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A Review of Statistical Distributions 
 Every statistics book provides a listing of statistical distributions, with their 

properties, but browsing through these choices can be frustrating to anyone without a 

statistical background, for two reasons. First, the choices seem endless, with dozens of 

distributions competing for your attention, with little or no intuitive basis for differentiating 

between them. Second, the descriptions tend to be abstract and emphasize statistical 

properties such as the moments, characteristic functions and cumulative distributions. In 

this appendix, we will focus on the aspects of distributions that are most useful when 

analyzing raw data and trying to fit the right distribution to that data. 

Fitting the Distribution 
 When confronted with data that needs to be characterized by a distribution, it is best 

to start with the raw data and answer four basic questions about the data that can help in 

the characterization. The first relates to whether the data can take on only discrete values 

or whether the data is continuous; whether a new pharmaceutical drug gets FDA approval 

or not is a discrete value but the revenues from the drug represent a continuous variable. 

The second looks at the symmetry of the data and if there is asymmetry, which direction it 

lies in; in other words, are positive and negative outliers equally likely or is one more likely 

than the other. The third question is whether there are upper or lower limits on the data;; 

there are some data items like revenues that cannot be lower than zero whereas there are 

others like operating margins that cannot exceed a value (100%). The final and related 

question relates to the likelihood of observing extreme values in the distribution; in some 

data, the extreme values occur very infrequently whereas in others, they occur more often. 

Is the data discrete or continuous? 
 The first and most obvious categorization of data should be on whether the data is 

restricted to taking on only discrete values or if it is continuous. Consider the inputs into a 

typical project analysis at a firm. Most estimates that go into the analysis come from 

distributions that are continuous; market size, market share and profit margins, for instance, 

are all continuous variables. There are some important risk factors, though, that can take 
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on only discrete forms, including regulatory actions and the threat of a terrorist attack; in 

the first case, the regulatory authority may dispense one of two or more decisions which 

are specified up front and in the latter, you are subjected to a terrorist attack or you are not.  

 With discrete data, the entire distribution can either be developed from scratch or 

the data can be fitted to a pre-specified discrete distribution. With the former, there are two 

steps to building the distribution. The first is identifying the possible outcomes and the 

second is to estimate probabilities to each outcome. As we noted in the text, we can draw 

on historical data or experience as well as specific knowledge about the investment being 

analyzed to arrive at the final distribution.  This process is relatively simple to accomplish 

when there are a few outcomes with a well-established basis for estimating probabilities 

but becomes more tedious as the number of outcomes increases. If it is difficult or 

impossible to build up a customized distribution, it may still be possible fit the data to one 

of the following discrete distributions: 

a. Binomial distribution: The binomial distribution measures the probabilities of the 

number of successes over a given number of trials with a specified probability of 

success in each try. In the simplest scenario of a coin toss (with a fair coin), where the 

probability of getting a head with each toss is 0.50 and there are a hundred trials, the 

binomial distribution will measure the likelihood of getting anywhere from no heads in 

a hundred tosses (very unlikely) to 50 heads (the most likely) to 100 heads (also very 

unlikely). The binomial distribution in this case will be symmetric, reflecting the even 

odds; as the probabilities shift from even odds, the distribution will get more skewed. 

Figure 6A.1 presents binomial distributions for three scenarios – two with 50% 

probability of success and one with a 70% probability of success and different trial 

sizes. 
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Figure 6A.1: Binomial Distribution 

 
As the probability of success is varied (from 50%) the distribution will also shift its 

shape, becoming positively skewed for probabilities less than 50% and negatively 

skewed for probabilities greater than 50%.1 

b. Poisson distribution: The Poisson distribution measures the likelihood of a number of 

events occurring within a given time interval, where the key parameter that is required 

is the average number of events in the given interval (λ). The resulting distribution 

looks similar to the binomial, with the skewness being positive but decreasing with λ.  

Figure 6A.2 presents three Poisson distributions, with λ ranging from 1 to 10. 

                                                
1 As the number of trials increases and the probability of success is close to 0.5, the binomial distribution 
converges on the normal distribution. 
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Figure 6A.2: Poisson Distribution 
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c. Negative Binomial distribution: Returning again to the coin toss example, assume that 

you hold the number of successes fixed at a given number and estimate the number of 

tries you will have before you reach the specified number of successes. The resulting 

distribution is called the negative binomial and it very closely resembles the Poisson. 

In fact, the negative binomial distribution converges on the Poisson distribution, but 

will be more skewed to the right (positive values) than the Poisson distribution with 

similar parameters. 

d. Geometric distribution: Consider again the coin toss example used to illustrate the 

binomial. Rather than focus on the number of successes in n trials, assume that you 

were measuring the likelihood of when the first success will occur. For instance, with 

a fair coin toss, there is a 50% chance that the first success will occur at the first try, a 

25% chance that it will occur on the second try and a 12.5% chance that it will occur 

on the third try. The resulting distribution is positively skewed and looks as follows for 

three different probability scenarios (in figure 6A.3): 

Figure 6A.3: Geometric Distribution 

 
Note that the distribution is steepest with high probabilities of success and flattens out 

as the probability decreases. However, the distribution is always positively skewed. 

e. Hypergeometric distribution: The hypergeometric distribution measures the probability 

of a specified number of successes in n trials, without replacement, from a finite 

population. Since the sampling is without replacement, the probabilities can change as 

a function of previous draws. Consider, for instance, the possibility of getting four face 

cards in hand of ten, over repeated draws from a pack. Since there are 16 face cards 

and the total pack contains 52 cards, the probability of getting four face cards in a hand 

of ten can be estimated. Figure 6A.4 provides a graph of the hypergeometric 

distribution: 
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Figure 6A.4: Hypergeometric Distribution 

 
Note that the hypergeometric distribution converges on binomial distribution as the as 

the population size increases. 

f. Discrete uniform distribution: This is the simplest of discrete distributions and applies 

when all of the outcomes have an equal probability of occurring.  Figure 6A.5 

presents a uniform discrete distribution with five possible outcomes, each occurring 

20% of the time: 



 7 
Figure 6A.5: Discrete Uniform Distribution 

 
The discrete uniform distribution is best reserved for circumstances where there are 

multiple possible outcomes, but no information that would allow us to expect that one 

outcome is more likely than the others. 

With continuous data, we cannot specify all possible outcomes, since they are too 

numerous to list, but we have two choices. The first is to convert the continuous data into 

a discrete form and then go through the same process that we went through for discrete 

distributions of estimating probabilities. For instance, we could take a variable such as 

market share and break it down into discrete blocks – market share between 3% and 3.5%, 

between 3.5% and 4% and so on – and consider the likelihood that we will fall into each 

block. The second is to find a continuous distribution that best fits the data and to specify 

the parameters of the distribution. The rest of the appendix will focus on how to make these 

choices. 

How symmetric is the data? 
There are some datasets that exhibit symmetry, i.e., the upside is mirrored by the 

downside. The symmetric distribution that most practitioners have familiarity with is the 

normal distribution, sown in Figure 6A.6, for a range of parameters: 
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Figure 6A.6: Normal Distribution 

 
The normal distribution has several features that make it popular. First, it can be fully 

characterized by just two parameters – the mean and the standard deviation – and thus 

reduces estimation pain. Second, the probability of any value occurring can be obtained 

simply by knowing how many standard deviations separate the value from the mean; the 

probability that a value will fall 2 standard deviations from the mean is roughly 95%.   The 

normal distribution is best suited for data that, at the minimum, meets the following 

conditions: 

a. There is a strong tendency for the data to take on a central value. 

b. Positive and negative deviations from this central value are equally likely 

c. The frequency of the deviations falls off rapidly as we move further away from the 

central value. 

The last two conditions show up when we compute the parameters of the normal 

distribution: the symmetry of deviations leads to zero skewness and the low probabilities 

of large deviations from the central value reveal themselves in no kurtosis. 

There is a cost we pay, though, when we use a normal distribution to characterize data 

that is non-normal since the probability estimates that we obtain will be misleading and 

can do more harm than good. One obvious problem is when the data is asymmetric but 

another potential problem is when the probabilities of large deviations from the central 
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value do not drop off as precipitously as required by the normal distribution. In statistical 

language, the actual distribution of the data has fatter tails than the normal. While all of 

symmetric distributions in the family are like the normal in terms of the upside mirroring 

the downside, they vary in terms of shape, with some distributions having fatter tails than 

the normal and the others more accentuated peaks.  These distributions are characterized 

as leptokurtic and you can consider two examples. One is the logistic distribution, which 

has longer tails and a higher kurtosis (1.2, as compared to 0 for the normal distribution) 

and the other are Cauchy distributions, which also exhibit symmetry and higher kurtosis 

and are characterized by a scale variable that determines how fat the tails are. Figure 6A.7 

present a series of Cauchy distributions that exhibit the bias towards fatter tails or more 

outliers than the normal distribution. 

Figure 6A.7: Cauchy Distribution 

 
Either the logistic or the Cauchy distributions can be used if the data is symmetric but with 

extreme values that occur more frequently than you would expect with a normal 

distribution. 

As the probabilities of extreme values increases relative to the central value, the 

distribution will flatten out. At its limit, assuming that the data stays symmetric and we put 

limits on the extreme values on both sides, we end up with the uniform distribution, shown 

in figure 6A.8: 
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Figure 6A.8: Uniform Distribution 

 
When is it appropriate to assume a uniform distribution for a variable? One possible 

scenario is when you have a measure of the highest and lowest values that a data item can 

take but no real information about where within this range the value may fall. In other 

words, any value within that range is just as likely as any other value.  

Most data does not exhibit symmetry and instead skews towards either very large 

positive or very large negative values. If the data is positively skewed, one common choice 

is the lognormal distribution, which is typically characterized by three parameters: a shape 

(σ or sigma), a scale (µ or median) and a shift parameter ( ). When m=0 and =1, you 

have the standard lognormal distribution and when =0, the distribution requires only scale 

and sigma parameters. As the sigma rises, the peak of the distribution shifts to the left and 

the skewness in the distribution increases. Figure 6A.9 graphs lognormal distributions for 

a range of parameters: 
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Figure 6A.9: Lognormal distribution 

 
The Gamma and Weibull distributions are two distributions that are closely related to the 

lognormal distribution; like the lognormal distribution, changing the parameter levels 

(shape, shift and scale) can cause the distributions to change shape and become more or 

less skewed. In all of these functions, increasing the shape parameter will push the 

distribution towards the left. In fact, at high values of sigma, the left tail disappears entirely 

and the outliers are all positive. In this form, these distributions all resemble the 

exponential, characterized by a location (m) and scale parameter (b), as is clear from figure 

6A.10. 
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Figure 6A.10: Weibull Distribution 

 
The question of which of these distributions will best fit the data will depend in large part 

on how severe the asymmetry in the data is. For moderate positive skewness, where there 

are both positive and negative outliers, but the former and larger and more common, the 

standard lognormal distribution will usually suffice. As the skewness becomes more 

severe, you may need to shift to a three-parameter lognormal distribution or a Weibull 

distribution, and modify the shape parameter till it fits the data. At the extreme, if there are 

no negative outliers and the only positive outliers in the data, you should consider the 

exponential function, shown in Figure 6a.11: 
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Figure 6A.11: Exponential Distribution 

 
 If the data exhibits negative slewness, the choices of distributions are more limited. 

One possibility is the Beta distribution, which has two shape parameters (p and q) and 

upper and lower bounds on the data (a and b). Altering these parameters can yield 

distributions that exhibit either positive or negative skewness, as shown in figure 6A.12: 

Figure 6A.12: Beta Distribution 
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Another is an extreme value distribution, which can also be altered to generate both positive 

and negative skewness, depending upon whether the extreme outcomes are the maximum 

(positive) or minimum (negative) values (see Figure 6A.13) 

Figure 6A.13: Extreme Value Distributions 

 

Are there upper or lower limits on data values? 
 There are often natural limits on the values that data can take on. As we noted 

earlier, the revenues and the market value of a firm cannot be negative and the profit margin 

cannot exceed 100%. Using a distribution that does not constrain the values to these limits 

can create problems. For instance, using a normal distribution to describe profit margins 

can sometimes result in profit margins that exceed 100%, since the distribution has no 

limits on either the downside or the upside. 

 When data is constrained, the questions that needs to be answered are whether the 

constraints apply on one side of the distribution or both, and if so, what the limits on values 

are. Once these questions have been answered, there are two choices. One is to find a 

continuous distribution that conforms to these constraints. For instance, the lognormal 

distribution can be used to model data, such as revenues and stock prices that are 

constrained to be never less than zero. For data that have both upper and lower limits, you 

could use the uniform distribution, if the probabilities of the outcomes are even across 

outcomes or a triangular distribution (if the data is clustered around a central value). Figure 

6A.14 presents a triangular distribution: 
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Figure 6A.14: Triangular Distribution 

 
An alternative approach is to use a continuous distribution that normally allows data to take 

on any value and to put upper and lower limits on the values that the data can assume. Note 

that the cost of putting these constrains is small in distributions like the normal where the 

probabilities of extreme values is very small, but increases as the distribution exhibits fatter 

tails. 

How likely are you to see extreme values of data, relative to the middle values? 
 As we noted in the earlier section, a key consideration in what distribution to use 

to describe the data is the likelihood of extreme values for the data, relative to the middle 

value. In the case of the normal distribution, this likelihood is small and it increases as you 

move to the logistic and Cauchy distributions. While it may often be more realistic to use 

the latter to describe real world data, the benefits of a better distribution fit have to be 

weighed off against the ease with which parameters can be estimated from the normal 

distribution. Consequently, it may make sense to stay with the normal distribution for 

symmetric data, unless the likelihood of extreme values increases above a threshold. 

 The same considerations apply for skewed distributions, though the concern will 

generally be more acute for the skewed side of the distribution. In other words, with 

positively skewed distribution, the question of which distribution to use will depend upon 
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how much more likely large positive values are than large negative values, with the fit 

ranging from the lognormal to the exponential.  

 In summary, the question of which distribution best fits data cannot be answered 

without looking at whether the data is discrete or continuous, symmetric or asymmetric 

and where the outliers lie. Figure 6A.15 summarizes the choices in a chart. 

Tests for Fit 
 The simplest test for distributional fit is visual with a comparison of the histogram 

of the actual data to the fitted distribution. Consider figure 6A.16, where we report the 

distribution of current price earnings ratios for US stocks in early 2007, with a normal 

distribution superimposed on it.  

Figure 6A.16: Current PE Ratios for US Stocks – January 2007 

 
The distributions are so clearly divergent that the normal distribution assumption does not 

hold up.  
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 A slightly more sophisticated test is to compute the moments of the actual data 

distribution – the mean, the standard deviation, skewness and kurtosis – and to examine 

them for fit to the chosen distribution. With the price-earnings data above, for instance, the 

moments of the distribution and key statistics are summarized  in table 6A.1: 

Table 6A.1: Current PE Ratio for US stocks – Key Statistics 

 Current PE Normal Distribution 
Mean 28.947  
Median 20.952 Median = Mean 
Standard deviation 26.924  
Skewness 3.106 0 
Kurtosis 11.936 0 

              Since the normal distribution has no skewness and zero kurtosis, we can easily reject the 

hypothesis that price earnings ratios are normally distributed.   

The typical tests for goodness of fit compare the actual distribution function of the 

data with the cumulative distribution function of the distribution that is being used to 

characterize the data, to either accept the hypothesis that the chosen distribution fits the 

data or to reject it. Not surprisingly, given its constant use, there are more tests for 

normality than for any other distribution. The Kolmogorov-Smirnov test is one of the oldest 

tests of fit for distributions2, dating back to 1967. Improved versions of the tests include 

the Shapiro-Wilk and Anderson-Darling tests. Applying these tests to the current PE ratio 

yields the unsurprising result that the hypothesis that current PE ratios are drawn from a 

normal distribution is roundly rejected: 

Tests of Normality 

 
There are graphical tests of normality, where probability plots can be used to assess the 

hypothesis that the data is drawn from a normal distribution. Figure 6A.17 illustrates this, 

using current PE ratios as the data set. 

                                                
2 The Kolgomorov-Smirnov test can be used to see if the data fits a normal, lognormal, Weibull, exponential 
or logistic distribution. 



 18 

 
   Given that the normal distribution is one of easiest to work with, it is useful to begin by 

testing data for non-normality to see if you can get away with using the normal distribution. 

If not, you can extend your search to other and more complex distributions.  

Conclusion 
 Raw data is almost never as well behaved as we would like it to be. Consequently, 

fitting a statistical distribution to data is part art and part science, requiring compromises 

along the way. The key to good data analysis is maintaining a balance between getting a 

good distributional fit and preserving ease of estimation, keeping in mind that the ultimate 

objective is that the analysis should lead to better decision. In particular, you may decide 

to settle for a distribution that less completely fits the data over one that more completely 

fits it, simply because estimating the parameters may be easier to do with the former. This 

may explain the overwhelming dependence on the normal distribution in practice, 

notwithstanding the fact that most data do not meet the criteria needed for the distribution 

to fit.  
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Figure 6A.15: Distributional Choices 

 


