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Abstract

Census Data on over 15 000 ready-mix concrete plants, from 1976
to 1999, is used to investigate the role of demand shocks. A model
of investment and entry in oligopolistic markets is estimated using a
Conditional Choice Probability Indirect Inference Algorithm imple-
mented via a Stochastic Algorithm. Estimates from this model are
used to simulate the effect of eliminating short-term (i.e. 5 year) de-
mand changes at the county level. Adjusting government expenditures
in a way that reduces volatility of demand has a “market expansion”
effect. The model predicts a 47% increase in the number of firms in
the industry and an increase in investment of 52% from $0.95 billion
dollars per year to $1.6 billion per year. Since bigger markets have
both more plants and larger plants, the demand smoothing fiscal pol-
icy would increase the share of large plants in the industry by 41%.
However, I find no effect of demand smoothing on either the entry or
exit rate or adjustments to plant size.
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1 Introduction

Many industries face considerable uncertainty about future demand for their

products. How do these shocks affect the organization of production and

market structure?

I study the effect of demand shocks in the ready-mix concrete industry.

Concrete is a geographically segmented industry since wet concrete cannot

travel much more than an hour before hardening. Thus the industry is com-

posed of local oligopolies and demand shocks cannot be deflected by reallocat-

ing production to other markets. The ready-mix concrete industry witnesses

large changes in demand from the construction sector from year to year which

are of great concern to ready-mix producers, as the size of the construction

industry at the county level changes on average by 30% per year. Moreover,

about half of concrete is used by state and local governments to construct

roads and buildings. These government outlays are volatile due to year to

year changes in tax revenues.

I look at government intervention in the ready-mix concrete market that

would smooth out short-term fluctuations in demand at the county level.

Specifically, the counterfactual mimics the effect of government sequencing

its contracts in such a way to fix demand for a five year period. After 5 years

are up, demand changes in the same way as it would have absent the demand

smoothing policy.

I use longitudinal data provided by the Center for Economic Studies at the
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U.S. Census Bureau, on the life histories of over 15 000 ready-mix concrete

plants in United States from 1976 to 1999 to simulate the effects of this

policy. Because the ready-mix concrete industry is an oligopoly, I estimate

a model of entry and discrete investment in concentrated markets using an

Indirect Inference Conditional Choice Probability Algorithm. Moreover, I

use the Stochastic Algorithm of Pakes and McGuire (2001) to deal with very

large state spaces. This allows for considerable plant heterogeneity.1

Plant size is directly related to market size in the ready-mix concrete

sector: bigger markets have both more plants and larger plants. Estimates of

the model show that construction employment has strong positive effects on

profits but disproportionately so on large plants. Competitors in the market

- in particular the first competitor - substantially reduce plant profits and

there are large sunk costs both for entering the market and for increasing or

shrinking the size of a plant, and these costs are greater for large plants than

for small plants.

The counterfactual policy of smoothing out 5 year changes in demand

has substantial effects on the industry. Smoothing demand would increase

the number of plants in the industry by 47%. Investment would increase by

52% from $0.95 billion to $1.6 billion per year, while producer surplus for

incumbents would increase by 29%. Moreover, the share of large plants (with

1Previous versions of the paper used an algorithm analogous to Aguiregabiria and Mira
(2007) where the choice probabilities were updated to match those given by a computed
equilibrium of the game given the estimated parameter vector. This technique leads to sim-
ilar estimates and counterfactual results as those presented in the paper and are available
by request.

4



more than 17 employees) would rise by 41%.

Reducing demand volatility has a “market expansion” effect. I find that

that a 1% increase in market size (as measured by construction employment)

is associated with a 0.69% increase in the number of ready-mix concrete

plants. The concavity of the effect of construction employment implies that

a reduction in the volatility of demand increases the number of firms in

the industry. As the “market expansion effect” is similar to an increase in

market size, the size distribution of the industry will shift towards large

plants, since the profits of these large plants increases more quickly with

market size than for small plants. The market expansion effect reduces the

number of monopoly markets from 71% of counties to 42% of counties, while

the number of counties in which there is no ready-mix concrete plant remains

fixed at 2%. I find that prices are 4% lower in competitive markets than

monopoly markets, so consumers would spend 64 million dollars per year

less on ready-mix concrete. Finally, producers would benefit from demand

smoothing, as the net present value of producer surplus would rise from 3.3

to 4.0 billion dollars.

Demand shocks have little effect on entry and exit rates or the rate at

which plants change their size. High sunk costs of entry and adjustment

make firms unlikely to respond to temporary changes in demand. As demand

volatility shrinks, firms get a more precise forecast of future demand and thus

changes in demand become more relevant. The direct effects of a smoother

demand process is exactly offset by firms becoming more sensitive to demand,
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removing any effect of demand smoothing on turnover and the rate at which

plants adjust their size.

In section 2, I discuss the source of sunk costs for ready-mix plants, and

the role of spatial differentiation in the industry. Section 3 describes how I

construct the data. In section 4, I present a dynamic model of competition,

and I describe estimation in section 5 and results in section 6. Finally, in

section 7 I discuss the effect of policies that would eliminate some of the

volatility of demand.

2 The Ready-Mix Concrete Industry

Concrete is a mixture of three basic ingredients: sand, gravel (crushed stone)

and cement, as well as chemical compounds known as admixtures. Combining

this mixture with water causes the cement to undergo an exothermic chemical

reaction called hydration, turning cement into a hard paste that binds the

sand and gravel together. I focus on ready-mix concrete: concrete which is

mixed with water at a plant and transported directly to a construction site.

Ready-Mix is a perishable product that needs to be delivered within an hour

and a half before it becomes too stiff to be workable.2 Concrete is also very

cheap for its weight. One producer describes the economics of transportation

costs in the ready-mix industry as follows:

2 “ASTM C 94 also requires that concrete be delivered and discharged within 1 1/2
hours or before the drum has revolved 300 times after introduction of water to the cement
and aggregates” p.96 in Kosmatka, Kerkhoff, and Panarese (2002).
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“A truckload of concrete contains about 7 cubic yards of con-

crete. A cubic yard of concrete weights about 4000 pounds and

will cost you around $60 delivered to your door. That’s 1.5 cents

a pound. If you go to your local hardware store, you get a bag of

manure weighing 10 pounds for $5. That means that concrete is

cheaper than shit. 3”

A ready-mix truck typically drives 20 minutes to deliver a load. 4 Thus,

concrete’s most salient feature from an economic perspective is that markets

are geographically segmented. Figure 1 shows the dispersion of ready-mix

producers in the Midwest, with an handful of incumbents in each area. In

my empirical work I treat each county as a separate market, one that evolves

independently from the rest of the industry.

Table 1 shows that the vast majority of counties in the United States

have fewer than 6 ready-mix plants, reflecting a locally oligopolistic market

structure. At the same time, because even the most isolated rural areas has

demand for ready-mix concrete, most counties are served by at least one

ready-mix producer.

A market with more than 3 firms appears to yield fairly competitive

outcomes. Figure 2 shows the median price in markets with 1 to 7 firms in

3Telephone interview, January 2005.
4The driving time of twenty minutes is based on a dozen interviews conducted with

Illinois ready-mix concrete producers. Thanks to Dick Plimpton at the Illinois Ready-Mix
Concrete Association for providing IRMCA’s membership directory.
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Figure 1: Dispersion of Ready-Mix Plant Locations in the Midwest.
Source: Zip Business Patterns publicly available dataset at

http://www.census.gov/epcd/www/zbp base.html.
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Number of Concrete Plants Number of Counties/Years Percent

0 22,502 30%
1 23,276 31%
2 12,688 17%
3 6,373 9%
4 3,256 4%
5 1,966 3%
6 1,172 2%
More than 6 3,205 4%
Total 74,438

Table 1: Most counties in the United States are served by less than 6 ready-
mix concrete plants.

the county.5 Note that the first 3 competitors have a noticeable impact on

prices, but beyond this there is little decline in prices. Price is constructed

similarly to Syverson (2004a), i.e. price is sales of concrete divided by tons

of concrete sold in the material trailer of the Census of Manufacturing.

Ready-Mix concrete is essentially a homogeneous good. While it is possi-

ble to produce several hundred types of Ready-Mix concrete, these mixtures

basically use the same ingredients and machinery. Because of aggressive an-

titrust policy on the part of the Department of Justice, the typical ready-mix

producer is a single plant operator. Indeed, Syverson (2004a) reports that

3749 firms controlled the 5319 ready-mixed plants operating in 1987. Thus I

will assume that each firm owns a single ready-mix concrete plant, making

plant and firm interchangeable.

5 These prices have been constructed using sales of concrete divided by volume of
concrete, following Syverson (2004a) procedure which removes hot and cold deck imputes
by dropping all price pairs which are exactly the same. The appendix discusses more details
on the construction of price statistics.
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Price and Competition
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Concrete is consumed by the construction sector. The bulk of concrete

purchases are made by the construction sector, to build apartments, houses,

roads and sidewalks. I use employment in the construction sector as my de-

mand measure. Demand for ready-mix concrete is inelastic since it is a small

part of construction costs. Concrete costs do not exceed 10% of material costs

for any sector in construction. So it is unlikely that the ready-mix market sub-

stantially affects the volume of construction activity. Government purchases

about half of U.S. concrete, primarily for road construction. According to the

Kosmatka, Kerkhoff, and Panarese (2002) p.9, Government accounts for 48%

of cement consumption, with road construction alone responsible for 32% of

total consumption. Fluctuations in Government purchases of concrete are

mainly due to the discretionary nature of highway spending in state and fed-

eral budgets. These purchases are a major source of uncertainty for ready-mix

producers.6

The autocorrelation of log county construction employment is 85% for 1

year, 74% for 2 years, 65% for 5 years and 21% for 20 years. This is a very

low autocorrelation for construction activity, signaling an enormous amount

of year to year change in demand. However, the demand process has more

long term correlation than an AR process would predict (note that an AR(1)

process would predict a 4% 20 year autocorrelation given a 85% 1 year auto-

correlation). To capture long-run differences in market size, I split up markets

6Conversation with Edward Sullivan, chief economist at the Portland Cement Associ-
ation, May 2005.
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Change in Log Construction Employment
1 Year Change 5 Year Change 10 Year Change

Change in Log Construction Employment
In adjacent counties 1.1% 2.1% 2.8%
In counties within 10 miles 1.1% 2.4% 3.2%
In counties within 20 miles 0.6% 2.4% 3.4%

Table 2: Spatial Correlation of Changes in Log Construction Employment.

into categories based on rounding the average number of firms in a market to

the nearest integer. I then estimate the demand process separately for each

market size category. 7

Table 2 shows regressions of changes in log county construction employ-

ment on changes in nearby counties. These regressions indicate very little

spatial autocorrelation in demand. For instance, only 2.1% of the variation

in log construction employment in a county is accounted for by changes in log

construction employment in counties that border it. Moreover, any aggregate

component of construction employment would show up as spatial autocorre-

lation of changes in construction activity. At the county level we can think of

demand evolving autonomously, and I consider policies that would interfere

with county level demand patterns instead of state or national patterns.

Opening a concrete plant is an expensive investment. In interviews, man-

agers of ready-mix plants estimate the cost of a new plant at between 3 and

7In Appendix A I discuss alternate proxies for persistent differences between markets.
The number of firms in the market is an endogenous variables- thus problematic - I find sim-
ilar first-stage entry and exit regressions when I categorize markets using non-endogenous
variables such as the lagged number of firms in the market, or market fixed-effects, indi-
cating that in practice endogeneity is a minor problem. However, using the lagged number
of firms as a categorization variable makes it possible for a market to switch from one
category to another, adding a layer of complexity in the state space that I wish to avoid.
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4 million dollars, and continuing plants in 1997 had on average 2 million

dollars in capital assets. There are few expenses involved in shutting down a

ready-mix plant. Trucks can be sold on a competitive used vehicle market,

and land can be sold for other uses. The plant itself is a total loss. At best

it can be resold for scrap metal, but many ready-mix plants are left on site

because the cost of dismantling them outweighs the benefits. I provide evi-

dence of sunk costs in the ready-mix industry at the plant level, including

factors difficult to quantify, such as long term relationships with clients and

creditors. These intangible assets may account for a large fraction of sunk

costs. 8

Ready-mix concrete has been studied extensively by Syverson (2004a),

who provides evidence of productivity dispersion across plants. This produc-

tivity dispersion is evidence of large differences between plants which are not

eliminated by competitive pressures. I provide an explanation for why the

competitive adjustment process is not instantaneous.

3 Data

Data on Ready-Mix Concrete plants are taken from data provided by the

Center for Economics Studies at the United States Census Bureau. The pri-

mary data source is the Longitudinal Business Database (henceforth LBD)

8For instance, ready-mix operators sell about half of their production with a six month
grace period for repayment. Accounts receivable have a value equivalent to half of a plant’s
physical capital assets. It will be more difficult to collect these accounts if the firm cannot
punish non-payment by cutting off future deliveries of concrete.
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compiled from data used by the Internal Revenue Service to maintain busi-

ness tax records. The LBD covers all private employers on a yearly basis from

1976 to 1999 and has information about employment, salary along along with

sectoral coding and certain types of business organization data such as firm

identification.

Production of ready-mix concrete for delivery predominantly takes place

at establishments in the ready-mix sector. Hence, establishments in the ready-

mix sector are chosen, corresponding to either NAICS (North American In-

dustrial Classification) code 327300 or SIC (Standard Industrial Classifica-

tion) code 3273.

To construct longitudinal linkages, I adapt the Longitudinal Business

Database Number (henceforth LBDNUM), as developed by Jarmin and Mi-

randa (2002). This identifier is constructed from Census ID, employer ID

and name and address matches of all plant in the LBD. To identify plant

entry and exit, I use Jarmin and Miranda (2002)’s plant birth and death

measures. Jarmin and Miranda identify entry and exit based on the pres-

ence of a plant in the I.R.S.’s tax records. They take special care to flag

cases where plants simply change owners or name by matching the address

of plants across time.9 Each year, about 40 plants (or about 1.6% of plants)

are temporarily shut down. I do not treat temporary shutdown as exit, since

the cost of reactivating a plant is far smaller than building one from scratch.

9If a plant changes ownership, I do not treat this as an exit event since the cost of
changing the management at a plant should be much lower than the cost of building a
plant from scratch.
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I complement the LBD with data from the Census of Manufacturing

(henceforth CMF) and Annual Survey of Manufacturers (henceforth ASM)

which contains more detailed information on plants such as inputs, outputs

and assets. Unfortunately, the ASM is only sent to about a third of plants

in the ready-mix concrete sector, while the CMF is available only every five

years and excludes all plants with less than 5 employees (about a quarter of

concrete plants). Since the CMF and ASM have serious issues with missing

data, it makes it difficult to use them alone for longitudinal market level

studies. This is not true of the LBD which has the entire population of

plants. Finally, construction data is obtained by selecting all establishments

from the LBD in the construction sector (SIC 15-16-17) and aggregating

them to the county level.

3.1 Panel

Plants occasionally switch in and out of the ready-mix concrete sector. I se-

lect all plants that have belonged to the ready-mix sector at some point in

their lives, but throw out plants that switch into the concrete sector for a

small fraction of their lives, since these transient concrete plants are typi-

cally miscoded plants manufacturing other products such as cement of con-

crete pipe.10 As a product, ready-mix concrete represents 95% of shipments

from my selection of concrete plants. Moreover, when I collect all plants that

10Specifically I toss plants that produce concrete less than 50% of the time from my
sample.
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produce ready-mix concrete, based on their response to the product trailer

of the Census of Manufacturing (which collects detailed information on the

output of plants), I find that 94% percent of ready-mix concrete is produced

by plants in my sample.

Table 3 shows that over the sample period there are about 350 plant

births and 350 plant deaths each year compared to 5000 continuers. Turnover

rates and the total number of plants in the industry are fairly stable over

the last 30 years. The average ready-mix concrete plant employs 26 workers

and sold about 3.4 million dollars of concrete in 1997, split evenly between

material costs and value added. However, these averages mask substantial

differences between plants. Most notably, the distribution of plant size is

heavily skewed, with few large plants and many small ones, indicated by the

fact that more than 5% of plants have 1 employee, while less than 5% of plants

have more than 82 employees. Continuing firms are twice as large as either

entrants(births) or exitors(deaths), measured by capitalization, salaries or

shipments. Plant size (as measured by employment) is the most important

plant state since bigger plants ship far more concrete and are much less likely

to exit. Salaries have a correlation of 92% with total shipments (versus 43%

for capital) and are very persistent, with an autocorrelation of 91% (versus

only 74% for capital). For this reason the number of employees is used as

measure of plant size.11

11 I use employment instead of capital stock, since employment is measured for all plants
in the data (since it is derived from IRS tax returns in the LBD), while capital is available
for all plants in a market for only a small number of markets (as is discussed in Collard-

16



I aggregate plant data by county to form market level data. Since counties

in the United States vary greatly in size, I have taken care to exclude counties

in states such as Arizona which have unusually spacious counties, and a small

number of heavily populated urban counties.12 Table 4 presents summary

statistics of the market level data. Note that on average there are 1.86 plants

per market. Moreover the is a wide range of construction employment, going

from 11 employees (5th percentile) to 6800 employees (95th percentile), 500

times greater. Yet the range of the surface of county in square miles is 210

to 3200 a bit more than a 10 times difference.

Wexler (2009) which use multiple imputation to fill in missing capital stock). In practice,
given the coarseness the size of my employment bins, classifying a firm based on capital
or employment does not matter very much.

12Specifically, counties with more than 20 plants. The County Business Patterns reports
that in 2007 there are 20 of these counties.
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Year Birth Continuer Death

1976 501 4,737 N.A.
1977 557 4,791 410
1978 327 5,043 445
1979 392 5,093 333
1980 271 5,140 387
1981 313 5,069 360
1982 313 4,875 423
1983 273 4,991 315
1984 328 4,972 295
1985 309 4,988 339
1986 300 5,003 305
1987 390 4,898 404
1988 270 5,016 269
1989 248 4,275 448
1990 194 4,103 304
1991 220 3,882 291
1992 214 4,643 348
1993 133 3,668 270
1994 163 3,952 232
1995 196 3,840 243
1996 195 3,734 230
1997 338 4,768 274
1998 239 4,949 267
1999 320 4,961 234

Table 3: The number of Births, Deaths and Continuers is fairly stable over
the last 25 years
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4 Model

I use the theoretical framework for dynamic oligopoly developed by Ericson

and Pakes (1995)- with some small variations - to analyze entry, exit and

investment decisions in the ready-mix concrete industry. In each market there

are i = 1, · · · , N firms in the market, which are either potential entrants or

incumbents. A firm i can be described by a firm specific state sti ∈ Si. Firms

also react to market-level demand, M t, and thus the market level state st is

the composition of the states for each firm and the aggregate state M t:

st = {st1, st2, · · · , stN ,M t}

I will distinguish between two component of the state sti, x
t
i which is common

knowledge to all firms in the market and εti which is an i.i.d. private infor-

mation component. If instead εti was serially correlated, then a firm might

find it optimal to condition it’s strategy on past actions taken by other firms

in the market. This would seriously increase the size of the state space 13

Denote by xt = {xt1, xt2, · · · , xtN ,M t} and εt = {εt1, εt2, · · · , εtN} the market

level common knowledge and private information state respectively.

In each period t, potential entrants choose of whether to enter a market,

and incumbents can choose to exit the market. Moreover, conditional on

being in the market, firms pick their common knowledge state xti in the next

13In my empirical application, there are 1.4 million states. If a firm also conditioned on
the history of the market for even a single year, then the state space would be over 1.9
billion billions.
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period. Thus the firm’s action ati is the choice of being out of the market,

i.e. xt+1
i = ∅, or their state tomorrow xt+1

i conditional on choosing to have a

plant in the market. Demand evolves following a first-order Markov Process

transition probabilities given by D(M t+1|M t).

I assume the private information component εti enters into the profit func-

tion as an additive shock to the value of each action ati. Thus payoffs are given

by:

r(xt+1) + τ(xt+1
i = ati, x

t
i) + εtia (1)

where r(·) denote the rewards from operating in the market, and τ(·) are

transition costs, i.e. the costs of moving from one state to another. The

results section of the paper are primarily concerned with estimating these

reward and transition functions.

The timing of the game is thus:

1. Firms privately observe εti and publicly observe xt.

2. Firms simultaneously choose actions ati.

3. Demand M t evolves to it’s new level M t+1. Firm level states evolve to

xt+1
i .

4. Payoffs r(xt+1) + τ(ati, x
t
i) + εtia are realized.
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So I can define the firm’s ex-ante (i.e. before observing εti) value as:

V (xt) = Eεti

(
max
ati

Ext+1
−i

[
r(xt+1
−i , x

t+1
i ) + τ(xt+1

i = ati, x
t
i) + εtia + βV (xt+1)

])
(2)

and actions are chosen so as to maximize the net present value of rewards:

ati = argmaxatiExt+1
−i

[
r(xt+1
−i , x

t+1
i ) + τ(xt+1

i = ati, x
t
i) + εtia + βV (xt+1)

]
(3)

A symmetric Nash equilibrium in pure strategies is a set of policies

a∗(xt, εti) such that a unilateral one shot deviation to strategy ãi(x
t, εti) would

not lead to a higher net present value of rewards, conditional on all other

players using strategies a∗−i(·). Notice that strategies of other players are sim-

ply embedded into the value function V (·) and the expectations over xt+1
−i . If

εtia is an additive, action specific shock and if it has full support, there will

exist pure strategy equilibria to this game. 14

4.1 Stochastic Algorithm

To compute the strategies associated with a Nash Equilibrium of the dynamic

game, I adapt the stochastic algorithm of Pakes and McGuire (2001) to the

discrete action setup used in this paper since the state space has up to 1.4

14Proposition 2 in Doraszelski and Satterthwaite (2010) describes conditions under
which the Ericson and Pakes (1995) model has a pure strategy equilibrium, essentially
pointing out that exit and entry costs need to have full support shocks to ensure the ex-
istence of pure strategy equilibrium. The game I describe has full support shocks to the
value of entering and exiting, as well as to the value of taking any action.
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million states.15

An important assumption that I will use is the fact that the private

information state εtai is a i.i.d. logit random variable, an assumption that I

will defer discussing until to the next section.

First, some notation. To work out the firm’s strategies, I will compute

the ex-ante choice specific value function W (ai, x), i.e. the net present value

of payoffs conditional on taking action ai (before I observe εti) defined as16:

W (ai, x) = Ex′|ai [r(x′) + τ(ai, xi) + βV (x′)]

= Ex′|ai

[
r(x′) + τ(ai, xi) + βEε′

(
max
a′i

W (a′i, x
′) + ε′ai

)] (4)

Given the choice-specific value function, it is easy to reckon the firm’s condi-

tional choice probability (henceforth CCP) Ψ[ai|x], i.e. the probability that

a firm will play action ai in observable state x - before observing εi - using

the logit formula:

Ψ[ai|x] =
exp (W (ai, x))∑
j∈Ai exp (W (j, x))

(5)

Next I define the hit counter, denoted h(ai, x), as the number of times

the location l = (ai, x) has been visited by my algorithm. The hit counter

15There are 10 firms, 7 possible states per firm and in the most complex model 50
demand states. I reduce the size of the state from 107 × 50 to 1.4 million by using the
assumption of exchangeability described by Gowrisankaran (1999).

16Note that V and W are linked together by:

V (x) = Eεai

(
max
ai

W (ai, x) + εai

)
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is important since it will allow me to keep track of the precision of the

computation of W (ai, x) and Ψ[ai|x] using the Discrete Action Stochastic

Algorithm (henceforth DASA).

Algorithm Discrete Action Stochastic Algorithm (DASA)

1. Start in a location l0 = {a0
i , x

0}.

2. Draw an action profile for other players a−i ∼
∏

k 6=i Ψ[ak|x]. Given the

action profile a = {ai, a−i} draw a state in the next period x′:

x′|a ∼ D̂[M ′|M ]
∏
i

ι(x′i|ai, xi) (6)

where ι(x′i|ai, xi) is the updating function, which updates the firm’s

state based on a firm’s action and the firms largest size in the past. 17

3. Increment the hit counter (how often you have visited the state-action

pair): h′(ai, x) = h(ai, x) + 1.

17 Later in the paper I will make the firm’s previous state relevant to the transition cost.
Specifically, if the firm’s state is xi = {xCi , xPi }, i.e. the current size xCi and the largest
size in the past xPi , then the updating function ι(x′i|ai, xi) is:

x′i =

{
{ai, ai} if ai ≥ xPi
{ai, xPi } if ai < xPi
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4. Compute the value R of the action as:

R =r(ai, x)− τ(ai, xi)

+ β
∑
j∈Ai

W (j, x′)Ψ[j|x′] + βE(ε|x′, P )
(7)

where E(ε|x′, P ) =
(
γ −

∑
j∈A ln(Ψ[j|x′])Ψ[j|x′]

)
(where γ is Euler’s

Constant).

5. Update the W-function:

W ′(ai, x) = α[ai, x]R + (1− α[ai, x])W (ai, x) (8)

where α = 1
h(ai,x)

.18

6. Update the Policy Function Ψ for state x:

Ψ′[ai|x] =
exp (W (ai, x))∑
j∈Ai exp (W (j, x))

(9)

for all actions ai ∈ A.

18 The main problem with the stochastic algorithm is: 1- making sure the entire state
space is searched, 2- ensure fast learning about the W function at the start of the algorithm
and 3- making sure that the convergence properties of the algorithm are satisfied. First, I
initialize the startingW using fairly high values so that the algorithm visits all states before
lowering the estimate of W . Second, at the start of the algorithm I use α = 1/

√
h(ai, x)

to ensure that initially inaccurate W ’s get updated quickly. As well, I reset the hit counter
after 20 million iterations to ensure that the first rounds of updates are down-weighted.
Third, in the final stage of the algorithm I switch to the α = 1/h(ai, x) update rule which
satisfies the convergence properties in Pakes and McGuire (2001) and more broadly and
related to the properties of Stochastic approximation algorithms decribed in Powell (2007)
on page 216.
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7. Draw a new action a′i ∼ Ψ[·|x′].

8. Update current location to l′ = {a′i, x′}.

9. The stopping rule for this algorithm is based on Fershtman and Pakes

(2004) which compares the W-function to a simulated average based

on rewards from steps 2 and 4 for states that are recurrent. If the W-

function is exact, then the squared difference between between these

two objects (weighted by the ergodic distribution) can be accounted

for by simulation error. The stopping rule is presented in appendix B.

5 Conditional Choice Probability (CCP) Es-

timation

Applying the Ericson and Pakes (1995) framework to data has proven dif-

ficult due to the complexity of computing a solution to the dynamic game.

Even with the DASA presented in the previous section it takes more than

an hour to compute a solution. For single agent problems, Hotz and Miller

(1993) and Hotz, Miller, Sanders, and Smith (1994) bypass the computation

of optimal policies (the approach followed in say Rust (1987)’s study of a

single agent’s dynamic optimization problem) by estimating policies directly

from the choices that agents make. This idea has been adapted to strategic

settings by several recent papers in Industrial Organization such as Bajari,

Benkard, and Levin (2007), Pakes, Berry, and Ostrovsky (2007), Pesendorfer
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and Schmidt-Dengler (2008), Ryan (2006) and Dunne, Klimek, Roberts, and

Xu (2006). Specifically, if Ψ̂[ai|x] and D̂ is available from the data, then the

W function can be computed using the DASA up to a vector of parameters

in the period profit function. The main assumption required for these tech-

niques to work is that there is a single equilibrium played in each observed

state (to the econometrician), which allows me to consistently estimate the

conditional choice probabilities, i.e. the probability that a firm chooses an ac-

tion ai in an observed state x. I employ this approach along with techniques

that allow for persistent unobserved heterogeneity between markets.

First I will present the state space, since the bottleneck in any of these

approaches remains the complexity of computing the counterfactual equilib-

ria; more precisely, the burden of keeping the entire state space in memory.

Second, I will talk about the parametrized profit function that I estimate.

Third, I discuss the conditions on the unobserved states under which I can

estimate the conditional choice probabilities. Finally, I will present the esti-

mation criterion, the Indirect Inference Conditional Choice Probability esti-

mator (henceforth IICCP).

5.1 State Space

I choose a maximum of 10 plants per market, since this allows me to pick

up most counties in the U.S. (note that 6 plants is the 95th percentile of

the number of plants in a county in Table 4), and keeps the size of the state

space manageable. A county with more than 10 active plants at some point
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its history is dropped from the sample, since the model does not allow firms

to envisage an environment with more than 9 competitors.19

Since the vast majority of plants are owned by single-plant firms, I assume

that a firm can operate at most one ready-mix concrete plant. Firm i can be

described by a firm specific state sti ∈ Si:

sti = { xti︸︷︷︸
(Plant Size,Past Plant Size)

, m︸︷︷︸
Market Effect

, εti︸︷︷︸
i.i.d. logit shock

} (10)

I assume that the the unobserved state can be decomposed into εtia which is

an i.i.d. logit shock plus a market m level component of the value of taking

an action a (which will be discussed in more detail in Section 5.3), and that

a firm’s observed state xti is based on the number of employees at the firm. A

firm is small if it has fewer than 8 employees, medium if it has between 8 and

17 employees and big if there are more than 17 employees. Employment is a

better measure of size that capital stock, since it is available for all plants in

the data and the number of employees has significantly higher autocorrelation

than capital assets and is a better predictor of both future production and

exit. 20 I keep track of the largest size the firm has had at any point in the

past to control for the fact that a plant which was previously large may have

capital assets which make it easier to ramp up its size in the future. Table

19To allay the potential for selection bias that this procedure entails, counties with more
than 10 000 construction employees at any point between 1976 and 1999 are also dropped.
This excludes 15% of markets and 35% of plants from the analysis.

20I choose cutoffs of 8 and 18 employees, since these correspond to terciles of the em-
pirical distribution.
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Curent Size Size Next Year
Out Small∗ Medium∗∗ Large∗∗∗ Total

Out 98.7% 1.0% 0.2% 0.1% 14,440
Small 7.9% 82.6% 8.1% 1.5% 1,134
Small, Medium in Past 7.8% 73.7% 17.6% 1.0% 405
Small, Large in Past 10.8% 67.4% 15.8% 6.0% 139
Medium 3.3% 19.9% 68.7% 8.1% 672
Medium, Large in Past 3.0% 10.9% 64.4% 21.6% 298
Large 2.6% 4.1% 11.3% 82.1% 887

* Small Less than 8 Employees
** Medium: 8 to 17 Employees
*** Large: More than 17 Employees

Table 5: Average Yearly Plant Transition Probabilities

5 shows the probability with which plants change size, enter or exit. Large

plants exit at a rate of 2.6%, one third the rate of small plants (7.9%), and

plants that were large in the past are more likely to ramp up in the future.

Moreover, in the sample of counties that excludes large markets 54% of plants

are small, 32% are medium and 12% are big. I do not keep track of size in the

past if the firm is larger today than it was in the past, since it is the largest

size of previous employment that determines if a firm has the equipment and

land necessary to ramp up in the future.21

The main empirically relevant implication of the assumptions on ε is

that it is serially uncorrelated, uncorrelated between players, and privately

observed.

21Moreover, if I keep track of past size, no matter what current size is, there would be
10 possible common knowledge states xti per firm instead of the 7 in Table 5, which would
be a very large increase in the number of states I need to keep track of.
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Assumption 1 (Private Information) Each firm privately observes εti before

choosing its action, ati.

The assumption that unobservables for the econometrician are also un-

observed by other firms in the market is a strong one. Firms typically have

detailed information on the operations of their competitors. In contrast to

a static model of entry with private information such as Seim (2006), the

probability that a “mistake” occurs such as two firms entering into a market

at the same time is quite small since entry and exit rates are only 6%, and

firms have the option to exit in the next period.

Assumption 2 (No Market Level Correlation) Unobserved states are inde-

pendent across firms within the same market, i.e. εti⊥εt−i.

This assumption rules out common shocks, or persistent market level un-

observables. This assumption will be problematic since there is a clear prob-

lem of market unobservables such as either higher costs in certain markets

rather than others, such as unionized workers in Illinois but not in Alabama,

or higher unobserved demand in some markets, such as the fact that asphalt-

but not concrete- melts on roads in Texas. To correct for this problem I in-

clude market effects m into firm’s profit function, and I will estimate a profit

function rm(ati, x
t|θ) which differs by market. Note that this implies that the

firm’s choice specific value functions Wm(ai, x) and policy functions Ψm(ai|x)

will also be market specific. While estimating the market level profit func-

tion is straightforward, it runs into serious data constraints, since I cannot
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identify parameters from the cross-section. Thus I will make two assumptions

to render the market effects m tractable. First, I assume that rewards in a

market m are additively separable in the market level component:

rm(ati, x
t|θ) = r(ati, x

t|θ) + ξma + εati (11)

and have a market/action effect ξmai . Second, I collapse market effects into

market category effects µ. Categories are constructed by rounding the aver-

age number of plants in a county to the nearest integer. This classification

scheme conditions on an endogenous variable, but in appendix A I show that

using similar classification schemes that are not endogenous (but harder to

fit into the model), such as classifying based on the number of plants in the

past, yields indistinguishable estimates. Table 6 shows multinomial logits of a

firm’s choice of it’s size next year (ati), where Column II has market category

effects, and Column I does not. Later in the paper, I refer to the predictions

using the estimates in Column I as P̂ and using Column II as P̂ µ . Note

that introducing market effects leads to significantly more negative effects of

competitors, where the effect of more than 1 competitor is positive without

market category effects, but turn negative with category effects. As well, the

effect of log country construction employment falls when market effects are

added. In appendix A I discuss the use of the average number of firms in

the 1976-1999 periods as proxy for including market fixed effects by present-

ing binary logit regressions of the decision to have an active plant. Market
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category controls such as the number of firms in a pre-period or average log

construction employment yield similar results to having no market controls,

while using either the average number of plants or the average number of

plants in all years prior to this year yield similar results to market fixed

effects, estimated via a conditional logit.

If the market level shock is ignored then the implicit unobservable is

ε̃ti = ξma + εati . Firms will react to ξma , since higher values of the market level

shock will be more profitable markets to enter, and thus the number of firms

is correlated with the observable, i.e. E[ε̃tiN
t]. This will lead to upward bias

in the competition coefficient. It turns out that estimating positive effects

of competition has a toxic effect on both estimation and counterfactuals,

since simulating the model forward with positive spillovers between firms

makes the market tip from no firms to being completely filled up with firms.

However market level effects wash out a large part of the correlation between

demand and the number of firms since much of this correlation is coming

from cross-sectional variation. This is a similar problem as the use of fixed

effects in a production function regression discussed in Griliches and Mairesse

(1998), where fixed effects eliminate the most important source of variation

in capital stock, leading to a downward bias on the capital coefficient. These

two biases are a serious problem since having no market level controls will

lead to a market where the number of firms sloshes around since competition

effects are too small to pin down the number of firms, while a model with

market fixed effects will predict too small a response to demand and too few
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changes in the number of plants.

Assumption 3 (Serial Independence) Unobserved states are serially independent ,

i.e. Pr(εti|εki ) = Pr(εti) for k 6= t.

Serial independence of unobserved components of a firm’s profitability

is violated by any form of persistent productivity difference between firms,

or long term reputations of ready-mix concrete operators. Note that in the

context of a dynamic game, unobserved states are a first-order problem since

the size of the firm-level state xti is severely restricted by the difficulty of

keeping track of the joint distribution of the states of all firms.

I simulate the age profile of exit using the exit and size changes in Table

5, which captures what the age profile of exit would look like in the absence

of selection on an unobserved state. With a serially correlated unobserved

state, as plants age their exit rate falls due to the effect of selecting out

plants with a bad unobserved state. Figure 3 shows the exit hazard with age

in the data and simulated data. Both the data and the simulation have the

same average exit rate of about 6%, but the data has a somewhat steeper

decline in exit rates over time, so a plant aged 20 years old has an exit

rate of about 3.5% in the data, while the simulated data yields a exit rate

of about 5.2%. This is consistent with most models of industry dynamics

with a serially correlated unobserved state, and the active or passive learning

models of Pakes and Ericson (1998) and Jovanovic (1982), but is a small effect

compared to other industries such as restaurants where we would worry more

33



Dependent Independent I II (Market Category)
Variable Variable Coeff. S.E. Coef. S.E.
Small Small 6.75 (0.03) 6.57 (0.03)
in t+ 1 Small, Medium in Past 6.58 (0.04) 6.31 (0.04)

Small, Large in Past 6.13 (0.06) 5.90 (0.06)
Medium 6.15 (0.05) 5.93 (0.05)
Medium, Large in Past 5.59 (0.08) 5.31 (0.08)
Large 4.74 (0.06) 4.51 (0.06)
Log County Employment 0.12 (0.01) -0.05 (0.01)
First Competitor -1.65 (0.05) -1.96 (0.05)
Second Competitor 0.06 (0.03) -0.47 (0.03)
Third Competitor 0.11 (0.04) -0.29 (0.04)
Log of Competitors above 3 0.13 (0.02) -0.03 (0.03)
Market Type 2 1.03 (0.03)
Market Type 3 1.65 (0.05)
Market Type 4 2.26 (0.06)
Constant -3.82 (0.07) -3.02 (0.07)

Medium Small 6.27 (0.05) 6.10 (0.05)
in t+ 1 Small, Medium in Past 6.95 (0.06) 6.68 (0.06)

Small, Large in Past 6.43 (0.08) 6.21 (0.08)
Medium 9.17 (0.06) 8.96 (0.06)
Medium, Large in Past 9.12 (0.08) 8.84 (0.08)
Large 7.47 (0.06) 7.25 (0.06)
Log County Employment 0.29 (0.01) 0.12 (0.01)
First Competitor -1.76 (0.05) -2.11 (0.05)
Second Competitor -0.03 (0.04) -0.54 (0.04)
Third Competitor 0.04 (0.05) -0.32 (0.05)
Log of Competitors above 3 0.02 (0.03) -0.11 (0.03)
Market Type 2 1.08 (0.04)
Market Type 3 1.68 (0.06)
Market Type 4 2.21 (0.07)
Constant -6.47 (0.09) -5.71 (0.09)

Large Small 5.04 (0.08) 4.88 (0.08)
in t+ 1 Small, Medium in Past 4.50 (0.12) 4.23 (0.12)

Small, Large in Past 5.81 (0.10) 5.59 (0.10)
Medium 7.46 (0.07) 7.26 (0.07)
Medium, Large in Past 8.39 (0.09) 8.13 (0.09)
Large 9.76 (0.07) 9.54 (0.07)
Log County Employment 0.51 (0.01) 0.34 (0.02)
First Competitor -1.81 (0.06) -2.17 (0.06)
Second Competitor -0.05 (0.05) -0.58 (0.05)
Third Competitor -0.02 (0.06) -0.39 (0.06)
Log of Competitors above 3 -0.02 (0.03) -0.15 (0.03)
Market Type 2 1.07 (0.06)
Market Type 3 1.71 (0.07)
Market Type 4 2.26 (0.08)
Constant -8.28 (0.11) -7.50 (0.11)

Observations 431420 431420
Log-Likelihood -87256 -86302
Likelihood Ratio 431431 433339

Table 6: Multinomial Logit on the choice to be large, medium or small.
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Figure 3: The data predicts a slightly steeper decline of the exit hazard
with age.

about unobserved states. I do not deal with serial correlation and both the

estimates and counterfactuals will be contaminated by this problem.

5.2 Profit Function

The reward function has parameters, θ, which will be recovered from the

data. I use a simple Bresnahan and Reiss (1991) style reduced-form for the

reward function, endowed with parameters θ. It is easily interpreted and
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separable in dynamic parameters:

r(ati, x
t|θ) =

∑
α∈{Big,Medium,Small}

1(ati = α)

×

 θα1︸︷︷︸
Fixed Cost

+ θα2M
t+1︸ ︷︷ ︸

Demand Shifter

+ θα3 g(
∑
−i

xt+1
−i 6= out)︸ ︷︷ ︸

Competition Parameters


(12)

where g(·) is a non-parametric function of the number of competitors.

Transition costs are:

τ(ati, x
t
i|θ) = θl,m4

∑
l>0,m 6=l

1(ati = l, xti = m) (13)

so a firm pays a transition cost to change its state. However, I assume that

a firm does not pay any exit costs. 22

5.3 Indirect Inference CCP Algorithm

Suppose I estimate the model by matching the optimal choice probabilities

Ψ(ai|x,W θ, θ) to the data, where I include θ to emphasize the fact that

the choice probability Ψ and choice specific value function W depend on a

parameter vector θ. The natural way to do this would be to compute an

equilibrium to the dynamic game given parameters θ and the choice specific

value function W θ associated with it. Computing a solution to the dynamic

22Monte Carlo experiments indicate that it is quite difficult to jointly identify fixed
costs, entry and exit costs.
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game for each candidate parameter vector θ is computationally impractical,

since even with the DASA it takes more than an hour to find an equilibrium.

Moreover, the choice probabilities Ψ(ai|x,W θ, θ) might be quite non-linear

in θ since the solution of the dynamic game W θ can have a very intricate

shape.

To cut through this difficult dynamic programming problem, I have adapted

a conditional choice probability estimator applied to games. I have adapted

the CCP algorithm for the very large state space in this problem (over 350000

states) using the Stochastic Algorithm of Pakes and McGuire (2001) and I

use a Simulated Indirect Inference Criterion approach for estimation (Keane

and Smith Jr (2003),Gourieroux and Montfort (1993) and Gourieroux and

Monfort (1996)).23

Algorithm CCP Indirect Inference Algorithm (CCPII)

1. Replace optimal choice probabilities Ψ with an estimate from the data

P̂ µ. Estimate the demand transition process D̂µ[M ′|M ].

I assume that there is single symmetric Markov Perfect equilibrium

played in each market category µ, and thus each market category µ

will have CCPs P µ = {Pr(ati|xt)}ati,xt associated with it.24 Since the

23 In previous version I have computed present estimates using an approach in the spirit
of Aguiregabiria and Mira (2007) which iteratively updates the strategies used by firms,
and I find that using an iterated technique yields very similar results to those presented
in the paper.

24To compute counterfactual industry dynamics I assume the existence of a single sym-
metric Markov perfect equilibria per market category µ. Besanko, Doraszelski, Kryukov,
and Satterthwaite (2010) show that this assumption may be problematic.
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εti’s are logit draws, I estimate P̂ µ with a multinomial logit that varies

by market category µ shown in Table 6. Due to limited data, rather

than estimating coefficients on the logit βµ,0ai
+ βµ,Xai X that all vary

by market category, I assume that the market effects are just additive

constants, i.e. βµ,0ai
+ βXaiX.25

The demand transition matrix D is estimated by market category µ

using a bin estimator D̂µ[i|j] =
P

(l,t) 1(Mt+1
l ∈Bi,Mt

l ∈Bj)P
(l,t) 1(Mt

l ∈Bj)
with 10 bins and

the demand level within a bin is set to the mean demand level.

2. Compute theW µ function conditional on policies Ψµ(ai|x,W ) = P̂ µ[ai|x]

using the DASA.

The choice specific value functionW µ can be computed using the DASA

with an important change. I will replace the computed choice proba-

bilities Ψµ(ai|x,W µ) with an estimate from the data P̂ µ[ai|x,W µ]. The

considerably simplifies the DASA, since it means that I don’t have to

compute the choice probabilities Ψ, since these are being held fixed

during the iteration of the algorithm. 26

A final rewriting of the W-function is now in order to aid with the

estimation of the model. The rewards and transition costs in equations

(12) and (13) on page 36 are linear in parameters θ, so the profit func-

25The main issue is that it is difficult to estimate the effect of say the 3rd competitor,
in a market that has on average one firm in it-hence in market category µ = 1, since we
rarely see 3 firms in this type of market.

26I modify the DASA replacing Ψµ(ai|x,Wµ) with P̂µ[ai|x,Wµ], and I shut down the
policy update step; i.e. step 6 on page 25.
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tion can be rewritten as r(ai, x|θ)− τ(ai, xi|θ) = θ · ~ρ(ai, x) where ~ρ is

a function that returns a vector. This implies that the W function will

be separable in dynamic parameters as in Bajari, Benkard, and Levin

(2007), since

W µ(ai, x|θ) = E
∞∑
t=1

βt (r(ait, xt|θ)− τ(ait, xit|θ))

= θ · EPµ
∞∑
t=1

βt~ρ(ait, xt) ≡ θ · ΓPµ(ai, x)

(14)

where EPµ denotes the expectations of firms at time 0 given that they

believe their opponents and their future selves use conditional choice

probabilities P µ. This allows me to rewrite the W µ function in a vector

representation, the ΓP
µ

function which only depends on the conditional

choice probabilities P µ, not on the parameter vector θ:

ΓP (ai, x) = EPµ
∞∑
t=1

βt~ρ(ait, xt) (15)

The choice probabilities Ψ can be rewritten as a function of ΓP
µ

and θ:

Ψ(ai|x,ΓP
µ

, θ) =
exp

(
θ · ΓPµ(ai, x)

)∑
j∈A exp (θ · ΓPµ(j, x))

(16)

I compute the Γ function with the modified Discrete Action Stochastic

Algorithm and the information on the evolution of the state in the

estimated choice probabilities P̂ µ and the estimated demand process
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D̂µ. 27

3. Simulated Indirect Inference Estimation

A maximum likelihood estimation strategy using the choice probabil-

ities Ψ is quite practical since the log-likelihood function L will be

globally concave28:

L(θ) =
N∑
n=1

ln (Ψ(ani |xn, θ,Γ)) (18)

where n indexes observations in the data. A problem arises because Γ

has error in it, both because the choice probabilities P̂ µ have sampling

error and because the discrete action stochastic algorithm is an approx-

imation to the true value function. With simulation error, maximum

likelihood estimates will be biased (see McFadden (1989) and Pakes,

27 I could have computed the ΓP
µ

using forward simulation, i.e.:

ΓP
µ

(ai, s) ≈
1
K

K∑
k=1

∞∑
t=0

βt~ρ(aitk, xtk) (17)

where the sequence of states xtk can be simulated using demand transition process D̂
and the choice probabilities for firms P̂ . However, there are about 350 000 states and 4
actions, thus I would need to do this forward simulation 1.4 million times the number of
simulation draws K. To get around this computational burden, I use a modification of the
DASA algorithm, in which I shut down the policy update step, i.e. step 6 on page 25, to
perform the forward simulation in equation 17 more quickly. In appendix C I discuss the
computation of ΓP in more detail.

28To see this, note that the assumption of linearity in dynamic parameters gives a utility
function of the form ua = θ · Γ(a, x) which is linear. Along with the assumption that the
εa’s are logit, this implies a globally concave likelihood function. I use maximum likeli-
hood estimates as starting values for the indirect inference procedure which are presented
in Table 14 on page 79 in the Appendix. The main difference between the estimates us-
ing maximum likelihood and those using Indirect Inference, is that maximum likelihood
estimates a higher variance of ε than Indirect Inference.
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Berry, and Ostrovsky (2007) for instance), and this bias may disappear

quite slowly as one increases the precision of Γ. Moreover, maximum

likelihood estimates are frequently pinned down by small probability

events (such as entry and exit), which are very sensitive to error in the

Γ function. Instead, I use an Indirect Inference Criterion function to

estimate the model. Indirect Inference is less sensitive to error in the Γ

function, and like many GMM estimators, and can be consistent even if

there is simulation error in Γ, and this simulation error does not vanish

asymptotically.29

Essentially the indirect inference estimator matches regression coeffi-

cients from the data (denoted β̂) with regression coefficients from sim-

ulated data generated by the model conditional on a parameter θ (de-

noted β̃(θ)). As an auxiliary model (i.e the regression I run on both real

and simulated data) I choose a multinomial linear probability model. It

is simple to estimate and a close analogue to the multinomial dynamic

logit model which is being estimated.30

I define the outcome vector from the data as yn, and the predicted

29For some intuition, if the exit rate in the data is 1%, but the model predicts an
exit probability almost 0%, then an maximum likelihood criterion would have an infinite
log-likelihood, while a Indirect Inference criterion would find an error of 1%.

30Note that the auxiliary model does not need to be a consistent estimator or have
an interpretation of any sort. It’s sole responsibility is to provide rich description of the
patterns of a dataset, and to be simple to estimate.
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choice probabilities given by the model ỹn for observation n as:

yn =


1(an = small)

1(an = medium)

1(an = big)

 ỹn(θ) =


Ψ(small|xn,Γ, θ)

Ψ(medium|xn,Γ, θ)

Ψ(large|xn,Γ, θ)

 (19)

Where the outcome vector ỹn(θ) are the predicted choice probabilities

Ψ. 31 I run an OLS regression on yn = Znβ̂ and find the ols coeffi-

cients of the multinomial linear probability model. Likewise I run a

OLS regression on the predicted choice probabilities ỹn to obtain the

coefficients for the model β̃(θ) given parameter θ. Table 7 shows this

multinomial linear probability model, the β̂ coefficient . The covariates

of the auxiliary model zn are indicators for the firm’s current state, the

number of competitors in a market and the log of construction employ-

ees in the county. I allow the coefficients to vary by market category

µ and by action chosen an. This tells to the model to match moments

conditioned on market category µ to take care of heterogeneity between

markets.

The criterion function minimizes the distance between the regression

coefficient in the data and in the simulated data:

Q(θ) =
(
β̂ − β̃(θ))

)′
W
(
β̂ − β̃(θ)

)
(20)

31 Theorem 4 in the appendix proves that using the choice probabilities Ψ as predicted
actions gives the same θ’s as drawing action an ∼ Ψ(·|xn,Γ, θ) from the predicted choice
probabilities when one uses an infinite number of simulation draws.
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Dependant Variable
Small Medium Large

Coef. S.E. Coef. S.E. Coef. S.E.
Small 0.801 (0.001) 0.075 (0.001) 0.013 (0.001)
Small, Medium in Past 0.711 (0.002) 0.168 (0.002) 0.007 (0.001)
Small, Large in Past 0.650 (0.003) 0.151 (0.003) 0.056 (0.002)
Medium 0.174 (0.002) 0.679 (0.001) 0.078 (0.001)
Medium, Large in Past 0.084 (0.002) 0.637 (0.002) 0.211 (0.002)
Large 0.018 (0.001) 0.106 (0.001) 0.814 (0.001)
Log County Employment -0.004 (0.000) 0.001 (0.000) 0.003 (0.000)
First Competitor -0.043 (0.001) -0.018 (0.001) 0.003 (0.001)
Second Competitor -0.005 (0.001) -0.003 (0.001) -0.001 (0.001)
Third Competitor -0.005 (0.001) -0.001 (0.001) -0.003 (0.001)
Log of Competitors above 3 0.001 (0.001) -0.001 (0.001) -0.002 (0.001)
Market Type 2 0.013 (0.001) 0.004 (0.001) -0.001 (0.001)
Market Type 3 0.024 (0.001) 0.005 (0.001) 0.001 (0.001)
Market Type 4 0.037 (0.002) 0.005 (0.001) 0.008 (0.001)
Constant 0.068 (0.002) 0.014 (0.002) -0.020 (0.001)

Observations 431420 431420 431420
R2 62% 47% 68%
F-Stat 49496 26888 64486

Table 7: Multinomial Linear Probability Model of Plant Size

where W is a weighting matrix, where I use W = V ar[β̂]−1, the inverse

of the covariance matrix from the OLS regression. Appendix D.1 shows

conditions under which the estimator is consistent, which a straightfor-

ward extension of the consistency of Indirect Inference estimators.32

To recap, IICCP estimation proceeds in three stages. First, I estimate the

32In a prior version of the paper I estimated the model by iterated on the conditional
choice probabilities, i.e. updating them using parameters estimates θ. To implement this
procedure (which requires the assumption of a single equilibrium to the dynamic game in
order to be consistent) I need to add extra steps where:

4) Replace P̂µ[ai|x] with Ψ[ai|, x, θ̂] where θ̂ is the current estimate of the parameters
in the profit function.

5) Repeat steps 2-4 until θ converges.
I obtain very similar results when I iterate on the conditional choice policies as when I

do not.

43



policies used by firms P̂ µ and the demand transition process D̂µ. Second, I

use these estimates - that let me simulate the evolution of the state - and

the DASA to compute the choice specific value function W up to a vector of

parameters in the period profit function θ. This allows me to quickly compute

a firm’s policy function Ψ(ai|x,Γ, θ). Third, I pick θ so that the coefficients in

an OLS regression using data simulated by the model are as close as possible

to the OLS coefficients using the actual data.

6 Results

I estimate the model using the CCP Indirect Inference presented in the pre-

vious section. I fix the discount factor to 5% per year. Table 8 presents

estimates of the dynamic model using the CCP Indirect Inference. Column

I shows estimates without fixed costs that vary by market category θ̂, while

Column II shows estimates where fixed costs vary by market category θ̂µ.

Standard errors are computed via 100 bootstrap replications of the estima-

tion procedure, where I reestimate the demand transition process D̂µ and

the conditional choice probabilities P̂ µ, then minimize the criterion function

Q to find θ. I block bootstrap by market, resampling a market’s history from

1976 to 1999, so the computed standard errors account for serial correlation

within a market.

In line with interviews with producers in Illinois, I calibrate the entry

costs for a medium sized plant to 2 million dollars. This allows me to convert
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parameters in variance units into dollars. The variance of ε is estimated to

120 000 dollars per year (or $ 97 000 for the market effects model), or about

4% of sales which is well below year to year changes in profits due to changes

in productivity. To make sense of the magnitudes of these figures, note that

average sales are 3.4 million dollars.

The fixed costs of operating a plant are about $ 261 000 for a medium

sized plant, slightly less for a small plant and slightly more for a large plant.

Doubling the number of construction workers in a county increases profits

by $ 12 000 for a small plant versus $ 44 000 and $ 83 000 for a medium and

large sized plant, while the effect of construction employment is somewhat

lower in the market effect estimates θ̂µ. The coefficient on construction em-

ployment is reflective of the fact that bigger markets have both more plants

and larger plants. Figure 4 plots local polynomial regressions of the log of

construction employment in the county against both the average size of a

plant (measured in payroll terms) and the number of plants in a county:

larger markets have more plants and bigger plants. In a county with 150 em-

ployees in the construction sector average plant payroll plants is $ 400 000,

while in a county with 1010 employees in the construction sector this average

is closer to $ 600 000. This effect is not specific to the ready-mix concrete

industry, as Campbell and Hopenhayn (2005) have documented the link be-

tween establishment and market size in retail trade industries. The fact that

plant size and market size are connected is responsible for the fact that de-

mand fluctuations have a impact on the equilibrium size distribution. In
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(All estimates in thousands of dollars)
I. No Market Effects θ̂ II. Market Effects θ̂µ

Coef. S.E.∗ Coef. S.E.
Fixed Cost Small -237 (11) -246 (13)

Medium -261 (11) -291 (16)
Large -287 (12) -331 (18)

Log Construction Small 12 (8) -4 (6)
Employment Medium 44 (6) 29 (6)

Large 83 (7) 65 (7)
1st Competitor Small -96 (9) -170 (12)

Medium -101 (12) -179 (13)
Large -76 (13) -148 (16)

Log Competitors Small -73 (7) -48 (7)
(above 1) Medium -67 (8) -45 (7)

Large -40 (9) -32 (11)
Market Effects
Category 2 200 (9)
Category 3 55 (6)
Category 4 92 (7)
Transition Costs
Out →Small -918 (37) -1301 (24)
Out →Medium † -2000 (26) -2000 (44)
Out →Large -2721 (28) -2907 (37)
Small →Medium -528 (26) -588 (27)
Small, Past Medium →Medium -824 (31) -879 (33)
Small, Past Large →Medium -299 (25) -270 (19)
Small →Large -1973 (26) -1973 (30)
Small, Past Medium →Large -460 (29) -386 (27)
Small, Past Large →Large -277 (26) -174 (11)
Medium →Small -7 (12) 32 (13)
Medium, Past Large →Small -289 (20) -198 (25)
Medium →Large 105 (22) 60 (22)
Medium, Past Large →Large 30 (23) 15 (22)
Large →Small -111 (18) -179 (22)
Large →Medium -427 (21) -459 (24)

Standard Deviation of Shock 120 97

GMM Criterion 10958 10822

†: The entry costs of a medium sized plant are calibrated to 2 million dollars.
∗: Standard Errors are computed using 100 block bootstraps.

Table 8: Estimates for the Dynamic Model of Entry, Exit and Investment.
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Figure 4: Larger Markets have both more plants and larger plants.

particular due to the linearity of the relationship between the size of estab-

lishments and the log of construction employment, lower variance of county

construction employment (with the same mean) will raise the size of estab-

lishments. Furthermore, regressing the log of the number of establishments

on log construction employment, I find a coefficient of 0.69, so a 1% increase

in construction employment increases the number of firms by less than 1%.

This implies that the number of plants in county is a concave function of

construction employment for the range of small markets I am looking at.
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The number of competitors in the county has large effect on profits. The

first competitor reduces profits by $ 101 000 for a medium sized plant, and

doubling the number of competitors (beyond the first competitor) reduces

profits by $ 67 000 per year. Note that the effect of the first competitor is

larger than the effect of subsequent plants, which echoes the Bertrand like

nature of competition in the industry. When I include market fixed effects, I

find somewhat more negative effects of competition for the first competitor

and somewhat smaller effects for subsequent competitors. 33

The patterns in the transition costs are also illuminating and reflect the

transition patterns for plant size found in Table 5 on page 29. Entry costs

are $ 0.9 million for small plants and $ 2.7 million for large plants. This is

in line with substantial differences in machinery and land for larger plants.

There are also large costs of increasing the size of a plant, of about $ 0.5

million to grow a plant from small to medium, $ 2.0 million to get it from

small to large, and $ 0.1 million to ramp a plant from medium to large. Note

that it is cheaper to enter as a small plant and grow to a large plant in the

next period and 80% of plants enter as small plants. Finally, the model also

estimates substantial costs of ramping the size of plant back down. These

large transition costs imply that plants will have a fairly weak response to

demand shocks on either the extensive (or entry) margin or on the intensive

33Note that if I remove market indicators from the covariates z in the auxiliary regression
shown in Table 7, I find substantially smaller effects of competition, so it is still important
to target these market level moments, even if they are not captured by changes in market
fixed costs.
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(or size) margin. For instance for a medium sized plant to recover a sunk

entry cost of 2 million dollars would require an increase in demand of two log

points in perpetuity, since the coefficient on demand is $ 44000 and projecting

it forever yields 44,000
β

= 880, 000.

A bigger size in the past reduces the costs of growing a plant. Small

plants that were medium in the past or large in the past find it easier to

ramp up their size (with the exception of small plants who were medium

becoming large plants). Likewise a medium sized plant that was large in the

past has a lower cost of reverting back to being a large plant. The dependence

of transition costs on size in previous years lowers the implicit adjustment

costs, since a plant can shrink today and retain the ability to cheaply increase

it’s size in the future.

6.1 Model Fit

To evaluate the fit of the model, I compare the evolution of the concrete

market from 1976 to 1999 to the evolution predicted by the model. To sim-

ulate the model’s predictions, I use the discrete action stochastic algorithm

(DASA) to compute an equilibrium to the dynamic game using both the

no market fixed effect (henceforth θ̂) and market fixed effect (henceforth

θ̂µ) parameters estimates in Table 8. Note that this equilibrium needs to be

computed for all 4 market categories since they have a different demand D̂µ

process, and will also have different fixed cost when I use the market fixed

effect parameter estimates θ̂µ. Using the computed policies and demand tran-
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sition process, the model is simulated until 1999, where markets in 1976 are

used as initial states x0. The CCPII algorithm used year to year moments to

estimate parameters rather than predictions on the entire path of the indus-

try over time, so the path of the industry generated by the model’s prediction

could in principle differ substantially from the path of the industry found in

the data. Table 9 shows moments of the actual distribution of firms, and the

simulated evolution of firms for both parameters without (θ̂) and with (θ̂µ)

market varying fixed costs.

I will focus on two types of moments: plant level moments and market

level moments. Both simulations do well at matching the distribution of plant

size, with 50% of small plants in the data and in the simulations, and 24%

large plants in the data versus 33% and 29% in the simulated data with and

without market fixed effects. As for entry and exit rates, these are about 7.5%

in the data, and 6.8% in the simulated data without market fixed effects (θ̂),

but are 25% in the model with market fixed effects (θ̂µ). The model without

fixed effects θ̂ predicts than 10% of plants will increase their size, and 9% will

reduce their size, which matches the rate at which plants grow and shrink

in the data. However, the model with market fixed effects θ̂µ predicts twice

the rate of size changes. Overall, the model without fixed effects does a good

job at matching plant level dynamics as well as the size composition of the

industry.

The second set of moments looks at how well the model predicts the

number of plants in a market and the variation of the number of plants
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Moments Real Data Simulated Data Simulated Data θ̂µ

(1976-1999) θ̂ with Market Category Effects
Plant Level Moments
Share of Small Plants 50% 50% 50%
Share of Medium Plants 26% 17% 21%
Share of Large Plants 24% 33% 29%
Entry/Exit Rate 7.5% 6.8% 25%
Ramping Up Rate 10% 10% 19%
Ramping Down Rate 9% 9% 23%

Market Level Moments
Number of Plants Per Market 2.0 1.8 2.7

No Plants in Market 1% 2% 45%
Monopoly Market 45% 61% 9%
Duopoly 27% 21% 4%
More than 2 plants 27% 15% 41%

Number of Plants in Category 1 1.14 1.00 1.27
Number of Plants in Category 2 1.87 1.64 2.84
Number of Plants in Category 3 2.78 2.45 4.29
Number of Plants in Category 4 4.40 4.00 5.16

Coefficient of Variation
Number of Plants within Market 0.5 0.5 1.2
Correlation Demand and Plant Size 0.23 0.22 0.25
Correlation Demand
and Number of Plants 0.53 0.43 0.39

Note: Both models were estimated using the market category effect condi-
tional choice probabilities P̂ µ to simulate the evolution of the state over time.
They differ due to the inclusion or not of market category profit shifters.

Table 9: Model Fit
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over time. On average there are 2 plants in the market, while the no market

effects model θ̂ forecasts 1.8 plants per market, and the market effects model

θ̂µ forecasts 2.7. Note that this is the main issue with the market effects

model: it predicts a large increase in the number of plants in the market over

time. Moreover this large increase in the number of plants is not uniform,

as the model with market fixed effects θ̂µ predicts than 45% of markets will

have no plants and 41% will have more than 2 plants. In contrast, in the

data there are 1% of markets with no plants, 45% monopoly markets, 27%

duopoly markets, and 27% of markets with more than 2 plants, and model

without market fixed effects θ̂ predicts a distribution that is more similar to

the distribution in the data. I also show the number of plants in each market

category µ, both in the data and in the simulated data. Note that the model

without fixed effects θ̂ does a good job at matching the number of plants

in each market category, even though the only way that market categories

matter is through differences in the estimated demand transition process D̂µ

and the grid of demand states.

To give an idea of how well the model predicts changes in the number of

plants, I compute the coefficient of variation (henceforth CV) of the number

of plants within a market. The data and the model without fixed effects θ̂

predicts a CV of 0.5, but the model with market fixed effects θ̂µ predicts sub-

stantially more variation with a CV of 1.2. The correlation between market

size and the number of firms is 0.5 in the data, but 0.4 in both models pre-

dictions. Likewise, the correlation between market size and plant size (where

52



plant size is just the integers 1, 2 and 3) is about 0.23 which is well matched

by either the model without (0.22) and with fixed effects (0.25).

Since the model with market fixed effects fails to match many of the

moments on the evolution of the market, I will use the no market effect

model to perform counterfactuals. 34

7 Counterfactual Industry Dynamics

There are substantial local fluctuations in construction activity. How do these

demand shocks affect the the ready-mix concrete industry? The counterfac-

tual that I consider would remove much of the short-term fluctuation in

construction activity at the county level. There are two margins that are

important in evaluating the effect of the demand smoothing policy. The first

margin is the dynamic effect of this policy on entry and exit rates and firms

ramping up and down their size. These effects may be important since the

estimates in Table 8 showed substantial transition costs and thus transitions

are costly to plants. Removing fluctuations may have static effects, since it

changes the risk that firms are exposed to and the option value of staying in

the market. Thus I will also look at the effect of the demand smoothing pol-

icy on the size distribution and market structure of the ready-mix concrete

34It can be difficult to match the path of the industry over time since small errors in
the transition probabilities will accumulate. To illustrate this point I have simulated the
evolution of markets using the CCP estimates P̂µ. I find the the “reduced-form” CCP
model does substantially worse at predicting the evolution of the market than the market
fixed effect model.
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industry.

Consider the policy where local governments allocate construction bud-

gets to smooth out changes in demand. The ideal policy would involve se-

quencing government contracts over a short, say 5 year, period in such a

way to minimize the variance of demand. This policy would be fairly easy to

implement, since it simply relies on local governments being able to borrow

and save over relatively short periods of time, but relies on the fact that

construction projects such as roads can be efficiently broken up across years.

This exact policy is very difficult to simulate since it involves firms know-

ing the entire stream of future demand and data on the exact composition

of private and government construction activity in each county in each year.

Instead, I will simulate the effect of giving firms the expected level of demand

given the current demand level over the next 5 years to approximate the idea

of getting rid of short-term movements in demand. After 5 years are up, de-

mand reverts to the level it would have had absent of demand smoothing.

Thus the long-run path of demand remains unchanged, all that this policy

accomplishes is to eliminate short-run wiggles in demand.

Denote the long-run demand level as M̃ t which represents the demand

level at the start of each 5 year period over which demand is smoothed out.

Table 10 shows the two demand processes that I consider, the estimated

demand process as well as the demand process where firms receive the ex-

pected level of demand for the next 5 years. Note that both of these demand

processes yield the same long-run demand process, i.e. the expected demand
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level more than 5 years in the future is exactly the same.

1. Un-smoothed Demand (Baseline)

M t ∼ D̂[·|M t−1]

2. 5 Years of Smoothed Demand (Policy Counterfactual)

M̃ ′ ∼D̂5[·|M̃ ] in periods t = 5, set t = 0

M t =
1

5

5∑
τ=1

ED̂(·)[M
τ |M̃ ]

3. Constant Demand
M t = M0

4. Firms believe demand is constant

Firms Believe Actual Process

M t = M0 M t ∼ D̂[·|M t−1]

Table 10: Counterfactual Demand Processes

Equilibrium responses in dynamic oligopoly models are frequently quite

difficult to interpret. Thus I show the effect of two other demand smoothing

policies for illustrative purposes. The first is constant demand, i.e. M t = M0

for all t, which illustrates the maximal effect of demand smoothing policies.

However, we also want to separate the effect of demand smoothing due to

changes in the equilibrium strategies used by firms, such as how responsive

they are to demand shocks, versus the direct effect of demand changes holding

strategies fixed. To do this, I will also consider the following “myopic” firms,

who believe that demand is constant over time, but in fact demand evolves
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following the estimated process in the data D̂µ.

7.1 Dynamic Effects of Demand Smoothing

Table 11 shows descriptive statistics of the dynamics of the ready-mix con-

crete industry for the 4 different types demand processes, where I present

statistics 25 years after the policy has been put into place to allow the in-

dustry to adjust to the new demand process.

Un-smoothed 5 Years of Constant Firms believe
Demand Smoothing Demand demand is constant

Turnover
Exit Rate 3.7% 4.1% 3.6% 6.0%
Change in Size Rate 14% 11% 11% 16%

Investment
Sunk Entry Costs 112 206 124 138
per year(in million $)
Size Changing Costs 187 308 172 181
per year (in million $)
Total Plants 2,691 4,339 2,984 2,213

Table 11: Dynamic Effects of Demand Smoothing Policies

Note that there is very little change in the dynamics of the ready-mix

concrete industry when the 5 year demand smoothing policy is put into

place. The turnover rate stays at 4.1% versus 3.7% in the base case, and the

rate at which firms change their size is a somewhat smaller 11% versus 14%

in the base case. Moreover, even when all demand changes are eliminated,

the turnover rate and the size change rate barely change.

The fact that meddling with the demand process has little effect on
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turnover is consistent with the descriptive work of Dunne, Roberts, and

Samuelson (1988), and the fact that the entry and exit rates (per incum-

bent plant) are virtually uncorrelated at the county-year level.35 This means

that turnover is not generated by market level shocks, which would lead to

either entry or exit, but not both, but by idiosyncratic shocks εit. Yet, this

explanation is incomplete since it suggests that demand changes have little

effect on firm profits. What happens is that demand fluctuations are antici-

pated by firms. Thus firms lower their reaction to demand shocks when there

is more demand volatility. Notice that if I take firms which use the policies

corresponding to a constant level of demand, but subject them to the de-

mand process estimated in the data D̂m, I find that the turnover rate would

increase by 50% to 6% per year, and the rate at which firms change their size

would go up to 16% per year. Thus expectations of future demand changes

are blunting how much firms react to current demand shocks, and this is why

we see such a small reaction of turnover and investment to demand changes.

I quantify the effects of industry dynamics on total expenditures on tran-

sition costs using the estimates from the dynamic model in Table 8. I find

that in the base case, sunk entry costs are $ 112 million dollars per year,

while transition costs are $ 187 million per year. When the five year demand

smoothing policy is put into place, these costs rise by to $ 206 million per

year of sunk entry costs and $ 308 million per year of size changing costs.

35 Dunne, Roberts, and Samuelson (1988) show that entry and exit rates are highly
correlated at the industry level, while I show that in the ready-mix concrete industry are
uncorrelated at the county-year level.
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This 52% increase in investment is almost entirely due to the 47% increase

in the number of plants in the industry due to the 5 year demand smoothing

policy. Thus the increase in investment in this industry is due to the static

effect of the demand smoothing policy which I now turn to.

7.2 Static Effects of Demand Smoothing

Table 12 shows the static effects of the demand smoothing policy: the dis-

tribution of firm size in the industry, the total number of firms, fixed costs

expenditures and the market structure of the industry.

Un-smoothed Constant 5 Years
Demand Demand of Smoothing

Industry Composition
Small Plants 51% 35% 47%
Medium Plants 16% 8% 5%
Big Plants 31% 57% 47%

Total Plants 2,691 2,984 4,339
Fixed Costs 652 752 1,068
per period in millions of $

Market Structure
Markets with no plants 2% 5% 1%
Markets with 1 plant 71% 64% 42%
Market with 2 plants 19% 20% 32%
Markets with more than 2 plants 8% 12% 26%

Table 12: Static Effect of Demand Smoothing

Most dramatically, the share of large plants in the industry increases from

31% to 47% when the 5 year smoothing policy is implemented, while the share

of medium plants goes down from 16% to 5% and the share of small plants
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stays about the same. These larger plants have greater capacities are are

more likely to be found in larger markets. Furthermore the number of plants

increases from 2, 700 to 4, 339, inducing an increase in fixed cost expenditures

from $ 652 million to $ 1, 068 million per year.

The first effect, the presence of more large plants when either the 5 year

or the constant demand policies are implemented, is due to the fact that

demand smoothing policies can alter market size by changing the net present

value of demand in each market, and this change in the effective market

size alters the firm size distribution. For instance, in the constant demand

counterfactual, markets that currently have high demand will have a much

higher net present value of demand since they retain their high demand

level forever. Likewise, markets that have low demand will retain this low

level demand in perpetuity. This causes the number of plants per market

is more dispersed under constant demand, with 5% of markets having no

plants, versus 2% in the base case, and 12% of markets having more than 2

plants, versus 8% in the base case. While in principle I could find either more

small plants or more big plants given the distribution of demand in different

market, the net effect is to allow more large plants to be sustained.

The second effect is the “market expansion” effect of demand smoothing.

When I regress log plants in a market on log construction employment, I find

a coefficient of 0.69, indicating that a 1% increase in construction employment

leads to less than a 1% increase in the number of firms in the market. This

concavity of the relationship between the number of plants in a market and
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construction demand, leads to the implication that smoothing demand will

lead to more plants in the market. I speculate that this effect is due to

congestion costs for concrete deliveries when demand is particularly high.

Congestion could be due to greater costs to make large number of deliveries

at the same time because of labor and machinery shortages, or because some

deliveries cannot be made during the weeks of the year when demand peaks.

When yearly demand is higher, it is more likely for congestion to occur.

Thus lower demand volatility leads to higher profits in the industry (holding

market structure fixed), inducing a “market expansion” effect of reduced

demand volatility. 36

This increase in the number of plants changes market structure: the num-

ber of markets served by a more than one plant rises from 27% to 58%. De-

creasing the number of monopoly markets will also have a positive effect on

consumer surplus in the ready-mix concrete market.

7.3 Consumer and Producer Surplus

For the 29% of markets which were formerly monopoly markets, but became

markets subject to competition, consumers of concrete would pay about 4%

less on concrete based on the estimates in Figure 2. This would transfer 64

million dollars from producers of concrete to consumers per year holding

36If I allocate construction employment evenly over several years I find a higher net
present value of log construction employment. Note that the fact that I use log construction
demand rather than unlogged construction demand accentuates this effect. However, I find
that log construction demand is a much predictor of the number of firms in a market than
unlogged construction demand in the small markets used in this paper.
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purchases of concrete fixed. This is a lower bound on the change in consumer

surplus since any elasticity in the demand for concrete would further increase

consumer surplus. Thus consumers of concrete would benefit from a reduction

in demand volatility.

I also look at the effect reducing demand fluctuations on producer surplus.

Note that ex-ante the effect on producer surplus is quite ambiguous since in

this model of oligopoly dynamics with entry, producer surplus is generated by

1- the fact that incumbents have already paid sunk entry costs, thus earning

profits that potential entrants cannot replicate, and 2- the integer constraint

on entry, which allows a monopolist to earn profits, without the market being

profitable enough to support a duopoly. Producer surplus is just the net

present value of profits both for potential entrants and for incumbents. 37

I find that producer surplus for incumbents would increase from 3.3 billon

dollars in current net present value terms without the demand smoothing

policy, to 4.0 billion dollars in NPV with the demand smoothing policy,

representing an addition of 19%. I also compute producer surplus for potential

entrants, who represent 80% of the “firms” in the data, which increases from

37 To compute producer surplus I reformulate the problem in terms of choice specific
value functions. Thus producer surplus is just:

PS =
∑

i is incumbent

V i(xi0) +
∞∑
t=0

βt
∑

i is entrant

V i(xit) (21)

which is just the ex-ante value function for incumbents, plus the discounted value of
entrants in the future which needs to be kept track of since I assume that if an entrant
does not enter they get continuation value of 0. The ex-ante value function is V (x) =∑
j∈AiW (j|x)Ψ(j|x) + γ −

∑
j∈Ai ln (Ψ(j|s)) Ψ(j|s).
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163 billion dollars in the world with fluctuations to 172 billion dollars when

the demand smoothing policy is used, or a 5% increase in surplus. Yet the

surplus numbers for potential entrants are suspect, since the vast majority of

this surplus is derived from 98.7% of potential entrants who choose never to

enter, yet receive a payoff from their private information shock εa0 . Surplus

from firms that do not enter is truly an artifact of the model, since how do

we interpret the profits of firms that don’t exist and choose never to enter.

38

I also look at the level of investment that the industry can support. Table

11 shows that demand smoothing would raise annual sunk cost expenditures

on entry and and size changes from 300 to 518 million dollars per year and

raise fixed costs expenditures from 652 million per year to 1,068 million.

The combined effect of sunk and fixed costs expenditures raises investment

by 12%. Again this increase in expenditures is almost entirely due to the

market expansion effect of the 5 year demand smoothing policy rather than

the effect on the size distribution of the industry.

38Potential entrants represent more than 80% of the players in the game, and potential
entrants who choose to enter are 1.3% of all potential entrants as is illustrated in the
first row of Table 5 on page 29. Note that these figures really crucially on my assumption
that there are 10 firms in each market, so the number of potential entrants are given
mechanically as 10 minus the number of incumbents.
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8 Conclusion

Fluctuations in demand for ready-mix concrete have a large effects on the

composition, size and investment level in this industry. I considered a policy

by which the government would sequence its construction budgets in such a

way as to eliminate 5 year changes in demand, but the industry would keep

long-run movements in demand.

To look at the effect of this policy of reducing short-run changes in de-

mand, I estimated a oligopoly model of entry/exit and discrete investment.

These estimates showed very large sunk costs, both for changing plant size

and for exiting the market. Demand has a greater effect on large plants than

on small plants, but there are smaller costs of building a small plant than a

large plant. As market size grows, both the number of plants and the share

of large plants increases. Finally there is a large effect of competitors, and

thus the number of firms is pinned down by the demand and the effect of

competition.

I find that this demand smoothing policy would have a large effect. The

number of plants would increase by 47%. The share of large plants in the

industry would increase from 31% to 47% while the share of medium plants

would fall from 16% to 5%. This increase in both the number and size of

plants is responsible for increasing both investment and fixed costs expendi-

tures by 47%, from $ 0.95 billion to $ 1.6 billion per year. As well, there would

be an increase in producer surplus among incumbents of 19%, raising it from
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3.3 billion to 4.0 in discounted net present value. Moreover, 29% of markets

change from monopoly markets to competitive markets, which would reduce

consumer expenditures on ready-mix concrete by 64 million dollars per year

holding quantity purchased fixed. I find that the number of plants in a market

is a concave function with respect to demand. Thus a reduction in demand

volatility induces a “market expansion” effect. This market expansion effect

is similar to an increase in market size, raising the number of plants and the

fraction of plants which are large.

Surprisingly, there would be almost no change in the dynamics of the

ready-mix concrete industry, i.e. the rate at which firms change their size

and shut down plants. The reason is that sunk entry and size changing costs

are very large for this industry, this is it costly to react to demand shocks.

Furthermore, firms are unlikely to react to demand shocks when demand

is very volatile, since these demand shocks covey little information on the

net present value of demand looking into the the future. As the process for

demand becomes more predictable, firms increase their sensitivity to demand

shocks. Thus the reduction in the magnitude of demand shocks, which would

reduce turnover, is counteracted by an increase in the sensitivity of firms to

current demand.

This paper showed that there are significant effects associated with even

short-run demand volatility. For the ready-mix concrete industry one would

see an industry which is 47% larger in terms of either investment or number

of firms if a demand smoothing policy were implemented. Especially in a con-
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text where firms have high sunk costs, we might expect the consequences of

volatility to be expressed not in higher turnover or more volatile investment,

but in the level of investment itself. Finally, the oligopoly structure of the

markets is key to evaluate the response of the industry, since competition in

the product market determines the number of firms that can survive and the

type of firms which are selected into the industry.

References

Aguiregabiria, V., and P. Mira (2007): “Sequential Estimation of Dynamic
Games,” Econometrica, 75(1), 1–54.

Bajari, P., L. Benkard, and J. Levin (2007): “Estimating Dynamic Models
of Imperfect Competition,” Econometrica, 75(5), 1331–1370.

Bertsekas, D., and J. Tsitsiklis (1996): Neuro-Dynamic Programming.
Athena Scientific.

Besanko, D., U. Doraszelski, Y. Kryukov, and M. Satterthwaite
(2010): “Learning-By-Doing, Organizational Forgetting, and Industry Dynam-
ics,” Econometrica, 78(2), 453–508.

Bresnahan, T. F., and P. C. Reiss (1991): “Entry and Competition in Con-
centrated Markets,” Journal of Political Economy, 99(5), 33.

Campbell, J., and H. Hopenhayn (2005): “Market Size Matters,” The Journal
of Industrial Economics, 53(1), 1–25.

Collard-Wexler, A. (2009): “Productivity Dispersion and Plant Selection in
the Ready-Mix Concrete Industry,” Working Paper, New York University.

Doraszelski, U., and M. Satterthwaite (2010): “Computable Markov-
Perfect Industry Dynamics,” RAND Journal of Economics, 41(2), 215–243.

Dunne, T., S. D. Klimek, M. J. Roberts, and D. Xu (2006): “Entry and
Exit in Geographic Markets,” Working Paper, Penn State University.

65



Dunne, T., M. J. Roberts, and L. Samuelson (1988): “Patterns of Firm En-
try and Exit in U.S. Manufacturing Industries,” RAND Journal of Economics,
19(4), 495–515.

Ericson, R., and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A
Framework for Empirical Work,” The Review of Economic Studies, 62(1), 53–
82.

Fershtman, C., and A. Pakes (2004): “Finite State Dynamic Games with
Asymmetric Information: A Computational Framework,” .

Gourieroux, C., and A. Monfort (1996): Simulation-based econometric meth-
ods. Oxford University Press, USA.

Gourieroux, C., and A. Montfort (1993): “Indirect inference,” Journal of
Applied Econometrics, 8, S85–S118.

Gowrisankaran, G. (1999): “Efficient Representation of State Spaces for Some
Dynamic Models,” Journal of Economic Dynamics and Control, 23(8), 1077–
1098.

Griliches, Z., and J. Mairesse (1998): “Production Functions: The Search for
Identification,” Econometrics and Economic Theory in the Twentieth Century:
The Ragnar Frisch Centennial Symposium, pp. 169–203.

Hotz, V. J., and R. A. Miller (1993): “Conditional Choice Probabilities and
the Estimation of Dynamic Models,” The Review of Economic Studies, 60(3),
497–529.

Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith (1994): “A Simulation
Estimator for Dynamic Models of Discrete Choice,” The Review of Economic
Studies, 61(2), 265–289.

Jarmin, R. S., and J. Miranda (2002): “The Longitudinal Business Database,”
Working Paper, Center for Economic Studies, US Census Bureau.

Jovanovic, B. (1982): “Selection and the Evolution of Industry,” Econometrica,
50(3), 649–670.

Keane, M., and A. Smith Jr (2003): “Generalized Indirect Inference for Discrete
Choice Models,” Working Paper, Yale University.

66



Kosmatka, S. H., B. Kerkhoff, and W. C. Panarese (2002): Design and
control of concrete mixtures, Engineering bulletin ; 001. Portland Cement Asso-
ciation, Skokie, Ill., 14th edn.

McFadden, D. (1989): “A Method of Simulated Moments for Estimation of the
Multinomial Probit Without Numerical Integration,” Econometrica, 57(5), 995–
1026.

Pakes, A., S. Berry, and M. Ostrovsky (2007): “Simple estimators for the pa-
rameters of discrete dynamic games, with entry/exit examples,,” RAND Journal
of Economics, 38(2), 373–399.

Pakes, A., and R. Ericson (1998): “Empirical Applications of Alternative Mod-
els of Firm and Industry Dynamics,” Journal of Economic Theory, 79(1), 1–45.

Pakes, A., and P. McGuire (2001): “Stochastic Algorithms, Symmetric Markov
Perfect Equilibrium, and the ’Curse’ of Dimensionality,” Econometrica, 69(5),
1261–1281.

Pesendorfer, M., and P. Schmidt-Dengler (2008): “Asymptotic Least
Squares Estimators for Dynamic Games,” The Review of Economic Studies,
75, 901–928.

Powell, W. B. (2007): Approximate Dynamic Programming: Solving the Curse
of Dimensionality, Wiley Series in Probability and Statistics. John Wiley and
Sons.

Rust, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical
Model of Harold Zurcher,” Econometrica, 55(5), 999–1033.

Ryan, S. P. (2006): “The Costs of Environmental Regulation in a Concentrated
Industry,” Working Paper, M.I.T.

Seim, K. (2006): “An empirical model of firm entry with endogenous product-type
choices,” The RAND Journal of Economics, 37(3), 619–640.

Syverson, C. (2004a): “Market Structure and Productivity: A Concrete Exam-
ple,” Journal of Political Economy, 112(6), 1181–1222.

(2004b): “Product substitutability and productivity dispersion,” Review
of Economics and Statistics, 86(2), 534–550.

67



A Market Fixed Effects

In the main model, I use a market categories model which is meant to to mimic
the inclusion of market fixed effects. These market fixed effects are critical to the
estimation of the model since persistent market level differences in profitability lead
to upward bias on the effect of competition. This bias, especially when it induces
positive effects of competition, leads to very aberrant industry dynamics such as
having a market flip between 0 and 10 plants due to a positive externality due
to competition. The goal of this section is to motivate the use of market category
effects based on the average number of firms in a market over time, and explain
why other plausible corrections for market fixed effects using average construction
employment or the number of plants in a pre-period, do not give the right answer.

I consider the following different specifications of the market category effects:

a) No Market Effects.

b) Average Number of Firms in Market (rounded to nearest integer).
In the main estimates of the model, I use the average number of firms in
the market rounded to the nearest integer. However, this approach suffers
from an endogeneity problem. To put it most clearly, consider the following
dynamic, two firm model of the type:

ait = αa−it + βait−1 + εit (22)

If I include ait+1 in the above regression, then I am including an endogenous
regressor since ait+1 is a function of ait which in turn depends on εit, and
more broadly on the entire history of εit̃ for t̃ < t.

c) Average Number of Firms in Market in years before this one
(rounded to nearest integer). However, if I include lagged ait−2 then
this is not an endogenous regressor, since there is no dependance on ait−2

except through ait−1 which is already included in the regression. The only
issue with using the average number of firms in the market in previous years
is that a market can switch categories over time which makes for a more
difficult state space to deal with, which is the reason that I do not use these
market category controls in the main part of the paper.

d) Average Number of Firms in the 1976-1983 period, with data on
the post 1983 period. Notice that for this model, I am using the early
period to condition the number of firms in the market. This is a version
of model c), but but the pre-period on which I condition does not change
within a market.
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e) Average Construction Employment. Here I classify markets by the av-
erage level of construction employment from 1976-1999. This is an exogenous
classification scheme since it does not depend on what ready-mix concrete
firms are doing.

f) Market Fixed Effects (Conditional Logit).

Table 13 presents estimates from the binary logit model of entry and exit for
specifications (a)-(f). I have chosen the binary logit model since it allows me to
use the conditional logit with market fixed effects. 39 Column (a) shows estimate
without market category controls (henceforth referred to as no market effects),
while column (f) shows estimates with market fixed effects (henceforth referred
to as market fixed effects), while columns (b)-(e) show different market category
controls. Columns (b) and (c), i.e. with market controls based on the average
number of plants and the average number of plants in the periods before this one,
are similar to the market fixed effect estimates in column (f). Likewise, columns
(d) and (e) show estimates that are more similar to the no market effects estimates
in column (a).

The effect of past plant size on activity are fairly similar in all of these esti-
mates, with smaller effects of plant size in the market fixed effect specifications (f),
(b) and (c) than the no market effect specification (a), (d) and (e). Unobserved het-
erogeneity between markets is loaded onto variable indicating state dependence,
such as past plant size. The effect of log construction employment is higher at
0.133 to 0.099 in the no market effect models (a), (d) and (e) than in the market
fixed effect estimates, which have estimates from 0.033 to −0.034. These higher
effects of demand are due to the fact that firms are far more likely to react to
cross-sectional differences in demand (which are more likely to be persistent) than
to year to year changes in demand. Likewise, the effect of the second competitor
(which will representative of the effect of competition more broadly) varies from
−0.074 to 0.003 in the no market effect columns (a), (d) and (e), but ranges from
−0.635 to −0.529 in the market fixed effect columns (f), (b) and (c). This is in-
dicative of the fact that unobserved differences in the profitability of a market will
be correlated with the number of plants in the market.

There are two main conclusions from the table that are relevant for my choice
of market categories. First, the market categories based on the either the average
number of firms (b) or the average number of firms in all periods before today (c) do
a good job in mimicking true market fixed effects. However, using categories based
on the number of firms before 1983 (d), or using information about the average level

39Technically, I can also use a multinomial conditional logit, but the number of categories
I need to condition on becomes fairly large. As well, I am not presenting marginal effects
here since the conditional logit does not estimate the market fixed effects.
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of construction demand (e) do not replicate market fixed effect estimates, and in
fact mimic no having any market controls whatsoever. Second, while it is true that
using the average number of firms over time conditions on an endogenous variable,
I can equally easily use the lagged number of firms which does not condition on
an endogenous variable and obtain virtually identical results. Thus the issue of
endogeneity is of limited practical importance in the use of the average number of
firms over time as a grouping.
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Dependant Variable: Activity (a) (b) (c) (d) (e) (f) Conditional Logit
Log County 0.133*** -0.034** -0.034*** 0.129*** 0.099*** 0.033
Construction Employment (0.011) (0.011) (0.010) (0.015) (0.019) (0.023)
First Competitor -1.403*** -1.805*** -1.748*** -1.306*** -1.421*** -2.002***

(0.052) (0.051) (0.048) (0.066) (0.052) (0.043)
Second Competitor 0.003 -0.529*** -0.553*** -0.074 -0.008 -0.635***

(0.036) (0.037) (0.036) (0.047) (0.037) (0.030)
Third Competitor 0.026 -0.359*** -0.384*** -0.071 0.027 -0.394***

(0.044) (0.044) (0.043) (0.058) (0.044) (0.036)
Log Competitors above 4 0.022 -0.118*** -0.170*** -0.001 0.035 -0.187***

(0.029) (0.028) (0.028) (0.040) (0.029) (0.025)

Small 5.889*** 5.703*** 5.720*** 5.977*** 5.887*** 5.585***
(0.037) (0.035) (0.035) (0.047) (0.037) (0.025)

Small, 5.665*** 5.388*** 5.393*** 5.707*** 5.657*** 5.220***
Medium in Past (0.048) (0.045) (0.045) (0.057) (0.048) (0.033)
Small, 4.866*** 4.636*** 4.643*** 4.944*** 4.865*** 4.450***
Large in Past (0.065) (0.063) (0.062) (0.075) (0.065) (0.041)
Medium 7.503*** 7.292*** 7.315*** 7.696*** 7.495*** 7.234***

(0.057) (0.055) (0.055) (0.075) (0.057) (0.050)
Medium, 7.511*** 7.237*** 7.251*** 7.585*** 7.503*** 7.122***
Large in Past (0.080) (0.079) (0.079) (0.094) (0.081) (0.074)
Large 7.671*** 7.446*** 7.450*** 7.724*** 7.676*** 7.436***

(0.056) (0.054) (0.054) (0.068) (0.056) (0.050)
Market
Classification Variable
Average Number of Plants X
Lagged Average Plants X
Before 1983 Average Plants X
Construction Employment X
Category 2 1.053*** 1.118*** 0.225*** 0.132**

(0.036) (0.032) (0.062) (0.049)
Category 3 1.668*** 1.836*** 0.348*** 0.199**

(0.050) (0.047) (0.058) (0.061)
Category 4 2.293*** 2.424*** 0.482*** 0.169*

(0.063) (0.062) (0.061) (0.082)
Constant -3.805*** -2.985*** -2.970*** -4.089*** -3.715***

(0.065) (0.066) (0.062) (0.089) (0.090)

Observations 409850 409850 409850 260170 409850 409850
Markets 2029 2029 2029 2014 2029 2029
Log-Likelihood -45695 -44483 -44304 -27334 -45682 -39670
χ2 44067 47153 46207 29860 44985 284475

(Standard Errors are Clustered by Market).

Table 13: Market Effects in the Binomial Logit Regression of Entry and
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B Discrete Action Stochastic Algorithm: Ter-

mination Criteria

The stopping rule is based on the fact that if I have the “correct” W function, then
it will satisfy the Bellman equation. However, it is computationally expensive to
calculate the W-function exactly, instead we can approximate the value function
using forward simulation. Consider the locations R ⊂ S × A defined as the state-
action pairs visited in the last 1 million iterations (keep a hit counter that tracks
the last 1 million iterations denoted rh(l)).

Algorithm Fershtman-Pakes Stopping Rule (FPStop)

For all locations l = {ai, x} ∈ L which have been visited in the last 1 million
iterations:

1. Compute the W-function using a one step forward simulation. For k =
1, ...,K (I use K = 10 000):

(a) Draw an action profile ak and a state tomorrow xk′ given location l.

(b) Get rewards:

Rk =r(ak|xk′, θ) + τ(aki |xi, θ)

+ β
∑
j∈A

W (j, xk′)P [j|xk′]

+ β

γ −∑
j∈A

ln(P [j|xk′])P [j|xk′]


(23)

(c) Compute the approximation to the W-function:

W̃ (l) =
1
K

K∑
k=1

Rk (24)

2. Compute the difference in value functions weighted by the recent hit counter
rh:

γ =
1∑

l rh(l)

∑
l

rh(l) ∗ (W̃ (l)−W (l))2 (25)

If the test statistic γ is small enough, then we can argue that we have a good
approximation. In practice I have used the fact that the recent hit counter weighted
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R2 between W̃ (l) and W (l) is greater than 0.999. This usually happens after as
little as 50 million iterations, and it is usually more efficient to run the DASA
for 150 million iterations (i.e. 15 minutes) which will lead to a W function which
satisfy the FPStop criteria. Furthermore, in this application there are only about
3 000 state-action pairs (where the action is not 0) that are visited in the last 1
million iterations. Thus the ergodic class R is quite small compared to the size of
the entire state space.

C Modified DASA to Compute the Gamma

function

I use a modified DASA to compute the Γ function. The two differences are that (i)
I shut down the policy function update in the DASA, and (ii) I compute the net
present value of the components of rewards rather than the rewards themselves
(which would require me to have information on the parameters θ).

Algorithm Γ-Compute Discrete Action Stochastic Algorithm (GC-DASA)

1. Start in a location l0 = {a0, x0}.

2. Draw an action profile a|ai ∼ 1(ai = a0)
∏
−i P̂ [a−i|x] and a state in the

next period x′ given action profile a:

x′|a ∼ D̂[M ′|M ]
∏
i

ι(x′i|ai, xi) (26)

where ι(x′i|ai, xi) is the updating function, which updates the firm’s state
based on a firm’s action and the firms largest size in the past.

3. Increment the hit counter (how often you have visited the state-action pair):
h(l) = h(l) + 1.

4. Compute ith component of payoffs Ri of the action ai as:

Ri =ri(ai, x)

+ β
∑
j∈A

Γi(j, x′)P [j|x′] (27)

5. Update the Γ-function:

Γi′(l) = αRi + (1− α)Γi(l) (28)
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where α = 1
h(l) .

6. Update current location to l′ = {a′i, x′}.

7. The stopping rule is Fershtman and Pakes (2004)’s.

D Simulated Indirect Inference Estimation

The simulated indirect inference estimator used in equation (35) on page 76 uses
the choice probabilities Ψ(a|x,Γ, θ) as an outcome vector, i.e. ỹn = Ψ(a|x,Γ, θ).
Typically, one would sample outcomes yn from the choice probabilities Ψ(a|x,Γ, θ).
I can show that using the ỹn is equivalent to sampling actions as the number of
actions tends to infinity.

Denote the outcome vectors ys
n as:

ys
n =

 1(asn = small)
1(asn = medium)
1(asn = big)

 (29)

where the action asn ∼ Ψ(·|x,Γ, θ) is drawn from the choice probabilities Ψ. The
simulation draws are indexed from s = 1, · · · , S. The βS(θ) coefficient is estimated
using outcome vectors {ysn}{s=1,··· ,S},n. The criterion function using S simulation
draws of actions is thus:

QS(θ) =
(
β̂ − β̃(θ))

)′
W
(
β̂ − β̃(θ)

)
(30)

D.1 Consistency Proof

In this section I will show conditions under which the procedure I use in this paper
is a consistent estimator of θ. Specifically, I will show the conditions that need to be
satisfied for Proposition 1 on page S89 in Gourieroux and Montfort (1993) dealing
with the consistency of indirect inference estimators, to be satisfied.

Define the criterion function used to compute ˜β(θ) (for a given value of θ) as:

SN,K(β, θ) =
N∑
n=1

K∑
k=1

[
1
(
akn = small

)
− Znβs

]2

+
[
1
(
akn = medium

)
− Znβm

]2
+
[
1
(
akn = large

)
− Znβl

]2

(31)

where N denotes the number of observations and K denotes the number of simu-
lation draws to draw actions akn from the policy function ψ(an|xn, θ,Γ(P̂N , D̂N )).
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Note that SN,K(β, θ) is the criterion used in OLS estimation, just the sum of
squared errors.

The first step is to show that I can replace draws of akn with the actual policy
function ψ, or in other words SN,K(β, θ)→a.s. SN,∞(β, θ) uniformly as K →∞.

Theorem 4 As the number of simulation draws K tends to infinity, SN,K(β, θ)→a.s.

SN,∞(β, θ) uniformly.

Proof: I will show the proof using only the choice to be small to lighten the
notation, but the proof extends to as many actions as I want:

SN,K(β, θ) =
N∑
n=1

1
K

K∑
k=1

[
1
(
akn = small

)
− Znβs

]2

=
N∑
n=1

(Znβs)2 +
N∑
n=1

K∑
k=1

1
K

1
(
akn = small

)2
− 2

N∑
n=1

Znβs

K∑
k=1

1
K

1
(
akn = small

)
(32)

As K → ∞,
∑K

k=1
1
K 1
(
akn = small

)
→ ψ(an = small|xn, θ,Γ(P̂ , D̂)) since this is

just an average, and
∑K

k=1
1
K 1
(
akn = small

)2 → ψ(an = small|xn, θ,Γ(P̂ , D̂))2 . Fix me
Thus I can rewrite SN,∞(β, θ) as:

SN,∞(β, θ) =
N∑
n=1

(Znβs)2 +
N∑
n=1

ψ(an = small|xn, θ,Γ(P̂ , D̂)2

− 2
N∑
n=1

Znβsψ(an = small|xn, θ,Γ(P̂ , D̂))

=
N∑
n=1

[
ψ(an = small|xn, θ,Γ(P̂ , D̂))− Znβs

]2

(33)

Second, I need to show that SN,∞(β, θ)→a.s. S0,∞(β, θ) as N →∞. The first
condition is that the linear probability estimator is consistent, which is just an
outcome of the OLS estimator being a consistent estimator, which is a standard
proof. However, I am not using the true Γ0(P 0, D0) but an estimate of Γ(P̂ , D̂)
due to sampling error in the conditional choice probabilities P and the demand
transition process D, as well as approximation error in the computation of Γ. The
CCP’s P̂N → P 0 which happens since I am using a consistent estimator of the
CCP’s, just a parametric multinomial logit, which is consistent using the usual
proofs on the consistency of M-estimators. Likewise D̂N → D0 as N →∞ since I
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am using a consistent estimator of D, just a bin estimator where the number of bins
is fixed as N →∞. Now the next point is to show that ΓL(P 0, D0)→ Γ0(P 0, D0)
as the number of iterations L in the DASA goes to infinity. It will be difficult
to show convergence of the DASA, since to my knowledge there is no proof of
the convergence of algorithms that compute the solutions to games (in contrast
to single agent problems). However, the Fershtman and Pakes (2004) convergence
criterion can be used to check the convergence of the DASA, and I can send the
tolerance of the Fershtman-Pakes criterion to 0 as N →∞. 40

The convergence of ΓL(P 0, D0)→ Γ(P 0, D0) implies the convergence of SN,K(β, θ)→
S∞,∞(β, θ) as K → ∞ and N → ∞. This satisfies assumption (A2) in Indirect
Inference.

Assumption (A3) of Indirect Inference requires that:

β̃(θ) = argmaxβS∞,∞(β, θ) (34)

be a continuous function and have a unique value. Continuity is an outcome of the
OLS structure of S, while uniqueness occurs if Zn is full rank and the dimension
of β is smaller than the dimension of Zn.

The final condition, (A4) requires that β̃(θ) be one to one and have full rank
. I will assume this condition, but notice that the dimension of β is larger than
the dimension of θ and I have checked that β̃(θ) is full rank in the estimation of
model.

Since conditions (A1), (A2), (A3) and (A4) are satisfied, then θ̂ defined as the
minimizer of:

Q(θ) =
(
β̂ − β̃(θ))

)′
W
(
β̂ − β̃(θ)

)
(35)

will be a consistent estimator of θ as N →∞.
40 Notice that since there is a full support shock ε to the payoffs of any actions, Γ

is computed correctly on the entire state space S, since the set of recurrent points is
the entire state space, i.e. S = R. The DASA used to compute Γ is a version of the Q-
learning algorithm, where consistency proof are provided for the single agent (non-game
version) in Propositions 5.5 and 5.6 on page 248-249 in Bertsekas and Tsitsiklis (1996)
show conditions under which the DASA’s (which is the game version of a Q-learning
algorithm) computation of Γ: converges with probability one to Γ0. These conditions are
(1) that policies are proper, i.e. there is a positive probability that a firm will exit after t
period, which is true in this context due to the full support of the shock distribution for
each action, including the choice to exit; and (2) for improper policies, there is a negative
infinite value of W for at least one state. Unfortunately, there is to my knowledge no proof
with shows the convergence of the Q-learning algorithm in the context of a game.
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E Price Data

The Census Bureau does not generally collect price data. This job is left to the Bu-
reau of Economic Analysis and the Bureau of Labor Statistics. However, following
Syverson (2004a) we can generate prices using the following equation:

pit(c) =
sit(c)
qit(c)

(36)

which is just sales of the commodity divided by quantity sold. While these
“prices” may be good indicators of price dispersion (the application Syverson con-
siders), they are particular poor measures of actual plant prices, with an interquar-
tile range over 2 log points (the third quartile is 100 times bigger than the first price
quartile). This is probably because of how measurement error in the numerator
and especially the denominator interact.

To reduce the impact of imputed data and measurement error on the dispersion
of prices, I apply a version of Syverson (2004b)’s procedures:

1. Hot Imputes in the data are identified as prices that satisfy the following:

|pti − ptj | < 0.0001 for some i and j in the data (37)

I drop all prices that are hot imputes. Notice that this procedure will also
eliminate cold imputes, defined as prices which equal the mode in the current
year.

2. I trim the data by dropping observations that are less than 1/5 or more than
5 times the median price for the current year.

The deflated data is computed by pDti = pti/cpi
t where I normalize the cpi in

1977 to be equal to 1 (i.e. cpit = raw cpit/raw cpi1977). This eliminate differences
in price level across time, but does not incorporate differences in prices between
regions.
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F Maximum Likelihood Estimates

In this section I present estimates of the structural model in Table 8 on page
46 using a maximum likelihood criterion. Table 14 shows estimates of the model,
where column I and II use CCPs with market category controls P̂µ to compute
the Γ function, while column III and IV use CCPs without market controls P̂ to
compute Γ.
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P̂µ (Market Effects) P̂ (No Market Effects)
I. II. III. IV.

Coef. S.E.∗ Coef. S.E. Coef. S.E.∗ Coef. S.E.
Fixed Cost Small -462 (3) -361 (6) -575 (3) -465 (6)

Medium -779 (5) -721 (8) -955 (4) -850 (7)
Large -886 (6) -834 (9) -917 (5) -810 (7)

Log Construction Small -45 (1) -52 (2) 43 (1) 18 (2)
Employment Medium 81 (2) 76 (2) 33 (1) 9 (1)

Large 167 (2) 162 (3) 30 (1) 1 (2)
1st Competitor Small -229 (3) -658 (7) -840 (6) -848 (6)

Medium -220 (5) -628 (8) -405 (7) -414 (7)
Large -159 (6) -530 (9) -334 (7) -345 (7)

Log Competitors Small -81 (2) -33 (2) 265 (2) 263 (3)
(above 1) Medium -29 (2) 24 (3) 201 (3) 203 (3)

Large -41 (3) -7 (3) 157 (3) 161 (3)
Market 2 Effect 203 (4) 71 (4)
Market 3 Effect 285 (5) 119 (6)
Market 4 Effect 255 (7) 140 (7)
Transition Costs
Out →Small -1640 (7) -1616 (8) -1151 (8) -1156 (8)
Out →Medium † -2000 (10) -2000 (12) -2000 (12) -2000 (12)
Out →Large -1996 (10) -2006 (11) -2242 (13) -2243 (13)
Small →Medium -217 (7) -224 (7) -145 (3) -146 (3)
Small, Past Medium →Medium -515 (10) -563 (11) -395 (9) -395 (9)
Small, Past Large →Medium -182 (9) -192 (10) -49 (3) -51 (3)
Small →Large -788 (22) -860 (24) -372 (16) -373 (16)
Small, Past Medium →Large -346 (15) -377 (16) -91 (4) -88 (4)
Small, Past Large →Large -251 (8) -262 (9) -156 (4) -161 (4)
Medium →Small -147 (5) -155 (5) -65 (2) -63 (2)
Medium, Past Large →Small -198 (4) -210 (5) -163 (3) -169 (3)
Medium →Large -273 (7) -290 (8) -107 (3) -104 (3)
Medium, Past Large →Large -130 (3) -138 (4) -90 (3) -95 (3)
Large →Small -287 (7) -316 (8) -160 (3) -155 (3)
Large →Medium -52 (3) -56 (3) -72 (2) -69 (2)

Standard Deviation of Shock 372 411 1151 1151

Observations 409848 409848 409848 409848
Wald 2523812 2575628 4750171 4756505
Log-Likelihood -152249 -149174 -187326 -187038

∗: Standard Errors computed assuming no first-stage error in the P̂ conditional choice
probabilities.

Table 14: Maximum Likelihood Estimates of the Dynamic Model
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