
Appendix A  
 

Matrix Algebra 
 

1.  For the matrices  A =  and B =  compute AB, A′B′, and BA. 
2 4
1 5
6 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 3 3
2 4 1
⎡
⎣⎢

⎤
⎦⎥

AB = ,  BA = ,  A′B′  =  (BA)′  = . 
23 25
14 30
⎡
⎣⎢

⎤
⎦⎥

10 22 10
11 23 8
10 26 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 11 10
22 23 26
10 8 20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
2.  Prove that tr(AB) = tr(BA) where A and B are any two matrices that are conformable for both 
multiplications.  They need not be square. 
 The ith diagonal element of AB is .  Summing over i produces tr(AB) = .  

The jth diagonal element of BA is .  Summing over i produces tr(BA) = .  

aijb jij∑ aijb jiii ∑∑

b ji aijj∑ b ji aijji ∑∑

3.   Prove that tr(A′A) = .   aijji
2∑∑

 The jth diagonal element of A′A is the inner product of the jth column of A, or   Summing 

over j produces tr(A′A)  =  .   

aiji
2 .∑

aijij aijji
2 2∑∑ = ∑∑

 
4.  Expand the matrix product X = {[AB + (CD)′][(EF)-1 + GH]}′.  Assume that all matrices are square and E 
and F are nonsingular. 
 In parts, (CD)′ = D′C′ and (EF)-1 = F-1E-1.  Then, the product is  
 {[AB + (CD)′][(EF)-1 + GH]}′   =  (ABF-1E-1 + ABGH + D′C′F-1E-1 + D′C′GH)′ 
     =  (E-1)′(F-1)′B′A′ + H′G′B′A′ + (E-1)′(F-1)′CD + H′G′CD.  �  
 
5.  Prove for that for K×1 column vectors, xi i = 1,...,n, and some nonzero vector, a,  

( )( ) ( )( )1
' 'n

i ii
n

=
′− − = + − −∑ 0x a x a X M X x a x a . 

 Write xi - a as [( x -i x ) + ( x - a)].  Then, the sum is 

i

n

=∑ 1
[( xi - x ) + ( x - a)] [(xi - x ) + ( x - a)]′  =   

  ( xi -i

n

=∑ 1
x )( xi - x )′ + (

i

n

=∑ 1
x  - a) ( x - a)′ 

    + ( xi -i

n

=∑ 1
x )( x  - a)′ +  (

i

n

=∑ 1
x  - a) (xi - x )′ 

Since ( x - a) is a vector of constants, it may be moved out of the summations. Thus, the fourth term is  

( x - a)  (xi -i

n

=∑ 1
x )′  =  0.  The third term is likewise.  The first term is X′M0X by the definition while the 

second is n( x - a) ( x - a)′.    
 
6.  Let A be any square matrix whose columns are [a1,a2,...,aM] and let B be any rearrangement of the columns 
of the M×M identity matrix.  What operation is performed by the multiplication AB?  What about BA? 
 B is called a permutation matrix.  Each column of B, say, bi, is a column of an identity matrix.  The 
jth column of the matrix product AB is A bi which is the jth column of A.  Therefore, post multiplication of A 
by B simply rearranges (permutes) the columns of A (hence the name).  Each row of the product BA is one of 
the rows of A, so the product BA is a rearrangement of the rows of A.  Of course, A need not be square for us 
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to permute its rows or columns.  If not, the applicable permutation matrix will be of different orders for the 
rows and columns.    

7.  Consider the 3×3 case of the matrix B in Exercise 6.  For example,    B   =    Compute B2 and 

B3.  Repeat for a 4×4 matrix.  Can you generalize your finding? 

0 0 1
0 1 0
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    B2  =  B3  =  . 
0 0 1
1 0 0
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Since each power of B is a rearrangement of I, some power of B will equal I.  If n is this power, we also find, 
therefore, that Bn-1 = B-1.  This will hold generally.   
 

8.  Calculate |A|, tr(A) and A-1 for A = . 
1 4 7
3 2 5
5 2 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  |A| =  1(2)(8)+4(5)(5)+3(2)(7)-5(2)(7)-1(5)(2)-3(4)(8) = -18, 
  tr(A) =  1 + 2 + 8 = 11 

 A-1 = − −

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
18

2 5
2 8

4 7
2 8

3 5
5 8

1 7
5 8

1 7
3 5

3 2
5 2

1 4
5 2

1 4
3 2

det det det

det det

det det det

4 7
2 5

  det

 

 = .     
− −
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

6 18 18 18 6 18
1 18 27 18 16 18

4 18 18 18 10 18

/ / /
/ / /

/ / /

 

9.   Obtain the Cholesky decomposition of the matrix  A  =  
25 7
7 13

⎡
⎣⎢

⎤
⎦⎥
.

 Recall that the Cholesky decomposition of a matrix, A, is the matrix product LU = A where L is a 

lower triangular matrix and U = L′.  Write the decomposition as  =    By 

direct multiplication, 25 =   so  λ11 = 5.  Then, λ11λ21= 7, so λ21 = 7/5 = 1.4.  Finally,  = 13, so 
λ22 = 3.322.    

25 7
7 13

⎡

⎣⎢
⎤

⎦⎥
.

λ
λ λ

11

21 22

0⎡

⎣
⎢

⎤

⎦
⎥.

λ λ
λ

11 21

220
⎡

⎣
⎢

⎤

⎦
⎥.

λ11
2 λ λ21

2
22
2+

 
10.  A symmetric positive definite matrix, A, can also be written as A = UL, where U is an upper triangular 
matrix and L = U′.  This is not the Cholesky decomposition, however. Obtain this decomposition of the matrix 
in Exercise 9. 

 Using the same logic as in the previous problem,   =    Working 

from the bottom up, 

25 7
7 13

⎡
⎣⎢

⎤
⎦⎥
.

μ μ
μ

11 12

220
⎡

⎣
⎢

⎤

⎦
⎥.

μ
μ μ

11

12 22

0⎡

⎣
⎢

⎤

⎦
⎥.

μ 22 13=  = 3.606.  Then, 7 = μ12μ22 so μ12 = 7/ 13  = 1.941.  Finally, 25 =  

 so  = 25 - 49/13 = 21.23, or μ11 = 4.61.    μ μ11
2

12
2+ μ11

2

 
11.  What operation is performed by postmultiplying a matrix by a diagonal matrix?  What about 
premultiplication? 
 The columns are multiplied by the corresponding diagonal element.  Premultiplication multiplies the 
rows by the corresponding diagonal element.    
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12.  Are the following quadratic forms positive for all values of x?  
 (a)   y = x x  x x1

2
1 2 2

228 11− + ( ),

 (b)   y = 5 7  4 6 81
2

2
2

3
2

1 2 1 3 2 3x x x x x x x x x+ + + + + ?

 The first may be written [ ] .  The determinant of the matrix is 121 - 196 

= -75, so it is not positive definite.  Thus, the first quadratic form need not be positive.  The second uses the 

matrix .  There are several ways to check the definiteness of a matrix.  One way is to check the 

signs of the principal minors, which must be positive.  The first two are 5 and 5(1)-2(2)=1, but the third, the 
determinant, is -34.  Therefore, the matrix is not positive definite.  Its three characteristic roots are 11.1, 2.9, 
and -1. It follows, therefore, that there are values of , , and for which the quadratic form is negative.   

x x
x
x1 2

1 14
14 11

1
2

  
−

−
⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5 2 3
2 1 4
3 4 7

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x1 x2 x3

 
13.   Prove that tr(A⊗B) = tr(A)tr(B). 
  The jth diagonal block of the product is ajjB.  Its ith diagonal element is ajjbii.  If we sum in the jth 
block, we obtain  = a .  Summing down the diagonal blocks gives the trace, = 

tr(A)tr(B).   

a bjj iii∑ bjj iii∑ a bjj iiij ∑∑

 
14.  A matrix, A, is nilpotent if = 0.  Prove that a necessary and sufficient condition for a symmetric 

matrix to be nilpotent is that all of its characteristic roots be less than one in absolute value.    

lim
k

k

→∞
A

 Use the spectral decomposition to write A as CΛC′ where Λ is the diagonal matrix of characteristic 
roots.  Then, the Kth power of A is CΛKC′.  Sufficiency is obvious. Also, since if some λ is greater than one, 
ΛK must explode, the condition is necessary as well.  
 

15.  Compute the characteristic roots of  A =  . 
2 4 3
4 8 6
3 6 5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 The roots are determined by |A - λ I| = 0.  For the matrix above, this is 
 |A - λI|  = (2-λ)(8-λ)(5-λ) + 72 + 72 - 9(8-λ) - 36(2-λ) - 16(5-λ) 
                    =  -λ3 + 15λ2 - 5λ  =  -λ (λ2- 15λ + 5) = 0. 
One solution is obviously zero.  (This might have been apparent.  The second column of the matrix is twice 
the first, so it has rank no more than two, and therefore no more than two nonzero roots.)  The other two roots 
are (15 205 2± /)

)

) iji

 = .341 and 4.659.    

 
16.  Suppose A = A(z) where z is a scalar.  What is ∂x′Ax/∂z?  Now, suppose each element of x is also a 
function of z.   Once again, what is ∂x′Ax/∂z? 
 The quadratic form is , so  x x ai j ijji∑∑
              ∂x′A(z)x/∂z = = x′(∂A(z)/∂z)x where ∂A(z)/∂z is a matrix of partial derivatives. x x a zi j ijji

( /∂ ∂∑∑
Now, if each element of x is also a function of z, then, 

∂x′Ax/∂z = + x x a zi j ijji
( /∂ ∂∑∑ ( / )∂ ∂x z x ai j j∑∑  + x x z ai j ijji ( / )∂ ∂∑∑  

          = x′(∂A(z)/∂z)x +  (∂x(z)/∂z)′A(z)x(z) + x(z)′A(z)(∂x(z)/∂z) 
If A is symmetric, this simplifies a bit to x′(∂A(z)/∂z)x + 2(∂x(z)/∂z)′A(z)x(z).   
 
17.  Show that the solutions to the determinantal equations   |B - λA| = 0 and |A-1B - λI| = 0   are the same.  
How do the solutions to this equation relate to those of the equation |B-1A - μI| = 0?    
 Since A is assumed to be nonsingular, we may write 
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   B - λA  =  A(A B - λI).  Then,  |B - λA|  =  |A|×|A-1B - λI|. −1

 The determinant of A is nonzero if A is nonsingular, so the solutions to the two determinantal equations must 
be the same. B-1A is the inverse of A-1B, so its characteristic roots must be the reciprocals of those of A-1B.  
There might seem to be a problem here since  these two matrices need not be symmetric, so the roots could be 
complex.  But, for the application noted, both A and B are symmetric and positive definite.  As such, it can be 
shown  tat the solution is the same as that of a third determinantal equation involving a symmetric matrix.    
 
18.  Using the matrix A in Exercise 9, find the vector x that minimizes y = x′Ax + 2x1 + 3x2 - 10.  What is the 
value of y at the minimum?  Now, minimize y subject to the constraint x1 + x2 = 1.  Compare the two 
solutions. 
 The solution which minimizes y = x′Ax + b′x + d will satisfy ∂y∂x = 2Ax + b = 0.  For this problem, 

A = , b = , and A-1 = , so the solution is x1 =-5/552  
25 7
7 13

⎡

⎣
⎢

⎤

⎦
⎥

2
3
⎡

⎣
⎢
⎤

⎦
⎥

13 276 7 276
7 276 25 276
/ /
/ /

−
−
⎡

⎣
⎢

⎤

⎦
⎥

= -.0090597 and x2 = -61/552 = -.110507. 
 The constrained maximization problem may be set up as a Lagrangean,  
L* = x′Ax + b′x + d + λ (c′x - 1) where c = [1,1]′.  The necessary conditions for the solution are 
   ∂L*/∂x = 2Ax + b + λc  = 0  
   ∂L*/∂λ = c′x - 1 = 0, 

or,   . 
2

0 1
A c
c

x -
'

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥   

λ
b

Inserting A, b, and c produces the solution   The solution to the three equations 

is obtained by premultiplying the vector on the right by the inverse of the matrix on the left.  The solutions are 
0.27083, 0.72917, and, -25.75.  The function value at the constrained solution is 4.240, which is larger than 
the unconstrained value of -10.00787.   

50 14 1
14 26 1
1 1 0

2
3

1

1

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  =  
x
x
λ

.

 
19.   What is the Jacobian for the following transformations?   
  y1  = x1 /x2 ,  
  lny2  = ln x1- lnx2 + lnx3, 
and  y3 = x1x2x3. 
 Let capital letters denote logarithms.  Then, the three transformations can be written as 
  Y1 = X1 - X2 
  Y2 = X1 - X2 + X3 
  Y3  = X1 + X2 +X3. 

This linear transformation is Y = .  The inverse transformation is  
1 1 0
1 1 1
1 1 1

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 X  =   JX

X =  =  .  In terms of the original variables, then, x1 = y1(y2/y3)1/2 , x2 = (y3/y2)1/2, 

and 

1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/ /
/ /  Y J Y−1

x3 = y1y2.  The matrix of partial derivatives can be obtained directly, but an algebraic shortcut will prove useful 
for obtaining the Jacobian.  Note first that  ∂xi/∂yj = (xi/yj)(∂logxi/∂logyj).  Therefore, the elements of the 
partial derivatives of the inverse transformations are obtained by multiplying the ith row by xi, where we will 
substitute the expression for xi in terms of the ys, then multiplying the jth column by (1/yj).  Thus, the result of 
Exercise 11 will be useful here.  The matrix of partial derivatives will be 
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 =   
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

x y x y x y
x y x y x y
x y x y x y

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

/ / /
/ / /
/ / /

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
x

x

1

2

3

0 0
0 0
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

/ /
/ /

1 0 0
0 1 0
0 0 1

1

2

3

/
/

/
.

y
y

y

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The determinant of the product matrix is the product of the three determinants.  The determinant of the center 
matrix is -1/2.  The determinants of the diagonal matrices are the products of the diagonal elements. 
Therefore, the Jacobian is J =  abs(|∂x/∂y′|)= ½(x1x2x3)/(y1y2y3) = 2(y1/y2) (after making the substitutions for 
xi).  
 
20.  Prove that exchanging two columns of a square matrix reverses the sign of its determinant.  (Hint: use a 
permutation matrix. See Exercise 6.) 
 Exchanging the first two columns of a matrix is equivalent to postmultiplying it by a permutation 
matrix B = [e2,e1,e3,e4,...] where ei is the ith column of an identity matrix.  Thus, the determinant of the matrix 
is |AB| = |A| |B|.  The question turns on the determinant of B. Assume that A and B have n columns. To obtain 
the determinant of B, merely expand it along the first row. The only nonzero term in the determinant is (-1)|In-

1 | = -1, where In-1 is the (n-1) (n-1) identity matrix.  This completes the proof.  ×
  
21.   Suppose x=x(z) where z is a scalar.  What is ∂[(x′Ax)/(x′Bx)]/z? 
 The required derivatives are given in Exercise 16.  Let g = ∂x/∂z and let the numerator and 
denominator be a and b, respectively. Then, 
 ∂(a/b)/∂ z    =  [b(∂a/∂z) - a(∂b/∂z)]/b2 
        =  [x′Bx(2x′Ag) - x′Ax(2x′Bg)] / (x′Bx) 2=  2[x′Ax/x′Bx][x′Ag/x′Ax - x′Bg/x′Bx].  
 
22.  Suppose y is an n×1 vector and X is an n×K matrix.  The projection of y into the column space of X is 
defined in the text after equation (2-55), = Xb.  Now, consider the projection of y* = cy into the column 
space of X* = XP where c is a scalar and P is a nonsingular K

ŷ
× K matrix.  Find the projection of y* into the 

column space of X*.  Prove that the cosine of the angle between y* and its projection into the column space of 
X* is the same as that between y and its projection into the column space of X.  How do you interpret this 
result? 
 The projection of y* into the column space of X* is X*b* where b* is the solution to the set of 
equations X*′y*  =  X*′X*b*  or  P′X′(cy)  =  P′X′XPb*.  Since P is nonsingular, P′ has an inverse.  
Premultiplying the equation by (P′)-1, we have cX′y  =  X′X(Pb*)  or  X′y  =  X′X[(1/c)Pb*].  Therefore, in 
terms of the original y and X, we see that b  =  (1/c)Pb*  which implies b*  =  cP-1 b.  The projection is X*b*  =  
(XP)(cP-1b)  =  cXb.  We conclude, therefore, that the projection of y* into the column space of X* is a 
multiple c of the projection of y into the space of X.  This makes some sense, since, if P is a nonsingular 
matrix, the column space of X* is exactly the same as the same as that of X.  The cosine of the angle between 
y* and its projection is that between cy and cXb.  Of course, this is the same as that between y and Xb since 
the length of the two vectors is unrelated to the cosine of the angle between them.  Thus,  
cosθ = (cy) ′(cXb))/(||cy||×||cXb||)  =  (y′Xb))/(||y||×||Xb||).   
 

23.   For the matrix X′  = , compute P  =  X(X ′X)-1X′ and M = (I - P).  Verify that MP = 0.  

Let   Q  =   (Hint:  Show that M and P are idempotent.) 

1 1 1 1
4 2 3 5− −
⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 8
⎡

⎣
⎢

⎤

⎦
⎥

(a)  Compute the P and M based on XQ instead of X. 
(b)  What are the characteristic roots of M and P? 

 First,  X′X  =  , (X ′X)-1 =  ,  
4 0
0 54
⎡

⎣
⎢

⎤

⎦
⎥

1 4 0
0 1 54
/

/
⎡

⎣
⎢

⎤

⎦
⎥
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X(X ′X)-1X ′ =   =  

1 4
1 2
1 3
1 5

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 4 0
0 1 54
/

/
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1 1
4 2 3 5− −
⎡

⎣
⎢

⎤

⎦
⎥

1
108

59 11 51 13
11 35 15 47
51 15 45 3
13 47 3 77

−

−
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  =  P 

 M  =  I - P  = 1
108

49 11 51 13
11 73 15 47
51 15 63 3

13 47 3 31

− −
− −
− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
 

 (a)  There is no need to recompute the matrices M and P for XQ, they are the same.  Proof:  The 
counterpart to P is (XQ)[(XQ) ′(XQ)]-1(XQ) ′ = XQ[Q ′X ′XQ]-1Q ′X ′ =  
XQQ-1(X ′X)-1(Q ′)-1Q ′X ′ = X(X′X)-1X ′.  The M matrix would be the same as well.  This is an application 
of the result found in the previous exercise.  The P matrix is the projection matrix, and, as we found, the 
projection into the space of X is the same as the projection into the space of XQ. 
 (b)  Since M and P are idempotent, their characteristic roots must all be either 0 or 1.  The trace of 
the matrix equals the sum of the roots, which tells how many are 1 and 0.  For the matrices above, the traces of 
both M and P are 2, so each has 2 unit roots and 2 zero roots.   
 
24.  Suppose that A is an n×n matrix of the form A = (1-ρI) + ρii′, where i is a column of 1s and 0 < ρ < 1.  
Write out the format of A explicitly for n = 4.  Find all of the characteristic roots and vectors of A.  (Hint: 
There are only two distinct characteristic roots, which occur with multiplicity 1 and n-1.  Every c of a certain 
type is a characteristic vector of A.)  For an application which uses a matrix of this type, see Section 14.5 on 
the random effects model. 

 For n = 4, A =  .  There are several ways to analyze this matrix.  Here is a simple 

shortcut. The characteristic roots and vectors satisfy [(1-ρ)I + ρii′]c  =  λc.  Multiply this out to obtain 

1
1

1
1

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(1-ρ)c + ρii′c = λc or ρii′c = [λ- (1-ρ)]c.  Let μ= λ - (1-ρ), so ρii′c=μc.  We need only find the characteristic 
roots of ρii′,μ.  The  characteristic roots of the original matrix are just λ = μ + (1-ρ).   Now, ρii′ is a matrix 
with rank one, since every column is identical.  Therefore, n-1 of the μs are zero.  Thus, the original matrix 
has n-1 roots equal to 0 + (1-ρ) = (1 -ρ).  We can find the remaining root by noting that the sum of the roots of 
ρii′ equals the trace of ρii′.  Since ρii′ has only one nonzero root, that root is the trace, which is nρ.  Thus, the 
remaining root of the original matrix is (1 - ρ+ nρ).  The characteristic vectors satisfy the equation  ρii′c  =  
μc.  For the nonzero root, we have ρii′c  =  nρc.  Divide by nρ to obtain  i(1/n)i′c  =  c.  This equation states 
that for each element in the vector, ci  =  (1/n) cii∑ .   This implies that every element in the characteristic 

vector corresponding to the root (1-ρ+nρ) is the same, or c is a multiple of a column of ones.  In particular, so 
that it will have unit length, the vector is ( / )1 n i.  For the remaining zero roots, the characteristic vectors 
must satisfy ρi(i′c)  =  0c = 0.  If the characteristic vector is not to be a column of zeroes, the only way to 
make this an equality is to require i′c to be zero.  Therefore, for the remaining n-1 characteristic vectors, we 
may use any set of orthogonal vectors whose elements sum to zero and whose inner products are one.  There 
are an infinite number of such vectors.  For example, let D be any arbitrary set of n-1 vectors containing n 
elements.  Transform all columns of D into deviations from their own column means.  Thus, we let F  =  M0D 
where M0 is defined in Section 2.3.6.  Now, let C  =  F(F′F)-2.  C is a linear combination of the columns of F, 
so its columns sum to zero.  By multiplying it out and using the results of Section 2.7.10, you will find that 
C′C = I, so the columns are orthogonal and have unit length.    
 

 160



25.  Find the inverse of the matrix in Exercise 24. [Hint:  Use (A-66).] 
 Using the hint, the inverse is 

 
( ) ( )[( ) ] [( ) ] [ ' ][( ) ]

'[( ) ]
{ [ / ( )] '1 1 1

1 1
1

1
11

1 1

1
−

− −

+ − −
− +−

− −

−
ρ

ρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρI I ii I

i I i
I i  -     =    -  n }i  

 
26.  Prove that every matrix in the sequence of matrices Hi+1  =  Hi  +  didi′, where H0 = I, is positive definite.   
For an extension, prove that every matrix in the sequence of matrices in (E-22) is positive definite if H0 = I. 
 By repeated substitution, we find Hi+1  =  I + .  A quadratic form in Hi+1 is, therefore d dj jj

i '
=∑ 1

  x′Hi+1x =  x′x  +    = x′x  +   (x d )(d x)' 'j jj
i
=∑ 1 (x d )2' jj

i
=∑ 1

This is obviously positive for all x.  A simple way to establish this for the matrix in (E-22) is to note that in 
spite of its complexity, it is of the form  Hi+1  =  Hi  +  didi′  +  fifi′.  If this starts with a positive definite 
matrix, such as I, then the identical argument establishes its positive definiteness.  
 

27.  What is the inverse matrix of   P  =  ?  What are the characteristic roots of P? 
cos( ) sin( )
sin( ) cos( )

x x
x x−

⎡

⎣
⎢

⎤

⎦
⎥

 The determinant of P is cos2(x) + sin2(x) = 1, so the inverse just reverses the signs of the two off 
diagonal elements. The two roots are the solutions to |P-λI| = 0, which is cos2(x) + sin2(x) - 2λcos(x) + λ2 = 0.  
This simplifies because cos2(x) + sin2(x) = 1.  Using the quadratic formula, then, λ=  cos(x)  (cos2(x) - 1)1/2.  
But, cos2(x) - 1 = -sin2(x).  Therefore, the imaginary solutions to the resulting quadratic are λ1,λ2 = cos(x) ± 
isin(x).   

±

 
28.  Derive the off diagonal block of A-1 in Section B.6.4. 
 For the simple 2×2 case, F2 is derived explicitly in the text, as F2 = (x′M0x)-1  = 21/ ( )ii

x x−∑ . 

Using (2-74), the off diagonal element is just F2( xii∑ )/n  =  2/ ( )ii
x x x−∑ .  To extend this to a matrix 

containing a constant and K-1 variables, use the result at the end of the section.  The off diagonal vector in A-1 
when there is a constant and K-1 other variables is -F2A21(A11)-1  =  [X′M0X]-1 x   .  In all cases, A11 is just n, 
so (A11)-1 is 1/n.   
 
29.  (This requires a computer.)  For the X′X matrix at the end of Section 2.4.1, 
 (a)  Compute the characteristic roots of X′X. 
 (b)  Compute the condition number of X′X.  (Do not forget to scale the columns of the matrix so that 
            the diagonal elements are 1.) 

 The matrix is   

15000 120 00 19 310 11179 99 770
120 00 1240 0 164 30 10359 87560
19 310 164 30 25218 148 98 13122
11179 10359 148 98 94386 799 02
99 770 87560 13122 799 02 716 67

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Its characteristic roots are 2486, 72.96, 19.55, 2.027, and .007354.  To compute the condition number, we first 
extract D = diag(15,1240,25.218,943.86,716.67).  To scale the matrix, we compute V  =  D-2X′XD-2. 

The resulting matrix is . 

1 8798823 992845 939515 962265
879883 1 929119 957532 928828
992845 929119 1 965648 976079
939515 957532 965648 1 971503
962265 928828 976079 971503 1

. . . .
. . .
. . . .
. . . .
. . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

The characteristic roots of this matrix are 4.801, .1389, .03716, .02183, and .0003527.  The square root of the 
largest divided by the smallest is 116.675.  These data are highly collinear by this measure. 
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Appendix B 
 

Probability and Distribution Theory 
 
1.  How many different 5 card poker hands can be dealt from a deck of 52 cards? 

 There are = (52×51×51...×1)/[(5×4×3×2×1)(47×46×...×1)] = 2,598,960 possible hands.  � 
52
5

⎛
⎝
⎜

⎞
⎠
⎟

 
2.  Compute the probability of being dealt 4 of a kind in a poker hand. 
 There are 48(13) possible hands containing 4 of a kind and any of the remaining 48 cards.  Thus, 
given the answer to the previous problem, the probability of being dealt one of these hands is 48(13)/2598960 
=.00024, or less than one chance in 4000.    
 
3.  Suppose a lottery ticket costs $1 per play.  The game is played by drawing 6 numbers without replacement 
from the numbers 1 to 48. If you guess all six numbers, you win the prize.  Now, suppose that N = the number 
of tickets sold and P = the size of the prize.  N and P are related by 
     N  =  5  +  1.2P 
     P  =  1  +   .4N 
N and P are in millions.  What is the expected value of a ticket in this game? (Don't forget that you might have 
to share the prize with other winners.) 
 The size of the prize and number of tickets sold are jointly determined.  The solutions to the two 
equations are N = 11.92 million tickets and P = $5.77 million.  The number of possible combinations of 48 

numbers without replacement is = (48×47×46...×1)/[(6×5×4×3×2×1)(42×41×...×1)] = 12,271,512 so the 

probability of making the right choice is 1/12271512 = .000000081.  The expected number of winners is the 
expected value of a binomial random variable with N trials and this success probability, which is N times the 
probability, or 11.92/12.27 = .97, or roughly 1.  Thus, one would not expect to have to share the prize.  Now, 
the expected value of a ticket is  Prob[win](5.77 million - 1) + Prob[lose](-1) . -53 cents.  

48
6

⎛
⎝
⎜

⎞
⎠
⎟

 
4.  If x has a normal distribution with mean 1 and standard deviation 3, what are 
 (a)  Prob[|x| > 2]. 
 (b)  Prob[x > -1 | x < 1.5]. 
 Using the normal table, 
 (a)  Prob[|x| > 2]   = 1 - Prob[|x| < 2]  
                           = 1 - Prob[-2 < x < 2] 
     = 1 - Prob[(-2-1)/3 < z < (2-1)/3] 
    = 1 - [F(1/3) - F(-1)] = 1 - .6306 + .1587 = .5281 
 (b)  Prob[x > -1 | x < 1.5]   =  Prob[-1 < x < 1.5] / Prob[x < 1.5] 
        Prob[-1 < x < 1.5]  =  Prob[(-1-1)/3 < z < (1.5-1)/3)] 
          =  Prob[z < 1/6] - Prob[z < -2/3] 
          = .5662 - .2525 = .3137. 
The conditional probability is .3137/.5662 = .5540.   
 
5.  Approximately what is the probability that a random variable with chi-squared distribution with 264 
degrees of freedom is less than 297?  
 We use the approximation in (3-37), z = [2(297)]2 - [2(264) - 1]2  =  1.4155, so the probability is 
approximately .9215.  To six digits, the approximation is .921539 while the correct value is .921559.  
 
6.  Chebychev Inequality  For the following two probability distributions, find the lower limit of the 
probability of the indicated event using the Chebychev inequality and the exact probability using the 
appropriate table: 
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 (a)  x ~ Normal[0,32], and -4 < x < 4. 
 (b)  x ~ chi-squared, 8 degrees of freedom, 0 < x < 16. 
 The inequality given in (3-18) states that Prob[|x - μ| < kσ] > 1 - 1/k2.  Note that the result is not 
informative if k is less than or equal to 1. 
 (a)  The range is 4/3 standard deviations, so the lower limit is 1 - (3/4)2 or 7/16 = .4375.  From the 
standard normal table, the actual probability is 1 - 2Prob[z < -4/3] = .8175. 
 (b)  The mean of the distribution is 8 and the standard deviation is 4.  The range is, therefore, μ ± 2σ.  
The lower limit according to the inequality is 1 - (1/2)2 = .75.  The actual probability is the cumulative 
chi-squared(8) at 16, which is a bit larger than .95. (The actual value is .9576.)    
 
7.  Given the following joint probability distribution, 
                  X 
          |  0      1     2 
        --+------------------ 
         0|  .05    .1    .03 
   Y     1|  .21    .11   .19 
         2|  .08    .15   .08 
 (a)  Compute the following probabilities: Prob[Y < 2], Prob[Y < 2, X > 0], Prob[Y = 1, X > 1]. 
 (b)  Find the marginal distributions of X and Y. 
 (c)  Calculate E[X], E[Y], Var[X], Var[Y], Cov[X,Y], and E[X2Y 3]. 
 (d)  Calculate Cov[Y,X2]. 
 (e)  What are the conditional distributions of Y given X = 2 and of X given Y > 0? 
 (f)  Find E[Y|X] and Var[Y|X].  Obtain the two parts of the variance decomposition 
       Var[Y]  =  Ex[Var[Y|X]]  +  Varx[E[Y|X]]. 
 We first obtain the marginal probabilities.  For the joint distribution, these will be 
   X:  P(0) = .34, P(1) = .36, P(2) = .30 
 Y:  P(0) = .18, P(1) = .51, P(2)  = .31 
Then, 
 (a)  Prob[Y < 2] = .18 + .51 = .69. 
                      Prob[Y < 2, X > 0] = .1 + .03 + .11 + .19 = .43. 
        Prob[Y = 1, X $ 1] = .11 + .19 = .30. 
 (b)  They are shown above. 
 (c)  E[X]  = 0(.34) + 1(.36) + 2(.30) = .96 
       E[Y]  = 0(.18) + 1(.51) + 2(.31) = 1.13 
       E[X2]  = 02(.34) + 12(.36) + 22(.30)  = 1.56 
       E[Y2]  = 02(.18) +  12(.51) + 22(.31)  = 1.75 
       Var[X]   =  1.56 - .962  = .6384 
       Var[Y]   =  1.75 - 1.132 = .4731 
       E[XY]    =  1(1)(.11)+1(2)(.15)+2(1)(.19)+2(2)(.08)  =  1.11 
       Cov[X,Y]  = 1.11 - .96(1.13) = .0252 
       E[X2Y 3]  = .11 + 8(.15) + 4(.19) + 32(.08) = 4.63. 
 (d)  E[YX2]   = 1(12).11+1(22).19+2(12).15+2(22).08 = 1.81 
       Cov[Y,X2]  = 1.81 - 1.13(1.56) = .0472. 
 (e)  Prob[Y = 0 * X = 2]  = .03/.3 = .1 
        Prob[Y = 1 * X = 2]  = .19/.3 = .633 
       Prob[Y = 1 * X = 2]  = .08/.3 = .267 
       Prob[X = 0 * Y > 0]  = (.21 + .08)/(.51 + .31) = .3537 
       Prob[X = 1 * Y > 0]  = (.11 + .15)/(.51 + .31) = .3171 
       Prob[X = 2 * Y > 0]  = (.19 + .08)/(.51 + .31) = .3292. 
 (f)  E[Y * X=0]   =  0(.05/.34)+1(.21/.34)+2(.08/.34) = 1.088 
      E[Y2 * X=0]  =  12(.21/.34)+22(.08/.34) = 1.559 
      Var[Y* X=0]    =  1.559 - 1.0882 = .3751 
      E[Y*X=1]   =  0(.1/.36)+1(.11/.36)+2(.15/.36) =  1.139 
      E[Y2*X=1]  =  12(.11/.36)+22(.15/.36) = 1.972 
      Var[Y*X=1]    =  1.972 - 1.1392 = .6749 
      E[Y*X=2]   =  0(.03/.30)+1(.19/.30)+2(.08/.30) =  1.167 
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      E[Y2*X=2]  =  12(.19/.30)+22(.08/.30) =  1.700 
      Var[Y*X=2]    =  1.700 - 1.1672 = .6749 = .3381 
       E[Var[Y*X]]  = .34(.3751)+.36(.6749)+.30(.3381) = .4719 
      Var[E[Y*X]]  = .34(1.0882)+.36(1.1392)+.30(1.1672) - 1.132 = 1.2781 - 1.2769 = .0012 
      E[Var[Y*X]] + Var[E[Y*X]] = .4719 + .0012 = .4731 =  Var[Y].   ~ 
 
8.  Minimum mean squared error predictor.  For the joint distribution in Exercise 7, compute  
E[y - E[y|x]]2.  Now, find the a and b which minimize the function E[y - a - bx]2.  Given the solutions, verify 
that E[y - E[y|x]]2  <  E[y - a - bx]2.  The result is fundamental in least squares theory.  Verify that the a and b 
which you found satisfy (3-68) and (3-69). 
                                (x=0)               (x=1)              (x=2) 
E[y - E[y|x]]2 =  (y=0)          .05(0 - 1.088)2 + .10(0 - 1.139)2  + .03(0 - 1.167)2 
  (y=1)      + .21(1 - 1.088)2 + .11(1 - 1.139)2  + .19(1 - 1.167)2 
  (y=2)      + .08(2 - 1.088)2 + .15(2 - 1.139)2  + .08(2 - 1.167)2 
          =  .4719  =  E[Var[y|x]]. 
The necessary conditions for minimizing the function with respect to a and b are 
   ∂E[y - a - bx]2/∂a = 2E{[y - a - bx](-1)} = 0 
   ∂E[y - a - bx]2/∂b = 2E{[y - a - bx](-x)} = 0. 
First dividing by -2, then taking expectations produces 
   E[y] - a - bE[x]           = 0 
   E[xy] - aE[x] - bE[x2] = 0. 
Solve the first for a = E[y] - bE[x] and substitute this in the second to obtain 
    E[xy] - E[x](E[y] - bE[x]) - bE[x2] = 0 
or   (E[xy] - E[x]E[y])                            = b(E[x2] - (E[x])2) 
or         b  =  Cov[x,y] / Var[x]  =  -.0708 / .4731  =  -.150 
and        a  =  E[y] - bE[x] = 1.13 - (-.1497)(.96)    =  1.274. 
The linear function compared to the conditional mean produces 
            x=0      x=1     x=2 
   E[y|x]         1.088    1.139   1.167 
   a + bx          1.274    1.124    .974 
Now, repeating the calculation above using a + bx instead of E[y|x] produces 
           (x=0)             (x=1)            (x=2) 
E[y - a - bx]2 =   (y=0)        .05(0 - 1.274)2 + .10(0 - 1.124)2 + .03(0 - .974)2 
   (y=1)      + .21(1 - 1.274)2 + .11(1 - 1.124)2 + .19(1 - .974)2 
   (y=2)      + .08(2 - 1.274)2 + .15(2 - 1.124)2 + .08(2 - .974)2 
         =  .4950  >  .4719.   
 
9.  Suppose x has an exponential distribution,  f(x)  =  θe-θx,  x > 0.  Find the mean, variance, skewness, and 
kurtosis of x. The Gamma integral will be useful for finding the raw moments.) 

 In order to find the central moments, we will use the raw moments, E[x r ]  = .   These 

can be obtained by using the gamma integral.  Making the appropriate substitutions, we have 

θ θx e dxr x−
∞

∫   

0

    E[xr]  =  [θΓ(r+1)]/θr+1  =  r!/θ r. 
The first four moments are: E[x]   =  1/θ, E[x2]  =  2/θ2,  E[x3]  =  6/θ3, and E[x4]  =  24/θ4.  The mean is, thus, 
1/θ and the variance is 2/θ2 - (1/θ)2 = 1/θ2.  For the skewness and kurtosis coefficients, we have  
   E[x - 1/θ]3 = E[x3] - 3E[x2]/θ + 3E[x]/θ2 - 1/θ3 = 2/θ3. 
The normalized skewness coefficient is 2.  The kurtosis coefficient is 
   E[x - 1/θ]4 = E[x4] - 4E[x3]/θ + 6E[x2]/θ2 - 4E[x]/θ3 + 1/θ4  =  9/θ4. 
The degree of excess is 6.    
 
10.  For the random variable in Exercise 9, what is the probability distribution of the random variable y = e-x?  
What is E[y]?  Prove that the distribution of this y is a special case of the beta distribution in (3-40). 
 If y = e-x, then x = -lny, so the Jacobian is |dx/dy| = 1/y.  The distribution of y is, therefore, 
   f(y)  =  θe-θ(-lny)(1/y)  =  (θyθ)/y = θyθ-1 for 0 < y < 1. 
This is in the form of (3-40) with y instead of x, c = 1, β = 1, and α= θ.   
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11.  If the probability density of y is αy2(1-y)3 for y between 0 and 1, what is α?  What is the probability that y 
is between .25 and .75? 
 This is a beta distribution of the form in (3-40) with α = 3 and β = 4.  Therefore, the constant is 
Γ(3+4)/(Γ(3)Γ(4)) = 60.  The probability is  

 60y2(1-y)3dy =  60 (y2 - 3y3 + 3y4 - y5)dy  =  60(y3/3 - 3y4/4 + 3y5/5 - y6/6)| .
.    = .79296. 

.

.

25

75
∫ .

.

25

75
∫ 25

75

 
12.    Suppose x has the following discrete probability distribution:  X                1    2    3    4 
       Prob[X = x]    .1   .2   .4   .3. 
Find the exact mean and variance of X.  Now, suppose Y  =  1/X.  Find the exact mean and variance of Y.  Find 
the mean and variance of the linear and quadratic approximations to Y = f(X).  Are the mean and variance of 
the quadratic approximation closer to the true mean than those of the linear approximation? 
 We will require a number of moments of x, which we derive first: 
  E[x]   =  .1(1) + .2(2) + .4(3) + .3(4)  = 2.9 =  μ 
  E[x2]  =  .1(1) + .2(4) + .4(9) + .3(16)  = 9.3 
  Var[x] =  9.3 - 2.92  =  .89                =  σ2. 
For later use, we also obtain 
  E[x - μ]3  =  .1(1 - 2.9)3 + ...    =  -.432 
  E[x - μ]4  =  .1(1 - 2.9)4 + ...    =  1.8737. 
The approximation is y = 1/x.  The exact mean and variance are 
 E[y]   =   .1(1) + .2(1/2) + .4(1/3) + .3(1/4) = .40833 
 Var[y] =  .1(12) + .2(1/4) + .4(1/9) + .3(1/16) - .408332  =  .04645. 
The linear Taylor series approximation around μ is y ≈ 1/μ + (-1/μ2)(x - μ).  The mean of the linear 
approximation is 1/μ = .3448 while its variance is (1/μ4)Var[x-μ] = σ2/μ4 = .01258.  The quadratic 
approximation is  y  ≈   1/μ + (-1/μ2)(x - μ) + (1/2)(2/μ3)(x - μ)2 
              =  1/μ  -  (1/μ2)(x - μ) + (1/μ3)(x - μ)2. 
The mean of this approximation is  E[y] ≈ 1/μ + σ2/μ3 = .3813 while the variance is approximated by the 
variance of the right hand side, 
  (1/μ4)Var[x - μ] + (1/μ6)Var[x - μ]2 - (2/μ5)Cov[(x-μ),(x-μ)2]  
    =  (1/μ4)σ2 + (1/μ6)(E[x - μ]4 - σ4] - (2/μ5)E[x - μ]3   
    =  .01498. 
Neither approximation provides a close estimate of the variance.  Note that in both cases, it would be possible 
simply to evaluate the approximations at the four values of x and compute the means and variances directly.  
The virtue of the approach above is that it can be applied when there are many values of x, and is necessary 
when the distribution of x is continuous.   
 
13.  Interpolation in the chi-squared table.  In order to find a percentage point in the chi-squared table 
which is between two values, we interpolate linearly between the reciprocals of the degrees of freedom. The 
chi-squared distribution is defined for noninteger values of the degrees of freedom parameter [see (3-39)], but 
your table does not contain critical values for noninteger values.  Using linear interpolation, find the 99% 
critical value for a chi-squared variable with degrees of freedom parameter 11.3.   
 The 99% critical values for 11 and 12 degrees of freedom are 24.725 and 26.217.  To interpolate 
linearly between these values for the value corresponding to 11.3 degrees of freedom, we use 

    c  =  26.217 +   ( . / )
( / / )
1113 1 12
1 11 1 12

−
−

 (24.725 - 26.217) = 25.2009.  � 

 
14.  Suppose x has a standard normal distribution.  What is the pdf of the following random variable? 

y e y
x

= < <
−1

2
0 1

2

2

2
π π

, .  [Hints:  You know the distribution of z = x2 from (C-30).  The density of this z 

is given in (C-39).  Solve the problem in terms of y = g(z).] 

 165



 We know that z = x2 is distributed as chi-squared with 1 degree of freedom.  We seek the density of y 
= ke-z/2 where k = (2π)-2. The inverse transformation is z = 2lnk - 2lny, so the Jacobian is |-2/y| = 2/y. The 
density of z is that of Gamma with parameters 1/2 and 1/2.  [See (C-39) and the succeeding discussion.]  Thus, 

    f(z)  =  ( / )
( / )

, .
/

/ /1 2
1 2

0
1 2

2 1 2

Γ
e z zz− − >  

Note, Γ(1/2) = π .  Making the substitution for z and multiplying by the Jacobian produces 

   f(y) = ( / )
( / )

( ln ln )
/

( / )( ln ln ) /1 2
1 2

2 2 2
1 2

1 2 2 2 1 2

Γ y
e kk y− − −− y  

The exponential term reduces to y/k.  The scale factor is equal to 2k/y.  Therefore, the density is simply 
f(y)  =  2(2lnk - 2lny)-1/2 = 2 (lnk - lny)-1/2  =  {2/[ln(1/(y(2π)1/2))]}, 0 < y < (2π)-1/2.   
 
15.  The fundamental probability transformation.  Suppose that the continuous random variable x has 
cumulative distribution F(x).  What is the probability distribution of the random variable y = F(x)?  
(Observation: This result forms the basis of the simulation of draws from many continuous distributions.) 
 The inverse transformation is x(y) = F-1(y), so the Jacobian is dx/dy = F-1′(y) = 1/f(x(y)) where f(.) is 
the density of x.  The density of y is  f(y)  =  f [F-1(y)] × 1/f (x(y)) = 1, 0 < y < 1.  Thus, y has a continuous 
uniform distribution.  Note, then, for purposes of obtaining a random sample from the distribution, we can 
sample y1,...,yn from the distribution of y, the continuous uniform, then obtain x1 = x1(y1), ... xn = xn(yn).  
 
16.  Random number generators. Suppose x is distributed uniformly between 0 and 1, so f(x) = 1, 0 < x < 1.  
Let θ be some positive constant.  What is the pdf of y = -(1/θ)lnx.  (Hint: See Section 3.5.)  Does this suggest 
a means of simulating draws from this distribution if one has a random number generator which will produce 
draws from the uniform distribution?  To continue, suggest a means of simulating draws from a logistic 
distribution, f(x) =  e-x/(1+e-x)2. 
 The inverse transformation is x = e-θy so the Jacobian is dx/dy = θe-θy.  Since f(x) = 1, this Jacobian is 
also the density of y.  One can simulate draws y from any exponential distribution with parameter θ by 
drawing observations x from the uniform distribution and computing y = -(1/θ)lnx.  Likewise, for the logistic 
distribution, the CDF is F(x)  =  1/(1 + e-x).  Thus, draws y from the uniform distribution may be taken as 
draws on F(x).   Then, we may obtain x as  x  =  ln[F(x)/(1 - F(x)]  =  ln[y/(1 - y)].  
 
17.  Suppose that x1 and x2 are distributed as independent standard normal.  What is the joint distribution of y1 
= 2 + 3x1 + 2x2 and y2 = 4 + 5x1?  Suppose you were able to obtain two samples of observations from 
independent standard normal distributions.  How would you obtain a sample from the bivariate normal 
distribution with means 1 and 2 variances 4 and 9 and covariance 3? 
 We may write the pair of transformations as 

   y     =     =     =   b  +  Ax. 
y
y

1

2

⎡

⎣
⎢

⎤

⎦
⎥

2
4

3 2
5 0

1

2

⎡

⎣
⎢
⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ +   

x
x

The problem also states that  x ~ N[0,I].  From (C-103), therefore, we have y ~ N[b + A0, AIAN] where 

E[y]  =  b + A0  =  b  =  , Var[y]  =  AA′  =  . 
2
4
⎡

⎣
⎢
⎤

⎦
⎥

13 15
15 25
⎡

⎣
⎢

⎤

⎦
⎥

 For the second part of the problem, using our result above, we would require the A and b such that 

b + A0 = (1,2)′  and  AA′   =  .  The vector is obviously  b = (1,2)′.  In order to find the elements of A, 

there are a few ways to proceed.  The Cholesky factorization used in Exercise 9 is probably the simplest.  Let 
y1  =  1 + 2x1. Thus, y1 has mean 1 and variance 4 as required.  Now, let y2  =  2 + w1x1 + w2x2.  The covariance 
between y1 and y2 is 2w1, since x1 and x2 are uncorrelated. Thus, 2w1 = 3, or w1 = 1.5.  Now, Var[y2] = 

= 9, so =  9 - 1.52  =  6.75. The transformation matrix is, therefore, A   =  .  This is 

the Cholesky factorization of the desired AA′ above.  It is worth noting, this provides a simple method of 
finding the requisite A matrix for any number of variables.  Finally, an alternative method would be to use the 

4 3
3 9
⎡

⎣
⎢

⎤

⎦
⎥

w w1
2

2
2+ w2

2 2 0
15 2 598. .
⎡

⎣
⎢

⎤

⎦
⎥
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characteristic roots and vectors of AA′.  The inverse square root defined in Section B.7.12 would also provide 
a method of transforming x to obtain the desired covariance matrix.  
 
18.  The density of the standard normal distribution, denoted φ(x), is given in (C-28).  The function based on 
the ith derivative of the density given by Hi = [(-1)idiφ (x)/dxi]/φ(x), i = 0,1,2,... is called a Hermite polynomial.  
By definition, H0 = 1. 
 (a)  Find the next three Hermite polynomials. 
 (b)  A useful device in this context is the differential equation 
  drφ(x)/dxr + xdr-1φ(x)/dxr-1 + (r-1)dr-2φ(x)/dxr-2 = 0. 
Use this result and the results of part a. to find H4 and H5. 
 The crucial result to be used in the derivations is dφ(x)/dx  =  -xφ(x).   Therefore, 
   d2φ(x)/dx2  =  (x2 - 1)φ(x) 
and   d3φ(x)/dx3  =  (3x - x3)φ(x). 
The polynomials are H1  =  x,  H2  =  x2 - 1, and H3  =  x3 - 3x. 
For part (b), we solve for drφ(x)/dxr =  -xdr-1φ(x)/dxr-1 - (r-1)dr-2φ(x)/dxr-2 
Therefore,  d4φ(x)/dx4 = -x(3x - x3)φ(x) - 3(x2 - 1)φ(x)  =  (x4 - 6x2 + 3)φ(x) 
and   d5φ(x)/dx5 = (-x5 + 10x3 - 15x)φ(x). 
Thus,   H4  =  x4 - 6x2 + 3 and H5  =  x5 - 10x3 + 15x.  � 
 
19.  Continuation: orthogonal polynomials: The Hermite polynomials are orthogonal if x has a standard 
normal distribution.  That is, E[HiHj] = 0 if i ≠ j.  Prove this for the H1, H2, and H3 which you obtained above. 
   E[H1(x)H2(x)] = E[x(x2 - 1)] = E[x3 - x] = 0 
since the normal distribution is symmetric. Then,  
   E[H1(x)H3(x)] = E[x(x3 - 3x)] = E[x4 - 3x2] = 0. 
The fourth moment of the standard normal distribution is 3 times the variance.  Finally, 
   E[H2(x)H3(x)] = E[(x2 - 1)(x3 - 3x)]  =  E[x5 - 4x3 + 3x]  =  0 
because all odd order moments of the normal distribution are zero. (The general result for extending the 
preceding is that in a product of Hermite polynomials, if the sum of the subscripts is odd, the product will be a 
sum of odd powers of x, and if even, a sum of even powers.  This provides a method of determining the higher 
moments of the normal distribution if they are needed.  (For example, E[H1H3] = 0 implies that E[x4] = 
3E[x2].)   
 
20.  If x and y have means μx and μy and variances  and and covariance σxy, what is the approximation 
of the covariance matrix of the two random variables f1 = x/y and f2 = xy? 

σ x
2 σ y

2

 The elements of JΣJN are (1,1) = σ
μ

σ μ

μ

σ μ

μ
x

y

y
x

y

xy x

y

2

2

2
2

4 3

2
+ −  

    (1,2) = σ - σ /  x
2

y
2 μ x

2 μ y
4

    (2,2) = σ μ  +  + 2σxyμxμy.    x
2

y
4 σ y

2 μ x
2

 
21.  Factorial Moments.  For finding the moments of a distribution such as the Poisson, a useful device is the 
factorial moment. (The Poisson distribution is given in Example 3.1.)   The density is 
    f(x)  =  e-λλx / x!, x = 0,1,2,... 

To find the mean, we can use E[x]   =   =   xf x
x

( )
=

∞∑ 0
xe xx

x
−

=

∞∑ λλ / !
0

          =  e xx
x

− −
=

∞
−∑ λλ 1

1
1/ ( )!

          =  λ  e yy
y

−
=

∞∑ λλ / !
0

     =  λ, 
since the probabilities sum to 1.  To find the variance, we will extend this method by finding E[x(x-1)], and 
likewise for other moments.  Use this method to find the variance and third central moment of the Poisson 
distribution.  (Note that this device is used to transform the factorial in the denominator in the probability.) 
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 Using the same technique, 

   E[x(x-1)]   =  =  x x f x
x

( ) (−
=

∞∑ 1
0

) !x x e xx
x

( ) /− −
=

∞∑ 1
0

λλ

          =   e xx
x

− −
=

∞
−∑ λλ 2

2
2/ ( )!

          =  λ2  e yy
y

−
=

∞∑ λλ / !
0

     =  λ2 
     =  E[x2]  -  E[x] 
So,    E[x2] =  λ2 + λ. 
Since E[x] = λ, it follows that Var[x] = (λ2 + λ) - λ2 = λ.  Following the same pattern, the preceding produces 
   E[x(x-1)(x-2)]   =  E[x3] - 3E[x2] + 2E[x]. 
             =  λ3. 
Therefore,  E[x3]    =  λ3 + 3(λ + λ2) - 2λ 
                           =  λ3 + 3λ2 + λ. 
Then,   E[x - E[x]]3   =  E[x3] - 3λE[x2] + 3λ2E[x] - λ3 
           =  λ.   � 
 
22.  If x has a normal distribution with mean μ and standard deviation σ, what is the probability distribution of 
y = e x? 
 If y = e x, then x = lny and the Jacobian is dx/dy = 1/y.  Making the substitution, 

   f(y)  =  
[ ]1

2

1
2

2

σ πy
e

y− −(ln )/μ σ
 

This is the density of the lognormal distribution.  
 
23.  If y has a lognormal distribution, what is the probability distribution of y 2? 
 Let z = y2.  Then, y = z  and dy/dz = 1/(2 z ).  Inserting these in the density above, we find 

   f(z)   =  1
2

1 1
2

0
1
2

1
2

2

σ π z z
e z

z− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

>
ln /

,
μ σ

 

    =
[ ]1

2 2
0

1
2

2 2 2

( )
, .

(ln ) / (

σ πz
e z

z− −
>

μ σ)
 

Thus, z has a lognormal distribution with parameters 2μ and 2σ.  The general result is that if y has a lognormal 
distribution with parameters μ and σ, y r has a lognormal distribution with parameters rμ and rσ.  
 
24.  Suppose y, x1, and x2 have a joint normal distribution with parameters  μN  =  [1, 2, 4] 

and covariance matrix Σ =   
2 3 1
3 5 2
1 2 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (a)  Compute the intercept and slope in the function E[y*x1], Var[y*x1], and the coefficient of 
        determination in this regression. (Hint: See Section 3.10.1.) 
 (b)  Compute the intercept and slopes in the conditional mean function, E[y*x1,x2].  What is 
        E[y*x1=2.5,x2=3.3]?  What is Var[y*x1=2.5,x2=3.3]? 
 First, for normally distributed variables, we have from (3-102), 
   E[y*x]     =  μy  +  Cov[y,x]{Var[x]}-1(x - :x) 
and   Var[y*x]   =  Var[y] - Cov[y,x]{Var[x]}-1Cov[x,y] 
and   COD        =  Var[E[y*x]] / Var[y] 
       =  Cov[y,x]{Var[x]}-1Cov[x,y] / Var[y]. 
We may just insert the figures above to obtain the results. 
   E[y*x1]      =  1  +  (3/5)(x1 - 2)  =  -.2  +  .6x1, 
   Var[y*x1]    =  2  -  3(1/5)3  =  1/5 = .2 
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   COD          =  .62(5) / 2  =  .9 

   E[y*x1,x2]   =  1 + [ ]3 1
5 2
2 6

3
1

1
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎤

⎦
⎥

−

  

     =  -.4615 + .6154x1 - .03846x2, 
   Var[y*x1,x2]   =  2  -  (.6154,-.03846)(3,1)N  =  .1923. 
   E[y*x1=2.5,x2=3.3]  =  1.3017. 
The conditional variance is not a function of x1 or x2.   
 
25.   What is the density of y = 1/x if x has a chi-squared distribution? 
 The density of a chi-squared variable is a gamma variable with parameters 1/2 and n/2 where n is the 
degrees of freedom of the chi-squared variable.  Thus, 

   f x
n

e x x
n x n

( ) ( / )
( / )

, .
/

= >
− −1 2

2
0

2 1
2 2

1

Γ
 

If y = 1/x then x = 1/y and |dx/dy| =  1/y2.  Therefore, after multiplying by the Jacobian, 

   f y
n

e
y

y
n

y

n

( ) ( / )
( / )

, .
/

=
⎛
⎝
⎜

⎞
⎠
⎟ >

− +
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2
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26.  What is the density and what are the mean and variance of y = 1/x if x has the gamma distribution 
described in Section C.4.5. 

 The density of x is f x
P

e x x
P

x P( )
( )

,= − −λ λ

Γ
1 0.>   If y = 1/x, then x = 1/y, and the Jacobian is  |dx/dy| 

=  1/y2.  Using the change of variable formula, as usual, the density of y is 

f y
P y

e
y

y
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y
P
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.   The mean is E y y
P y
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Γ
1 1
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1

0
.  This is a 

gamma integral (see Section 5.2.4b).  Combine terms to obtain E y
P

e
y

dy
P

y
P
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Γ
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0
  Now, in 

order to use the results for the gamma integral, we will have to make a change of variable.  Let z = 1/y, so 
|dy/dz| = 1/z2.   Making the change of variable, we  

find E y
P

e z
z
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P
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λ .  Now, we can use the gamma integral directly, 

to find E(y) = λ
λ
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PΓ
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−
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11   Note that for this to exist, P must be greater than one.  We can use 

 the same approach to find the variance.  We start by finding E[y2].  First,  

E y y
P y

e
y

dy
P

y
P

( )
( )

/2 2
2

1

0

1 1
=

⎛
⎝
⎜

⎞
⎠
⎟−

−∞

∫
λ λ

Γ
 = λ λ

P
y

P

P
e

y
dy

Γ( )
/−

−∞ ⎛
⎝
⎜

⎞
⎠
⎟∫

1
1

0
.  Once again, this is a gamma 

integral, which we can evaluate by first making the change of variable to z = 1/y.  The integral is  
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Now, Var[y] = E[y2] - E2[y]  =  λ3
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2
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27.  Suppose x1 and x2 have the bivariate normal distribution described in Section 3.8.  Consider an 
extension of Example 3.4, where the bivariate normal distribution is obtained by transforming two 
independent standard normal variables.  Obtain the distribution of z = exp(y1)exp(y2) where y1 and y2 have a 
bivariate normal distribution and are correlated. Solve this problem in two ways.  First, use the 
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transformation approach described in Section C.6.4.  Second, note that z = exp(y1+y2) = exp(w), so you can 
first find the distribution of w, then use the results of Section 3.5 (and, in fact, Section 3.4.4 as well). 
 The (extremely) hard way to proceed is to define the joint transformations z1 = exp(y1)exp(y2) and z2 
= exp(y2).  The Jacobian is 1/(z1z2).  The joint distribution is the Jacobian times the bivariate normal 
distribution, evaluated at y1 = logz1 - logz2 and y2 = logz2, from which it is now necessary to integrate out z2.  
Obviously, this is going to be tedious, but the hint gives a much simpler way to proceed.  The variable w = 
y1+y2 has a normal distribution with mean μ = μ1+μ2 and variance σ2 = (σ1

2 + σ2
2 + 2σ12).  We already have 

a simple result for exp(w) in Exercise 22; this has a lognormal distribution.  
 
28.  Probability Generating Function.  For a discrete random variable, x, the function 
    E[tx]  =   t Xx

x
Prob[ ]=

=

∞∑ 0
x

is called the probability generating function because in the function, the coefficient on ti is Prob[X=i].  
Suppose that x is the number of the repetitions of an experiment with probability π of success upon which the 
first success occurs.  The density of x is the geometric distribution, 
    Prob[X=x]  =  (1 - π)x-1π. 
What is the probability generating function? 

    E[tx]   =   t x x
x

( )1 1
0

− −
=

∞∑ π π

     =  π
π

π
( )

[ ( )]
1

1
0−

−
=

∞∑ t x
x

 

     =  π
π π( ) ( )1

1
1 1− − −t

.   � 

 
29.  Moment Generating Function.  For the random variable X, with probability density function f(x), if the 
function M(t)  =  E[etx] exists, it is the moment generating function.  Assuming the function exists, it can be 
shown that drM(t)/dtr|t=0 = E[xr ].  Find the moment generating functions for 
 (a)  The Exponential distribution of Exercise 9. 
 (b)  The Poisson distribution of Exercise 21. 

 For the continuous variable in (a), For f(x) = θexp(-θx), M(t) =  = . e e dxtx xθ θ−
∞

∫   

0
θ θe dt x−

∞

∫ (  - )

0
x

x!

This is θ times a Gamma integral (see Section 5.4.2b) with p=1, c=1, and a = (θ-t).  Therefore,  
M(t)  =  θ/(θ- t). 
 For the Poisson distribution, 

  M(t)   =    e e x e e xtx x
x

t x
x

−
=

∞ −
=

∞∑ ∑λ λλ λ/ ! ( ) / !
0 0

 =  

   =  e e  e e xe e t x
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=

∞∑ λ λ λ λ( ) / !
0

 

   =  e e  ee e t x
x

t t− + −
=

∞∑λ λ λ λ( ) /
0

The sum is the sum of probabilities for a Poisson distribution with parameter λe t, which equals 1, so the term 
before the summation sign is the moment generating function, M(t)  =  exp[λ(e t - 1)].   � 
 
28.  Moment generating function for a sum of variables.  When it exists, the moment generating function 
has a one to one correspondence with the distribution.  Thus, for example, if we begin with some random 
variable and find that a transformation of it has a particular MGF, we may infer that the function of the 
random variable has the distribution associated with that MGF.  A useful application is the following: 
If x and y are independent, the MGF of x + y is Mx(t)My(t). 
 (a)  Use this result to prove that the sum of Poisson random variables has a Poisson distribution. 
 (b)  Use the result to prove that the sum of chi-squared variables has a chi-squared distribution. 
        [Note, you must first find the MGF for a chi-squared variate.  The density is given in (3-39).] 
 (c)  The MGF for the standard normal distribution is Mz  = exp(-t2/2).  Find the MGF for the N[μ,σ2] 
      distribution, then find the distribution of a sum of normally distributed variables. 
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 (a)  From the previous problem, Mx(t) = exp[λ(et - 1)].  Suppose y is distributed as Poisson with 
parameter μ.  Then, My(t)=exp[μ(et-1)].  The product of these two moment generating functions is  
Mx(t)My(t)= exp[λ(e t - 1)]exp[μ(e t - 1)] =  exp[(λ+μ)(e t - 1)], which is the moment generating function of the 
Poisson distribution with parameter λ+μ.  Therefore, on the basis of the theorem given in the problem, it 
follows that x+y has a Poisson distribution with parameter λ+μ. 
 (b)  The density of the Chi-squared distribution with n degrees of freedom is [from (C-39)] 

f x
n

e x x
n x n
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= >
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1
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Let the constant term be k for the present.  The moment generating function is 

    M(t)   =  k  e e x dxtx x n− −∞

∫ / ( / )2 2 1
0

     =  k e x . dxx t n− − −∞
∫ (1/ ) ( / )2 2 1

0

This is a gamma integral which reduces to M(t) = k(1/2 - t)-n/2Γ(n/2).  Now, reinserting the constant k and 
simplifying produces the moment generating function M(t)  =  (1 - 2t) -n/2.  Suppose that xi is distributed as 
chi-squared with ni degrees of freedom.  The moment generating function of Σi xi is 

    ΠiMi(t)  =  ( ) /1 2 2
−

−∑t nii  
which is the MGF of a chi-squared variable with n = Σi ni degrees of freedom. 
 (c)  We let y = σz + μ.  Then, My(t) =  E[exp(ty)] = [ ] [ ] [E e e E e e E et z t tz t t z( ) ( )σ μ μ μ  + = =σ σ ]  

     =  [ ]e e t tt tμ σ σ  − = −( ) / exp ( ) /
2 2 2 2μ 2  

Using the same approach as in part b., it follows that the moment generating function for a sum of random 
variables with means μi and standard deviations σi is 

    M t
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Appendix C 
 

Estimation and Inference 
 
1.  The following sample is drawn from a normal distribution with mean μ and standard deviation σ: 
   x  =  1.3, 2.1, .4, 1.3, .5, .2, 1.8, 2.5, 1.9, 3.2. 
Compute the mean, median, variance, and standard deviation of the sample. 

    x
x

n
ii

n

= =∑ 1 =  1.52, 

    s2 = 
( )x x

n
ii

n
−

−
=∑

2

1

1
 =   .9418, 

    s  =  .97 
    median  =  1.55, midway between 1.3 and 1.8.   
 
2.  Using the data in the previous exercise, test the following hypotheses: 
 (a)  μ  >  2. 
 (b)  μ  <  .7. 
 (c)  σ2 = .5. 
 (d)  Using a likelihood ratio test, test the following hypothesis μ = 1.8, σ2 = .8. 
 
 (a)  We would reject the hypothesis if 1.52 is too small relative to the hypothesized value of 2.  Since 
the data are sampled from a normal distribution, we may use a t test to test the hypothesis.  The t ratio is 
   t[9]  =  (1.52 - 2) / [.97/ 10 ]=  -1.472. 
The 95% critical value from the t distribution for a one tailed test is -1.833.  Therefore, we would not reject 
the hypothesis at a significance level of 95%. 
 (b)  We would reject the hypothesis if 1.52 is excessively large relative to the hypothesized mean of 
.7.  The t ratio is t[9]  =  (1.52 - .7) / [.97/ 10 ]=  2.673.   Using the same critical value as in the previous 
problem, we would reject this hypothesis. 
 (c)  The statistic (n-1)s2/σ2 is distributed as χ2 with 9 degrees of freedom.  This is 9(.94)/.5  =  
16.920. The 95% critical values from the chi-squared table for a two tailed test are 2.70 and 19.02. Thus we 
would not reject the hypothesis. 
 (d)  The log-likelihood for a sample from a normal distribution is 

  lnL = -(n/2)ln(2π) - (n/2)lnσ2 - 1
2 2σ

( )xii

n
−

=∑ μ 2
1

 

The sample values are μ
∧
= =x 152. ,  2 = σ

∧ ( )x x

n
ii

n
−

=∑
2

1  = .8476. 

The maximized log-likelihood for the sample is -13.363.  A useful shortcut for computing the log-likelihood 

at the hypothesized values is  = ( )xii

n
−

=∑ μ 2
1

( )x xii
n

−
=∑ 2

1
 + ( )n x − μ

2
 .  For the hypothesized 

value of μ = 1.8, this is  =  9.26. The log-likelihood is -5(ln(2π) - 5(ln.8) - (1/1.6)9.26  =  
-13.861.  The likelihood ratio statistic is -2(lnL r - lnLu)  =  .996.  The critical value for a chi-squared 
with 2 degrees of freedom is 5.99, so we would not reject the hypothesis.    

( . )xii
n

−
=∑ 18 2

1

 
3.  Suppose that the following sample is drawn from a normal distribution with mean μ and standard deviation 
σ:  y  =  3.1, -.1, .3, 1.4, 2.9, .3, 2.2, 1.5, 4.2, .4.  Test the hypothesis that the mean of the distribution which 
produced these data is the same as that which produced the data in Exercise 1.  Test the hypothesis assuming 
that the variances are the same.  Test the hypothesis that the variances are the same using an F test and using a 
likelihood ratio test.  (Do not assume that the means are the same.) 
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 If the variances are the same,  
    x N n1 1

2
1~ [ , / ]μ σ1 and x N n2 2

2
2~ [ , / ]μ σ2 , 

    x x N n n1 2
2

1 21 1− − +~ [ , {( / ) ( / )}],μ μ1 2 σ  
    (n1-1)s1

2/σ2 ~ χ2[n1-1] and (n2-1)s2
2/σ2 ~ χ2[n2-1] 

    (n1-1)s1
2/σ2 + (n2-1)s2

2/σ2 ~  χ2[n1 + n2 - 2] 

Thus, the statistic    t  = 
( ) ( ){ } [ ]
{ }

x x n n

n s n s n n

1 2 1 2
2

1 2

1 1
2 2

2 2
2 2

1 2

1 1

1 1

− − − +

− + − + −

μ μ σ

σ σ

/ ( / ) ( / )

( ) / ( ) / / ( 2)
 

is the ratio of a standard normal variable to the square root of a chi-squared variable divided by its degrees of 
freedom which is distributed as t with n1 + n2 - 2 degrees of freedom.  Under the hypothesis that the means are 

equal, the statistic is   t = 
( )

{ }
x x n n

n s n s n n

1 2 1 2

1 1
2

2 2
2

1 2

1 1

1 1

− +

− + − + −

/ ( / ) ( / )

( ) ( ) / ( 2)
 

The sample statistics are  n1  =  10, x1 =  1.52, =  .9418 s1
2

    n2  =  10, x2 =  1.62, = 2.0907 s2
2

so t[18]  =  .1816.  This is quite small, so we would not reject the hypothesis of equal means. 
 For random sampling from two normal distributions, under the hypothesis of equal variances, the 

statistic F[n1-1,n2-1] = 
[ ]
[ ]
( ) / / ( )

( ) / / ( )

n s n

n s n
1 1

2 2
1

2 2
2 2

2

1 1

1 1

− −

− −

σ

σ
is the ratio of two independent chi-squared variables, each 

divided by its degrees of freedom.  This has the F distribution with n1-1 and n2-1 degrees of freedom.  If n1 = 
n2, the statistic reduces to F[n1-1,n2-1]  = .  For our purposes, it is more convenient to put the larger 
variance in the denominator.  Thus, for our sample data,  F[9,9]  =  2.0907 / .9418  =  2.2199.  The 95% 
critical value from the F table is 3.18.  Thus, we would not reject the hypothesis of equal variances.   

s s1
2

2
2/

 The likelihood ratio test is based on the test statistic λ = -2(lnL r - lnLu).  The log-likelihood for the 
joint sample of 20 observations is the sum of the two separate log-likelihoods if the samples are assumed to be 
independent.  A useful shortcut for computing the log-likelihood arises when the maximum likelihood 

estimates are inserted:  At the maximum likelihood estimates, lnL  =  (-n/2)[1 + ln(2π) + ln ].  So, the log-
likelihood for the sample is lnL2=(-5/2)[1 + ln(2π) + ln((9/10)2.0907)]= -17.35007.  (Remember, we don't 
make the degrees of freedom correction for the variance estimator.)  The log-likelihood function for the 
sample of 20 observations is just the sum of the two log-likelihoods if the samples are completely 
independent.  The unrestricted log-likelihood function is, thus, -13.363+(-17.35001) = -30.713077.  To 
compute the restricted log-likelihood function, we need the pooled estimator which does not assume that the 
means are identical.  This would be  =  [(n1-1)  +  (n2-1) ]/[n1 + n2] 

σ2
∧

2σ̂ s1
2 s2

2

         =  [9(.9418) + 9(2.0907)]/20  =  1.36463. 
So, the restricted log-likelihood is lnLr  =  (-20/2)[1 + ln(2π) + ln(1.36463)]  =  -31.4876.  Minus twice the 
difference is λ  =  -2[-31.4876 - (-30.713077)]  =  1.541.  This is distributed as chi-squared with one degree of 
freedom.  The critical value is 3.84, so we would not reject the hypothesis.    
 
4.  A common method of simulating random draws from the standard normal distribution is to compute the 
sum of 12 draws from the uniform [0,1] distribution and subtract 6.  Can you justify this procedure? 
 The uniform distribution has mean 2 and variance 1/12.  Therefore, the statistic 12( x - 1/2) = 

- 6 is equivalent to  z  =xii=∑ 1
12 n ( x - μ) / σ.  As n→∞, this converges to a standard normal variable.  

Experience suggests that a sample of 12 is large enough to approximate this result. However, more recently 
developed random number generators usually use different procedures based on the truncation error which 
occurs in representing real numbers in a digital computer.   
 
5.  Using the data in Exercise 1, form confidence intervals for the mean and standard deviation. 
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 Since the underlying distribution is normal, we may use the t distribution.  Using (4-57), we obtain a 
95% confidence interval for the mean of 1.52 - 2.262[.97/ 10 ]  <  μ <  1.52 + 2.262[.97/ 10 ] or   
.826 < μ < 2.214.  Using the procedure in Example 4.30, we obtain a 95% confidence for σ2 of  
9(.941)/19.02 < σ2 < 9(.941)/2.70 or .445 < σ2 < 3.137.  Taking square roots gives the confidence interval  
for σ,  .667  <  σ  <  1.771.      
 
6.  Based on a sample of 65 observations from a normal distribution, you obtain a median of 34 and a standard 
deviation of 13.3.  Form a confidence interval for the mean.  (Hint:  Use the asymptotic distribution.  See 
Example 4.15.)  Compare your confidence interval to the one you would have obtained had the estimate of 34 
been the sample mean instead of the sample median. 
 The asymptotic variance of the median is πσ2/(2n).  Using the asymptotic normal distribution instead 
of the t distribution, the confidence interval is 34 - 1.96(13.32π/130)2 < μ < 34 + 1.96(13.32π/130)2 or       
29.95  <  μ  <  38.052.  Had the estimator been the mean instead of the median, the appropriate asymptotic 
variance would be σ2/n, instead, which we would estimate with 13.32/65 = 2.72 compared to 4.274 for the 
median.  The confidence interval would have been (30.77,37.24), which is somewhat narrower.    
 
7.   The random variable x has a continuous distribution f(x) and cumulative distribution function F(x).  What 
is the probability distribution of the sample maximum?  (Hint: In a random sample of n observations, x1, x2, 
..., xn, if z is the maximum, then every observation in the sample is less than or equal to z.  Use the cdf.) 
 If z is the maximum, then every sample observation is less than or equal to z.  The probability of this 
is Prob[x1 # z, x2 # z, ..., xn # z]  =  F(z)F(z)...F(z)  =  [F(z)]n.   The density is the derivative, n[F(z)]n-1f(z).    
 
8.  Assume the distribution of x is  f(x)  =  1/θ, 0 < x < θ.  In random sampling from this distribution, prove 
that the sample maximum is a consistent estimator of θ.  Note: you can prove that the maximum is the 
maximum likelihood estimator of θ.  But, the usual properties do not apply here.  Why not?  (Hint:  Attempt 
to verify that the expected first derivative of the log-likelihood with respect to θ is zero.) 
 Using the result of the previous problem, the density of the maximum is 
    n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = zndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.  � 

0

θ
∫

0

θ
∫

lim
n→∞

lim
n→∞

9.  In random sampling from the exponential distribution, f(x)  = 1
θ

θe
x−

, x > 0, θ> 0, find the maximum 

likelihood estimator of θ and obtain the asymptotic distribution of this estimator.  
 The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as 

the solution to ∂lnL/∂θ = -n/θ  + (1/θ2)  =  0, or θ  =  (1/n)  = 

xii
n
=∑ 1

xii
n
=∑ 1 ML

∧
xii

n
=∑ 1

x .  The asymptotic variance 

of the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}-1.  To find the expected value of this random 

variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.   

xii
n
=∑ 1

 
10.  Suppose in a sample of 500 observations from a normal distribution with mean μ and standard deviation 
σ, you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate μ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - μ)/σ]  =  .35, or  (2.1 - μ)/σ  =  -.385  ⇒  2.1 - μ  =  -.385σ. 
Likewise, Φ[(3.6 - μ)/σ]  =  .55, or  (3.6 - μ)/σ  =   .126  ⇒  3.6 - μ  =   .126σ. 
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The joint solution is = 3.2301 and = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let xi denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as 

μ
∧

σ
∧

z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-μ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-μ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 
must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  

z
i
n
=∑ 1

Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 

proportions is Asy Var p p
n

. [ ( . ), ( . )]
( . )( ( . )) ( . )( ( . ))
( . )( ( . )) ( . )( ( . ))
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π π π π
π π π π

.  If we insert our 

sample estimates, we obtain   Now, ultimately, our 

estimates of μ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 

Est Asy Var p p. . [ ( . ), ( . )]
. .
. .

.21 36
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μ
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Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS-1G′]-1.  The remaining detail is the derivatives, which are just 

∂ ∂μ ∂ ∂σ
∂ ∂μ ∂ ∂σ

m m
m m

2 1 2 1

3 6 3 61

. .

. .

/ /
/ /

⎡

⎣
⎢

⎤

⎦
⎥

μ
∧
σ
∧

∂m2.1/∂μ = (1/σ)φ((2.1-μ)/σ) and ∂m2.1/∂σ = (2.1-μ)/σ[Mm2.1/Mσ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for μ would be 3.2301 ± 1.96(.10178)2 = 
2.6048 to 3.8554.    

0 37046 014259
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010178 012492
012492 016973
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−
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11.  For random sampling from a normal distribution with nonzero mean μ and standard deviation σ, find the 
asymptotic joint distribution of the maximum likelihood estimators of σ/μ and μ2/σ2. 

 The maximum likelihood estimators, μ̂  = (1/n)  and xii
n
=∑ 1

2σ̂ = (1/n) ( )x xii
n

−
=∑ 1

2
 were given 

in (4-49).   By the invariance principle, we know that the maximum likelihood estimators of μ/σ and μ2/σ2 are 
/ and / and the maximum likelihood estimate of σ is μ̂ σ̂ μ̂ 2σ̂ σ̂ . To obtain the asymptotic joint 

distribution of the two functions of and , we first require the asymptotic joint distribution of  andμ
∧

σ
∧

μ̂ 2σ̂ .  
This is normal with mean vector (μ,σ2) and covariance matrix equal to the inverse of the information matrix.  
This is the inverse of  
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The off diagonal term has expected value 0.  Each term in the sum in the lower right has expected value σ2, 
so, after collecting terms, taking the negative, and inverting, we obtain the asymptotic covariance matrix, 

V  =  .  To obtain the asymptotic joint distribution of the two nonlinear functions, we use 

the multivariate version of Theorem 4.4.  Thus,  we require H  =  JVJ′ where  
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12.  The random variable x has the following distribution:  f(x)  =  e-λλx / x!, x = 0,1,2,... The following random 
sample is drawn:  1,1,4,2,0,0,3,2,3,5,1,2,1,0,0. Carry out a Wald test of the hypothesis that λ= 2. 
 For random sampling from the Poisson distribution, the maximum likelihood estimator of λ is x = 
25/15.  (See Example 4.18.)  The second derivative of the log-likelihood is /λ2, so the the 

asymptotic variance is λ/n.  The Wald statistic would be 

−
=∑ xii

n
1

   W  = 
( )x

n

−
∧

2
2

λ/
  =  [(25/15 - 2)2]/[(25/15)/15]  =  1.0. 

The 95% critical value from the chi-squared distribution with one degree of freedom is 3.84, so the hypothesis 
would not be rejected.  Alternatively, one might estimate the variance of  with s2/n = 2.38/15 = 0.159.  Then, 
the Wald statistic would be (1.6 - 2)2/.159 = 1.01.  The conclusion is the same.   ~ 
 
13.  Based on random sampling of 16 observations from the exponential distribution of Exercise 9, we wish to 
test the hypothesis that θ =1.  We will reject the hypothesis if x is greater than 1.2 or less than .8.  We are 
interested in the power of this test. 
(a)  Using the asymptotic distribution of x graph the asymptotic approximation to the true power function. 
(b)  Using the result discussed in Example 4.17, describe how to obtain the true power function for this test. 
 The asymptotic distribution of x is normal with mean θ and variance θ2/n.  Therefore, the power 
function based on the asymptotic distribution is the probability that a normally distributed variable with mean 
equal to θ and variance equal to θ2/n will be greater than 1.2 or less than .8.  That is, 
   Power  =  Φ[(.8 - θ)/(θ/4)] + 1 - Φ[(1.2 - θ)/(θ/4)]. 
Some values of this power function and a sketch are given below: 
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  θ   Approx.   True 

 

       Power   Power 
 .4   1.000   1.000 
 .5    .992    .985 
 .6    .908    .904 
 .7    .718    .736 
 .8    .522    .556 
 .9    .420    .443 
1.0    .423    .421 
1.1    .496    .470 
1.2    .591    .555 
1.3    .685    .647 
1.4    .759    .732 
1.5    .819    .801 
1.6    .864    .855 
1.7    .897    .895 
1.8    .922    .925 
1.9    .940    .946  2.0    .954    .961 
2.1    .963    .972 
 
Note that the power function does not have the symmetric shape of Figure 4.7 because both the variance and 
the mean are changing as θ changes.  Moreover, the power is not the lowest at the value of θ = 1, but at about 
θ = .9.  That means (assuming that the normal distribution is appropriate) that the test is slightly biased.  The 
size of the test is its power at the hypothesized value, or .423, and there are points at which the power is less 
than the size. 
 According to the example cited, the true distribution of x is that of θ/(2n) times a chi-squared 
variable with 2n degrees of freedom.  Therefore, we could find the true power by finding the probability that a 
chi-squared variable with 2n degrees of freedom is less than .8(2n/θ) or greater than 1.2(2n/θ).  Thus, 
   True power  =  F(25.6/θ)    +    1 - F(38.4/θ) 
where F(.) is the CDF of the chi-squared distribution with 32 degrees of freedom.  Values for the correct 
power function are shown above.  Given that the sample is only 16 observations, the closeness of the 
asymptotic approximation is quite impressive.   
 
14.  For the normal distribution, μ2k = σ2k(2k)!/(k!2k) and μ2k+1 = 0, k = 0,1,...  Use this result to show that in 

Example 4.27, θ1 = 0 and θ2 = 3, and JVJ′ = . 
6 0
0 24
⎡

⎣
⎢

⎤

⎦
⎥

 For θ1 and θ2, just plug in the result above using k = 2, 3, and 4.  The example involves 3 moments, 
m2, m3, and m4.  The asymptotic covariance matrix for these three moments can be based on the formulas 
given in  Example 4.26.  In particular, we note, first, that for the normal distribution, Asy.Cov[m2,m3] and 
Asy.Cov[m3,m4] will be zero since they involve only odd moments, which are all zero.  The necessary even 
moments are μ2 = σ2, μ4 = 3σ4. μ6 = 15σ6, μ8 = 105σ8. The three variances will be 
  n[Asy.Var(m2)]  =  μ4 - μ2

2

4

 =  3σ4 - (σ2)2  =  2σ4 
  n[Asy.Var(m3)]  =  μ6 - μ3

2 - 6μ4μ2 + 9μ2
3 = 6σ6 

  n[Asy.Var(m4)]  =  μ8 - μ4
2 - 8μ5μ3 + 16μ2μ3

2 = 96σ8 
and  n[Asy.Cov(m2,m4)]  =  μ6 - μ2μ4 - 4μ3

2 =  12σ6. 
The elements of J are given in Example 4.27.  For the normal distribution, this matrix would be J = 

.  Multiplying out JVJ/N produces the result given above.   � 0 1 0
6 0 1

3

2
/

/ /
σ

σ σ−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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15.  Testing for normality.  One method that has been suggested for testing whether the distribution 
underlying a sample is normal is to refer the statistic L  =  n{skewness2/6  +  (kurtosis-3)2/24} to the 
chi-squared distribution with 2 degrees of freedom.  Using the data in Exercise 1, carry out the test. 
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 The skewness coefficient is .14192 and the kurtosis is 1.8447. (These are the third and fourth 
moments divided by the third and fourth power of the sample standard deviation.)  Inserting these in the 
expression above produces L = 10{.141922/6 + (1.8447 - 3)2/24} = .59.  The critical value from the 
chi-squared distribution with 2 degrees of freedom (95%) is 5.99.  Thus, the hypothesis of normality cannot be 
rejected.   
 
16.  Suppose the joint distribution of the two random variables x and y is 
  f(x,y)  =    β,θ  0,  y $ 0, x = 0,1,2,... θe yy x− +( ) ( ) / !β θ β x
 (a)  Find the maximum likelihood estimators of β and θ and their asymptotic joint distribution. 
 (b)  Find the maximum likelihood estimator of θ/(β+θ) and its asymptotic distribution. 
 (c)  Prove that f(x) is of the form f(x)  =  γ(1-γ)x, x = 0,1,2,... 
       Then, find the maximum likelihood estimator of γ and its asymptotic distribution. 

(d)  Prove that f(y*x) is of the form λe-λy(λy) x/x!  Prove that f(y|x) integrates to 1.  Find the 
       maximum likelihood estimator of λ and its asymptotic distribution.   (Hint:  In the conditional 
       distribution, just carry the xs along as constants.) 

 (e)  Prove that f(y)  =  θe-θy then find the maximum likelihood estimator of θ and its asymptotic 
                      variance. 
 (f) Prove that  f(x|y) = e-βy (βy) x/x! .  Based on this distribution, what is the maximum likelihood 
       estimator of β? 
 The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + -  yii

n
=∑ 1

xii
n
=∑ 1

x yii
n

i=∑ 1
log log( !)xii

n
=∑ 1

The first and second derivatives are  ∂lnL/∂θ    =  n/θ-  yii
n
=∑ 1

     ∂lnL/∂β     =  -  + /β yii
n
=∑ 1

xii
n
=∑ 1

     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /β2 xii

n
=∑ 1

     ∂2lnL/∂β∂θ  =  0. 

Therefore, the maximum likelihood estimators are  =  1/θ
∧

y  and  = β
∧

x y/  and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[xi].   In order to obtain E[xi], it is necessary to obtain the marginal 

distribution of xi, which is f(x)  =  ∫ =   This is βx(θ/x!) 

times a gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces 
to 

E
n

xii

n
/

/
θ

β

2

1
2

0
0

=∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

xii
n
=∑ 1

θ ββ θe y x dyy x− +
∞ ( ) ( ) / !

0
β θ β θx y xx e y dy( / !) .( )− +

∞

∫0

    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]x=  β/θ.  Then, the required asymptotic 

covariance matrix is . 

x=
∞∑ 0

n
n

n
n

/
( / ) /

/
/

θ
β θ β

θ
βθ

2

2

1 20
0

0
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

 The maximum likelihood estimator of θ/(β+θ) is is  
   =  (1//( )θ β + θ y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
       V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
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 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

    ∂lnL/dγ  =  n/γ - /(1-γ). xii
n
=∑ 1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 

γ
∧

=  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β θ
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = ( )  so the density has the required form 

with λ = (β+θ).  The integral is { } .  This integral is a Gamma integral which equals 

Γ(x+1)/λx+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 

[( ) ] /( )β θ β θ β θ+ + − +y e xx y !

y x y[ ] / !λ λx x e y d+ −
∞

∫1

0

  lnL  =  nlnλ - λ  + lnλ  - yii
n
=∑ 1

xii
n
=∑ 1

ln !xii
n
=∑ 1  

  ∂lnL/∂λ  =  ( + n)/λ  - . xii
n
=∑ 1

yii
n
=∑ 1

  ∂2lnL/∂λ2  =  -( + n)/λ2. xii
n
=∑ 1

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λ2/n)/(1 + λ
∧⎡

⎣
⎢
⎤

⎦
⎥ x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0

    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ -  yii
n
=∑ 1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide 
the expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β  + lnyii

n
=∑ 1

xii
n
=∑ 1  + x yi ii

n ln
=∑ 1  - ln !xii

n
=∑ 1  

   ∂lnL/∂β  =  -  + /β, yii
n
=∑ 1

xii
n
=∑ 1

from which it follows that  β
∧
= x y/ .  

 
17.  Suppose x has the Weibull distribution,  f(x) = αβxβ-1exp(-αxβ), x, α, β > 0. 
 (a)  Obtain the log-likelihood function for a random sample of n observations. 
 (b)  Obtain the likelihood equations for maximum likelihood estimation of α and β.  Note that the 
        first provides an explicit solution for α in terms of the data and β. But, after inserting this in the 
                      second, we obtain only an implicit solution for β.  How would you obtain the maximum 
                      likelihood estimators? 
 (c)  Obtain the second derivatives matrix of the log-likelihood with respect to α and β.  The exact 
       expectations of the elements involving β involve the derivatives of the Gamma function and are 
                     quite messy analytically.  Of course, your exact result provides an empirical estimator.  How 
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                     would you estimate the asymptotic covariance matrix for your estimators in part (b)? 
 (d)  Prove that αβCov[lnx,xβ] = 1.  (Hint: Use the fact that the expected first derivatives of the 
       log-likelihood function are zero.) 
 The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1)  - α  log xii

n
=∑ 1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1

  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, =  n / , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

α
∧

xii
n β
=∑ 1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  
First, since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ ] - αE[ ]= 0 log xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].   ~ 
 
18.  The following data were generated by the Weibull distribution of Exercise 17: 
   1.3043   .49254   1.2742   1.4019   .32556   .29965   .26423 
   1.0878   1.9461   .47615   3.6454   .15344   1.2357   .96381   
   .33453   1.1227   2.0296   1.2797   .96080   2.0070     
 (a)  Obtain the maximum likelihood estimates of α and β and estimate the asymptotic covariance 
                     matrix for the estimates. 
 (b)  Carry out a Wald test of the hypothesis that β = 1. 
 (c)  Obtain the maximum likelihood estimate of α under the hypothesis that β = 1. 
 (d)  Using the results of a. and c. carry out a likelihood ratio test of the hypothesis that β = 1. 
 (e)  Carry out a Lagrange multiplier test of the hypothesis that β = 1. 
 As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α 
= 0, we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek 

the value which maximizes logL as given above, where we substitute this expression for each occurrence of α.   

xii
n β
=∑ 1

Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   
  β           logL 
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 0.1     -62.386 

 

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 

  1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The 
implied value of α is 1.179.  The negative of the second derivatives matrix at these values and its inverse are 

 and . I α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟ =

⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .
2555 9 6506

9 6506 27 7552 I-1 α β
∧ ∧⎛

⎝⎜
⎞
⎠⎟
=

−
−
⎡

⎣
⎢

⎤

⎦
⎥,

. .
. .

04506 2673
2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 

 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α
∧

n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
∂ ∂α ∂ ∂α∂β
∂ ∂α∂β ∂ ∂β

∂ ∂
∂ ∂

log / log / log / log /
log / log /

log /
log /

L L L L
L L

L
L

 
− −
− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

−2 2 2

2 2 2

1

at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
x xii

n log
=∑ i   =  9.400342 

  ∂2logL/∂α2  =  − nx
2

 =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.   
 
19.  We consider forming a confidence interval for the variance of a normal distribution.  As shown in 
Example 4.29, the interval is formed by finding clower and cupper such that Prob[clower < χ2[n-1] < cupper] = 1 - α. 
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The endpoints of the confidence interval are then (n-1)s2/cupper and (n-1)s2/clower.  How do we find the 
narrowest interval?  Consider simply minimizing the width of the interval, cupper - clower subject to the 
constraint that the probability contained in the interval is (1-α).  Prove that for symmetric and asymmetric 
distributions alike, the narrowest interval will be such that the density is the same at the two endpoints. 
 The general problem is to minimize Upper - Lower subject to the constraint F(Upper) - F(Lower) = 1 
- α, where F(.) is the appropriate chi-squared distribution.  We can set this up as a Lagrangean problem, 
 minL,U L*  =  U - L + λ{(F(U) - F(L)) - (1 - α)} 
The necessary conditions are 
 ∂L*/∂U  =  1 + λf(U)  =  0 
 ∂L*/∂L  =  -1 - λf(L)  =  0 
 ∂L*/∂λ  =  (F(U) - F(L)) - (1 - α)  =  0 
It is obvious from the first two that at the minimum, f(U) must equal f(L).   
 
20.  Using the results in Example 4.26, and Section 4.7.2, estimate the asymptotic covariance matrix of the 
method of moments estimators of P and λ based on  and m2′ .  (Note:  You will need to use the data in 
Table 4.1 to estimate V.) 

m−1'

 Using the income data in Table 4.1, (1/n) times the covariance matrix of 1/xi and xi
2 is 

V  =  .  The moment equations used to estimate P and λ are 
. .

. .
000068456 2 811

2 811 228050
−

−
⎡

⎣
⎢

⎤

⎦
⎥

E m P[ ' / ( )]− − −1 1    λ = 0 0 and E m P P[ ' ( ) / ]2 1    − + =λ . The matrix of derivatives with respect to P 

and λ is G  =  .  The estimated asymptotic covariance matrix is  λ λ
λ λ

/ ( ) / ( )
( ) / ( ) /

P
P P P

− − −
− + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2 1 2 1

2

2
P 1

3

[GV-1G′]-1  =  .   
. .

. .
17532 0073617

0073617 00041871
⎡

⎣
⎢

⎤

⎦
⎥
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Appendix D 
 

Large Sample Distribution Theory 
 
There are no exercises for Appendix D. 
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Appendix E 
 

Computation and Optimization 
 
1.  Show how to maximize the function 

  f(β)  =  ( )1
2

2
2

π
e c− −β /  

with respect to β for a constant, c, using Newton's method.  Show that maximizing logf(β) leads to the same 
solution.  Plot f(β) and logf(β). 
 The necessary condition for maximizing f(β) is 

  df(β)/dβ  = ( )1
2

2
2

π
e c− −β / [-(β - c)]  =  0  =  -(β - c)f(β). 

The exponential function can never be zero, so the only solution to the necessary condition is β = c.  The 
second derivative is  d2f(β)/dβ2  =  -(β-c)df(β)/dβ  -  f(β)  =   [(β-c)2 - 1]f(β).  At the stationary value b = c, the 
second derivative is negative, so this is a maximum.  Consider instead the function g(β) = logf(β) =  
-(1/2)ln(2π) - (1/2)(β - c)2.  The leading constant is obviously irrelevant to the solution, and the quadratic is a 
negative number everywhere except the point β = c.  Therefore, it is obvious that this function has the same 
maximizing value as f(β).  Formally,  dg(β)/dβ  =  -(β - c)  =  0 at β = c, and d2g(β)/dβ2 = -1, so this is indeed 
the maximum.  A sketch of the two functions appears below. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
Note that the transformed function is concave everywhere while the original function has inflection points.   
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2.  Prove that Newton’s method for minimizing the sum of squared residuals in the linear regression model 
will converge to the minimum in one iteration. 
 The function to be maximized is  f(β)  =  (y - Xβ)′(y - Xβ).  The required derivatives are 
∂f(β)/∂β  =  -X′(y - Xβ) and  ∂2f(β)/∂β∂β∂  =  X′X.  Now, consider beginning a Newton iteration at an 
arbitrary point, β0.  The iteration is defined in (12-17), 
β1  =  β0  -  (X′X)-1{-X′(y - Xβ0)}  =  β0  +  (X′X)-1X′y  -  (X′X)-1X′Xβ0  =  (X′X)-1X′y  =  b. 
Therefore, regardless of the starting value chosen, the next value will be the least squares coefficient vector.    
 

3.  For the Poisson regression model, Prob[Yi = yi|xi] = e
y

i i
i
y

i

−λ λ
!

where λi  = .  The log-likelihood 

function is lnL  = logProb[Yi = yi|xi]. 

e iβ 'x

i
n
=∑ 1

 (a)  Insert the expression for λi to obtain the log-likelihood function in terms of the observed data. 
 (b)  Derive the first order conditions for maximizing this function with respect to β. 
 (c)  Derive the second derivatives matrix of this criterion function with respect to β.  Is this matrix 
                      negative definite? 
 (d)  Define the computations for using Newton’s method to obtain estimates of the unknown 
        parameters. 
 (e)  Write out the full set of steps in an algorithm for obtaining the estimates of the parameters of this 
              model.  Include in your algorithm a test for convergence of the estimates based on 
Belsley’s 
        suggested criterion. 
 (f)  How would you obtain starting values for your iterations? 
 (g)  The following data are generated by the Poisson regression model with  logλ  =  α + βx. 
     y   6    7    4   10   10    6    4    7    2    3    6    5    3    3    4 
         x 1.5  1.8  1.8  2.0  1.3  1.6  1.2  1.9  1.8  1.0  1.4   .5   .8  1.1   .7 
Use your results from parts (a) - (f) to compute the maximum likelihood estimates of α and β.  Also obtain 
estimates of the asymptotic covariance matrix of your estimates. 
 The log-likelihood is 
 logL = [-λi + yilnλi - lnyi!]  =  -

i
n
=∑ 1

e i
i
n β 'x
=∑ 1 + ( )yi ii

n
β' x

=∑ 1  - log !yii
n
=∑ 1   

     =  - e i
i
n β 'x
=∑ 1 + β′ xi ii

n y
=∑ 1 - log !yii

n
=∑ 1  

The necessary condition is  MlnL/Mβ  = - x x
ii

n e iβ '
=∑ 1 +  xi ii

n y
=∑ 1 = 0 or XNy   = xi ii

n
λ

=∑ 1 .  It is useful to 

note, since E[yi*xi]  =  λi  =  eβNxi, the first order condition is equivalent to xi ii
n y
=∑ 1 =  xiE[yi*xi]  or  

XNy  =  XNE[y], which makes sense.  We may write the first order condition as MlnL/Mβ = xi(yi - λi)  
=  0 

i
n
=∑ 1

i
n
=∑ 1

which is quite similar to the counterpart for the classical regression if we view (yi - λi) = (yi - E[yi*xi]) as a 

residual. The second derivatives matrix is ∂lnL/∂β∂β′  =  - ( )e i
i
n

i i
β ' 'x x x

=∑ 1   =  - .  This is a 

negative definite matrix.  To prove this, note, first, that λi must always be positive.  Then, let Ω be a diagonal 
matrix whose ith diagonal element is 

λ ii

n
i i=∑ 1

x x '

λ i  and let Z  =  ΩX.  Then, ∂lnL/∂β∂β′ = -Z′Z which is clearly 
negative definite.  This implies that the log-likelihood function is globally concave and finding its maximum 
using NewtonNs method will be straightforward and reliable. 
 The iteration for NewtonNs method is defined in (5-17).  We may apply it directly in this problem.  
The computations involved in using Newton's method to maximize lnL will be as follows: 
     (1)  Obtain starting values for the parameters. Because the log-likelihood function is globally concave, it  
will usually not matter what values are used.  Most applications simply use zero.  One suggestion which does 

appear in the literature is β0  =  [ ]qi ii
n

ix x=

−
∑ 1

1
' [ ]q yi ii

n
ix

=∑ 1
where   qi  =  log(max(1,yi)). 
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 (2)  The iteration is computed asβ   =  + . 
∧

+t 1 β
∧

t λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii

n
ix x

1

1

' xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ

 (3)  Each time we computeβ , we should check for convergence.  Some possibilities are 
∧

+t 1

      (a) Gradient:  Are the elements of ∂lnL/∂β small? 

      (b) Change:  Is β -  small? 
∧

+t 1 β
∧

t

      (c) Function rate of change: Check the size of   

  δt =  ′  xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii

n
ix x

1

1

' xii

n
i iy

=

∧

∑ −
⎡
⎣⎢

⎤
⎦⎥1

( )λ

           before computing .  This measure describes what will happen to the function β
∧

+t 1

           at the next value of β. This is Belsley's criterion. 
 (4)  When convergence has been achieved, the asymptotic covariance matrix for the 
      estimates is estimated with the inverse matrix used in the iterations. 
 
 Using the data given in the problem, the results of the above computations are 
   Iter.     α      β         lnL     ∂lnL/∂α    ∂lnL/∂β   Change 
    0        0      0    -102.387    65.       95.1       296.261 
    1  1.37105  2.17816  -1442.38   -1636.25  -2788.5     1526.36 
    2  .619874  2.05865  -461.989   -581.966  -996.711     516.92 
    3  .210347  1.77914  -141.022   -195.953  -399.751    197.652 
    4  .351893  1.26291  -51.2989   -57.9294  -102.847     30.616 
    5  .824956  .698768  -33.5530   -12.8702  -23.1932    2.75855 
    6  1.05288  .453352  -32.0824   -1.28785  -2.29289    .032399 
    7  1.07777  .425239  -32.0660   -.016067  -.028454   .0000051   
    8  1.07808  .424890  -32.0660      0         0          0 
 
At the final values, the negative inverse of the second derivatives matrix is 

λ
∧

=

−

∑⎡
⎣
⎢

⎤

⎦
⎥i ii
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4.  Use Monte Carlo Integration to plot the function g(r) = E[xr*x>0] for the standard normal distribution. 
 The expected value from the truncated normal distribution is 

 E x x x f x x dx
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To evaluate this expectation, we first sampled 1,000 observations from the truncated standard normal 
distribution using (5-1).  For the standard normal distribution, μ = 0, σ = 1, PL = Φ((0 - 0)/1) = 2, and  
PU = Φ((+4 - 0)/1) = 1.  Therefore, the draws are obtained by transforming draws from U(0,1) (denoted Fi) to  
xi = Φ[2(1 + Fi)]. Since 0 < Fi < 1, the argument in brackets must be greater than 2, so xi > 0, which is to be 
expected.  Using the same 1,000 draws each time (so as to obtain smoothness in the figure), we then plot the 

values of xr i
r

i
=

=∑1
1000 1

1000 x , r = 0, .2, .4,.6, ..., 5.0. As an additional experiment, we generated a second 

sample of 1,000 by drawing observations from the standard normal distribution and discarding them and 
redrawing if they were not positive.  The means and standard deviations of the two samples were 
(0.8097,0.6170) for the first and (0.8059,0.6170) for the second.  Drawing the second sample takes 
approximately twice as long as the second.  Why? 
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5.  For the model in Example 5.10, derive the LM statistic for the test of the hypothesis that μ=0. 
 The derivatives of the log-likelihood with μ = 0 imposed are gμ = nx /σ 2 and 

g
n xii

n

σ σ σ
2 2 22

2
1
4=

−
+ =∑

.  The estimator for σ2 will be obtained by equating the second of these to 0, which 

will give (of course), v = x′x/n.  The terms in the Hessian are Hμμ = -n/σ2, H nxμσ σ2
4= − / , 

and n/(2σ4)-x′x/σ6.  At the MLE, = 0, exactly.  The off diagonal term in the expected Hessian is 

also zero.  Therefore, the LM statistic is 
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This resembles the square of the standard t-ratio for testing the hypothesis that μ = 0.  It would be exactly that 
save for the absence of a degrees of freedom correction in v.  However, since we have not estimated μ with x  
in fact, LM is exactly the square of a standard normal variate divided by a chi-squared variate over its degrees 
of freedom.  Thus, in this model, LM is exactly an F statistic with 1 degree of freedom in the numerator and n 
degrees of freedom in the denominator.   
 
6.  In Example 5.10, what is the concentrated over μ log likelihood function? 
 It is obvious that whatever solution is obtained for σ2, the MLE for μ will be x , so the concentrated 

log-likelihood function is ( ) ( )log log logL
n

x xc ii

n
=
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+ − −
=∑2 2
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2

2
2

2
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7.  In Example E.13, suppose that E[yi] = μ, for a nonzero mean.   
(a)  Extend the model to include this new parameter.  What are the new log likelihood, likelihood equation, 
       Hessian, and expected Hessian?   
(b)  How are the iterations carried out to estimate the full set of parameters? 
(c)  Show how the LIMDEP program should be modified to include estimation of μ. 
(d)  Using the same data set, estimate the full set of parameters. 
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 If yi has a nonzero mean, μ, then the log-likelihood is 
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The likelihood equations are 
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The expectations in the Hessian are found as follows:  Since E[yi] = μ, E[Hγμ] = 0.  There are no stochastic 

terms in Hμμ, so E[Hμμ] = Hμμ  = −
=∑ 1

21σ i
i

n
.  Finally, E[(yi - μ)2] = σi

2, so E[Hγγ] = -1/2(Z′Z).   

 There is more than one way to estimate the parameters.  As in Example 5.13, the method of 
scoring (using the expected Hessian) will be straightforward in principle - though in our example, it does 
not work well in practice, so we use Newton’s method instead.  The iteration, in which we use index ‘t’ to 
indicate the estimate at iteration t, will be 
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If we insert the expected Hessians and first derivatives in this iteration, we obtain 
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The zero off diagonal elements in the expected Hessian make this convenient, as the iteration may be 
broken into two parts.  We take the iteration for μ first.  With current estimates μ(t) and γ(t), the method of 

scoring produces this iteration: μ(t+1)  =  μ(t)  +  

y t
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1 .  As will be explored in Chapters 12 and 

13, this is generalized least squares.  Let i denote an n×1 vector of ones, let ei(t) = yi - μ(t) denote the 
‘residual’ at iteration t and let e(t) denote the n×1 vector of residuals.  Let Ω(t) denote a diagonal matrix 
which has σi

2 on its diagonal (and zeros elsewhere).  Then, the iteration for μ is  
μ(t+1) = μ(t) +  [i′Ω(t)-1i]-1[i′Ω(t)-1e(t)].  This shows how to compute μ(t+1).  The iteration for γ(t+1) is 
exactly as was shown in Example 5.13, save for the single change that in the computation, yi

2 is changed to 
(yi - μ(t))2.  Otherwise, the computation is identical.  Thus, we would have  
γ(t+1) = γ(t) + (Z′Z)-1Z′v(γ(t),μ(t)), where vi(γ(t),μ(t)) is the term in parentheses in the iteration shown 
above.  This shows how to compute γ(t+1). 
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/*================================================================ 
Program Code for Estimation of Harvey's Model 
The data set for this model is 100 observations from Greene (1992) 
Variables are: Y  = Average monthly credit card expenditure 
               Q1 = Age in years+ 12ths of a year 
               Q2 = Income, divided by 10,000 
               Q3 = OwnRent; individual owns (1) or rents (0) home 
               Q4 = Self employed (1=yes, 0=no) 
Read     ; Nobs = 200 ; Nvar = 6 ; Names = y,q1,q2,q3,q4 
         ; file=d:\DataSets\A5-1.dat$ 
Namelist ; Z = One,q1,q2,q3,q4 $ 
================================================================ 
Step 1 is to get the starting values and set some values for the 
iterations- iter=iteration counter, delta=value for convergence. 
*/ 
Create   ; y0 = y – Xbr(y) ; ui = log(y0^2) $ 
Matrix   ; gamma0 = <Z'Z> * Z'ui ; EH = 2*<Z'Z> $ 
Calc     ; c0 = gamma0(1)+1.2704     ? Correction to start value 
         ; s20 = y0'y0/n ; delta = 1 ; iter=0 $ 
Create   ; vi0 = y0^2 / s20 - 1 $  (Used in LM statistic) 
? Correct first element in gamma, then set starting vector. 
Matrix   ; Gamma0(1) = c0  ; Gamma = Gamma0 $ Start value for gamma 
Calc     ; mu0 = Xbr(y); mu = mu0$            Start value for mu 
Procedure ----------[This does the iterations]-------------------- 
Create   ; vari = exp(Z'Gamma)  ;  ei = y-mu  ; varinv=1/vari 
         ; hi   = ei^2 / vari  
         ; gigamma = .5*(hi - 1); gimu = ei/vari 
         ; logli = -.5*(log(2*pi) + log(vari) + hi) $ 
Matrix   ; ggamma = Z'gigamma ; gmu= 1’gimu 
         ; H = 2*<Z’[hi]Z> ; gupdate = H*ggamma  
? scoring, update = EH*ggamma 
         ; Gamma = Gamma + gupdate $ 
Calc     ; muupdate = Sum(gimu)/Sum(varinv) ; mu = mu + muupdate $ 
Matrix   ; update = [gupdate/muupdate] ; g = [ggamma/gmu] $ 
Calc     ; list ; Iter = Iter+1 ; LogLU = Sum(logli);delta=g'update$ 
EndProcedure   
Execute  ; While  delta > .00001 $ ------------------------------ 
Matrix   ; Stat (Gamma,H) $ 
Calc     ; list ; mu ; vmu = 1/Sum(varinv)   ; tmu = mu/Sqr(Vmu) $ 
Calc     ; list ; Sigmasq = Exp(Gamma(1))    ; K = Col(Z) 
                ; SE = Sigmasq * Sqr(H(1,1)) ; TRSE = Sigmasq/SE   
                ; LogLR = -n/2*(1 + log(2*pi)+ log(s20)) 
                ; LRTest = -2*(LogLR - LogLU) $ 
Matrix          ; Alpha = Gamma(2:K) ; VAlpha = Part(H,2,K,2,K) 
         ; list ; WaldTest = Alpha ' <VAlpha> Alpha   
                ; LMTest = .5* vi0'Z * <Z'Z> * Z'vi0   
                ; EH ; H ; VB = BHHH(Z,gi) ; <VB> $ 
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In the Example in the text, μ was constrained to equal y .  In the program, μ is allowed to be a free 
parameter.  The comparison of the two sets of results appears below. 
                         (Constrained model, μ = y )                (Unconstrained model) 
Iteration            log likelihood             δ      log-l;ikelihood     δ 
   1           -698.3888    19.7022   -692.2987 22.8406 
   2          -692.2986     4.5494   -683.2320  6.9005 
   3          -689.7029     0.406881    -680.7028  2.7494 
   4          -689.4980     0.01148798   -679,7461  0.63453 
   5          -689.4741     0.0000125995   -679.4856  0.27023 
   6          -689.47407    0.000000000016 -679.4856  0.08124 
    -679.4648    0.03079 
    -679.4568  0.0101793 
    -679.4542  0.00364255 
    -679.4533   0.001240906 
    -679.4530   0.00043431 
    -679.4529   0.0001494193 
    -679.4528  0.00005188501 
    -679.4528  0.00001790973 
    -679.4528  0.00000620193 
Estimated Paramaters 
Variable     Estimate   Std Error  t-ratio 
Age 0.013042   0.02310    0.565     -0.0134    0.0244  -0.550 
Income 0.6432     0.120001   5.360      0.9953    0.1375   7.236 
Ownrent      -0.2159     0.3073    -0.703      0.0774    0.3004   0.258 
SelfEmployed -0.4273     0.6677    -0.640     -1.3117    0.6719  -1.952 
γ1             8.465                           7.867 
σ2           4,745.92       2609.72 
μ   189.02 fixed      91.874     15.247   6.026 
Tests of the joint hypothesis that all slope coefficients are zero: 
LW           40.716       60.759 
Wald:        39.024        69.515 
 LM          35.115        35.115 (same by construction).    
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