Chapter 18

Bayesian Estimation and Inference

Exercise

a. The likelihood function is
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b. The posterior is
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The product of factorials will fall out. This leaves
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where we have used the gamma integral at the last step. The posterior defines a two parameter gamma

distribution, G(n, Ny ).

c. The estimator of A is the mean of the posterior. There is no need to do the integration. This falls simply

out of the posterior density, E[Aly]=ny/n=Y .

d. The posterior variance also drops out simply; it is ny /n*= y /n.
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Application
Ki . Ki-F - .
a. p(FiK;,0) = F 07 (1-0)""" so the log likelihood function is

n o (K
InL®ly)=>" In .k FIn0+(K —F)In(l-0)

The MLE is obtained by setting olnL(0]y)/06 = %; [Fi/0 - (K;-F;)/(1-6)] = 0. Multiply both sides by 6(1-0)
to obtain

i [(1-0)F; - 6 (Ki-Fp] =0

A line of algebra reveals that the solution is 6 = (Z;F;)/(XK;) = 0.651596.
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This simplifies considerably. The combinatorials and gamma functions fall out, leaving

b. The posterior density is
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The denominator is a beta integral, so the posterior density is
0(0]y) = ITEFR) +@-DIME (K - F) +(b-1)]
MER)+@-D+(E (K -F)+(b-1)]
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The denominator simplifies slightly;

0(0]y) = I Fi)r+ @-DIFE; (K =F))+(b-D)]
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c-¢. The posterior distribution is a beta distribution with parameters a*=(a+X;F;) and b*=[b+X(K;-F))].
The mean of this beta random variable is a*/(a*+b*) = (a+Z;F;)/(a+b+ZK;). In the data, ;=49 and ZK; =
75. For the values given, the posterior means are

(a=1,b=1): Result = -647668
(a=2,b=2): Result = -643939
(a=1,b=2): Result = -639386
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Chapter 19

Serial Correlation

Exercises

1. For the first order autoregressive model, the autocorrelation is p. Consider the first difference, v; =

& - & which has Var[v]] = 2Var[g] - 2Cov[(ener1)] = 20,701/(1 - p>) - p/1 - pH)] = 20,21 + p) and
Cov[ViMa] = 2Cov[eneer] - Varled - Covleweai] = o [1(1 - pII2p - 1 - 1 = o0(p - DAL + p)l.
Therefore, the autocorrelation of the differenced process is Cov[vy,v ] / Var[v]] = (p-1)/2. As the figure
below on the left shows, first differencing reduces the absolute value of the autocorrelation coefficient when p
is greater than 1/3. For economic data, this is likely to be fairly common.
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For the moving average process, the first order autocorrelation is Cov{(eyer1))/Var[e] = -A(1 + A%). To

obtain the autocorrelation of the first difference, write & - &1 = U; - (1 + A)U; + AUy, and &g - &0 =

Uet - (1 + MU + AUgs. The variance of the difference is Var[e; - €] = o f[(1 + )* + (1 + A%)]. The
covariance can be found by taking the expected product of terms with equal subscripts. Thus, Cov[e; - &.1,&t
- &nl= -Guz(l + ?»)2. The autocorrelation is Cov[g; - €.1,€1 - &)/ Var[e - &.1] = - (1 + k)z/[(l + k)z +(1+
A?)]. A plot of the relationship between the differenced and undifferenced series is shown in the right panel
above. The horizontal axis plots the autocorrelation of the original series. The values plotted are the absolute
values of the difference between the autocorrelation of the differenced series and the original series. The
results are similar to those for the AR(1) model. For most of the range of the autocorrelation of the original
series, differencing increases autocorrelation. But, for most of the range of values that are economically
meaningful, differencing reduces autocorrelation.

2. Derive the disturbance covariance matrix for the model y; = B'X + &, & = p&. + ur - Aug;. What
parameter is estimated by the regression of the ordinary least squares residuals on their lagged values?

Solve the disturbance process in its moving average form. Write the process as g - pgr; = Ug - AUy
or, using the lag operator, g&(1 - pL) =u;- AUy, or & = u/(1 - pL) - Au. /(1 - pL). After multiplying these

Out, we obtain &t = Ut + PU + pzut_z + p3ut_3 +...- }"ut—l - p}\.ut_z - pzkum -
= U+ (P-MUet + p(P-MUiz + po(p-MUes + ..
Therefore, Var[e] = o (1 + (p-M)H(1+p*+p*+.) = o X(1 + (p-)*(1 - p?)

= o, /(1 +2%-2pM)/(1 - p%)
Covlener1] = pVar[en] + Covler,u] - ACov[ers,Ur1].
To evaluate this expression, write
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g1 = Upp + (P-2)Ue + p(p-A)Ugs + PZ(P-X)UM‘F
Therefore, the middle term is zero and the third is simply Ac,2. Thus,

Covlenen] = o {[p(1 + 22 - 20 (L - p?) - AL} = a[(p - (L - Ap)(L - p)]
For lags greater than 1, Cov[eggtj] = pCov[er1,&tj] + Cov[ej,U] - ACov[ej,Ue1].
Since & involves only Us up to its current period, & is uncorrelated with u; and Uy, if j is greater than 1.
Therefore, after the first lag, the autocovariances behave in the familiar fashion, Cov[eye] = pCov[enerjri]
The autocorrelation coefficient of the residuals estimates Cov[g,e;)/Var[e] = (p - A)(1 - pA)/(1 + A% - 2p)).

3. Since the regression contains a lagged dependent variable, we cannot use the Durbin-Watson statistic
directly. The h statistic in (15-34) would be h= (1 - 1.21/2)[21 / (1 - 21(.18%)]"* = 3.201. The 95% critical
value from the standard normal distribution for this one-tailed test would be 1.645. Therefore, we would
reject the hypothesis of no autocorrelation.

4. It is commonly asserted that the Durbin-Watson statistic is only appropriate for testing for first order
autoregressive disturbances. What combination of the coefficients of the model is estimated by the
Durbin-Watson statistic in each of the following cases: AR(1), AR(2), MA(1)? In each case, assume that the
regression model does not contain a lagged dependent variable. Comment on the impact on your results of
relaxing this assumption.

In each case, plimd = 2 -2p;, where p; = Corr[g,g;]. The first order autocorrelations are as
follows: AR(1): p (see (15-9)) and AR(2): 0,/(1 - 0,). For the AR(2), a proofis as follows: First, & = 0;&;
+ 06t + U. Denote Var[g] as ¢y and Cov[eye ] as €;. Then, it follows immediately that ¢, = 0,Cy + 0,C,
since U is independent of e.;. Therefore p; = c/c, = 0,/(1 - 0,). For the MA(1): -A /(1 + A% (See
(15-43)). To prove this, write & = U, - AUy;. Then, since the us are independent, the result follows just by
multiplying out p; = Cov[enei)/Var[e] = -AVar[ug,)/{Var[u] + A*Var[u.,]} = -M(1 +212).

Applications

1. Phillips Curve

--> date;1950.1%

--> peri;1950.1-2000.4%

-—> crea;dp=infl-infl[-1]$

--> crea;dy=loggdp-loggdp[-1]%

--> peri;1950.3-2000.4%

--> regr;lhs=dp;rhs=one,unemp$;arl;res=u$

o +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = DP Mean= -.1926996283E-01, S.D.=  2.818214558 |
| Model size: Observations = 202, Parameters = 2, Deg.Fr.= 200 |
| Residuals: Sum of squares= 1592.321197 , Std.Dev.= 2.82163 |
| Fit: R-squared= .002561, Adjusted R-squared = -.00243 |
| Model test: F[ 1, 200] = .51, Prob value = 47449 |
| Diagnostic: Log-L = -495.1583, Restricted(b=0) Log-L = -495.4173 |
| LogAmemiyaPrCrt.= 2.084, Akaike Info. Crt.= 4.922 |
| Autocorrel: Durbin-Watson Statistic = 2.82755, Rho = -.41378 |
g +
Fomm————— o S Fomm———— Fomm Fomm +
|variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]|
Fomm————— o o Fom———— Fomm Fomm +
Constant -4918922148 .74047944 .664 .5073
UNEMP -.9013159906E-01 .12578616 -.717 -4745 5.6712871

--> peri;1951.2-2000.4%
--> regr;lhs=u;rhs=one,u[-1],u[-2]%$
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gy +
| Ordinary least squares regression Weighting variable none |
| Dep. var. = U Mean= -.3890391012E-01, S.D.= 2.799476915 |
| Model size: Observations = 199, Parameters = 3, Deg.Fr.= 196 |
| Residuals: Sum of squares= 1079.052269 , Std.Dev.= 2.34635 |
| Fit: R-squared= .304618, Adjusted R-squared = -29752 |
| Model test: F[ 2, 196] = 42.93, Prob value = -00000 |
| Diagnostic: Log-L = -450.5769, Restricted(b=0) Log-L = -486.7246 |
| LogAmemiyaPrCrt.= 1.721, Akaike Info. Crt. 4.559 |
| Autocorrel: Durbin-Watson Statistic = 1.99273, Rho = .00363 |
o e e e e +
Fom e Fm TRy ey Fomm—— Fom e T, +
|variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]
Fom e Fmm TRy Ry Fomm—— Fom Fom e +
Constant -.5048615289E-01 -16633422 -.304 .7618

UL-1] -.5946344724 .65920584E-01 -9.020 .0000 -.10234931E-01
UL-21 -.3824653303 .65904378E-01  -5.803 .0000 -.14370453E-01

(Note: E+nn or E-nn means multiply by 10 to + or -nn power.)

--> calc;list; Im=n*rsqrd$

LM = .60618960968412850D+02
. ____ +
AR(1) Model: e(t) = rho * e(t-1) + u(t)
Initial value of rho = -.41378
Maximum iterations = 100

| |
| |
| |
| Method = Prais - Winsten |
| Iter= 1, SS=  1299.275, Log-L=-474.710175 |
| Final value of Rho = -.413779 |
| Iter= 1, SS=  1299.275, Log-L=-474.710175 |
| |
| I
| |
| |
| |
| |

Durbin-Watson: e(t) = 2.827557
Std. Deviation: e(t) = 2.799716
Std. Deviation: u(t) = 2.548799
Durbin-Watson: u(t) = 2.340706
Autocorrelation: u(t) = -.170353

N[0,1] used for significance levels

L L i i +
Fom e Fom e TRy Fom Fom Fom e — +
|variable | Coefficient | Standard Error |b/St_Er.|P[]|Z]>z] | Mean of X]|
Fom e —_——— Fmm e o Fom—— - Fom Fom e +
Constant -4704274598 -47671946 -987 .3237
UNEMP -.8709854633E-01 .80962277E-01 -1.076 .2820 5.6712871
RHO -.4137785986 .64213081E-01 -6.444 -0000

Regression results are almost unchanged. Autocorrelation of transformed residuals is -.17, less than -.41 in

original model.
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2. (Improved Phillips curve model)

--> crea;newecon=dmy(1974.1,2000.4)$
--> regr; lhs=dp;rhs=one,unemp,newecon;plot$

e +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = DP Mean= -.1926996283E-01, S.D.= 2.818214558 |
| Model size: Observations = 202, Parameters = 3, Deg.Fr.= 199 |
| Residuals: Sum of squares= 1586.260338 , Std.Dev.= 2.82332 |
| Fit: R-squared= .006357, Adjusted R-squared = -.00363 |
| Model test: F[ 2, 199] = .64, Prob value = -53017 |
| Diagnostic: Log-L = -494.7731, Restricted(b=0) Log-L = -495.4173 |
| LogAmemiyaPrCrt.= 2.091, Akaike Info. Crt.= 4.928 |
| Autocorrel: Durbin-Watson Statistic = 2.83473, Rho = -.41737 |
g +
o S S o Fom Fom e +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]
T . e T o T - T - +
Constant .5507626279 .74399306 .740 .4600

UNEMP -.9835166981E-01 .12621412 -.779 .4368 5.6712871

NEWECON -2.474910396 2.8382661 -.872 .3843 .49504950E-02

3. (GARCH Models)

.a. We used LIMDEP with the macroeconomics data in table F5.1. The rate of inflation was computed
with all observations, then observations 6 to 204 were used to remove the missing data due to lags. Least
squares results were obtained first. The residuals were then computed and squared. Using observations 15-
204, we then computed a regression of the squared residual on a constant and 8 lagged values. The chi-
squared statistic with 8 degrees of freedom is 28.24. The critical value from the table for 95% significance
and 8 degrees of freedom is 15.51, so at this level of significance, the hypothesis of no GARCH effects is
rejected.

crea;pt=100*log(cpi_u/cpi_u[-1]D$
crea;ptl=pt[-1];pt2=pt[-2];pt3=pt[-3];ptd=pt[-4]$

samp;6-204$

regr; lhs=pt;rhs=one,ptl,pt2,pt3,ptd;res=et$$

crea;vt=et*et$
crea;vtl=vt[-1];vt2=vt[-2];vt3=vt[-3];vtd=vt[-4];vt5=vt[-5];vt6=vt[-6];vt7=vt[-
7]1;vt8=vt[-8]$

samp;15-204%

regr;lhs=vt;rhs=one,vtl,vt2,vt3,vt4,vt5,vt6,vt7,vit8%

calc;list; Im=n*rsqrd$

S +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = PT Mean= -9589185961 , S.D.= -8318268241 |
| Model size: Observations = 199, Parameters = 5, Deg.Fr.= 194 |
| Residuals: Sum of squares= 61.97028507 , Std.Dev.= -56519 |
| Fit: R-squared= .547673, Adjusted R-squared = .53835 |
| Model test: F[ 4, 194] = 58.72, Prob value = -00000 |
| Diagnostic: Log-L = -166.2871, Restricted(b=0) Log-L = -245.2254 |
| LogAmemiyaPrCrt.= -1.116, Akaike Info. Crt.= 1.721 |
| Autocorrel: Durbin-Watson Statistic = 1.80740, Rho = -09630 |
e +
Fomm—_—— e o Fom o — - Fom Fom e +
|variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]|
Fomm—_—— e o Fom o — - Fom Fom e +
Constant -1296044455 -67521735E-01 1.919 .0564
PT1 -2856136998 -69863942E-01 4.088 .0001 .97399582
PT2 -1237760914 .70647061E-01 1.752 .0813 .98184918
PT3 -2516837602 .70327318E-01 3.579 .0004 .99074774
PT4 -1824670634 -69251374E-01 2.635 .0091 .98781131
LM = .28240022492847690D+02
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For the second step, we need an estimate of a,, which is the unconditional variance if there are no ARCH
effects. We computed this based on the ARCH specification by a regression of e’ — (8/36)e.i” - ... -
(1/36)61_82 on just a constant term. This produces a negative estimate of o, but this is not the variance, so
we retain the result. We note, the problem that this reflects is probably the specific, doubtless unduly
restrictive, ARCH structure assumed.

samp;6-204$

crea;vt=et*et$
crea;ht=vt-8/36*vt[-1]-7/36*vt[-2]-6/36*vt[-3]-5/36*vt[-4]-4/36*vt[-5]-
3/36*vt[-6]-2/36*vt[-7]-1/36*vt[-8]%

samp;15-204%

calc;list;a0=xbr(ht)$

samp;6-204$
crea;qt=a0+8/36*vt[-1]+7/36*vt[-2]+6/36*Vvt[-3]+5/36*vt[-4]+4/36*vt[-
5]+3/36*vt[-6]+2/36*vt[-7]+1/36*vt[-8]%

samp;15-204$%

plot;rhs=qt$

crea;wt=1/qt$

regr; lhs=pt;rhs=one,ptl,pt2,pt3,ptd;wts=wt$

regr; lhs=pt;rhs=one,ptl,pt2,pt3,ptd;model=garch(1,1)$

Once we have an estimate of o, in hand, we then computed the set of variances according to the ARCH(8)
model, using the lagged squared residuals. Finally, we used these variance estimators to compute a
weighted least squares regression accounting for the heteroscedasticity. This regression is based on
observations 15-204, again because of the lagged values. Finally, using the same sample, a GARCH(1,1)
model is fit by maximum likelihood.

L ______ +
| Ordinary least squares regression Weighting variable = WT |
| Dep. var. = PT Mean= -8006997687 , S.D.= -6327877239 |
| Model size: Observations = 190, Parameters = 5, Deg.Fr.= 185 |
| Residuals: Sum of squares= 38.67492770 , Std.Dev.= -45722 |
| Fit: R-squared= .488964, Adjusted R-squared = 47791 |
| Model test: F[ 4, 185] = 44.25, Prob value = -00000 |
| Diagnostic: Log-L = -147.7324, Restricted(b=0) Log-L = -211.5074 |
| LogAmemiyaPrCrt.= -1.539, Akaike Info. Crt.= 1.608 |
| Autocorrel: Durbin-Watson Statistic = 1.90310, Rho = .04845 |
S —— S — e Fomm T — - +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]
S —— - e T T - +
Constant -1468553158 -60127085E-01 2.442 .0155

PT1 -.9760051110E-01 .88469908E-01 1.103 .2714 . 77755556

PT2 -3328520370 -86772549E-01 3.836 -0002 .76745308

PT3 -1428889148 -85420554E-01 1.673 .0961 .76271761

PT4 .2878686524 -84090832E-01 3.423 -0008 .74173558

The 8 period ARCH model produces quite a substantial change in the estimates. Once again, this probably
results from the restrictive assumption about the lag weights in the ARCH model. The GARCH model
follows.
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GARCH MODEL
Maximum Likelihood Estimates
Model estimated: Jul 31, 2002 at 01:19:14PM.

| |
| |
| |
| Dependent variable PT |
| Weighting variable None |
| Number of observations 190 |
| Iterations completed 22 |
| Log likelihood function -135.5043 |
| Restricted log likelihood -147.6465 |
| Chi squared 24.28447 |
| Degrees of freedom 2 |
| Prob[ChiSgd > value] = -5328953E-05 |
| GARCH Model, P =1, Q =1 |
| Wald statistic for GARCH = 521.483 |
e +
Fom e o TRy Fom—— Fom e Fom e +
|variable | Coefficient | Standard Error |b/St.Er.|P[]|Z]>z] | Mean of X
Fom e o TRy Fom Fom e Fom e +
Regression parameters
Constant .1308478127 .61887183E-01 2.114 .0345
PT1 .1749239917 .70912277E-01 2.467 .0136 .98810078
PT2 .2532191617 .73228319E-01 3.458 .0005 .98160455
PT3 .1552879436 .68274176E-01 2.274 .0229 .97782066
PT4 .2751467919 .63910272E-01 4._.305 .0000 .97277700
Unconditional Variance
Alpha(0) .1005125676E-01 .11653271E-01 .863 .3884
Lagged Variance Terms
Delta(l) .8556879884 .89322732E-01 9.580 .0000
Lagged Squared Disturbance Terms
Alpha(l) .1077364862 .60761132E-01 1.773 .0762
Equilibrium variance, a0/[1-D(1)-A(1)]
Equilvar .2748082674 2.0559946 .134 .8937
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Chapter 20
Models with Lagged Variables

Exercises

1. For the first, the mean lag is .55(.02)(0) + .55(.15)(1) + ... + .55(.17)(4) = 1.31 periods. The impact
multiplier is .55(.02) = .011 while the long run multiplier is the sum of the coefficients, .55.

For the second, the coefficient on X, is .6, so this is the impact multiplier. The mean lag is found by
applying (18-9) to B(L) = [.6 +2L)/[1 - .6L + .5L%] = A(L)/D(L). Then, B{1)/B(1) =
{[D(DA'(1) - A(D'(DY/[D(D*} / [AQ)/D(1)] = A'(1)/A(1) - D'(1)/D(1) = (2/2.6)/ (4/.9) = 1.731 periods.
The long run multiplier is B(1) = 2.6/.9 = 2.888 periods.

For the third, since we are interested only in the coefficients on X;, write the model as
Vi = o+ Px1+yL+y’L>+..]+ 8z + u. The lag coefficients on X, are simply B times powers of y.

2. We would regress Y, on a constant, X, X, ..., Xrs. Constrained least squares using

1-510-10 5 -1 0 O 0
R = 01-510-10 5 -1 0, g =20
001-510-10 5 -1 0

would produce the PDL estimates.

3. The ratio of polynomials will equal B(L) = [.6 + 2L]/[1 - .6L + .5L%]. This will expand to

B(L) = Bo+ BiL + B,L* + .... Multiply both sides of the equation by (1 - .6L + .5L) to obtain

(Bo+ PiL + BoL? + ...)(1 - .6L + .5L%) = .6 + 2L. Since the two sides must be equal, it follows that

Bo = .6 (the only term not involving L) -.6f, + B; =2 (the only term involving only L. Therefore, ; = 2.36.
All remaining terms, involving L, L, ... must equal zero. Therefore, B - .68, +.5Bj, = 0 forallj> 1, or B
= .6Bj.1 - .5Pj». This provides a recursion for all remaining coefficients. For the specified coefficients, 3, =
.6(2.36) - .5(.3) = 1.266. B3 = .6(1.266) - .5(2.36) = -.4204, B4 = .6(-.4204) - .5(1.266) = -.88524 and so
on.

4. By multiplying through by the denominator of the lag function, we obtain an autoregressive form
Yt = o(1481%62) + BXe + YXe1 - S1Ye1 - OoYea + &+ S18r1 + Sokra
= a(1+3,+82) + BXe + YXe1 - 1Ye1 - OoYa + Vi

The model cannot be estimated consistently by ordinary least squares because there is autocorrelation in the
presence of a lagged dependent variable. There are two approaches possible. Nonlinear least squares could
be applied to the moving average (distributed lag) form. This would be fairly complicated, though a method
of doing so is described by Maddala and Rao (1973). A much simpler approach would be to estimate the
model in the autoregressive form using an instrumental variables estimator. The lagged variables X, and X3
can be used for the lagged dependent variables. ~

5. The model can be estimated as an autoregressive or distributed lag equation. Consider, first, the
autoregressive form. Multiply through by (1 - yL)(1 - ¢L) to obtain
yi = a(l-)(1-0) + BXe - (Bd)Xer + 062 - (8Y)zZe1 + (v + O)Yer - (Y02 + & -(yHdens + (vh)era-

Clearly, the model cannot be estimated by ordinary least squares, since there is an autocorrelated disturbance
and a lagged dependent variable. The parameters can be estimated consistently, but inefficiently by linear
instrumental variables. The inefficiency arises from the fact that the parameters are overidentified. The linear
estimator estimates seven functions of the five underlying parameters. One possibility is a GMM estimator.
Let vi = & -(ytd)en; + (yd)ero. Then, a GMM estimator can be defined in terms of, say, a set of moment
equations of the form E[vw] = 0, where w; is current and lagged values of x and z. A minimum distance
estimator could then be used for estimation.
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The distributed lag approach might be taken, instead. Each of the two regressors produces a
recursions X, = X; + yxt_l* and ' =z, + “{ZH*- Thus, values of the moving average regressors can be built
up recursively. Note that the model is linear in 1, X, and z;. Therefore, an approach is to search a grid of
values of (y,4) to minimize the sum of squares. ~

Applications

1. The long run multiplier is By + B; + ... + Bs. The model is a classical regression, so it can be estimated
by ordinary least squares. The estimator of the long run multiplier would be the sum of the least squares
coefficients. If the sixth lag is omitted, then the standard omitted variable result applies, and all the
coefficients are biased. The orthogonality result needed to remove the bias explicitly fails here, since x; is
an AR(1) process. All the lags are correlated. Since the form of the relationship is, in fact, known, we can
derive the omitted variable formula. In particular, by construction, x, will have mean zero. By implication,
y; will also, so we lose nothing by assuming that the constant term is zero. To save some cumbersome
algebra, we’ll also assume with no loss of generality that the unconditional variance of x,is 1. Let X; =
[Xe:Xe15e---X15] and X, = x6. Then, for the regression of y on X, we have by the omitted variable formula,

— - — - — —-—1r

b, By | A R N G A N I I o

b, B r 1 r 2 r rt||r
Eb2|X :ﬁ2+r2 r 1 r > r r“ﬂ

[N N 17N I I S D B G B B S

b, Bl (et o r 1 r r
L= S I V2 I G S G e S O B N ¢

We can derive a formal solution to the bias in this estimator. Note that the column that is to the right of the
inverse matrix is r times the last column matrix. Therefore, the matrix product is r times the last column of
an identity matrix. This gives us the complete result,

b, By 0
b, B 0

el %, |=| %]+ ° |5
b, B 0
b, B, 0
b | s lr]

Therefore, the first 5 coefficients are unbiased, and the last one is an estimator of 35 + 1. Adding these
up, we see that when the last lag is omitted from the model, the estimator of the long run multiplier is
biased downware by (1-r)Bs. For part d, we will use a similar construction. But, now there are five
variables in X, and X5 and X in X,. The same kind of computation will show that the first four
coefficients are unbiased while the fifth now estimates B4 + s + r’Bs. The long run multiplier is estimated
with downward bias equal to (1-r)s + (1-r7)Bs.

Fom o — Fmm o Fom—_—— o ——_—— o +
|variable | Coefficient | Standard Error |t-ratio |PL[]T|>t] | Mean of X]
S T S, S S T T p— +
XT .9726595701 1.9258818 .505 .6141 8.3384522
XT1 .7709686332 3.1555811 .244 .8072 8.3301663
XT2 .5450409860 3.1761465 172 .8639 8.3218191
XT3 -.6061007409 3.1903388 -.190 .8495 8.3134324
XT4 -.2272352746 3.1729930 -.072 -9430 8.3050260
XT5 -1.916555094 3.1414210 -.610 .5425 8.2964570
XT6 1.218771893 1.8814874 .648 .5179 8.2878393
Matrix LRM has 1 rows and 1 columns.
1
e
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1] 7575

XT 1.101551478 1.9126777 .576 .5653 8.3384522
XT1 .6941982792 3.1485851 .220 .8257 8.3301663
XT2 .5287939572 3.1712435 .167 .8677 8.3218191
XT3 -.7300170198 3.1797815 -.230 .8187 8.3134324
XT4 -.5552651191 3.1275848 -.178 .8593 8.3050260
XT5 -.2826674399 1.8697065 -.151 -8800 8.2964570
Matrix LRM has 1 rows and 1 columns.
1

e

1] . 7566
TR - T T o o o +
|variable | Coefficient | Standard Error |t-ratio |PL[]T|>t] | Mean of X]
T L T T T, Fom e Fom e Fomm e +
XT 1.077633667 1.9012923 .567 .5715 8.3384522
XT1 .7070443138 3.1394606 .225 .8221 8.3301663
XT2 -5633400685 3.1549830 .179 .8585 8.3218191
XT3 -.6608149939 3.1386871 -.211 .8335 8.3134324
XT4 -.9304013056 1.8990464 -.490 .6247 8.3050260
Matrix LRM has 1 rows and 1 columns.

1

S,

1] .7568
--> calc;list;cor(xt,xt1)$

Result = .99978740920470700D+00

The results of the three suggested regressions are shown above. We used observations 7 - 204 of the
logged real investment and real GDP data in deviations from the means for all regressions. Note that
although there are some large changes in the estimated individual parameters, the long run multiplier is
almost identical in all cases. Looking at the analytical results we can see why this would be the case. The
correlation between current and lagged log gdp is r = 0.9998. Therefore, the biases that we found, (1-1)Bs
and (1-r)Bs + (1-r*)P are trivial.

2. Because the model has both lagged dependent variables and autocorrelated disturbances, ordinary least
squares will be inconsistent. Consistent estimates could be obtained by the method of instrumental variables.
We can use X.; and X, as the instruments for y;; and Yyy,. Efficient estimates can be obtained by a two step
procedure. We write the model as y; - pye; = a(1-p) + B(Xt - pXe1) + Y(Ve1 - PYe2) T (V2 - PYe3) + Ur. With a
consistent estimator of p, we could use FGLS. The residuals from the IV estimator can be used to estimate p.
Then OLS using the transformed data is asymptotically equivalent to GLS. The method of Hatanaka
discussed in the text is another possibility.

Using the real consumption and real disposable income data in Table F5.1, we obtain the following
results: Estimated standard errors are shown in parentheses. (The estimated autocorrelation based on the IV
estimates is .9172.) All three sets of estimates are based on the last 201 observations, 1950.4 to 2000.4

oLS v 2 Step FGLS
A
) -1.4946 -64.5073 -4.6614
(3.8291) (46.1075) (3.2041)
A
B .007569 .7003 .3477
(.001662) (.4910) (.0432)
A
y 1.1977 .5726 .2332
(.006921) (.9043) (.05933)
A
S -0.1988 -.3324 .4072
(.07109) (.4962) (.05500)
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Chapter 21

Time Series Models

There are no exercises or applications in Chapter 21.
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Chapter 22

Nonstationary Data

Exercise

1. The autocorrelations are simple to obtain just by multiplying out v, viv,; and so on. The
autocovariances are 140, + 0,7, -0,(1 - 0,), -0,, 0, 0, 0... which provides the autocorrelations by division by
the first of these. The partial autocorrelations are messy, and can be obtained by the Yule Walker
equations. Alternatively (and much more simply), we can make use of the observation in Section 21.2.3

that the partial autocorrelations for the MA(2) process mirror tha autocorrelations for an AR(2). Thus, the

results in Section 21.2.3 for the AR(2) can be used directly.

Applications

1. ADF Test
A ——————— +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = R Mean=  8.212678571 , S.D.= . 7762719558 |
| Model size: Observations = 56, Parameters = 6, Deg.Fr.= 50 |
| Residuals: Sum of squares= .9651001703 , Std.Dev.= .13893 |
| Fit: R-squared= .970881, Adjusted R-squared = 296797 |
| Model test: F[ 5, 50] = 333.41, Prob value = .00000 |
| Diagnostic: Log-L = 34.2439, Restricted(b=0) Log-L = -64.7739 |
| LogAmemiyaPrCrt.=  -3.846, Akaike Info. Crt.= -1.009 |
| Autocorrel: Durbin-Watson Statistic = 1.91589, Rho = -04205 |
g +
S —— S — e Fomm T — - +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]
Fomm Fomm e T T T . Fomm e T +
Constant -2565690959 -47172815 -544 -5889
T .4401352136E-03 .25092142E-02 -175 .8615 32.500000
R1 -9653227410 -48183346E-01 20.034 -0000 8.2305357
DR1 -5600009441 -14342088 3.905 .0003 -.12321429E-01
DR2 -.1739775168 .14781417  -1.177 .2448 -.20535714E-01
DR3 -.7792177815E-03 -11072916 -.007 .9944 -.11607143E-01

(Note: E+nn or E-nn means multiply by 10 to + or -nn power.)

--> wald;fnl=b_r1-1%

| WALD procedure. Estimates and standard errors |
| for nonlinear functions and joint test of |
| nonlinear restrictions.
|
|

Wald Statistic = 51796 |

Prob. from Chi-squared[ 1] = 47171 |
. +
S T — Y S —— TS R ——— Y ——— [ R —— +
|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]>z] |
o R Sy o Fommm +
Fncn(l) -.3467725900E-01 .48183346E-01 -.720 4717

The unit root hypothesis is definitely not rejected.
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2. Macroeconomic Model

--> samp;1-204$

--> crea;c=log(realcons);y=log(realdpi)$
--> crea;cl=c[-1];c2=c[-2]%

--> samp;3-204$

--> regr;lhs=c;rhs=one,y,cl,c2$

- +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = C Mean=  7.889033683 , S.D.= -5102401315 |
| Model size: Observations = 202, Parameters = 4, Deg.Fr.= 198 |
| Residuals: Sum of squares= .1519097328E-01, Std.Dev.= .00876 |
| Fit: R-squared= .999710, Adjusted R-squared = 299971 |
| Model test: F[ 3, 198 =F**FxxEAx Prob value = -00000 |
| Diagnostic: Log-L = 672.4019, Restricted(b=0) Log-L = -150.2038 |
| LogAmemiyaPrCrt.=  -9.456, Akaike Info. Crt.= -6.618 |
| Autocorrel: Durbin-Watson Statistic = 1.89384, Rho = -05308 |
g +
o ——— S s o T - T - +
|variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]|
T - T e o ——— o ——— B T - +
Constant .8165780259E-03 .10779352E-01 -076 .9397

Y .7869591065E-01 .29020268E-01 2.712  .0073 7.9998985

C1 -9680839747 .72732869E-01  13.310 .0000 7.8802520

C2 -.4701660339E-01 .70076193E-01 -.671 -5030 7.8714299

--> crea;el=e[-1];e2=e[-3];e3=e[-3]$
--> crea;el=e[-1];e2=e[-2];e3=e[-3]$
--> regr;lhs=e;rhs=one,el,e2,e3%

R +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = E Mean= -.6947138134E-15, S.D.= -8693502258E-02 |
| Model size: Observations = 202, Parameters = 4, Deg.Fr.= 198 |
| Residuals: Sum of squares= .1339943625E-01, Std.Dev.= .00823 |
| Fit: R-squared= .117934, Adjusted R-squared = -10457 |
| Model test: F[ 3, 198] = 8.82, Prob value = .00002 |
| Diagnostic: Log-L = 685.0763, Restricted(b=0) Log-L = 672.4019 |
| LogAmemiyaPrCrt.= -9.581, Akaike Info. Crt.= -6.743 |
| Autocorrel: Durbin-Watson Statistic = 1.85371, Rho = 07314 |
g +
Fomm————— o S Fomm———— Fomm Fomm +
|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X]
Fomm o o Fomm———— Fomm Fomm +
Constant .2437121418E-04 .57884755E-03 .042 -9665
E1l -.2553462753E-01 .70917392E-01 -.360 .7192 -.21497022E-04
E2 -3385045374 -66904365E-01 5.060 -0000 -.56959898E-04
E3 .6894158132E-01 .71101163E-01 -970 -3334 -.81793147E-04
--> calc;list;chisg=n*rsqrd$
CHISQ = .23822731697405480D+02
Matrix Result has 2 rows and 2 columns.
1 2
A ——
1] 1.0688 -0000000D+00
2] 19.8378 .0000000D+00

Short run multiplier is B = .07869. Long run is B/(1-y, - v,) = 12.669. (Not very plausible.)
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3. ADF Test. To carry out the test, the rate of inflation is regressed on a constant, a time trend, the

previous year’s value of the rate of inflation, and three lags of the first difference. The test statistic for the

ADF is (0.7290534455-1)/.011230759 = -2.373. The critical value in the lower part of Table 20.4 with

about 100 observations is -3.45. Since our value is large than this, it follows that the hypothesis of a unit

root cannot be rejected.

4. Reestimated model in example 13.1.

--> samp;1-204$

--> crea;ddpl=infl[-1]-infI[-2]$

--> crea;ddp2=ddpl[-1]%

--> crea;ddp3=ddpl[-2]$

--> crea;dp=infl[-1]$

--> samp;97-204%

--> crea;t=trn(1,1)$

--> regr; lhs=infl;rhs=one,t,dp,ddpl,ddp2,ddp3$

e +
| Ordinary least squares regression Weighting variable = none |
| Dep. var. = INFL Mean=  4.907672727 , S.D.= 3.617392978 |
| Model size: Observations = 108, Parameters = 6, Deg.Fr.= 102 |
| Residuals: Sum of squares= 608.5020156 , Std.Dev.= 2.44248 |
| Fit: R-squared= .565403, Adjusted R-squared = .54410 |
| Model test: F[ 5, 102] = 26.54, Prob value = -00000 |
e +
Fom e —— Fom S Fm——— e e +
|Variable | Coefficient | Standard Error |t-ratio |PL[IT|>t] | Mean of X]
Fmm e o o o Fom e Fmm e +
Constant 2.226039717 1.1342702 1.963 .0524

T -.1836785769E-01 .11230759E-01 -1.635 .1050 54 _.500000
DP .7290534455 -11419140 6.384 .0000 4.9830886
DDP1 -.4744389916 .12707255 -3.734 .0003 -.58569323E-01
DDP2 -.4273030624 .11563482 -3.695 .0004 -.46827528E-01
DDP3 -.2248432703 .98954483E-01  -2.272 .0252 -.86558444E-02
--> wald;fnl=b_dp-1$

o ——— L L o ——_— o ——_—— +

|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]>z] |

Fom - Ty o Fom—_—— o ——_—— o +

Fnen(1) -.2709465545 .11419140 -2.373 .0177

--> samp;1-204$

--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate$
--> crea;ctl=ct[-1];ytl=yt[-1]$

--> samp;2-204$

--> samp;1-204$

--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate;it=realinvs$
--> crea;ctl=ct[-1];ytl=yt[-1]$

--> crea;dy=yt-ytl$

--> samp;2-204$

—--> name;x=one,rt,ctl,ytl,gt$

--> 2sls;lhs=ct;rhs=one,yt,ctl;inst=x;res=ec$

--> 2sls;lhs=it;rhs=one,rt,dy; inst=x;res=ei$

--> i1den;rhs=ec;pds=10$

--> iden;rhs=ei ;pds=10$

N iHIH i e B e A +
| Two stage least squares regression Weighting variable = none |
| Dep. var. = CT Mean=  3008.995074 , S.D.= 1456.900152 |
| Model size: Observations = 203, Parameters = 3, Deg.Fr.= 200 |
| Residuals: Sum of squares= 96595.67529 , Std.Dev.= 21.97677 |
| Fit: R-squared= .999771, Adjusted R-squared = -99977 |
| (Note: Not using OLS. R-squared is not bounded in [0,1] |
| Model test: F[ 2, 200 =F*FxxFAxx Prob value = -00000 |
| Diagnostic: Log-L = -913.8005, Restricted(b=0) Log-L = -1766.2087 |
| LogAmemiyaPrCrt.= 6.195, Akaike Info. Crt.= 9.033 |
| Autocorrel: Durbin-Watson Statistic = 1.61078, Rho = -19461 |
S +
Fom e o TRy Fom Fom e R, +

|variable | Coefficient | Standard Error |b/St_Er.|P[|Z]>z] | Mean of X]|
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o o S o o o +

Constant 6.666079115 8.6211817 773 .4394

YT -.2932041745E-01 .35260653E-01 -.832 .4057 4577.1882
CT1 1.051478712 .51482187E-01 20.424 -0000 2982.9744
gy +
| Two stage least squares regression Weighting variable = none |
| Dep. var. = IT Mean=  654.5295567 , S.D.= 391.3705005 |
| Model size: Observations = 203, Parameters = 3, Deg.Fr.= 200 |
| Residuals: Sum of squares= 54658669.31 , Std.Dev.= 522 _77466 |
| Fit: R-squared= -.793071, Adjusted R-squared = -.81100 |
| (Note: Not using OLS. R-squared is not bounded in [0,1] |
| Diagnostic: Log-L = -1557.1409, Restricted(b=0) Log-L = -1499.3832 |
| LogAmemiyaPrCrt.= 12.533, Akaike Info. Crt.= 15.371 |
| Autocorrel: Durbin-Watson Statistic = 1.49055, Rho = .25473 |
e +
Fom e o TRy Fom—— Fom e Fom e +
|variable | Coefficient | Standard Error |b/St_Er.|P[|Z]|>z] | Mean of X]
Fom e o TRy Fom Fom e Fom e +
Constant -141.8297176 103.57113 -1.369 -1709

RT 52.04340559 12.971223 4.012 .0001 5.2499007
DY 13.80361384 1.7499250 7.888 -0000 37.898522

Time series identification for EC

Box-Pierce Statistic = 40.8498 Box-Ljung Statistic = 41.7842
Degrees of freedom = 10 Degrees of freedom = 10
Significance level = -0000 Significance level = -0000

* => Jcoefficient] > 2/sqrt(N) or > 95% significant.
PACF is computed using Yule-Walker equations.
XHXHXXXXXKHXHXHKK XX XKHXHKKK XX KKK K KX KKHXHK K XX KKK K KX XKHXHXK K XX KKK HKK K XX KKK KX XKKHX KKK XXKX

Lag | Autocorrelation Function |Box/Prc]| Partial Autocorrelations X
XHXHXHXXXXKXHXKKXXXKHXHXK KX XXX HXKK K XK KHXHK K XX KIHXHK XX XKHHXK K XX XKHXKKKXXKXHXKKXXKXKHX KKK XXKX
1] .194*| | ** | 7.65%] .194*| |** X
2 | -264%] [ *** | 21.82*] .236%| |*** X
3] .273*] | *** | 36.93*] .207*| |** X
4 1 .067 | |* | 37.85%|-.063 | * X
5] .054 | 1* | 38.44*|-.068 | * X
6 | .073 | |* | 39.52*] .018 | 1> X
7 ] .009 | 1* | 39.53*] .003 | |* X
8 |-.078 | *| | 40.78*]|-.109 | * X
9] .019 | 1* | 40.85*] .023 | |* X
10 | .002 | |* | 40.85%] 050 | 1* X

XXKXKXKX XK KX KX KXK KX KXKX KKK KX KX KKK KX KX KKK KX KX KKK KX KX KKK KX KX KKK KXKX KKK KX KX XXX XXX
Time series identification for EI

Box-Pierce Statistic = 27.4753 Box-Ljung Statistic = 28.3566
Degrees of freedom = 10 Degrees of freedom = 10
Significance level = .0022 Significance level = -0016

* => Jcoefficient] > 2/sqrt(N) or > 95% significant.
PACF is computed using Yule-Walker equations.
XOKKKKKKKKKKKKKKKKKKKKKKHKKKKHKKKHKHKKKHKKHKKHKHKKHKHKHKHKHKHKHKHKHKHKKHKHKHKHKHKKKHKHKKHKHKKHKKKHKHK KKK KKK

Lag | Autocorrelation Function |Box/Prc| Partial Autocorrelations X
XOKKKKKKKKKKKHKKKKKKKKKKKKKKKKKKKKHKKKKHKKHKKKKKKKHKHKHKHKHKKKHKKHKHKHKHKHKHKKHKHKHKHKKKKKKHKHKKHKKKK
1 ] .244*] | *** | 12.13*] .244*] | *** X
2 | .143*] |** | 16.27*] .096 | |* X
3] -037 | 1> | 16.55*]-.019 | * ] X
4 |-.o01 | *| | 16.55*]|-.017 | * ] X
5 1-.066 | * | 17.42*]|-.078 | * ] X
6 | -003 | |* | 17.43*] .043 | |* X
7 1-.042 | * | 17.79%]-.033 | * ] X
8 |-.107 | *1 | 20.10*]|-.107 | il | X
9] -108 | |* | 22.46*] .194*| | ** X
10 | .157*] | ** | 27.48*] .142*| | ** X

. 0,9,0.9,0,0.9,9,0,0.9,0,0.9.9,0,0.9,0,0.9.0,0,0.0,0,0.9,0,0,0.9,0,0.0.0,0,0.0,0,0.0,0,0,0.0,0,0.0.0,0,0.0,0,0.0.0,0,0.0,0,0.0,.0,0,0.0,0,0.0,0,0,0.0,0,0.¢
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Chapter 23
Models for Discrete Choice

Exercises

1. The log-likelihood is
InL = %, lnProb[y=0,d=0] + %, ;InProb[y=0,d=1] + %, gInProb[y=1,d=0] + X, ;InProb[y=1,0=1]
where Z;; indicates the sum over observations for which y =i and d =j. Since there are no other regressors,
this reduces to InL = 24In(1 - F(a)) + 32In(1 - F(8)) + 28InF(a) + 16InF(5). Although it is straightforward to
maximize the log-likelihood directly in terms of o and 9§, an alternative, convenient approach is to estimate
F(a) and F(5). These functions can then be inverted to estimate the original parameters. The invariance of
maximum likelihood estimators to transformation will justify this approach. One virtue of this approach is
that the same procedure is used for both probit and logit models. Let A =F(a) and D = F(8). Then, the log
likelihood is simply InL = 24In(1 - A) + 32In(1 - D) + 28InA + 16InD. The necessary conditions are

OlnL/oA = -24/(1-A)+28/A =0

onL/oD = -32/(1-D)+16/D = 0.
Simple manipulations produce the two solutions A = 28/(24+28) = .539 and D = 16/(32+16) = .333. Then,
these functions can be inverted to produce the MLEs of o and B. Thus, G = F'(A) and ﬁ = F'(D)- 6. The

two inverse functions are ®'(A) for the probit model, which must be approximated, and In[F/(1-F)] for the
logit model. The estimates are,
Probit Logit

o .098 156
5  -431 -.694
B -529 -850

(Notice the proportionality relationship, .156/.098 = 1.592 and -.848/-.529 = 1.607.)
We will compute the asymptotic covariance matrix for & and f% directly using (19-24) for the probit

model and (19-22) for the logit model. We will require h; = & InL/d(a+pd)” for the four cells. For the
computation, we will require ¢p(c)/d(c) and -¢p(c)/[1-D(c)]. These are listed in the table below.
Moo
otpd @ o ¢D -o/(1-D) Aoy
.098 .539 397 .737 -.861 -.636
.098 .539 397 .737 -.861 -.636
-431 333 364 1.093 -546 -.597
-431 333 364 1.093 -546 -.597
The estimated asymptotic covariance matrix is the inverse of the estimate of -E[H].
A {1 0} [1 o} {1 1} [1 1}
—H =24(.636) +28(.636) +32(.597) +16(.597) . Then,
0 0 00 11 11

—_ o — O
—_——_—0 O

T |28656 28656 —-.03024 .06513

of the diagonal elements, which are .1739 and .2552, respectively. To test the hypothesis that § = 0, we would
referz = -.529/.2552 = -2.073 to the standard normal table. This is larger than the 1.96 critical value, so we
would reject the hypothesis. To compute the likelihood ratio statistic, we will require the two log-likelihoods.
The restricted log-likelihood (for both the probit and logit models) is given in (19-28). This would be
InLy = 100[.44In.44 + .561n.56] = -68.593. Let the predicted values above be denoted

Poo = Prob[y=0,d=0] = .461 (i.e. 1-.539)

Po =Prob[y=1,d=0] = .539

Po; = Prob[y=0,d=1] = .667

Py =Prob[y=0,d=1] = .333

AT [61.728 286567 03024 -.03024 .
-H| = = . The asymptotic standard errors are the square roots

136



and let n;; equal the number of observations in each cell Then, the unrestricted log-likelihood is
InL = 24In.461 + 28In.539 + 32In.667 + 16In.333 = -66.442. The likelihood ratio statistic would be
A = -2(-66.6442 - (-68.593)) = 4.302. The critical value from the chi-squared distribution with one degree
of freedom is 3.84, so once again, the test statistic is slightly larger than the table value.
We now compute the Hessian for the logit model. The predicted probabilities are

Prob[y=0,d=0]=Py = 1/(1+¢') = 462
PrOb[yzl,dZO]:Plo = I-P()() = .538
Prob[y=0,d=1]=Py = 1/(1 +¢*" = 667
Prob[yil,d:l]:P“ = I-P()l = .333.

Notice that in spite of the quite different coefficients, these are identical to the results for the probit model.
Remember that we originally estimated the probabilities, not the parameters, and these were independent of
the distribution. Then, the Hessian is computed in the same manner as for the probit model using

hij = Fij(1-Fy) instead of Ao, in each cell. The asymptotic covariance matrix is the inverse of

1 0 11
(28+24)(.462)(.538)[0 0} +(32+16)('667)('333)L J. The standard errors are .2782 and .4137. For

testing the hypothesis that 3 equals zero, the t-statistic is z = -.850/.4137 = -2.055, which is almost the same
as that for the probit model. The unrestricted log-likelihood is InL = 241n.4285 + ... + 16In.3635 = -66.442
(again). The chi-squared statistic is 4.302, as before. [

2. Using the usual regression statistics, we would have a= y—bxX, b=2,(x, = X)(y, - ¥)/Z,(x, —X)*.

For data in which y is a binary variable, we can decompose the numerator somewhat further. First, divide
both numerator and denominator by the sample size. Second, since only one variable need be in deviation
form, drop the deviation in x. That leaves b =[Zx (y; —¥)/n]/ [Zi (% —%X)*/ n] . The denominator is the

sample variance of X. Since Y; is only Os and 1s, yis the proportion of 1s in the sample, P. Thus, the
numerator is

(I/M)Zixyi - (I/MZix y = (I/n)Zx-P X= (ny/n) X, -P[P X +(1-P) X, ] = P(1-P)( X, - X;).

Therefore, the regression is essentially measuring how much the mean of x varies across the two groups of
observations. The constant term does not simplify into any intuitively useful form.

3. The model was estimated using Newton's method as described in the text. The estimated coefficients and
their standard are shown below: y*= -51274 + .15964X
(1.042)  (.202)
Log-likelihood = -6.403 Restricted log-likelihood = -6.9315.
The t-ratio for testing the hypothesis is .15964/.202 = .79. The chi-squared for the likelihood ratio test is
1.057. Neither is large enough to lead to rejection of the hypothesis.

4. The derivatives of the log-likelihood are given in (23-18)-(23-21). If all coefficients except the constant
term are zero, then the first order condition for maximizing the log-likelihood would be
olnL/op = Zi(yi - A)(1) = 0 since with no regressors, A; will not vary with i. This leads to the constrained

maximumi = % y/n = P, which might be expected. Thus, we estimate the constant term such that P =
exp(a)

1+exp(d)’
first derivatives would be LM = [Zgi]'[Zi0i0/1'[Zigi] where @i = Zi(yi - P)x;. In full, the statistic is

LM = [Zi(yi - PYXT[Zi(yi - Py T [Zi(yi - P)xil.

The actual (and expected) Hessian can be used instead by replacing (y; - P)* with P(1 - P) in the

inverse matrix. The statistic could then be written

LM = [X'(y - PO TXX) X (y - PO)]/P(1 - P) = e’X(X'X)"X'e/P(1 - P)
In the preceding, e'e = %i(yi- P)> = nP(l - P). Therefore, LM = n[e’X(X'X)"'Xe/e’e], which establishes
the result. To compute the statistic, we regress (y; - P) on the Xs, then carry nR? into the chi-squared table.
5. Since there is no regressor, we may write the log-likelihood as

InL= 50In®(-a) + 40In[D(p;-a) - D(-a1)] + 45In[D(pr-at) - P(py-a)] +

or & = logit(P). The LM statistic based on the BHHH estimator of the covariance matrix of the
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80In[D(u3-01) - D(pp-1)] + 35In[1 - D(ps-0)].
There are four unknown parameters to estimate and four free probabilities. Suppose, then, we treat O(-ar),
O(p-a), D(pp-a), and d(u3-0) as the unknown parameters, 7y, 73, T, and 73, respectively. If we can find
estimators of these, we can solve for the underlying parameters. We may write the log-likelihood as
InL = 50Inm0 + 40In(x1 - 70) + 45In(m, - ;) + 80In(m; - p) + 35In(1 - 73).
The necessary conditions are

olnL/omy = 50/m, - 40/(m;-m0) =0
JlnL/ony = 40/(m; - ) - 45/(m, - 71) =0
JlnL/on, = 45/(m; - my) - 80/(m; - m,) =0
OlnL/0ms = 80/(ms3 - my) - 35/(1 - m3) = 0.
By a simple rearrangement, these can be recast as a set of linear equations. Thus,
90my - 50m, =0
457T0 - 857'[1 + 407[2 =0
807T1 - 1257[2 + 457'C3 =0
- 35m, + 115m; = 80

9 -50 0 00][m,
45 -85 40 0 ||m
0 80 -125 45 ||,
0 0 =35 115||n;| |80

The solution (as might be expected) is
m =2 (50/250)
T = 36 ((50+40)/250)
T = .54 ((50+40+45)/250)
T3 = 86 ((50+40+45+80)/250).
Now, we can solve for the underlying parameters.
o= @'(2) = -841,50 a.=.841.
p-a= ®'(.36)= -.358, so u, = .483
o= ®'(54)= .101, s0 p, =.942
uz-o = ®7(.86)= 1.081, so p3 = 1.922.

6. To estimate the coefficients, we will use a two step FGLS procedure. Ordinary least squares estimates
based on Section 19.4.3 are consistent, but inefficient. The OLS regression produces
@'(P;) = 2,= -2.18098 + .0098898T
(.7404)  (.002883).
The predicted values from this regression can then be used to compute the weights in (21-39). The weighted
least squares regression produces 2, = -2.3116 + .010646T
(.8103) (.003322)
In order to achieve a predicted proportion of 95%, we will require z; = 1.645. The T required to achieve this is
T = (1.645+2.3116) / .010646 = 372.
The z; which corresponds to 90% is 1.282. Doing the same calculation as above, this requires T =
338 trucks. At $20,000 per truck, this requires $6.751 million, so the budget is inadequate.
The marginal effect is 0Dy/0T = .010646¢(z;). At T = 300, z; = .8822, so ¢(z;) = .2703 and the
marginal effect is .00288.
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7. This is similar to Exercise 1. It is simplest to prove it in that framework. Since the model has only a
dummy variable, we can use the same log likelihood as in Exercise 1. But, in this exercise, there are no
observations in the cell (y=1,x=0). The resulting log likelihood is, therefore,

InL = X,0InProb[y=0,x=0] + X, ,InProb[y=0,x=1] + X, ;InProb[y=1,x=1]
or InL = n;InProb[y=0,x=0] + nylnProb[y=0,x=1] + n,InProb[y=1,x=1].
Now, let 6 = o + B. The log likelihood function is InL = n;In(1 - F(at)) + nIn(1 - F(8)) + nyInF(8). For
estimation, let A= F(o) and D = F(8). We can estimate A and D, then o = F'(A) and B = F'(D)- a. The
first order condition for estimation of A is dlnL/0A = -n3/(1 - A) = 0, which obviously has no solution. If A
cannot be estimated then o cannot either, nor, in turn, can 3. This applies to both probit and logit models.

8. We’ll do this more generally for any model F(a). Since the ‘model’ contains only a constant, the log
likelihood is logL = Xylog[1-F(a)] + Z;logF(a) = nglog[1-F(a)]+n;logF(at) . The likelihood equation is
dlogL/oo = Zo[-f(a)/[1-F(a)] + Zf(a)/F(a) = 0 where f(a) is the density (derivative of F(a) so that at the
solution, nof(a)/[1-F(a)] = n;f(c)/F(a). Divide both sides of this equation by f(a) and solve it for F(a) =
n;/(ng+n;), as might be expected. You can then insert this solution for F(a) back into the log likelihood,
and (23-28) follows immediately.

9. Look at the two cases. Neither case has an estimator which is consistent in both cases. In both cases,
the unconditional fixed effects effects estimator is inconsistent, so the rest of the analysis falls apart. This
is the incidental parameters problem at work. Note that the fixed effects estimator is inconsistent because
in both models, the estimator of the constant terms is a function of 1/T. Certainly in both cases, if the fixed
effects model is appropriate, then the random effects estimator is inconsistent, whereas if the random
effects model is appropriate, the maximum likelihood random effects estimator is both consistent and
efficient. Thus, in this instance, the random effects satisfies the requirements of the test. In fact, there does
exist a consistent estimator for the logit model with fixed effects - see the text. However, this estimator
must be based on a restricted sample observations with the sum of the ys equal to zero or T muust be
discarded, so the mechanics of the Hausman test are problematic. This does not fall into the template of
computations for the Hausman test.

Applications

Create ; A = (Yrb > 0) S

Namelist ; X = one,vl,v2,v5,v6 $

Probit ; Lhs = A ; Rhs = X ; marginal Effects $
Logit ; Lhs = A ; Rhs = X ; marginal Effects $

| Binomial Probit Model |
| Maximum Likelihood Estimates |
| Dependent variable A |
| Number of observations 6366 |
| Log likelihood function -3547.865 |
| Number of parameters 5 |
| Info. Criterion: AIC = 1.11620 |
| Info. Criterion: BIC = 1.12151 |
| Restricted log likelihood -4002.530 |
e +
o o Sy Fomm o o +
|variable] Coefficient | Standard Error |b/St.Er.|P[|Z]>z]] Mean of X]
o ——— T - . o o R T - +

————————— +Index function for probability
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Constant] 1.43453507 .15493583 9.259 .0000

Vi | -.42595261 .01807583 -23.565 .0000 4.10964499
V2 | 02797013 .00254409 10.994 .0000 29.0828621
V5 | -.20942202 .02015534 -10.390 .0000 2.42617028
V6 | -.03522668 .00801808 -4_.393 .0000 14.2098649
e +

| Partial derivatives of E[y] = F[*] with |
| respect to the vector of characteristics. |
| They are computed at the means of the Xs. |
| Observations used for means are All Obs. |

Py +
o o R Fomm o Fom e +
|variable] Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]|Elasticity]
o S R Fom e o Fom +
————————— +

Constant] -27876593 -01081795 25.769 -0000

Vi | -.14911732 .00634679  -23.495 .0000 -2.01181601
V2 | -00979177 -00088860 11.019 -0000 -93487672
V5 | -.07331438 .00703451  -10.422 .0000 -.58393740
V6 | -.01233214 -00280535 -4_.396 -0000 -.57528664
. ____ +

Binary Logit Model for Binary Choice
Maximum Likelihood Estimates

| |

| |

| Dependent variable A |

| Number of observations 6366 |

| Log likelihood function -3549.741 |

| Number of parameters 5 |

| Info. Criterion: AIC = 1.11679 |

| Info. Criterion: BIC = 1.12210 |

| Restricted log likelihood -4002.530 |
5 S S S +

Fom e e Fom Fomm—— T, +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fom e — o e Fom - Fom—— Fom e +
————————— +Characteristics in numerator of Prob[Y = 1]

Constant] 2.41622262 .26160831 9.236 -0000

V1 | -.70802698 .03091557  -22.902 .0000 4.10964499
V2 | -04624150 -00426119 10.852 .0000 29.0828621
V5 | -.35139771 .03413337 -10.295 .0000 2.42617028
V6 | -.05899324 -01354756 -4.355 .0000 14.2098649
L O N A - e_— +

| Partial derivatives of probabilities with |
| respect to the vector of characteristics. |
| They are computed at the means of the Xs. |
| Observations used are All Obs. |

R +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]]Elasticity]
Fom o o Fom Fomm—— Fom e +
--------- +Marginal effect for variable in probability

Constant]| -50898166 .05554126 9.164 .0000

V1 | -.14914716 .00650799 -22.918 .0000 -2.03205673
V2 | -00974086 .00089378 10.898 -0000 -93918419
V5 | -.07402256 .00714156  -10.365 .0000 -.59539053
V6 | -.01242703 .00285019 -4_360 .0000 -.58542862

2. Ordered Choice For Self Reported Marriage Rating

| Ordered Probability Model |
| Maximum Likelihood Estimates |
| Dependent variable MARRIAGE |
| Weighting variable None |
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| Number of observations
| Iterations completed

| Log likelihood function
| Number of parameters
| Info. Criterion: AIC
| Info. Criterion: BIC
| Restricted log likelihood
|

I
I
I
I
2.42920 |
I
I
|

6366
15

-7720.145

12

2.44194
-7926.487

Underlying probabilities based on Normal

| Ordered Probability Model |
| Cell frequencies for outcomes |
| Y Count Freq Y Count Freq Y Count Freq |
| |
| |

0 99 .015 1 348 .054 2 993 .155

3 2242 .352 4 2684 .421
ey +
o o o o ——_——— o o +

|variable] Coefficient

| Standard Error |b/St.Er.|P[|Z]>z]] Mean of X]
+ + +

Fom o PRy +
--------- +Index function for probability

Constant]| 1.87997564 .12760529 14.733 .0000

YRB | -.09669427 -00649907 -14.878 -0000 .70537389
V2 | -.00624520 .00471646 -1.324 .1855 29.0828621
V3 | -.00952932 -00506534 -1.881 -0599  9.00942507
v4 | -.05879586 .01520251 -3.868 .0001 1.39687402
V5 | -10524384 -01624338 6.479 -.0000 2.42617028
V6 | .02526318 .00727002 3.475 .0005 14.2098649
V7 | -02069865 -01614318 1.282 .1998  3.42412818
V8 | .02725715 .01072244 2.542 .0110 3.85014138

————————— +Threshold parameters for index

Mu(l1) | .71088354 .02219910 32.023 -0000

Mu(2) | 1.47186849 .01737814 84.697 -0000

Mu(3) | 2.46392113 .01923976  128.064 -0000
S i A AR R R S e B e A e +

| Summary of Marginal Effects for Ordered Probability Model (probit) |
S i A AR R R S e B e A e +
Variable] Y=00 Y=01 Y=02 Y=03 Y=04 Y=05 Y=06 Y=07 |
__________________________________________________________________________ +
YRB .0031 0087 0167 0093 -.0377
V2 -0002 0006 0011 0006 -.0024
V3 -0003 0009 0016 0009 -.0037
V4 -0019 0053 0101 0056 -.0229
V5 -.0033 -.0095 -.0182 0101 .0411
V6 -.0008 -.0023 -.0044 0024 0099
V7 -.0007 -.0019 -.0036 0020 0081
V8 -.0009 -.0025 -.0047 0026 0106
S +
| Cross tabulation of predictions. Row is actual, column is predicted. |
| Model = Probit . Prediction is number of the most probable cell. |
Fom—— Fom—— [ [ o o o o o o o o +
| Actualj]Row Sum] O | 12 | 2 | 3 | 4 | 5 1 6 | 7 1 8 1 9 |
Fom—— Fom—— [ o o o o o o o o e +
| ol 99] ol 0] | 0] | 68] 31]

| 1] 348] 2] o] | 5] 170] 171]

| 2] 993] 71 ol 7] 453] 526]

| 3] 2242] 3] o] | 10] 674] 1555]

| 4] 2684] 2] ol 5] 593] 2084]

o S o o o e B e o +
[Col Sum] 6366| 4] ol 27] 1958] 4367] ol ol ol ol 0] |
o S o o o e B e o B B B +

141



Chapter 24

Truncation, Censoring and Sample
Selection

Exercises

1. The sample mean of all 20 observations is 4.18222. For the 14 nonzero observations, the mean is
(20/14)4.18222 = 5.9746. Both of these should overestimate p. In the first case, all negative values have been
transformed to zeroes. Therefore, if we had had the original data, our estimator would include the negative
values as well as the positive ones. Since we have only the zeroes, instead, our estimator includes, for every
negative y* a number which is larger than the true y. This will inflate the estimate. Likewise, for the
truncated mean, whereas a complete sample might include some negative values, the observed one will not.
Once again, this will serve to inflate the estimator of the mean.

2. The log-likelihood for the Tobit model is given in (24-13). With only a constant term, this is
InL = (-ny/2)[In(27) + Inc?] - (1/Q26))Z1(Yi - 1)* + Zond(-p/c)
In terms of y and 6, this is InL = (-n;/2)[In(27) - In6%] - (1/2)Z,(0y; - 7)* + Zolnd(~y)
= (-ny/2)In(21) + nyInd - (1/2)Z,(Oy; - y)* + Zelnd(-y).

The necessary conditions for maximizing this with respect to y and 0 are

AInL/dy = £y(0i-7) - Zb(-1/B(y) = OZYi- Ny - N[d(-p/D()] = 0

AlnL/o8 = ny/0 - Zyi(Byi-v) = ny/0 - OZy +yZyy; = 0.
There are a few different ways one might solve these two equations. A grid search over the values of y and 6
is a possibility. A direct maximum likelihood estimator for the tobit model is the simpler choice if one is
available. The model with only a constant term is otherwise the same as the usual model. Using the data
above, the tobit maximum likelihood estimates are (1= 3.2731, 6 = 5.0303.

3. The log-likelihood for the truncated regression with only a constant term is
InL = (-n/2)[In(27) + Inc*] - (1/(26%))2:(¥yi - p)* - Zilnd(Wo)
Once again transforming to y and o, this is
InL = -(n/2)In(21) + nind - (1/2)Zi(Oy; - y)* - nlnd(y).
The necessary conditions for maximizing this are
oInL/oy = Z(0y; - ) - ()/D(y) = 0
JlnL/06 = n/6 - Ziy;(Oy; - Y)
The first of the two equations can be 9: v/6 + A/0, where A = ¢(y)/®(y). Now, reverting back to p and o,

thisis y= p + o\ which is (24-6). The second equation can be manipulated to produce Zy;/n - uy = o’

Once again, trial and error could be used to find a solution. As before, estimating the model as a truncated
regression with only a constant term will also produce a solution. The solution by this method is 1 = 3.3439,
6= 5.6368. With the data of the first problem, we would have the following: Estimated Prob[y” > 0] =
14/20 = 7. This is an estimate of ®(Ws), so we would have w/c = ®7'(.7) = .525 or u = .525c. Now, we
can use the relationship E[yly>0] = p + od(n/o)/®(Wo) = p + oA. Since p/c is now known, we have
A= ¢(.525) / ©(.525) = .496 so a second equation is 5.9746 = p + .496c. The joint solution is i =

3.0697, 6 = 5.8470. The three solutions are surprisingly close.
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4. Using Theorem 24.5, we have 1 - ®(a,) = 14/35 = 4,a, = @'(.6) = 253, Mo,) = .9659,

d(a,) = .6886. The two moment equations are based on the mean and variance of y in the observed data,
5.9746 and 9.869, respectively. The equations would be 5.9746 = p + o(.7)(.9659) and 9.869 = o&*(1 -
.7%(.6886)). The joint solution is i = 3.3651, & = 3.8594.

5. The conditional mean function is E[y|x] = ®(B'X;/c;)p'xi + o;@(B'Xi/o;) using the equation before (24-
12). Suppose that ; = cexp(a'X;) for the same vector X;. (We’ll relax that assumption shortly.) Now,
differentiate this expression with respect to X. We differentiate the two parts, first with respect to X then
with respect to o;.

e D

X

R B R e 3 B

After collecting the terms, we obtain OE[y;|X;]/0X; = ®(a;) + oid(a;))a where a; = B'X;/c;. Thus, the
marginal effect has two parts. one for § and one for a. Now, if a variable appears in G; but not in X;, then
only the second term appears while if a variable appears only in X; and not in o;, then only the first term
appears in the marginal effect.

6. The transformed log likelihood function is
logL = =, ¢ (-1/2)[log2n - logd* + (By - X'y)’] + =, log[1-D(Xy)]

It will be convenient to define a; = X;"y. Note also that 1 - d(a;) = ®(-a;). The first derivatives and Hessian
in the transformed parameters are

dlog L

YR = zyi>0 (1/6) -y, (6yi-a)

OlogL
> = 250 X (0%i—a)+ Xy o [4-a)/ d(=a)](x)
2

0" log L )

—o 3o —1/07 -y,
06° 2y>0

82 log L

ooy =250 ~XX 2y 20 —[p(-a)/ D(-a)]{-a; +[4(-a)/ D(a)|x X, "
2

0" loglL
oyo0 “2ys0 XY

The second derivatives can be collected in a matrix format:
OloglL :Z B %1 [01(0), +Z 5 X5
0 ¥ 0 Y y=0 =Y )\ 7Y o)\0 =010 0
o 0

where §; is the last scalar term in 6°1ogL/630y’. By Theorem 22.2 (see (24-4)), we know that &; is negative.
Thus, all three parts of the matrix are negative semidefinite. Assuming the data are not linearly dependent
and there are more than K observations, the Hessian will have full rank and be negative definite.
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Applications

. Tobit model for Redbook data

—_—

BV

1. Tobit, Scaled Tobit,
In principle,

For consistency and convenience,

sample with YRB <= 5 only.

[V RRIVERIVARAV)

J

Sample ; All S

Probit and Truncated Regression.
all are estimating the same paramter.

we are going to use the

Reject ; YRB > 5 $

Namelist ; X = one,vl,v2,v3,v4,v5$

Tobit ; Lhs = yrb ; Rhs = x ; marginal $
Matrix ; list ; scaled b = 1/s * b $
Probit ; Lhs = a ; Rhs = x $

reject ; yrb <= 0 S

Truncation ; Lhs = yrb ; Rhs = x §$

o

Limited Dependent Variable Model - CENSORED |

Maximum Likelihood Estimates

|

| I

| Dependent variable YRB |

| Weighting variable None |

| Number of observations 6217 |

| Iterations completed 6 |

| Log likelihood function -6118.089 |

| Number of parameters 7 |

| Info. Criterion: AIC = 1.97043 |

| Finite Sample: AIC = 1.97044 |

| Info. Criterion: BIC = 1.97802 |

| Info. Criterion:HQIC = 1.97306 |

| Threshold values for the model: |

| Lower= .0000 Upper=+infinity |

| LM test [df] for tobit= 622.887[ 6] |

| Normality Test, LM = 150.850[ 2] |

| ANOVA based fit measure = -293201 |

| DECOMP based fit measure = -438743 |

A e +

Fom e - o o Fom - Fom—— - Fom e — +
|Variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]

N o m - S T  — S - +

————————— +Primary Index Equation for Model
Constant] 4.13828429 -31908252 12.969 -0000
Vi | -.80415431 .03782416  -21.260 .0000 4.12272800
V2 | -.06923599 .01229186 -5.633 .0000 29.1829661
V3 | -10402446 .01325380 7.849 .0000 9.12329098
V4 | -.02190617 .03898707 -.562 .5742  1.41499115
V5 | -.43110692 .04356398 -9.896 .0000 2.43670581

————————— +Disturbance standard deviation
Sigma | 2.27697641 .04212836 54.049 -0000

N Al S +

| Partial derivatives of expected val. with |

| respect to the vector of characteristics. |

| They are computed at the means of the Xs. |

| Observations used for means are All Obs. |

| Conditional Mean at Sample Point -3941 |

| Scale Factor for Marginal Effects -2796 |

S +

Fom e e Fom—_— Fomm—— Fom e +

|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
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S o R TS R S TS +
Constant]| 1.15697490 .09110678 12.699 0000
V1 | -.22482418 .01048093 -21.451 0000 4.12272800
V2 | -.01935689 .00342807 -5.647 0000 29.1829661
V3 | -02908299 .00367661 7.910 0000 9.12329098
V4 | -.00612449 .01090115 -.562 5742  1.41499115
V5 | -.12052818 .01207702 -9.980 0000 2.43670581
Sigma .000000  ...... (Fixed Parameter).......
Matrix SCALED B has 6 rows and 1 columns.
1
B —
1] 1.81745
2] -.35317
3] -.03041
4] -04569
5] -.00962
6] -.18933
N = +
| Binomial Probit Model |
| Maximum Likelihood Estimates |
| Dependent variable A |
| Weighting variable None |
| Number of observations 6217 |
| Iterations completed 5 |
| Log likelihood function -3310.310 |
| Number of parameters 6 |
| Info. Criterion: AIC = 1.06685 |
| Info. Criterion: BIC = 1.07335 |
| Restricted log likelihood -3830.126 |
- +
Fommmmmem T S Fommmmeen S S T +
|variable]| Coefficient | Standard Error |b/St.Er.|P[]Z]>z]] Mean of X]
Fommmmmen o S Fommmmeen S S +
--------- +Index function for probability
Constant] 2.03641060 .15678428 12.989 .0000
V1 | -.41449474 .01860450 -22.279 .0000 4.12272800
V2 | -.03568737 -00593540 -6.013 .0000 29.1829661
V3 | -07215336 -00640693 11.262 .0000 9.12329098
V4 | -.00241124 .01891503 -.127 .8986  1.41499115
V5 | -.21212886 -02089864  -10.150 .0000 2.43670581
Ao e e +
| Limited Dependent Variable Model - TRUNCATE |
| Maximum Likelihood Estimates |
| Dependent variable YRB |
| Weighting variable None |
| Number of observations 1904 |
| Iterations completed 8 |
| Log likelihood function -2437.473 |
| Number of parameters 7 |
| Info. Criterion: AIC = 2.56772 |
| Info. Criterion: BIC = 2.58813 |
| Threshold values for the model: |
| Lower= .0000 Upper=+infinity |
| Observations after truncation 1904 |
o +
T T S S — Fom S —— - +
|Variable] Coefficient | Standard Error |b/St.Er.|P[|Z]>z]] Mean of X]
R —— T S T — Fom I +
--------- +Primary Index Equation for Model
Constant] 5.22651388 -94010948 5.559 -0000
V1 | -.45753380 -10715203 -4.270 .0000 3.65388655
V2 | -.04779763 -03766086 -1.269 .2044  30.9776786
V3 | -.25376184 .04622853 -5.489 .0000 11.6919643
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V4 | -.37961397 -12878071 -2.948

V5 | -.22780476 .13328147 -1.709
--------- +Disturbance standard deviation
Sigma | 2.38479704 .13327563 17.894

2. Two part Model.

The three estimated models appear above. The test statistic is

TEST2 = 740.610758

This is much larger than the chi squared critical value for 5 degrees of freedom. We conclude that the

-0032
.0874

-0000

participation equation (probit) is different from the intensity equation (yrb).

1.81407563
2.28308824
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Chapter 25

Models for Event Counts and Duration

Exercises

1. a. Conditional variance in the ZIP model. The essential ingredients that are needed for this derivation
are

A
E[y*] y*>0,x]=———— = E*
[y 1y > )=y s

and

Varly*| y*> 0, ]=| -— " PR R 4§ R
1-exp(-2;) exp(h;)—1 exp(};)—1

[See, e.g., Winkelmann (2003, pp. 33-34).]. We found the conditional mean in the text to be

Fiki
Elyilxi,wi] = m = F; E*

To obtain the variance, we will use the variance decomposition,
Var[yx;,w;] = E,[Var[y;|x;,z]] + Var,[E[yi[x;,z]].
The expectation of the conditional variance is

— ki
exp(h,) -1

.
E,[Varlyix;z]] = (1 —F)x0+ Fix : 1 =F; x E* x V*
1—exp(—4;)

The variance of the conditional mean is

(1F1)X£0_ ik )+F{ M5k ):Fi(l—Fi)[—xi j
I—exp(-2,;) l—exp(-L;) 1—exp(-A,) 1—exp(-L,)

= F,(l — Fi)Ei*z.

The unconditional variance is thus, F; E;* [Vi* + (1 — F}))E;*]. To obtain t; we divide by the conditional
mean, which is F; Ei*, so t; = [V;* + (1 — F))E;*]. Is this greater than E;*? Not necessarily. The figure
below plots Fi(1 — Fi)Ei*2 for F; = .9 and various values of A from .1 to about 12. There is a large range
over which the function is less than one.
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b. Partial Effects. The mean is F; E;*. We suppose that w; and x; are the same for the moment.
OEi/0x; = E;*OF;/0x; + F; OE;*/0x;.

The first term is E;*xfixy. The second term is F; OE;*/O\; ;. The missing element is
OE*/0N; = M/[1-exp(-A;)] x [1 — exp(-M)/[1-exp(-1i)].

Comnbining terms produces the marginal effects.

2. Let y* denote the unobserved random variable that is distributed as Poisson with probability

Prob(y* = j|x) = P(j) = exp(-M)A/j!.
The observed random variable before the censoring is is y = y*|y*>0. The probabilities are

Prob(y =) = PG)[1 - P(0)].
Let yc = the censored random variable. Then, yc =y fory=1,2,3,4. yc =5 when y > 5. The probabilities
associated with the observed yc are

Prob(yc = 1|x) = Prob(y = 1|x) = P(1)/[1-P(0)]

Prob(yc = 2|x) = Prob(y = 2|x) = P(2)/[1-P(0)]

Prob(yc = 3|x) = Prob(y = 3|x) = P(3)/[1-P(0)]

Prob(yc = 4|x) = Prob(y = 4|x) = P(4)/[1-P(0)]

Prob(yc = 5|x) = Prob(y = 5|x) + Prob(y = 6|x) + Prob(y = 7|x) + ...
The last term is an infinite sum. But,

Prob(y = 5/x) + Prob(y = 6|x) + Prob(y = 7|x) + ...

=1 - Prob(y = 1|x) - Prob(y = 2|x) - Prob(y = 3|x) - Prob(y = 4|x)

Therefore,

Prob(yc = 5|x) =[1-P(1) — P(2) — P(3) — P(4))/[1 — P(0)].
These are the probabilities used to construct the log likelihood function for the observed values of yc,
1,2,3,4,5.

3. The hazard function is easily obtained as h(t) = -dInS(t)/dt. For the Weibull model, InS(t) = -(At)" to the
hazard function is (Ap)(At)"™". The median survival time occurs where the survival function equals .5.
Thus,

exp(-(A)°) =5

-AM)F=In.5

()" =-In.5=1n2

P*In(A) +PInt=Inln2

Plnt=Inln2-P InA

Int=(1/P)[In In 2 — P InA]

t = exp[(1/P)[InIn2-P InA].
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Applications

.J:_a

Application 25.1

N )

Namelist ;X = age,educ,hhninc,hsat $

Poisson ; Lhs = HospVis ; Rhs = One,X
; Marginal effects $
Calc ; Lp = logl $
Regress ; Lhs = HospVis ; Rhs = One,X $
Negbin ; Lhs = HospVis ; Rhs = One,X
; Marginal effects $
Calc ; Ln = logl $
Calc ; List ; LRstat = 2*(In - Ip) $

o)

? Application 25.2
Sample ; AlIl $
Regress ; Lhs = one ; Rhs = one ; Str = ID ; Panel $
Poisson ; Lhs = HospVis ; Rhs = One,X

; Marginal effects

; Pds = Groupti $
Poisson ; Lhs = HospVis ; Rhs = One,X

; Marginal effects

; Pds = Groupti ; Random $
ey +
| Poisson Regression |
| Maximum Likelihood Estimates |
| Dependent variable HOSPVIS |
| Weighting variable None |
| Number of observations 27326 |
| Iterations completed 9 |
| Log likelihood function -12636.40 |
| Number of parameters 5 |
| Info. Criterion: AIC = -92523 |
| Info. Criterion: BIC = -92673 |
| Restricted log likelihood -13433.21 |
e +
o - +

Poisson Regression

| I
| Chi- squared =124476.35621 RsqgP= .1947 |
| G - squared = 20025.66932 RsqD= .0737 |
| Overdispersion tests: g=mu(i) =: 5.279 |
| Overdispersion tests: g=mu(i)”2: 5.468 |
s +
Fom o o Fom Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +
Constant] -12613692 -12567036 1.004 3155
AGE | -.00340754 -00149685 -2.276 .0228  43.5256898
EDUC | -.05295428 .00834958 -6.342 0000 11.3206310
HHNINC | -39889043 .08982355 4.441 0000 -35208362
HSAT | -.24901310 .00634000 -39.277 0000 6.78542607
s S S +

Partial derivatives of expected val. with |
respect to the vector of characteristics. |
Effects are averaged over individuals. |
Observations used for means are All Obs. |
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| Conditional Mean at Sample Point -1383 |

| Scale Factor for Marginal Effects .1383 |

I .. +

Fom o o Fom Fomm—_— Fom e +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]

Fom e o Fom Fom—— Fom e — +
Constant] .01743926 .02183573 -799 4245

AGE | -.00047111 -00025979 -1.813 .0698  43.5256898
EDUC | -.00732128 .00149415 -4.900 0000 11.3206310
HHNINC | -05514924 -01579375 3.492 0005 -35208362
HSAT | -.03442771 .00220148 -15.638 .0000 6.78542607

S +

| Ordinary least squares regression |

| LHS=HOSPVIS Mean = -1382566 |

| Standard deviation = -8843390 |

| WTS=none Number of observs. = 27326 |

| Model size Parameters = 5 |

| Degrees of freedom = 27321 |

| Residuals Sum of squares = 21121.96 |

| Standard error of e = -8792630 |

| Fit R-squared = -1159150E-01 |

| Adjusted R-squared = -1144679E-01 |

| Model test F[ 4, 27321] (prob) = 80.10 (-0000) |

A e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]

S R ——— [ TSy —— TR RS S —— [ T —— Y ——— [ T —— +
Constant]| -49839670 -04097910 12.162 0000
AGE | -.00064393 -00048945 -1.316 1883  43.5256898
EDUC | -.00619390 .00241633 -2.563 0104 11.3206310
HHNINC | -04936160 .03122845 1.581 1140 -35208362
HSAT | -.04117251 .00240443  -17.124 0000 6.78542607

R S +

| Negative Binomial Regression |

| Dependent variable HOSPVIS |

| Number of observations 27326 |

| Iterations completed 9 |

| Log likelihood function -10044 .46 |

| Number of parameters 6 |

| Info. Criterion: AIC = .73560 |

| Info. Criterion: BIC = .73740 |

| Restricted log likelihood -12636.40 |

A e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]

N o m - S T  — S - +
Constant]| -10394982 -12631220 .823 4105
AGE | -.00369348 .00143149 -2.580 .0099 43.5256898
EDUC | -.05795593 .00826247 -7.014 0000 11.3206310
HHNINC | -38542430 .09259876 4.162 0000 -35208362
HSAT | -.23323713 .00651715 -35.788 0000 6.78542607

--------- +Dispersion parameter for count data model
Alpha | 6.70461029 .17537071 38.231 0000

N B B Sl . +

| Partial derivatives of expected val. with |

| respect to the vector of characteristics. |

| Effects are averaged over individuals. |

| Observations used for means are All Obs. |

| Conditional Mean at Sample Point -1367 |

| Scale Factor for Marginal Effects -1367 |

e S S +

Fom e e Fom Fom Fom e +

|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
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S o R TS R S TS +
Constant]| .01421398 .02120646 -670 .5027

AGE | -.00050504 .00024071 -2.098 .0359 43.5256898
EDUC | -.00792483 .00146645 -5.404 0000 11.3206310
HHNINC | .05270247 .01588312 3.318 0009 -35208362
HSAT | -.03189257 .00226820 -14.061 0000 6.78542607

e e e +

| Listed Calculator Results |

e +

LRSTAT =  5183.862874

2

A e +

| Panel Model with Group Effects |

| Dependent variable HOSPVIS |

| Weighting variable None |

| Number of observations 27326 |

| Log likelihood function -4198.145 |

| Number of parameters 4 |

| Info. Criterion: AIC = -30756 |

| Info. Criterion: BIC = -30876 |

| Unbalanced panel has 7293 individuals. |

| Missing or sumY=0, Skipped 5640 groups. |

| Poisson Regression -- Fixed Effects |

o +

Fommm e I T T T Fomm e Fom Fomm Fomm e +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
Fom o e Fom Fomm—— Fom e +
AGE | -.00020613 -00705126 -.029 9767  43.5256898
EDUC | -.04033708 .09220144 -.437 .6618  11.3206310
HHNINC | .49927712 .18484588 2.701 .0069 -35208362
HSAT | -.16686419 .01027579  -16.239 0000 6.78542607
N R +

| Partial derivatives of expected val. with |

| respect to the vector of characteristics. |

| They are computed at the means of the Xs. |

| Observations used for means are All Obs. |

| Conditional Mean at Sample Point .1383 |

| Scale Factor for Marginal Effects -1383 |
gy gy Sy S S S +

Fom o e Fom Fom—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
Fom e e Fom Fom—— Fom e +
AGE | -.284995D-04 -00097488 -.029 9767  1.00000000
EDUC | -.00557687 .01274746 -.437 .6618  43.5256898
HHNINC | -06902836 -02555616 2.701 .0069  11.3206310
HSAT | -.02307008 .00142070 -16.239 0000 -35208362
R S +

| Panel Model with Group Effects |

| Dependent variable HOSPVIS |

| Number of observations 27326 |

| Log likelihood function -10200.91 |

| Number of parameters 6 |

| Info. Criterion: AIC = .74705 |

| Info. Criterion: BIC = .74885 |

| Unbalanced panel has 7293 individuals. |

| Poisson Regression -- Random Effects |

A e +

Fom e - o o Fom - Fom—— - Fom e — +
|variable] Coefficient | Standard Error |b/St._Er.|P[|Z]>z]] Mean of X]
Fom e - o o Fom - Fom—— - Fom e — +
Constant] -.22178663 -13617622 -1.629 .1034

AGE | -.00170639 -00145901 -1.170 .2422  43.5256898
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EDUC | -.05399730 .01001912 -5.389 .0000 11.3206310
HHNINC | -40499179 .06938275 5.837 -0000 -35208362
HSAT | -.20075292 .00400154  -50.169 .0000 6.78542607
Alpha | 3.59227655 -11685254 30.742 -0000
e +
| Partial derivatives of expected val. with |
| respect to the vector of characteristics. |
| They are computed at the means of the Xs. |
| Observations used for means are All Obs. |
| Conditional Mean at Sample Point -1383 |
| Scale Factor for Marginal Effects .1383 |
e +
Fom e e Fom Fomm—— T, +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
Fom o o Fom Fom e —— Fom e +
Constant] -.03066347 .01882726 -1.629 1034
AGE | -.00023592 .00020172 -1.170 .2422  43.5256898
EDUC | -.00746548 .00138521 -5.389 0000 11.3206310
HHNINC | .05599279 -00959262 5.837 0000 -35208362
HSAT | -.02775542 .00055324  -50.169 0000 6.78542607
3. Ship Accidents
Create ; logmth = log(months) $
Name ; X=logmth,one,ta,tb,tc,td,t6064,t6569,t7074,06074%
Reject ; acc < 0 $%
Pois ; lhs = acc ; Rhs = x $
Pois ; lhs = acc ; Rhs = x ; Rst = 1,9 b $
Negb ; lhs = acc ; Rhs = x ; Rst = 1,9 b,alpha $
- +
| Poisson Regression |
| Dependent variable ACC |
| Number of observations 34 |
| Log likelihood function -67.99930 |
| Number of parameters 10 |
| Info. Criterion: AIC = 4.58819 |
| Info. Criterion: BIC = 5.03712 |
| Restricted log likelihood -356.2029 |
- +
. ____ +
| Poisson Regression |
| Chi- squared = 39.70580 RsgP= -9491 |
| G - squared = 38.13211 Rsqgb= -9380 |
| Overdispersion tests: g=mu(i) : -853 |
| Overdispersion tests: g=mu(i)”2: -.760 |
. ____ +
o ——— T . o o ——— B T - +
|variable] Coefficient | Standard Error |b/St_Er.|P[|Z]>z]] Mean of X]
e ——— T T e ——— o B T - +
LOGMTH | .90617018 .10174566 8.906 0000  7.04925451
Constant]| -4.61752968 . 72938865 -6.331 0000
TA | -.26966656 .24189066 -1.115 2649 -20588235
B | -.62826604 .32582681 -1.928 0538 -20588235
TC | -1.03179604 -34039236 -3.031 0024 -20588235
TD | -.40106977 .30540945 -1.313 .1891 -20588235
T6064 | -.36146212 .24726698 -1.462 1438 .23529412
T6569 | -30035782 .21325393 1.408 1590 -29411765
T7074 | .39874282 .20053445 1.988 .0468 -29411765
06074 | -.36986273 .11821010 -3.129 .0018 -41176471
e +
| Poisson Regression |
| Maximum Likelihood Estimates |
| Dependent variable ACC |
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Number of observations 34

| |
| Log likelihood function -68.41456 |
| Number of parameters 9 |
| Info. Criterion: AIC = 4 .55380 |
| Info. Criterion: BIC = 4.95783 |
| Restricted log likelihood -356.2029 |
S B i A i +
R S +
| Poisson Regression |
| Chi- squared = 42.44145 RsqP= -9456 |
| G - squared = 38.96262 RsqD= -9366 |
| Overdispersion tests: g=mu(i) : -934 |
| Overdispersion tests: g=mu(i)”2: -.613 |
S S S +
Fom o o Fom Fom e —— Fom e +
|variable]| Coefficient | Standard Error |b/St.Er.|PL|Z]>z]] Mean of X]
Fom—_— e e Fom—_— Fomm—— Fom e +
LOGMTH | 1.00000000  ...... (Fixed Parameter).......
Constant]| -5.25351861 .24642858  -21.319 0000
TA | -.32052881 .23575203 -1.360 1740 -20588235
TB | -.86524026 -19852119 -4.358 0000 -20588235
TC | -1.00929327 -33950071 -2.973 0030 -20588235
TD | -.39483795 -30680184 -1.287 1981 -20588235
T6064 | -.44497064 .23323916 -1.908 0564 .23529412
T6569 | -25087485 -20875483 1.202 2295 -29411765
T7074 | .37248476 -19930193 1.869 .0616 -29411765
06074 | -.38385913 -11826046 -3.246 .0012 -41176471

There is no evidence of overdispersion.

essentially zero.

The tests from the Poisson model
both insignificant, and the estimate of o in the negative binomial model

e +

| Negative Binomial Regression |

| Dependent variable ACC |

| Weighting variable None |

| Number of observations 34 |

| Log likelihood function -68.42007 |

| Number of parameters 10 |

| Info. Criterion: AIC = 4.61295 |

| Finite Sample: AIC = 4.89428 |

| Info. Criterion: BIC = 5.06188 |

| Info. Criterion:HQIC = 4.76604 |

| NegBin form 2; Psi(i) = theta |
R +
Fom e e Fom—_— Fomm—— Fom e +
|variable] Coefficient | Standard Error |b/St_Er._|P[|Z]>z]] Mean of X]
Fom o o Fom Fomm—— Fom e +
LOGMTH | 1.00000000  ...... (Fixed Parameter).......

Constant]| -5.25074235 .26830333 -19.570 0000

TA | -.32296435 -39695609 -.814 4159 -20588235
B | -.86731524 .20092395 -4_317 0000 -20588235
TC | -1.01171406 .24980570 -4_050 .0001 -20588235
TD | -.39875463 .23889734 -1.669 .0951 -20588235
T6064 | -.44585250 -31679943 -1.407 1593 .23529412
T6569 | .25060358 .27552926 -910 .3631 -29411765
T7074 | .37073607 -25504806 1.454 .1461 -29411765
06074 | -.38364155 -15800844 -2.428 .0152 -41176471
————————— +Dispersion parameter for count data model

Alpha | .648724D-04 -02406424 -003 9978

are
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4. Strikes. There are 9 years of data. The number of strikes is 8,6,11,3,3,2,19,2,9. The Poisson regression
is shown below. It does appear that the number of strikes is significantly related to the PROD variable.
However, with only 9 observations, use of the asymptotic distribution for the test is probably overly
optimistic. The result is probably borderline.

- +

| Poisson Regression |

| Dependent variable _GROUPTI |

| Weighting variable None |

| Number of observations 9 |

| Log likelihood function -28.99317 |

| Number of parameters 2 |

| Info. Criterion: AIC = 6.88737 |

| Info. Criterion: BIC = 6.93120 |

| Restricted log likelihood -31.19884 |

o +
e +

| Poisson Regression |

| Chi- squared = 25.08061 RsqgP= .2317 |

| G - squared = 26.13767 RsqD= -1444 |

| Overdispersion tests: g=mu(i) : 1.954 |

| Overdispersion tests: g=mu(i)”2: 2.618 |

o +

o o Ry Fomm o Fom e +
|variable| Coefficient | Standard Error |b/St.Er.|P[]|Z]>z]] Mean of X]
o o R Fomm o o +
Constant]| 1.90854253 -12998621 14.683 .0000

PROD | 5.16576744 2.51306610 2.056 .0398  -.00302000
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