Valuation: Lecture Note Packet 1
Intrinsic Valuation
The essence of intrinsic value

- In intrinsic valuation, you value an asset based upon its fundamentals (or intrinsic characteristics).
- For cash flow generating assets, the intrinsic value will be a function of the magnitude of the expected cash flows on the asset over its lifetime and the uncertainty about receiving those cash flows.
- Discounted cash flow valuation is a tool for estimating intrinsic value, where the expected value of an asset is written as the present value of the expected cash flows on the asset, with either the cash flows or the discount rate adjusted to reflect the risk.
The two faces of discounted cash flow valuation

- The value of a risky asset can be estimated by discounting the expected cash flows on the asset over its life at a risk-adjusted discount rate:

\[
\text{Value of asset} = \frac{E(CF_1)}{(1 + r)} + \frac{E(CF_2)}{(1 + r)^2} + \frac{E(CF_3)}{(1 + r)^3} + \ldots + \frac{E(CF_n)}{(1 + r)^n}
\]

where the asset has an n-year life, \(E(CF_t)\) is the expected cash flow in period \(t\) and \(r\) is a discount rate that reflects the risk of the cash flows.

- Alternatively, we can replace the expected cash flows with the guaranteed cash flows we would have accepted as an alternative (certainty equivalents) and discount these at the riskfree rate:

\[
\text{Value of asset} = \frac{CE(CF_1)}{(1 + r_f)} + \frac{CE(CF_2)}{(1 + r_f)^2} + \frac{CE(CF_3)}{(1 + r_f)^3} + \ldots + \frac{CE(CF_n)}{(1 + r_f)^n}
\]

where \(CE(CF_t)\) is the certainty equivalent of \(E(CF_t)\) and \(r_f\) is the riskfree rate.
The value of an asset is the risk-adjusted present value of the cash flows:

\[
\text{Value of asset} = \frac{E(CF_1)}{(1 + r)} + \frac{E(CF_2)}{(1 + r)^2} + \frac{E(CF_3)}{(1 + r)^3} + \cdots + \frac{E(CF_n)}{(1 + r)^n}
\]

\[
\text{Value of asset} = \frac{CE(CF_1)}{(1 + r_f)} + \frac{CE(CF_2)}{(1 + r_f)^2} + \frac{CE(CF_3)}{(1 + r_f)^3} + \cdots + \frac{CE(CF_n)}{(1 + r_f)^n}
\]

1. **The “IT” proposition**: If IT does not affect the expected cash flows or the riskiness of the cash flows, IT cannot affect value.
2. **The “DUH” proposition**: For an asset to have value, the expected cash flows have to be positive some time over the life of the asset.
3. **The “DON’T FREAK OUT” proposition**: Assets that generate cash flows early in their life will be worth more than assets that generate cash flows later; the latter may however have greater growth and higher cash flows to compensate.
DCF Choices: Equity Valuation versus Firm Valuation

Firm Valuation: Value the entire business

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Investments</td>
<td>Debt</td>
</tr>
<tr>
<td>Generate cashflows today</td>
<td>Fixed Claim on cash flows</td>
</tr>
<tr>
<td>Includes long lived (fixed) and</td>
<td>Little or No role in management</td>
</tr>
<tr>
<td>short-lived (working capital)</td>
<td>Fixed Maturity</td>
</tr>
<tr>
<td>assets</td>
<td>Tax Deductible</td>
</tr>
<tr>
<td>**Expected Value that will be</td>
<td>Equity</td>
</tr>
<tr>
<td>created by future investments</td>
<td>Residual Claim on cash flows</td>
</tr>
<tr>
<td></td>
<td>Significant Role in management</td>
</tr>
<tr>
<td></td>
<td>Perpetual Lives</td>
</tr>
<tr>
<td>Assets in Place</td>
<td></td>
</tr>
<tr>
<td>Growth Assets</td>
<td></td>
</tr>
</tbody>
</table>

Equity valuation: Value just the equity claim in the business

Aswath Damodaran
Figure 5.5: Equity Valuation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets in Place</td>
<td>Debt</td>
</tr>
<tr>
<td>Growth Assets</td>
<td>Equity</td>
</tr>
</tbody>
</table>

Cash flows considered are cashflows from assets, after debt payments and after making reinvestments needed for future growth.

Discount rate reflects only the cost of raising equity financing.

Present value is value of just the equity claims on the firm.
Firm Valuation

Figure 5.6: Firm Valuation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets in Place</td>
<td>Debt</td>
</tr>
<tr>
<td>Growth Assets</td>
<td>Equity</td>
</tr>
</tbody>
</table>

- **Cash flows considered are cashflows from assets, prior to any debt payments but after firm has reinvested to create growth assets.**
- **Discount rate reflects the cost of raising both debt and equity financing, in proportion to their use.**
- **Present value is value of the entire firm, and reflects the value of all claims on the firm.**

Aswath Damodaran
Firm Value and Equity Value

To get from firm value to equity value, which of the following would you need to do?

a. Subtract out the value of long term debt
b. Subtract out the value of all debt
c. Subtract the value of any debt that was included in the cost of capital calculation
d. Subtract out the value of all liabilities in the firm

Doing so, will give you a value for the equity which is

a. greater than the value you would have got in an equity valuation
b. lesser than the value you would have got in an equity valuation
c. equal to the value you would have got in an equity valuation
Cash Flows and Discount Rates

- Assume that you are analyzing a company with the following cashflows for the next five years.

<table>
<thead>
<tr>
<th>Year</th>
<th>CF to Equity</th>
<th>Interest Exp (1-tax rate)</th>
<th>CF to Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$50</td>
<td>$40</td>
<td>$90</td>
</tr>
<tr>
<td>2</td>
<td>$60</td>
<td>$40</td>
<td>$100</td>
</tr>
<tr>
<td>3</td>
<td>$68</td>
<td>$40</td>
<td>$108</td>
</tr>
<tr>
<td>4</td>
<td>$76.2</td>
<td>$40</td>
<td>$116.2</td>
</tr>
<tr>
<td>5</td>
<td>$83.49</td>
<td>$40</td>
<td>$123.49</td>
</tr>
<tr>
<td></td>
<td>Terminal Value</td>
<td>$1603.0</td>
<td>$2363.008</td>
</tr>
</tbody>
</table>

- Assume also that the cost of equity is 13.625% and the firm can borrow long term at 10%. (The tax rate for the firm is 50%.)

- The current market value of equity is $1,073 and the value of debt outstanding is $800.
Equity versus Firm Valuation

- **Method 1**: Discount CF to Equity at Cost of Equity to get value of equity
 - Cost of Equity = 13.625%
 - Value of Equity = $1073

- **Method 2**: Discount CF to Firm at Cost of Capital to get value of firm
 - Cost of Debt = Pre-tax rate (1- tax rate) = 10% (1-.5) = 5%
 - Cost of Capital = 9.94%
 - PV of Firm = $1873
 - Value of Equity = Value of Firm - Market Value of Debt = $1073
First Principle of Valuation

- **Discounting Consistency Principle**: Never mix and match cash flows and discount rates.
- Mismatching cash flows to discount rates is deadly.
 - Discounting cashflows after debt cash flows (equity cash flows) at the weighted average cost of capital will lead to an upwardly biased estimate of the value of equity.
 - Discounting pre-debt cashflows (cash flows to the firm) at the cost of equity will yield a downward biased estimate of the value of the firm.
Error 1: Discount CF to Equity at Cost of Capital to get equity value

\[PV \text{ of Equity} = \frac{50}{1.0994} + \frac{60}{1.0994^2} + \frac{68}{1.0994^3} + \frac{76.2}{1.0994^4} + \frac{(83.49+1603)}{1.0994^5} = 1248 \]

Value of equity is overstated by $175.

Error 2: Discount CF to Firm at Cost of Equity to get firm value

\[PV \text{ of Firm} = \frac{90}{1.13625} + \frac{100}{1.13625^2} + \frac{108}{1.13625^3} + \frac{116.2}{1.13625^4} + \frac{(123.49+2363)}{1.13625^5} = 1613 \]

\[PV \text{ of Equity} = 1613 - 800 = 813 \]

Value of Equity is understated by $260.

Error 3: Discount CF to Firm at Cost of Equity, forget to subtract out debt, and get too high a value for equity

Value of Equity = $1613

Value of Equity is overstated by $540
The devil is in the details.
Discounted Cash Flow Valuation: The Steps

1. Estimate the discount rate or rates to use in the valuation
 1. Discount rate can be either a cost of equity (if doing equity valuation) or a cost of capital (if valuing the firm)
 2. Discount rate can be in nominal terms or real terms, depending upon whether the cash flows are nominal or real
 3. Discount rate can vary across time.

2. Estimate the current earnings and cash flows on the asset, to either equity investors (CF to Equity) or to all claimholders (CF to Firm)

3. Estimate the future earnings and cash flows on the firm being valued, generally by estimating an expected growth rate in earnings.

4. Estimate when the firm will reach “stable growth” and what characteristics (risk & cash flow) it will have when it does.

5. Choose the right DCF model for this asset and value it.
Generic DCF Valuation Model

DISCOUNTED CASHFLOW VALUATION

Cash flows
- Firm: Pre-debt cash flow
- Equity: After debt cash flows

Expected Growth
- Firm: Growth in Operating Earnings
- Equity: Growth in Net Income/EPS

Value
- Firm: Value of Firm
- Equity: Value of Equity

Discount Rate
- Firm: Cost of Capital
- Equity: Cost of Equity

Length of Period of High Growth

Terminal Value
- Firm is in stable growth: Grows at constant rate forever

Aswath Damodaran
Same ingredients, different approaches...

<table>
<thead>
<tr>
<th>Input</th>
<th>Dividend Discount Model</th>
<th>FCFE (Potential dividend) discount model</th>
<th>FCFF (firm) valuation model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flow</td>
<td>Dividend</td>
<td>Potential dividends = FCFE = Cash flows after taxes, reinvestment needs and debt cash flows</td>
<td>FCFF = Cash flows before debt payments but after reinvestment needs and taxes.</td>
</tr>
<tr>
<td>Expected growth</td>
<td>In equity income and dividends</td>
<td>In equity income and FCFE</td>
<td>In operating income and FCFF</td>
</tr>
<tr>
<td>Discount rate</td>
<td>Cost of equity</td>
<td>Cost of equity</td>
<td>Cost of capital</td>
</tr>
<tr>
<td>Steady state</td>
<td>When dividends grow at constant rate forever</td>
<td>When FCFE grow at constant rate forever</td>
<td>When FCFF grow at constant rate forever</td>
</tr>
</tbody>
</table>
Start easy: The Dividend Discount Model

\[
\text{Net Income} \times \text{Payout ratio} = \text{Dividends}
\]

\[
\text{Expected growth in net income} \quad \text{Retention ratio needed to sustain growth}
\]

\[
\text{Expected dividends} = \text{Expected net income} \times (1 - \text{Retention ratio})
\]

\[
\text{Length of high growth period: PV of dividends during high growth}
\]

\[
\text{Value of equity}
\]

\[
\text{Stable Growth}
\]

When net income and dividends grow at constant rate forever.

\[
\text{Cost of Equity}
\]

Rate of return demanded by equity investors

Aswath Damodaran
Moving on up: The “potential dividends” or FCFE model

Free Cashflow to Equity
Non-cash Net Income
- (Cap Ex - Depreciation)
- Change in non-cash WC
- (Debt repaid - Debt issued)
= Free Cashflow to equity

Expected growth in net income
Equity reinvestment needed to sustain growth

Value of Equity in non-cash Assets
+ Cash
= Value of equity

Length of high growth period: PV of FCFE during high growth

Cost of equity
Rate of return demanded by equity investors

Expected FCFE = Expected net income * (1 - Equity Reinvestment rate)

Stable Growth
When net income and FCFE grow at constant rate forever.

Aswath Damodaran
To valuing the entire business: The FCFF model

Free Cashflow to Firm
After-tax Operating Income
- (Cap Ex - Depreciation)
- Change in non-cash WC
= Free Cashflow to firm

Expected growth in operating income
Reinvestment needed to sustain growth

Expected FCFF = Expected operating income * (1 - Reinvestment rate)

Value of Operating Assets
+ Cash & non-operating assets
- Debt
= Value of equity

Length of high growth period: PV of FCFF during high growth

Stable Growth
When operating income and FCFF grow at constant rate forever.

Cost of capital
Weighted average of costs of equity and debt

Aswath Damodaran