses the expected Hessian instead of the actual Hessian in the iterations.  The 
methods are the same for the logit model, since the Hessian does not involve yi.  The methods are different 
for the probit model, since the expected Hessian does not equal the actual one.  For the logit model 
 

 -[E(H)]-1 =  { } 1

1
( )[1 ( )]n

i ii i

−

=
′ ′Λ − Λ∑ x xβ β x  

 
For the probit model, we need first to obtain the expected value.  Do obtain this, we take the expected 
value, with Prob(y=0) = 1 - Φ and Prob(y=1) = Φ.  The expected value of the ith term in the negative 
hessian is the expected value of the term, 
 

  
[(2 1) ] [(2 1) ](2 1)
[(2 1) ] [(2 1) ]

i i i i
i i i

i i i i

y yy
y y

′ ′⎛ ⎞⎛φ − φ −
i

⎞
′ ′−⎜ ⎟⎜′ ′Φ − Φ −⎝ ⎠⎝

x xx x
x x
β β

β +
β β ⎟

⎠
x  

 
This is 
 

 
[ ] [ ][ ]
[ ] [ ]

i i
i i i i′x x

i i

′ ′⎛ ⎞⎛ ⎞φ φ′ ′Φ − − +⎜ ⎟⎜ ⎟′ ′Φ − Φ −⎝ ⎠⎝ ⎠

x xx x
x x
β β

β β +
β β

[ ] [ ][ ]
[ ] [ ]

i i
i i

i i

′ ′⎛ ⎞⎛ ⎞φ φ
i i′ ′ ′Φ ⎜ ⎟⎜ ⎟′ ′Φ Φ⎝ ⎠⎝ ⎠

x xx x
x x
β β

β β +
β β

x x  

 

 
[ ] [ ][ ]
[ ] [ ]

i i
i i i i

i i

′ ′⎛ ⎞φ φ′ ′ ′= φ −⎜ ⎟′ ′Φ − Φ⎝ ⎠

x xx x + x x
x x
β β

β β + β +
β β i′x  
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e.   
?==================================================== 
? Application 16.1 
?==================================================== 
Namelist ; x = one,age,educ,hsat,female,married $ 
LOGIT ; Lhs = Doctor ; Rhs = X $ 
Calc ; L1 = logl $ 
+---------------------------------------------+ 
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| Binary Logit Model for Binary Choice        | 
| Dependent variable               DOCTOR     | 
| Number of observations            27326     | 
| Log likelihood function       -16405.94     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.20120     | 
| Info. Criterion: BIC =          1.20300     | 
| Restricted log likelihood     -18019.55     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|    1.82207669       .10763712    16.928   .0000 
 AGE     |     .01235692       .00124643     9.914   .0000   43.5256898 
 EDUC    |    -.00569371       .00578743     -.984   .3252   11.3206310 
 HSAT    |    -.29276744       .00686076   -42.673   .0000   6.78542607 
 FEMALE  |     .58376753       .02717992    21.478   .0000    .47877479 
 MARRIED |     .03550015       .03173886     1.119   .2634    .75861817 
 
f.   
Matr ; bw = b(5:6) ; vw = varb(5:6,5:6) $ 
Matrix ; list ; WaldStat = bw'<vw>bw $ 
Calc ; list ; ctb(.95,2) $ 
LOGIT ; Lhs = Doctor ; Rhs = One,age,educ,hsat $ 
Calc ; L0 = logl $ 
Calc ; List ; LRStat = 2*(l1-l0) $ 
Matrix WALDSTAT has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|  461.43784 
--> Calc ; list ; ctb(.95,2) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =      5.991465 
--> Calc ; L0 = logl $ 
--> Calc ; List ; LRStat = 2*(l1-l0) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LRSTAT  =    467.336374 
Logit ; Lhs = Doctor ; Rhs = X ; Start = b,0,0 ; Maxit = 0 $ 
+---------------------------------------------+ 
| Binary Logit Model for Binary Choice        | 
| Maximum Likelihood Estimates                | 
| Model estimated: May 17, 2007 at 11:49:42PM.| 
| Dependent variable               DOCTOR     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  1     | 
| LM Stat. at start values       466.0288     | 
| LM statistic kept as scalar    LMSTAT       | 
| Log likelihood function       -16639.61     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.21830     | 
|   Finite Sample: AIC =          1.21830     | 
| Info. Criterion: BIC =          1.22010     | 
| Info. Criterion:HQIC =          1.21888     | 
| Restricted log likelihood     -18019.55     | 
| McFadden Pseudo R-squared      .0765802     | 
| Chi squared                    2759.883     | 
| Degrees of freedom                    5     | 
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| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =  23.44388     | 
| P-value=  .00284 with deg.fr. =       8     | 
+---------------------------------------------+ 
 
 
g.   The restricted log likelihood given with the initial results equals -18019.55.  This is the log 
likelihood for a model that contains only a constant term.  The log likelihood for the model is  
-16405.94.  Twice the difference is about 3,200, which vastly exceeds the critical chi squared 
with 5 degrees of freedom.  The hypothesis would be rejected. 
 
 
2.  We used LIMDEP to fit the cost frontier. The dependent variable is log(Cost/Pfuel).  The regressors are 
a constant, log(Pcapital/Pfuel), log(Plabor/Pfuel), logQ and log2Q.  The Jondrow measure was then 
computed and plotted against output.  There does not appear to be any relationship, though the weak 
relationship such as it is, is indeed, negative. 
+---------------------------------------------+ 
| Limited Dependent Variable Model - FRONTIER | 
| Dependent variable                  LCF     | 
| Number of observations              123     | 
| Log likelihood function        66.86502     | 
| Variances: Sigma-squared(v)=       .01185   | 
|            Sigma-squared(u)=       .02233   | 
|            Sigma(v)        =       .10884   | 
|            Sigma(u)        =       .14944   | 
| Sigma = Sqr[(s^2(u)+s^2(v)]=       .18488   | 
| Stochastic Cost Frontier, e=v+u.            | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Primary Index Equation for Model 
 Constant    -7.494211759       .30737742  -24.381   .0000 
 LPK       .5531289074E-01  .70211904E-01     .788   .4308     .88666047 
 LPL          .2605889758   .67708437E-01    3.849   .0001     5.5808828 
 LQ           .4109789313   .29495035E-01   13.934   .0000     8.1794715 
 LQ2       .6058235980E-01  .43732083E-02   13.853   .0000     35.112527 
          Variance parameters for compound error 
 Lambda       1.373117163       .33353523    4.117   .0000 
 Sigma        .1848750589   .28257115E-01    6.543   .0000 
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Chapter 17 
 

Simulation Based Estimation and 
Inference 
 

Exercises 
 
1.  Exponential:  The pdf is f(x) = θexp(-θx).  The CDF is  

 

 0

1 1( ) exp( ) exp( ) exp( 0) 1 exp( ).
x

F x t dt x x⎡ ⎤⎛ ⎞= θ −θ = θ − −θ − − −θ = − −θ⎜ ⎟⎢ ⎥θ θ⎝ ⎠⎣ ⎦
∫  

We would draw observations from the U(0,1) population, say Fi, and equate these to F(xi).  Inverting the 
function, we find that 1-Fi = exp(-θxi), or –(1/θ)ln(1-Fi) = xi.  If xi has an exponential density, then the density 
of yi = xi

P is 
Weibull.  If the survival function is S(x) = λpexp[-(λx)p], then we may equate random draws from the uniform 
distribution, Si to this function (a draw of Si is the same as a draw of Fi = 1-Si).  Solving for xi, we find 
 lnSi = ln(λp) – (λx)p, so xi = (1/λ)[ln(λp) – lnSi]1/p. 
 
2.  We will need a bivariate sample on x and y to compute the random variable, then average the draws on it.  
The precise method of using a Gibbs sampler to draw this bivaraite sample is shown in Example 18.5.  Once 
the bivariate sample of (x,y) is drawn, a large number of observations on [x2exp(y)+y2exp(x)] is computed and 
averaged.  As noted there, the Gibbs sampler is not much of a simplification for this particular problem.  It is 
simple to draw a sample dircectly from a bivariate normal distribution.  Here is a program that does the 
simulation and plots the estimate of the function 
 
Calc   ; Ran(12345) $ 
Sample ; 1-1000$ 
Create ; xf=rnn(0,1) ; yfb=rnn(0,1) $ 
Matrix ; corr=init(100,1,0) ; function=corr $ 
Calc   ; i=0 $ 
Proc 
Calc   ; i=i+1 $ 
Matrix ; corr(i)=ro $ 
Matrix ; c=[1/ro,1] ; c=chol(c) $ 
Create ; yf = c(2,1)*xf + c(2,2)*yfb $ 
Create ; fr=xf^2*exp(yf)+yf^2*exp(xf) $ 
Calc   ; ef = xbr(fr) ; ro=ro+.02 $ 
Matrix ; function(i)=ef $ 
Endproc $ 
Calc   ; ro=-.99 $ 
Execute; n=100 $ 
Mplot  ; Lhs = corr ; Rhs = Function ; Fill  
       ; Grid ; Endpoints = -1,1 
       ; Title=E[x^2*exp(y)+y^2*exp(x) | rho] $ 
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Application 
 
?================================================================ 
? Application 17.1.  Monte Carlo Simulation 
?================================================================ 
? Set seed of RNG for replicability 
Calc ; Ran(123579) $ 
? Sample size is 50.  Generate x(i) and z(i) held fixed 
Sample ; 1 - 50 $ 
Create ; xi = rnn(0,1) ; zi = rnn(0,1) $ 
Namelist ; X = one,xi,zi ; X0 = one,xi $ 
? Moment Matrices 
Matrix ; XXinv = <X'X> ; X0X0inv = <X0'X0> $ 
Matrix ; Waldi = init(1000,1,0) $ 
Matrix ; LMi = init(1000,1,0) $ 
 
?**************************************************************** 
? Procedure studies the LM statistic 
?**************************************************************** 
Proc = LM (c) $ 
? Three kinds of disturbances 
Create ?; Eps = Rnt(5) ? Nonnormal distribution 
       ; vi=exp(.2*xi) ; eps = vi*rnn(0,1) ? Heteroscedasticity 
       ?;eps= Rnn(0,1) ? Standard normal distribution 
       ; y = 0 + xi + c*zi +eps $ 
Matrix ; b0 = X0X0inv*X0'y $ 
Create ; e0 = y - X0'b0 $ 
Matrix ; g = X'e0 $ 
Calc   ; lmstat = qfr(g,xxinv)/(e0'e0/n) ; i = i + 1 $ 
Matrix ; Lmi (i) = lmstat $ 
EndProc $ 
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Calc ; i = 0 ; gamma = -1 $ 
Exec ; Proc=LM(gamma) ; n = 1000 $ 
samp;1-1000$ 
create;LMv=lmi $ 
create;reject=lmv>3.84$ 
Calc  ; List ; Type1 = xbr(reject) ; pwr = 1-Type1 $ 
 
?**************************************************************** 
? Procedure studies the Wald statistic 
?**************************************************************** 
Proc = Wald(c) $ 
Create ; if(type=1)Eps = Rnn(0,1) ? Standard normal distribution 
       ; if(type=2)vi=exp(.2*xi)   ? eps = vi*rnn(0,1) ? Heteroscedasticity 
       ; if(type=3)eps= Rnt(5)     ? Nonnormal distribution  
       ; y = 0 + xi + c*zi +eps $ 
Matrix ; b0=XXinv*X'y $ 
Create ; e0=y-X'b0$ 
Calc   ; ss0 = e0'e0/(47)  
       ; v0 = ss0*xxinv(3,3) 
       ; wald0=(b0(3))^2/v0 
       ; i=i+1 $ 
Matrix ; Waldi(i)=Wald0 $ 
EndProc $ 
? Set the values for the simulation 
Calc ; i = 0 ; gamma = 0 ; type=1 $ 
Sample ; 1-50 $ 
Exec ; Proc=Wald(gamma) ; n = 1000 $ 
samp;1-1000$ 
create;Waldv=Waldi $ 
create;reject=Waldv > 3.84$ 
Calc  ; List ; Type1 = xbr(reject) ; pwr = 1-Type1 $ 
 

To carry out the simulation, execute the procedure for different values of “gamma” and 
“type.”  Summarize the results with a table or plot of the rejection probabilities as a 
function of gamma. 
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