The Essence of relative valuation?

- In relative valuation, the value of an asset is compared to the values assessed by the market for similar or comparable assets.
- To do relative valuation then,
 - we need to identify comparable assets and obtain market values for these assets
 - convert these market values into standardized values, since the absolute prices cannot be compared. This process of standardizing creates price multiples.
 - compare the standardized value or multiple for the asset being analyzed to the standardized values for comparable assets, controlling for any differences between the firms that might affect the multiple, to judge whether the asset is under or over valued.
Relative valuation is pervasive…

- Most valuations on Wall Street are relative valuations.
 - Almost 85% of equity research reports are based upon a multiple and comparables.
 - More than 50% of all acquisition valuations are based upon multiples.
 - Rules of thumb based on multiples are not only common but are often the basis for final valuation judgments.
- While there are more discounted cashflow valuations in consulting and corporate finance, they are often relative valuations masquerading as discounted cash flow valuations.
 - The objective in many discounted cashflow valuations is to back into a number that has been obtained by using a multiple.
 - The terminal value in a significant number of discounted cashflow valuations is estimated using a multiple.

Why relative valuation?

“If you think I’m crazy, you should see the guy who lives across the hall”

Jerry Seinfeld talking about Kramer in a Seinfeld episode

“A little inaccuracy sometimes saves tons of explanation”

H.H. Munro

“If you are going to screw up, make sure that you have lots of company”

Ex-portfolio manager
So, you believe only in intrinsic value? Here’s why you should still care about relative value

- Even if you are a true believer in discounted cashflow valuation, presenting your findings on a relative valuation basis will make it more likely that your findings/recommendations will reach a receptive audience.
- In some cases, relative valuation can help find weak spots in discounted cash flow valuations and fix them.
- The problem with multiples is not in their use but in their abuse. If we can find ways to frame multiples right, we should be able to use them better.

Multiples are just standardized estimates of price…

\[
\text{Multiple} = \frac{\text{Numerator}}{\text{Denominator}}
\]

- **Numerator**: What you are paying for the asset
- **Denominator**: What you are getting in return

Revenues
- Accounting revenues
- Drivers
 - # Customers
 - # Subscribers
- # units

Earnings
- To Equity investors
 - Net Income
 - Earnings per share
- To Firm
 - Operating income (EBIT)

Cash Flow
- To Equity
 - Net income + Depreciation
 - Free CF to Equity
- To Firm
 - EBIT + DA (EBITDA)
 - Free CF to Firm

Book Value
- Equity
 = BV of equity
- Firm
 = BV of debt + BV of equity
- Invested Capital
 = BV of equity + BV of debt - Cash
The Four Steps to Understanding Multiples

- Define the multiple
 - In use, the same multiple can be defined in different ways by different users. When comparing and using multiples, estimated by someone else, it is critical that we understand how the multiples have been estimated.

- Describe the multiple
 - Too many people who use a multiple have no idea what its cross sectional distribution is. If you do not know what the cross sectional distribution of a multiple is, it is difficult to look at a number and pass judgment on whether it is too high or low.

- Analyze the multiple
 - It is critical that we understand the fundamentals that drive each multiple, and the nature of the relationship between the multiple and each variable.

- Apply the multiple
 - Defining the comparable universe and controlling for differences is far more difficult in practice than it is in theory.

Definitional Tests

- Is the multiple consistently defined?
 - Proposition 1: Both the value (the numerator) and the standardizing variable (the denominator) should be to the same claimholders in the firm. In other words, the value of equity should be divided by equity earnings or equity book value, and firm value should be divided by firm earnings or book value.

- Is the multiple uniformly estimated?
 - The variables used in defining the multiple should be estimated uniformly across assets in the "comparable firm" list.
 - If earnings-based multiples are used, the accounting rules to measure earnings should be applied consistently across assets. The same rule applies with book-value based multiples.
Descriptive Tests

- What is the average and standard deviation for this multiple, across the universe (market)?
- How asymmetric is the distribution and what is the effect of this asymmetry on the moments of the distribution?
- How large are the outliers to the distribution, and how do we deal with the outliers?
 - Throwing out the outliers may seem like an obvious solution, but if the outliers all lie on one side of the distribution, this can lead to a biased estimate.
 - Capping the outliers is another solution, though the point at which you cap is arbitrary and can skew results
- Are there cases where the multiple cannot be estimated? Will ignoring these cases lead to a biased estimate of the multiple?
- How has this multiple changed over time?

Analytical Tests

- What are the fundamentals that determine and drive these multiples?
 - Proposition 2: Embedded in every multiple are all of the variables that drive every discounted cash flow valuation - growth, risk and cash flow patterns.
- How do changes in these fundamentals change the multiple?
 - The relationship between a fundamental (like growth) and a multiple (such as PE) is almost never linear.
 - Proposition 3: It is impossible to properly compare firms on a multiple, if we do not know how fundamentals and the multiple move.

<table>
<thead>
<tr>
<th>Equity Multiple</th>
<th>Firm Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Start with an equity DCF model (a dividend or FCFE model)</td>
<td>1. Start with a firm DCF model (a FCFF model)</td>
</tr>
<tr>
<td>[P = \frac{\text{DPS}_0}{r - g}]</td>
<td>[P = \frac{\text{FCFE}_1}{r - g}]</td>
</tr>
<tr>
<td>[r = \text{Cost of equity} - g]</td>
<td>[r = \text{Cost of capital} - g]</td>
</tr>
<tr>
<td>2. Isolate the denominator of the multiple in the model</td>
<td>2. Isolate the denominator of the multiple in the model</td>
</tr>
<tr>
<td>3. Do the algebra to arrive at the equation for the multiple</td>
<td>3. Do the algebra to arrive at the equation for the multiple</td>
</tr>
</tbody>
</table>
Application Tests

Given the firm that we are valuing, what is a “comparable” firm?

- While traditional analysis is built on the premise that firms in the same sector are comparable firms, valuation theory would suggest that a comparable firm is one which is similar to the one being analyzed in terms of fundamentals.
- **Proposition 4:** There is no reason why a firm cannot be compared with another firm in a very different business, if the two firms have the same risk, growth and cash flow characteristics.

Given the comparable firms, how do we adjust for differences across firms on the fundamentals?

- **Proposition 5:** It is impossible to find an exactly identical firm to the one you are valuing.

Price Earnings Ratio: Definition

PE = Market Price per Share / Earnings per Share

There are a number of variants on the basic PE ratio in use. They are based upon how the price and the earnings are defined.

Price:

- is usually the current price (though some like to use average price over last 6 months or year)

EPS:

- Time variants: EPS in most recent financial year (current), EPS in most recent four quarters (trailing), EPS expected in next fiscal year or next four quarters (both called forward) or EPS in some future year
- Primary, diluted or partially diluted
- Before or after extraordinary items
- Measured using different accounting rules (options expensed or not, pension fund income counted or not…)
Characteristic 1: Skewed Distributions
PE ratios for US companies in January 2011

Characteristic 2: Biased Samples
PE ratios in January 2011

<table>
<thead>
<tr>
<th></th>
<th>Current PE</th>
<th>Trailing PE</th>
<th>Forward PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>49.82</td>
<td>38.19</td>
<td>21.4</td>
</tr>
<tr>
<td>Median</td>
<td>19.5</td>
<td>17.79</td>
<td>16.16</td>
</tr>
<tr>
<td>25th percentile</td>
<td>12.38</td>
<td>11.99</td>
<td>12.44</td>
</tr>
<tr>
<td>75th percentile</td>
<td>33.44</td>
<td>28.02</td>
<td>22.13</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.01</td>
<td>0</td>
<td>1.82</td>
</tr>
<tr>
<td>Maximum</td>
<td>11,270.</td>
<td>6,680.7</td>
<td>717.</td>
</tr>
<tr>
<td>Number</td>
<td>3316</td>
<td>3374</td>
<td>2310</td>
</tr>
<tr>
<td>Sample Size</td>
<td>5928</td>
<td>5928</td>
<td>5928</td>
</tr>
</tbody>
</table>
To understand the fundamentals, start with a basic equity discounted cash flow model. With a stable growth dividend discount model:

\[P_0 = \frac{DPS_1}{r - g_n} \]

Dividing both sides by the current earnings per share or forward EPS:

Current EPS

\[\frac{P_0}{EPS_0} = \frac{\text{Payout Ratio} \times (1 + g_n)}{r - g_n} \]

Forward EPS

\[\frac{P_s}{EPS_s} = \frac{\text{Payout Ratio}}{r - g_n} \]

If this had been a FCFE Model,

\[P_0 = \frac{FCFE_1}{r - g_n} \]

\[\frac{P_s}{EPS_s} = \frac{(FCFE/Earnings) \times (1 + g_n)}{r - g_n} \]
PE Ratio and Fundamentals

- Proposition: Other things held equal, higher growth firms will have higher PE ratios than lower growth firms.
- Proposition: Other things held equal, higher risk firms will have lower PE ratios than lower risk firms.
- Proposition: Other things held equal, firms with lower reinvestment needs will have higher PE ratios than firms with higher reinvestment rates.
- Of course, other things are difficult to hold equal since high growth firms, tend to have risk and high reinvestment rates.

Using the Fundamental Model to Estimate PE For a High Growth Firm

- The price-earnings ratio for a high growth firm can also be related to fundamentals. In the special case of the two-stage dividend discount model, this relationship can be made explicit fairly simply:

$$P_0 = \frac{EPS_0 \times \text{Payout Ratio} \times (1+g)^n}{(r - g)} \times \frac{1 - (1+g)^n}{(1+r)^n}$$

- For a firm that does not pay what it can afford to in dividends, substitute FCFE/Earnings for the payout ratio.
- Dividing both sides by the earnings per share:

$$\frac{P_0}{EPS_0} = \frac{\text{Payout Ratio} \times (1+g)^n \times 1 - (1+g)^n}{(r - g)(1+r)^n}$$
Expanding the Model

- In this model, the PE ratio for a high growth firm is a function of growth, risk and payout, exactly the same variables that it was a function of for the stable growth firm.
- The only difference is that these inputs have to be estimated for two phases - the high growth phase and the stable growth phase.
- Expanding to more than two phases, say the three stage model, will mean that risk, growth and cash flow patterns in each stage.

A Simple Example

- Assume that you have been asked to estimate the PE ratio for a firm which has the following characteristics:

<table>
<thead>
<tr>
<th>Variable</th>
<th>High Growth Phase</th>
<th>Stable Growth Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Growth Rate</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Beta</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Number of years</td>
<td>5 years</td>
<td>Forever after year 5</td>
</tr>
</tbody>
</table>

- Riskfree rate = T.Bond Rate = 6%
- Required rate of return = 6% + 1(5.5%) = 11.5%

\[
\text{PE} = \frac{0.2 \times (1.25) \times \left(1 - \frac{(1.25)^5}{(1.115)^5}\right)}{0.115 - 0.25} + \frac{0.5 \times (1.25)^5 \times (1.08)}{0.115 - 0.08 (1.115)^5} = 28.75
\]
PE and Growth: Firm grows at x% for 5 years, 8% thereafter

PE Ratios and Expected Growth: Interest Rate Scenarios

PE Ratios and Length of High Growth: 25% growth for n years; 8% thereafter

PE Ratios and Length of High Growth Period
PE and Risk: Effects of Changing Betas on PE Ratio:
Firm with x% growth for 5 years; 8% thereafter

PE and Payout/ ROE
The perfect under valued company…

- If you were looking for the perfect undervalued asset, it would be one
 - With a low PE ratio (it is cheap)
 - With high expected growth in earnings
 - With low risk (and cost of equity)
 - And with high ROE
 In other words, it would be cheap with no good reason for being cheap
- In the real world, most assets that look cheap on a multiple of earnings basis deserve to be cheap. In other words, one or more of these variables works against the company (It has low growth, high risk or a low ROE).
- When presented with a cheap stock (low PE), here are the key questions:
 - What is the expected growth in earnings?
 - What is the risk in the stock?
 - How efficiently does this company generate its growth?

II. An Old Example with Emerging Markets: June 2000

<table>
<thead>
<tr>
<th>Country</th>
<th>PE Ratio</th>
<th>Interest Rates</th>
<th>GDP Real Growth</th>
<th>Country Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>14</td>
<td>18.00%</td>
<td>2.50%</td>
<td>45</td>
</tr>
<tr>
<td>Brazil</td>
<td>21</td>
<td>14.00%</td>
<td>4.80%</td>
<td>35</td>
</tr>
<tr>
<td>Chile</td>
<td>25</td>
<td>9.50%</td>
<td>5.50%</td>
<td>15</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>20</td>
<td>8.00%</td>
<td>6.00%</td>
<td>15</td>
</tr>
<tr>
<td>India</td>
<td>17</td>
<td>11.48%</td>
<td>4.20%</td>
<td>25</td>
</tr>
<tr>
<td>Indonesia</td>
<td>15</td>
<td>21.00%</td>
<td>4.00%</td>
<td>50</td>
</tr>
<tr>
<td>Malaysia</td>
<td>14</td>
<td>5.67%</td>
<td>3.00%</td>
<td>40</td>
</tr>
<tr>
<td>Mexico</td>
<td>19</td>
<td>11.50%</td>
<td>5.50%</td>
<td>30</td>
</tr>
<tr>
<td>Pakistan</td>
<td>14</td>
<td>19.00%</td>
<td>3.00%</td>
<td>45</td>
</tr>
<tr>
<td>Peru</td>
<td>15</td>
<td>18.00%</td>
<td>4.90%</td>
<td>50</td>
</tr>
<tr>
<td>Phillipines</td>
<td>15</td>
<td>17.00%</td>
<td>3.80%</td>
<td>45</td>
</tr>
<tr>
<td>Singapore</td>
<td>24</td>
<td>6.50%</td>
<td>5.20%</td>
<td>5</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>10.00%</td>
<td>4.80%</td>
<td>25</td>
</tr>
<tr>
<td>Thailand</td>
<td>21</td>
<td>12.75%</td>
<td>5.50%</td>
<td>25</td>
</tr>
<tr>
<td>Turkey</td>
<td>12</td>
<td>25.00%</td>
<td>2.00%</td>
<td>35</td>
</tr>
<tr>
<td>Venezuela</td>
<td>20</td>
<td>15.00%</td>
<td>3.50%</td>
<td>45</td>
</tr>
</tbody>
</table>

Regression Results

- The regression of PE ratios on these variables provides the following –
 \[PE = 16.16 - 7.94 \text{ Interest Rates} + 154.40 \text{ Growth in GDP} - 0.1116 \text{ Country Risk} \]
 \[R \text{ Squared} = 73\% \]
Predicted PE Ratios

<table>
<thead>
<tr>
<th>Country</th>
<th>PE Ratio</th>
<th>Interest Rates</th>
<th>GDP Real Growth</th>
<th>Country Risk</th>
<th>Predicted PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>14</td>
<td>10.00%</td>
<td>2.50%</td>
<td>45</td>
<td>13.57</td>
</tr>
<tr>
<td>Brazil</td>
<td>21</td>
<td>14.00%</td>
<td>4.80%</td>
<td>35</td>
<td>18.55</td>
</tr>
<tr>
<td>Chile</td>
<td>25</td>
<td>9.50%</td>
<td>5.50%</td>
<td>15</td>
<td>22.22</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>20</td>
<td>8.00%</td>
<td>6.00%</td>
<td>15</td>
<td>23.11</td>
</tr>
<tr>
<td>India</td>
<td>17</td>
<td>11.48%</td>
<td>4.20%</td>
<td>25</td>
<td>18.94</td>
</tr>
<tr>
<td>Indonesia</td>
<td>15</td>
<td>21.00%</td>
<td>4.00%</td>
<td>50</td>
<td>15.09</td>
</tr>
<tr>
<td>Malaysia</td>
<td>14</td>
<td>5.67%</td>
<td>3.00%</td>
<td>40</td>
<td>15.87</td>
</tr>
<tr>
<td>Mexico</td>
<td>19</td>
<td>11.50%</td>
<td>5.50%</td>
<td>30</td>
<td>20.39</td>
</tr>
<tr>
<td>Pakistan</td>
<td>14</td>
<td>19.00%</td>
<td>3.00%</td>
<td>45</td>
<td>14.26</td>
</tr>
<tr>
<td>Peru</td>
<td>15</td>
<td>18.00%</td>
<td>4.90%</td>
<td>50</td>
<td>16.71</td>
</tr>
<tr>
<td>Philippines</td>
<td>15</td>
<td>17.00%</td>
<td>3.80%</td>
<td>45</td>
<td>15.65</td>
</tr>
<tr>
<td>Singapore</td>
<td>24</td>
<td>6.50%</td>
<td>5.20%</td>
<td>5</td>
<td>23.11</td>
</tr>
<tr>
<td>South Korea</td>
<td>21</td>
<td>10.00%</td>
<td>4.80%</td>
<td>25</td>
<td>19.98</td>
</tr>
<tr>
<td>Thailand</td>
<td>21</td>
<td>12.75%</td>
<td>5.50%</td>
<td>25</td>
<td>20.85</td>
</tr>
<tr>
<td>Turkey</td>
<td>12</td>
<td>25.00%</td>
<td>2.00%</td>
<td>35</td>
<td>13.35</td>
</tr>
<tr>
<td>Venezuela</td>
<td>20</td>
<td>15.00%</td>
<td>3.50%</td>
<td>45</td>
<td>15.35</td>
</tr>
</tbody>
</table>

III. Comparisons of PE across time: PE Ratio for the S&P 500

![PE Ratio for the S&P 500 over time: 1960-2010](chart.png)
Is low (high) PE cheap (expensive)?

- A market strategist argues that stocks are expensive because the PE ratio today is high relative to the average PE ratio across time. Do you agree?
 - Yes
 - No
- If you do not agree, what factors might explain the higher PE ratio today?

E/P Ratios, T.Bond Rates and Term Structure

E/P Ratios and Interest Rates: 1990-2001
Regression Results

- There is a strong positive relationship between E/P ratios and T.Bond rates, as evidenced by the correlation of 0.69 between the two variables.
- In addition, there is evidence that the term structure also affects the PE ratio.
- In the following regression, using 1960-2010 data, we regress E/P ratios against the level of T.Bond rates and a term structure variable (T.Bond - T.Bill rate):

 \[
 \frac{E}{P} = 2.79\% + 0.650 \text{T.Bond Rate} - 0.242 (\text{T.Bond Rate-T.Bill Rate})
 \]

 (3.37) (6.22) (-1.07)

 R squared = 45.53%

Given the treasury bond rate and treasury bill rate today, is the market under or over valued today?

IV. Valuing one company relative to others…
Relative valuation with comparables

- Ideally, you would like to find lots of publicly traded firms that look just like your firm, in terms of fundamentals, and compare the pricing of your firm to the pricing of these other publicly traded firms. Since, they are all just like your firm, there will be no need to control for differences.
- In practice, it is very difficult (and perhaps impossible) to find firms that share the same risk, growth and cash flow characteristics of your firm. Even if you are able to find such firms, they will very few in number. The trade off then becomes:

| Small sample of firms that are "just like" your firm | Large sample of firms that are similar in some dimensions but different on others |
Techniques for comparing across firms

- **Direct comparisons**: If the comparable firms are “just like” your firm, you can compare multiples directly across the firms and conclude that your firm is expensive (cheap) if it trades at a multiple higher (lower) than the other firms.

- **Story telling**: If there is a key dimension on which the firms vary, you can tell a story based upon your understanding of how value varies on that dimension.
 - An example: This company trades at 12 times earnings, whereas the rest of the sector trades at 10 times earnings, but I think it is cheap because it has a much higher growth rate than the rest of the sector.

- **Modified multiple**: You can modify the multiple to incorporate the dimension on which there are differences across firms.

- **Statistical techniques**: If your firms vary on more than one dimension, you can try using multiple regressions (or variants thereof) to arrive at a “controlled” estimate for your firm.

Example 1: Let’s try some story telling
Comparing PE ratios across firms in a sector

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Trailing PE</th>
<th>Expected Growth</th>
<th>Standard Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola Bottling</td>
<td>29.18</td>
<td>9.50%</td>
<td>20.58%</td>
</tr>
<tr>
<td>Molson Inc. Ltd. ’A’</td>
<td>43.65</td>
<td>15.50%</td>
<td>21.88%</td>
</tr>
<tr>
<td>Anheuser-Busch</td>
<td>24.31</td>
<td>11.00%</td>
<td>22.92%</td>
</tr>
<tr>
<td>Corby Distilleries Ltd.</td>
<td>16.24</td>
<td>7.50%</td>
<td>23.66%</td>
</tr>
<tr>
<td>Chalone Wine Group Ltd.</td>
<td>21.76</td>
<td>14.00%</td>
<td>21.08%</td>
</tr>
<tr>
<td>Andres Wines Ltd. ’A’</td>
<td>8.96</td>
<td>3.50%</td>
<td>21.70%</td>
</tr>
<tr>
<td>Todhunter Int’l</td>
<td>8.94</td>
<td>3.00%</td>
<td>25.74%</td>
</tr>
<tr>
<td>Brown-Forman ’B’</td>
<td>10.07</td>
<td>11.50%</td>
<td>29.43%</td>
</tr>
<tr>
<td>Coors (Adolph) ‘B’</td>
<td>23.02</td>
<td>10.00%</td>
<td>29.52%</td>
</tr>
<tr>
<td>PepsiCo, Inc.</td>
<td>33.00</td>
<td>10.50%</td>
<td>31.35%</td>
</tr>
<tr>
<td>Coca-Cola</td>
<td>44.33</td>
<td>19.00%</td>
<td>35.51%</td>
</tr>
<tr>
<td>Boston Beer ’A’</td>
<td>10.59</td>
<td>17.13%</td>
<td>39.58%</td>
</tr>
<tr>
<td>Whitman Corp.</td>
<td>25.19</td>
<td>11.50%</td>
<td>44.26%</td>
</tr>
<tr>
<td>Mondavi (Robert) ’A’</td>
<td>16.47</td>
<td>14.00%</td>
<td>45.84%</td>
</tr>
<tr>
<td>Coca-Cola Enterprises</td>
<td>37.14</td>
<td>27.00%</td>
<td>51.34%</td>
</tr>
<tr>
<td>Hansen Natural Corp</td>
<td>9.70</td>
<td>17.00%</td>
<td>62.45%</td>
</tr>
</tbody>
</table>
A Question

You are reading an equity research report on this sector, and the analyst claims that Andres Wine and Hansen Natural are under valued because they have low PE ratios. Would you agree?

- Yes
- No
- Why or why not?

Example 2: The limits of story telling

Telecom ADRs in 1999

<table>
<thead>
<tr>
<th>Company Name</th>
<th>PE</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Indosat ADR</td>
<td>7.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Telebras ADR</td>
<td>8.9</td>
<td>0.073</td>
</tr>
<tr>
<td>Telecom Capitalization of New Zealand ADR</td>
<td>11.9</td>
<td>0.11</td>
</tr>
<tr>
<td>Telecom Argentina S.A. - France Telecom SA ADR B</td>
<td>11.5</td>
<td>0.08</td>
</tr>
<tr>
<td>Telefonica Telecommunications de Chile ADR</td>
<td>10.6</td>
<td>0.08</td>
</tr>
<tr>
<td>Telmex ADR</td>
<td>15.3</td>
<td>0.12</td>
</tr>
<tr>
<td>Anta Satelitar Telecom Holding ADR</td>
<td>19.6</td>
<td>0.16</td>
</tr>
<tr>
<td>Portugal Telecom SA ADR</td>
<td>20.8</td>
<td>0.13</td>
</tr>
<tr>
<td>Telecom de Mexico ADR L</td>
<td>24.1</td>
<td>0.14</td>
</tr>
<tr>
<td>Mobi BT ADR</td>
<td>21.3</td>
<td>0.22</td>
</tr>
<tr>
<td>Telefonica ADR</td>
<td>22.4</td>
<td>0.12</td>
</tr>
<tr>
<td>Globale Communications</td>
<td>22.7</td>
<td>0.37</td>
</tr>
<tr>
<td>Univista Telecom ADR</td>
<td>23.6</td>
<td>0.11</td>
</tr>
<tr>
<td>British Telecommunications PLC ADR</td>
<td>24.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Telia Danmark AS ADR</td>
<td>27</td>
<td>0.09</td>
</tr>
<tr>
<td>Telefonica Telecommunications ADR</td>
<td>28.8</td>
<td>0.32</td>
</tr>
<tr>
<td>Cabo & Comunicaciones LLC ADR</td>
<td>29.8</td>
<td>0.14</td>
</tr>
<tr>
<td>Apt Satelite Holdings ADR</td>
<td>31</td>
<td>0.13</td>
</tr>
<tr>
<td>Telesweden ADR</td>
<td>38.3</td>
<td>0.18</td>
</tr>
<tr>
<td>British ATR ADR</td>
<td>39.7</td>
<td>0.13</td>
</tr>
<tr>
<td>Telecom Italia SPA ADR</td>
<td>42.2</td>
<td>0.14</td>
</tr>
<tr>
<td>Ngk Telephone & Telecom ADR</td>
<td>49.3</td>
<td>0.2</td>
</tr>
<tr>
<td>France Telecom SA ADR</td>
<td>46.2</td>
<td>0.19</td>
</tr>
<tr>
<td>China Telecom ADR</td>
<td>71.3</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Aswath Damodaran

PE, Growth and Risk

Dependent variable is: PE

R squared = 66.2% R squared (adjusted) = 63.1%

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>SE</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>13.1151</td>
<td>3.471</td>
<td>3.78</td>
<td>0.0010</td>
</tr>
<tr>
<td>Growth rate</td>
<td>1.21223</td>
<td>19.27</td>
<td>6.29</td>
<td>≤ 0.0001</td>
</tr>
<tr>
<td>Emerging Market</td>
<td>-13.8531</td>
<td>3.606</td>
<td>-3.84</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Emerging Market is a dummy: 1 if emerging market
0 if not

Aswath Damodaran

Is Telebras under valued?

- Predicted PE = 13.12 + 1.2122 (7.5) - 13.85 (1) = 8.35
- At an actual price to earnings ratio of 8.9, Telebras is slightly overvalued.

Aswath Damodaran
Relative to the entire market
Extending your sample

- If you can control for differences in risk, growth and cash flows, you can expand your list of comparable firms significantly. In fact, there is no reason why you cannot bring every firm in the market into your comparable firm list.
- The simplest way of controlling for differences is with a multiple regression, with the multiple (PE, EV/EBITDA etc) as the dependent variable, and proxies for risk, growth and payout forming the independent variables.
- When you make this comparison, you are estimating the value of your company relative to the entire market (rather than just a sector).
Problems with the regression methodology

- The basic regression assumes a linear relationship between PE ratios and the financial proxies, and that might not be appropriate.
- The basic relationship between PE ratios and financial variables itself might not be stable, and if it shifts from year to year, the predictions from the model may not be reliable.
- The independent variables are correlated with each other. For example, high growth firms tend to have high risk. This multi-collinearity makes the coefficients of the regressions unreliable and may explain the large changes in these coefficients from period to period.
The Multicollinearity Problem

Using the PE ratio regression

- Assume that you were given the following information for Dell. The firm has an expected growth rate of 10%, a beta of 1.20 and pays no dividends. Based upon the regression, estimate the predicted PE ratio for Dell.

 Predicted PE =

- Dell is actually trading at 18 times earnings. What does the predicted PE tell you?
The value of growth

<table>
<thead>
<tr>
<th>Time Period</th>
<th>PE Value of extra 1% of growth</th>
<th>Equity Risk Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2011</td>
<td>0.836</td>
<td>5.20%</td>
</tr>
<tr>
<td>January 2010</td>
<td>0.550</td>
<td>4.36%</td>
</tr>
<tr>
<td>January 2009</td>
<td>0.780</td>
<td>6.43%</td>
</tr>
<tr>
<td>January 2008</td>
<td>1.427</td>
<td>4.37%</td>
</tr>
<tr>
<td>January 2007</td>
<td>1.178</td>
<td>4.16%</td>
</tr>
<tr>
<td>January 2006</td>
<td>1.131</td>
<td>4.07%</td>
</tr>
<tr>
<td>January 2005</td>
<td>0.914</td>
<td>3.65%</td>
</tr>
<tr>
<td>January 2004</td>
<td>0.812</td>
<td>3.69%</td>
</tr>
<tr>
<td>July 2003</td>
<td>1.228</td>
<td>3.88%</td>
</tr>
<tr>
<td>January 2003</td>
<td>2.621</td>
<td>4.10%</td>
</tr>
<tr>
<td>July 2002</td>
<td>0.859</td>
<td>4.35%</td>
</tr>
<tr>
<td>January 2002</td>
<td>1.003</td>
<td>3.62%</td>
</tr>
<tr>
<td>July 2001</td>
<td>1.251</td>
<td>3.05%</td>
</tr>
<tr>
<td>January 2001</td>
<td>1.457</td>
<td>2.75%</td>
</tr>
<tr>
<td>July 2000</td>
<td>1.761</td>
<td>2.20%</td>
</tr>
<tr>
<td>January 2000</td>
<td>2.105</td>
<td>2.05%</td>
</tr>
</tbody>
</table>

The value of growth is in terms of additional PE...

Fundamentals hold in every market: PE regressions across markets...

<table>
<thead>
<tr>
<th>Region</th>
<th>Regression – January 2011</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>PE = 11.55 + 53.32 Expected Growth + 6.00</td>
<td>29.8%</td>
</tr>
<tr>
<td></td>
<td>Payout -1.35 Beta</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>PE = 16.60 + 17.24 Expected Growth + 14.68 Beta</td>
<td>19.6%</td>
</tr>
<tr>
<td>Emerging</td>
<td>PE = 19.47+ 17.10 Expected Growth + 2.45</td>
<td>7.8%</td>
</tr>
<tr>
<td>Markets</td>
<td>Payout</td>
<td></td>
</tr>
</tbody>
</table>
Investment Strategies that compare PE to the expected growth rate

- If we assume that all firms within a sector have similar growth rates and risk, a strategy of picking the lowest PE ratio stock in each sector will yield undervalued stocks.
- Portfolio managers and analysts sometimes compare PE ratios to the expected growth rate to identify under and overvalued stocks.
 - In the simplest form of this approach, firms with PE ratios less than their expected growth rate are viewed as undervalued.
 - In its more general form, the ratio of PE ratio to growth is used as a measure of relative value.

Problems with comparing PE ratios to expected growth

- In its simple form, there is no basis for believing that a firm is undervalued just because it has a PE ratio less than expected growth.
- This relationship may be consistent with a fairly valued or even an overvalued firm, if interest rates are high, or if a firm is high risk.
- As interest rates decrease (increase), fewer (more) stocks will emerge as undervalued using this approach.
PEG Ratio: Definition

- The PEG ratio is the ratio of price earnings to expected growth in earnings per share.
 \[
 \text{PEG} = \frac{\text{PE}}{\text{Expected Growth Rate in Earnings}}
 \]

- Definitional tests:
 - Is the growth rate used to compute the PEG ratio on the same base? (base year EPS)
 - over the same period? (2 years, 5 years)
 - from the same source? (analyst projections, consensus estimates...)
 - Is the earnings used to compute the PE ratio consistent with the growth rate estimate?
 - No double counting: If the estimate of growth in earnings per share is from the current year, it would be a mistake to use forward EPS in computing PE.
 - If looking at foreign stocks or ADRs, is the earnings used for the PE ratio consistent with the growth rate estimate? (US analysts use the ADR EPS)

PEG Ratio: Distribution – US stocks in January 2011
PEG Ratios: The Beverage Sector

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Trailing PE</th>
<th>Growth</th>
<th>Std Dev</th>
<th>PEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola Bottling</td>
<td>29.18</td>
<td>9.50%</td>
<td>20.58%</td>
<td>3.07</td>
</tr>
<tr>
<td>Molson Inc. Ltd. 'A'</td>
<td>43.65</td>
<td>15.50%</td>
<td>21.88%</td>
<td>2.82</td>
</tr>
<tr>
<td>Anheuser-Busch</td>
<td>24.31</td>
<td>11.00%</td>
<td>22.92%</td>
<td>2.21</td>
</tr>
<tr>
<td>Corby Distilleries Ltd.</td>
<td>16.24</td>
<td>7.50%</td>
<td>23.66%</td>
<td>2.16</td>
</tr>
<tr>
<td>Chalone Wine Group Ltd.</td>
<td>21.76</td>
<td>14.00%</td>
<td>24.08%</td>
<td>1.55</td>
</tr>
<tr>
<td>Andres Wines Ltd. 'A'</td>
<td>8.96</td>
<td>3.50%</td>
<td>24.70%</td>
<td>2.56</td>
</tr>
<tr>
<td>Todhunter Int'1</td>
<td>8.94</td>
<td>3.00%</td>
<td>25.74%</td>
<td>2.98</td>
</tr>
<tr>
<td>Brown-Forman 'B'</td>
<td>10.07</td>
<td>11.50%</td>
<td>29.43%</td>
<td>0.88</td>
</tr>
<tr>
<td>Coors (Adolph) 'B'</td>
<td>23.02</td>
<td>10.00%</td>
<td>29.52%</td>
<td>2.30</td>
</tr>
<tr>
<td>PepsiCo, Inc.</td>
<td>33.00</td>
<td>10.50%</td>
<td>31.35%</td>
<td>3.14</td>
</tr>
<tr>
<td>Coca-Cola</td>
<td>44.33</td>
<td>19.00%</td>
<td>35.51%</td>
<td>2.33</td>
</tr>
<tr>
<td>Boston Beer 'A'</td>
<td>10.59</td>
<td>17.13%</td>
<td>39.58%</td>
<td>0.62</td>
</tr>
<tr>
<td>Whitman Corp.</td>
<td>25.19</td>
<td>11.50%</td>
<td>44.26%</td>
<td>2.19</td>
</tr>
<tr>
<td>Mondavi (Robert) 'A'</td>
<td>16.47</td>
<td>14.00%</td>
<td>45.84%</td>
<td>1.18</td>
</tr>
<tr>
<td>Coca-Cola Enterprises</td>
<td>37.14</td>
<td>27.00%</td>
<td>51.34%</td>
<td>1.38</td>
</tr>
<tr>
<td>Hansen Natural Corp</td>
<td>9.70</td>
<td>17.00%</td>
<td>62.45%</td>
<td>0.57</td>
</tr>
<tr>
<td>Average</td>
<td>22.66</td>
<td>13.00%</td>
<td>33.00%</td>
<td>2.00</td>
</tr>
</tbody>
</table>

PEG Ratio: Reading the Numbers

- The average PEG ratio for the beverage sector is 2.00. The lowest PEG ratio in the group belongs to Hansen Natural, which has a PEG ratio of 0.57. Using this measure of value, Hansen Natural is
 - the most under valued stock in the group
 - the most over valued stock in the group
- What other explanation could there be for Hansen’s low PEG ratio?
PEG Ratio: Analysis

To understand the fundamentals that determine PEG ratios, let us return again to a 2-stage equity discounted cash flow model.

\[
P_0 = \frac{\text{EPS}_0 \times \text{Payout Ratio} \times (1 + g) \times \left[1 - \frac{1 + g}{1 + r}\right]^n}{r - g + \text{EPS}_0 \times \text{Payout Ratio} \times (1 + g)^n \times (1 + gn)}
\]

Dividing both sides of the equation by the earnings gives us the equation for the PE ratio. Dividing it again by the expected growth ‘g’

\[
\text{PEG} = \frac{\text{Payout Ratio} \times (1 + g)^n \times \left[1 - \frac{1 + g}{1 + r}\right]^n}{g(r - g) + \text{Payout Ratio} \times (1 + g)^n \times (1 + gn)}
\]

PEG Ratios and Fundamentals

- Risk and payout, which affect PE ratios, continue to affect PEG ratios as well.
 - Implication: When comparing PEG ratios across companies, we are making implicit or explicit assumptions about these variables.
- Dividing PE by expected growth does not neutralize the effects of expected growth, since the relationship between growth and value is not linear and fairly complex (even in a 2-stage model)
A Simple Example

- Assume that you have been asked to estimate the PEG ratio for a firm which has the following characteristics:

<table>
<thead>
<tr>
<th>Variable</th>
<th>High Growth Phase</th>
<th>Stable Growth Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Growth Rate</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Beta</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Riskfree rate = T.Bond Rate = 6%
- Required rate of return = 6% + 1(5.5%) = 11.5%
- The PEG ratio for this firm can be estimated as follows:

\[
P\text{EG} = \frac{0.2 \times (1.25) \times \left(1 - \left(\frac{1.25}{1.115}\right)^5\right)}{0.25(1.115 - 0.25)} + \frac{0.5 \times (1.25)^3 \times (1.08)^3}{25(1.115 - 0.08)(1.115)^5} = 115 \text{ or } 1.15
\]

PEG Ratios and Risk

![PEG Ratios and Beta: Different Growth](image)
PEG Ratios and Quality of Growth

PE Ratios and Expected Growth
PEG Ratios and Fundamentals: Propositions

- Proposition 1: **High risk companies** will trade at much lower PEG ratios than low risk companies with the same expected growth rate.
 - Corollary 1: The company that looks most under valued on a PEG ratio basis in a sector may be the riskiest firm in the sector
- Proposition 2: Companies that can attain growth more efficiently by investing less in better return projects will have higher PEG ratios than companies that grow at the same rate less efficiently.
 - Corollary 2: Companies that look cheap on a PEG ratio basis may be companies with high reinvestment rates and poor project returns.
- Proposition 3: Companies with very low or very high growth rates will tend to have higher PEG ratios than firms with average growth rates. This bias is worse for low growth stocks.
 - Corollary 3: PEG ratios do not neutralize the growth effect.

PE, PEG Ratios and Risk

![Graph showing the relationship between PE and PEG ratios across different risk classes.](image)
PEG Ratio: Returning to the Beverage Sector

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Trailing PE</th>
<th>Growth</th>
<th>Std Dev</th>
<th>PEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coca-Cola Bottling</td>
<td>29.18</td>
<td>9.50%</td>
<td>20.58%</td>
<td>3.07</td>
</tr>
<tr>
<td>Molson Inc. Ltd. 'A'</td>
<td>43.65</td>
<td>15.50%</td>
<td>21.88%</td>
<td>2.82</td>
</tr>
<tr>
<td>Anheuser-Busch</td>
<td>24.31</td>
<td>11.00%</td>
<td>22.92%</td>
<td>2.21</td>
</tr>
<tr>
<td>Corby Distilleries Ltd.</td>
<td>16.24</td>
<td>7.50%</td>
<td>23.66%</td>
<td>2.16</td>
</tr>
<tr>
<td>Chalone Wine Group Ltd.</td>
<td>21.76</td>
<td>14.00%</td>
<td>24.08%</td>
<td>1.55</td>
</tr>
<tr>
<td>Andres Wines Ltd. 'A'</td>
<td>8.96</td>
<td>3.50%</td>
<td>24.70%</td>
<td>2.56</td>
</tr>
<tr>
<td>Tdhunter Int'l</td>
<td>8.94</td>
<td>3.00%</td>
<td>25.74%</td>
<td>2.98</td>
</tr>
<tr>
<td>Brown-Forman 'B'</td>
<td>10.07</td>
<td>11.50%</td>
<td>29.43%</td>
<td>0.88</td>
</tr>
<tr>
<td>Coors (Adolph) 'B'</td>
<td>23.02</td>
<td>10.00%</td>
<td>29.52%</td>
<td>2.30</td>
</tr>
<tr>
<td>PepsiCo, Inc.</td>
<td>33.00</td>
<td>10.50%</td>
<td>31.35%</td>
<td>3.14</td>
</tr>
<tr>
<td>Coca-Cola</td>
<td>44.33</td>
<td>19.00%</td>
<td>35.51%</td>
<td>2.33</td>
</tr>
<tr>
<td>Boston Beer 'A'</td>
<td>10.59</td>
<td>17.13%</td>
<td>39.58%</td>
<td>0.62</td>
</tr>
<tr>
<td>Whitman Corp.</td>
<td>25.19</td>
<td>11.50%</td>
<td>44.26%</td>
<td>2.19</td>
</tr>
<tr>
<td>Mondavi (Robert) 'A'</td>
<td>16.47</td>
<td>14.00%</td>
<td>45.84%</td>
<td>1.18</td>
</tr>
<tr>
<td>Coca-Cola Enterprises</td>
<td>37.14</td>
<td>27.00%</td>
<td>51.34%</td>
<td>1.38</td>
</tr>
<tr>
<td>Hansen Natural Corp</td>
<td>9.70</td>
<td>17.00%</td>
<td>62.45%</td>
<td>0.57</td>
</tr>
<tr>
<td>Average</td>
<td>22.66</td>
<td>13.00%</td>
<td>33.00%</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Analyzing PE/Growth

- Given that the PEG ratio is still determined by the expected growth rates, risk and cash flow patterns, it is necessary that we control for differences in these variables.
- Regressing PEG against risk and a measure of the growth dispersion, we get:
 \[
 PEG = 3.61 - 0.0286 \text{ (Expected Growth)} - 0.0375 \text{ (Std Deviation in Prices)}
 \]
 \[R \text{ Squared} = 44.75\%
 \]
- In other words,
 - PEG ratios will be lower for high growth companies
 - PEG ratios will be lower for high risk companies
- We also ran the regression using the deviation of the actual growth rate from the industry-average growth rate as the independent variable, with mixed results.
Estimating the PEG Ratio for Hansen

- Applying this regression to Hansen, the predicted PEG ratio for the firm can be estimated using Hansen’s measures for the independent variables:
 - Expected Growth Rate = 17.00%
 - Standard Deviation in Stock Prices = 62.45%
- Plugging in,
 Expected PEG Ratio for Hansen = 3.61 - .0286 (17) - .0375 (62.45)
 = 0.78
- With its actual PEG ratio of 0.57, Hansen looks undervalued, notwithstanding its high risk.

Extending the Comparables

- This analysis, which is restricted to firms in the software sector, can be expanded to include all firms in the firm, as long as we control for differences in risk, growth and payout.
- To look at the cross sectional relationship, we first plotted PEG ratios against expected growth rates.
Aswath Damodaran

PEG versus Growth – January 2011

Analyzing the Relationship

- The relationship is not linear. In fact, the smallest firms seem to have the highest PEG ratios and PEG ratios become relatively stable at higher growth rates.
- To make the relationship more linear, we converted the expected growth rates in \(\ln(\text{expected growth rate})\). The relationship between PEG ratios and \(\ln(\text{expected growth rate})\) was then plotted.
PEG versus In(Expected Growth) – January 2011

PEG Ratio Regression - US stocks
January 2011

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.902*</td>
<td>.5252</td>
<td>.5111</td>
<td>121.103791</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), In(Expected growth), Regression Beta, Payout Ratio

Coefficients\(a,b\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.750</td>
<td>-1.014</td>
<td>-6.526</td>
<td>.000</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>.536</td>
<td>.150</td>
<td>.091</td>
<td>.356</td>
</tr>
<tr>
<td>Regression Beta</td>
<td>.567</td>
<td>.660</td>
<td>.106</td>
<td>.853</td>
</tr>
<tr>
<td>In(Expected growth)</td>
<td>-1.175</td>
<td>-1.063</td>
<td>-4.684</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Dependent Variable: PEG Ratio
b. Weighted Least Squares Regression – Weighted by Market Cap
Negative intercepts...and problem forecasts.

- When the intercept in a multiples regression is negative, there is the possibility that forecasted values can be negative as well. One way (albeit imperfect) is to re-run the regression without an intercept.

<table>
<thead>
<tr>
<th>Coefficients</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Unstandardized Coefficients</td>
<td>Standardized Coefficients</td>
<td>t</td>
<td>Sig</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1. Payout Ratio</td>
<td>.582</td>
<td>.152</td>
<td>.079</td>
<td>3.823</td>
</tr>
<tr>
<td>Regression Beta</td>
<td>.320</td>
<td>.056</td>
<td>.132</td>
<td>5.844</td>
</tr>
<tr>
<td>In-dif-fused growth</td>
<td>.834</td>
<td>.037</td>
<td>-716</td>
<td>-22.794</td>
</tr>
</tbody>
</table>

a. Dependent variable: PEG Ratio.
b. Linear regression through the origin.
c. Weighted Least Squares Regression - Weighted by Market Cap

Applying the PEG ratio regression

- Consider Dell again. The stock has an expected growth rate of 10%, a beta of 1.20 and pays out no dividends. What should its PEG ratio be?

- If the stock’s actual PE ratio is 18, what does this analysis tell you about the stock?
A Variant on PEG Ratio: The PEGY ratio

- The PEG ratio is biased against low growth firms because the relationship between value and growth is non-linear. One variant that has been devised to consolidate the growth rate and the expected dividend yield:
 \[
 \text{PEGY} = \frac{\text{PE}}{\text{Expected Growth Rate} + \text{Dividend Yield}}
 \]
- As an example, Con Ed has a PE ratio of 16, an expected growth rate of 5% in earnings and a dividend yield of 4.5%.
 - \(\text{PEG} = \frac{16}{5} = 3.2 \)
 - \(\text{PEGY} = \frac{16}{(5+4.5)} = 1.7 \)

Value/Earnings and Value/Cashflow Ratios

- While Price earnings ratios look at the market value of equity relative to earnings to equity investors, Value earnings ratios look at the market value of the operating assets of the firm (Enterprise value or EV) relative to operating earnings or cash flows.
 \[
 \text{EV} = \text{Market value of equity} + \text{Debt} - \text{Cash}
 \]
- The form of value to cash flow ratios that has the closest parallels in DCF valuation is the ratio of Firm value to Free Cash Flow to the Firm.
 - \(\text{FCFF} = \text{EBIT (1-t)} - \text{Net Cap Ex} - \text{Change in WC} \)
- In practice, what we observe more commonly are firm values as multiples of operating income (EBIT), after-tax operating income (EBIT (1-t)) or EBITDA.
Value/FCFF Multiples and the Alternatives

- Assume that you have computed the value of a firm, using discounted cash flow models. Rank the following multiples in the order of magnitude from lowest to highest?
 - EV/EBIT
 - EV/EBIT(1-t)
 - EV/FCFF
 - EV/EBITDA
- What assumption(s) would you need to make for the Value/EBIT(1-t) ratio to be equal to the Value/FCFF multiple?

EV/FCFF: Determinants

- Reverting back to a two-stage FCFF DCF model, we get:

\[
V_0 = \frac{FCFF_0(1+g)}{WACC - g} \left(1+\frac{(1+g)^n}{(1+WACC)^n}\right) - \frac{FCFF_0(1+g)^n(1+g_n)}{(WACC - g_n)(1+WACC)^n}
\]

- FCFF_0 = Free Cashflow to the firm in current year
- g = Expected growth rate in FCFF in extraordinary growth period (first n years)
- WACC = Weighted average cost of capital
- g_n = Expected growth rate in FCFF in stable growth period (after n years)
- Dividing both sides by the FCFF

\[
V_0 = \frac{(1+g)}{WACC - g} \left(1-\frac{(1+g)^n}{(1+WACC)^n}\right) + \frac{(1+g)^n(1+g_n)}{(WACC - g_n)(1+WACC)^n}
\]
Illustration: Using Value/FCFF Approaches to value a firm: MCI Communications

- MCI Communications had earnings before interest and taxes of $3356 million in 1994 (Its net income after taxes was $855 million).
- It had capital expenditures of $2500 million in 1994 and depreciation of $1100 million; Working capital increased by $250 million.
- It expects free cashflows to the firm to grow 15% a year for the next five years and 5% a year after that.
- The cost of capital is 10.50% for the next five years and 10% after that.
- The company faces a tax rate of 36%.

\[
V_0 = \frac{(1.15) \left(1 - \frac{(1.15)^5}{(1.105)^5} \right)}{.105 - .15} + \frac{(1.15)^5(1.05)}{(.10 - .05)(1.105)^5} = 31.28
\]

Multiple Magic

- In this case of MCI there is a big difference between the FCFF and short cut measures. For instance the following table illustrates the appropriate multiple using short cut measures, and the amount you would overpay by if you used the FCFF multiple.

<table>
<thead>
<tr>
<th>Free Cash Flow to the Firm</th>
<th>$ Value</th>
<th>Correct Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIT (1-t)</td>
<td>$2,148</td>
<td>7.251163362</td>
</tr>
<tr>
<td>EBIT</td>
<td>$3,356</td>
<td>4.640744552</td>
</tr>
<tr>
<td>EBITDA</td>
<td>$4,456</td>
<td>3.49513885</td>
</tr>
</tbody>
</table>

$498 million
Reasons for Increased Use of Value/EBITDA

1. The multiple can be computed even for firms that are reporting net losses, since earnings before interest, taxes and depreciation are usually positive.
2. For firms in certain industries, such as cellular, which require a substantial investment in infrastructure and long gestation periods, this multiple seems to be more appropriate than the price/earnings ratio.
3. In leveraged buyouts, where the key factor is cash generated by the firm prior to all discretionary expenditures, the EBITDA is the measure of cash flows from operations that can be used to support debt payment at least in the short term.
4. By looking at cashflows prior to capital expenditures, it may provide a better estimate of “optimal value”, especially if the capital expenditures are unwise or earn substandard returns.
5. By looking at the value of the firm and cashflows to the firm it allows for comparisons across firms with different financial leverage.

Enterprise Value/EBITDA Multiple

- The Classic Definition

\[
\text{Value} \over \text{EBITDA} = \frac{\text{Market Value of Equity} + \text{Market Value of Debt}}{\text{Earnings before Interest, Taxes and Depreciation}}
\]

- The No-Cash Version

\[
\text{Enterprise Value} \over \text{EBITDA} = \frac{\text{Market Value of Equity} + \text{Market Value of Debt} - \text{Cash}}{\text{Earnings before Interest, Taxes and Depreciation}}
\]

Enterprise Value/EBITDA : Global Data
6 times EBITDA seems like a good rule of thumb.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Median</th>
<th>10th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia, NZ & Canada</td>
<td>22.94</td>
<td>10.37</td>
<td>6.00</td>
<td>18.40</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>37.25</td>
<td>10.46</td>
<td>6.08</td>
<td>19.36</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>40.59</td>
<td>10.54</td>
<td>6.12</td>
<td>18.54</td>
</tr>
<tr>
<td>Japan</td>
<td>30.54</td>
<td>9.53</td>
<td>6.04</td>
<td>19.54</td>
</tr>
<tr>
<td>US</td>
<td>94.80</td>
<td>10.04</td>
<td>6.22</td>
<td>19.29</td>
</tr>
</tbody>
</table>
But not in early 2009…

The Determinants of Value/EBITDA Multiples: Linkage to DCF Valuation

- The value of the operating assets of a firm can be written as:

\[
EV_0 = \frac{FCFF_1}{WACC - g}
\]

- The numerator can be written as follows:

\[
FCFF = EBIT (1-t) - (Cex - Depr) - \Delta Working Capital
\]

\[
= (EBITDA - Depr) (1-t) - (Cex - Depr) - \Delta Working Capital
\]

\[
= EBITDA (1-t) + Depr (t) - Cex - \Delta Working Capital
\]
From Firm Value to EBITDA Multiples

■ Now the value of the firm can be rewritten as,

\[EV = \frac{EBITDA (1-t) + \text{Depr}(t) - \text{Cex} - \Delta \text{Working Capital}}{WACC - g} \]

■ Dividing both sides of the equation by EBITDA,

\[\frac{EV}{EBITDA} = \frac{(1-t) + \frac{\text{Depr}(t)}{EBITDA}}{WACC - g} \cdot \frac{\text{Cex/EBITDA}}{WACC - g} \cdot \frac{\Delta \text{Working Capital/EBITDA}}{WACC - g} \]

■ Since Reinvestment = (CEx – Depreciation + Δ Working Capital), the determinants of EV/EBITDA are:
 • The cost of capital
 • Expected growth rate
 • Tax rate
 • Reinvestment rate (or ROC)

A Simple Example

■ Consider a firm with the following characteristics:
 • Tax Rate = 36%
 • Capital Expenditures/EBITDA = 30%
 • Depreciation/EBITDA = 20%
 • Cost of Capital = 10%
 • The firm has no working capital requirements
 • The firm is in stable growth and is expected to grow 5% a year forever.
Calculating Value/EBITDA Multiple

- In this case, the Value/EBITDA multiple for this firm can be estimated as follows:

\[
\text{Value} = (1 - 0.36) + (0.2)(0.36) - 0.3 - 0 \frac{0.10 - 0.05}{0.10 - 0.05} = 8.24
\]

The Determinants of EV/EBITDA

- Tax Rates
- Reinvestment Needs
- Excess Returns
Is this stock cheap?

- Assume that I am trying to convince you to buy a company, because it trades at 5 times EBITDA. What are some of the questions you would ask me as a potential buyer?

- Following through, what combination of fundamentals would make for a cheap company on an EV/EBITDA basis:
 - Tax rate
 - Growth
 - Return on capital
 - Cost of capital/Risk

Value/EBITDA Multiple: Trucking Companies:
Is Ryder cheap?

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Value</th>
<th>EBITDA</th>
<th>Value/EBITDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLLM Trans. Svcs.</td>
<td>$114.32</td>
<td>$48.81</td>
<td>2.34</td>
</tr>
<tr>
<td>Ryder System</td>
<td>$5,158.04</td>
<td>$1,838.26</td>
<td>2.81</td>
</tr>
<tr>
<td>Rollins Truck Leasing</td>
<td>$1,368.35</td>
<td>$447.67</td>
<td>3.06</td>
</tr>
<tr>
<td>Cannon Express Inc.</td>
<td>$83.57</td>
<td>$27.05</td>
<td>3.09</td>
</tr>
<tr>
<td>Hunt (J.B.)</td>
<td>$982.67</td>
<td>$310.22</td>
<td>3.17</td>
</tr>
<tr>
<td>Yellow Corp.</td>
<td>$931.47</td>
<td>$292.82</td>
<td>3.18</td>
</tr>
<tr>
<td>Roadway Express</td>
<td>$554.96</td>
<td>$169.38</td>
<td>3.28</td>
</tr>
<tr>
<td>Marten Transport Ltd.</td>
<td>$116.93</td>
<td>$35.62</td>
<td>3.28</td>
</tr>
<tr>
<td>Kenan Transport Co.</td>
<td>$67.66</td>
<td>$19.44</td>
<td>3.48</td>
</tr>
<tr>
<td>M.S. Carriers</td>
<td>$344.93</td>
<td>$97.85</td>
<td>3.53</td>
</tr>
<tr>
<td>Old Dominion Freight</td>
<td>$170.42</td>
<td>$45.13</td>
<td>3.78</td>
</tr>
<tr>
<td>Trimac Ltd</td>
<td>$661.18</td>
<td>$174.28</td>
<td>3.79</td>
</tr>
<tr>
<td>Matlack Systems</td>
<td>$112.42</td>
<td>$28.94</td>
<td>3.88</td>
</tr>
<tr>
<td>XTRA Corp.</td>
<td>$1,708.57</td>
<td>$427.30</td>
<td>4.00</td>
</tr>
<tr>
<td>Covenant Transport Inc.</td>
<td>$259.16</td>
<td>$64.35</td>
<td>4.03</td>
</tr>
<tr>
<td>Builders Transport</td>
<td>$221.09</td>
<td>$51.44</td>
<td>4.30</td>
</tr>
<tr>
<td>Werner Enterprises</td>
<td>$844.39</td>
<td>$196.15</td>
<td>4.30</td>
</tr>
<tr>
<td>Landstar Sys.</td>
<td>$422.79</td>
<td>$95.20</td>
<td>4.44</td>
</tr>
<tr>
<td>AMERCO</td>
<td>$1,632.30</td>
<td>$345.78</td>
<td>4.72</td>
</tr>
<tr>
<td>USA Truck</td>
<td>$141.77</td>
<td>$29.93</td>
<td>4.74</td>
</tr>
<tr>
<td>Frozen Food Express</td>
<td>$164.17</td>
<td>$34.10</td>
<td>4.81</td>
</tr>
<tr>
<td>Arnold Inds.</td>
<td>$472.27</td>
<td>$96.88</td>
<td>4.87</td>
</tr>
<tr>
<td>Greyhound Lines Inc.</td>
<td>$437.71</td>
<td>$89.61</td>
<td>4.88</td>
</tr>
<tr>
<td>USFreightways</td>
<td>$983.86</td>
<td>$198.91</td>
<td>4.95</td>
</tr>
<tr>
<td>Golden Eagle Group Inc.</td>
<td>$12.50</td>
<td>$2.33</td>
<td>5.37</td>
</tr>
<tr>
<td>Arkansas Best</td>
<td>$578.78</td>
<td>$107.15</td>
<td>5.40</td>
</tr>
<tr>
<td>Airlease Ltd.</td>
<td>$73.64</td>
<td>$13.48</td>
<td>5.46</td>
</tr>
<tr>
<td>Celadon Group</td>
<td>$182.30</td>
<td>$32.72</td>
<td>5.57</td>
</tr>
<tr>
<td>Amer. Freightways</td>
<td>$716.15</td>
<td>$120.94</td>
<td>5.92</td>
</tr>
<tr>
<td>Transfinancial Holdings</td>
<td>$56.92</td>
<td>$8.79</td>
<td>6.47</td>
</tr>
<tr>
<td>Vitran Corp. 'A'</td>
<td>$140.68</td>
<td>$21.51</td>
<td>6.54</td>
</tr>
<tr>
<td>Interpool Inc.</td>
<td>$1,002.20</td>
<td>$151.18</td>
<td>6.63</td>
</tr>
<tr>
<td>Intrenet Inc.</td>
<td>$70.23</td>
<td>$10.38</td>
<td>6.77</td>
</tr>
<tr>
<td>Swift Transportation</td>
<td>$835.58</td>
<td>$121.34</td>
<td>6.89</td>
</tr>
<tr>
<td>Landair Services</td>
<td>$212.95</td>
<td>$30.38</td>
<td>7.01</td>
</tr>
<tr>
<td>CNF Transportation</td>
<td>$2,700.69</td>
<td>$366.99</td>
<td>7.36</td>
</tr>
<tr>
<td>Budget Group Inc</td>
<td>$1,247.30</td>
<td>$166.71</td>
<td>7.48</td>
</tr>
<tr>
<td>Caliber System</td>
<td>$2,514.99</td>
<td>$333.13</td>
<td>7.55</td>
</tr>
<tr>
<td>Knight Transportation Inc.</td>
<td>$269.01</td>
<td>$28.20</td>
<td>9.54</td>
</tr>
<tr>
<td>Heartland Express</td>
<td>$727.50</td>
<td>$64.62</td>
<td>11.26</td>
</tr>
<tr>
<td>Greyhound CDA Transn Corp.</td>
<td>$83.25</td>
<td>$6.99</td>
<td>11.91</td>
</tr>
<tr>
<td>Mark VII</td>
<td>$160.45</td>
<td>$12.96</td>
<td>12.38</td>
</tr>
<tr>
<td>Coach USA Inc</td>
<td>$678.38</td>
<td>$51.76</td>
<td>13.11</td>
</tr>
<tr>
<td>US 1 Inds.</td>
<td>$5.60</td>
<td>(0.17)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Average 5.61
Extending to the market
US Market: January 2011

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.525*</td>
<td>.276</td>
<td>.274</td>
<td>632.284479</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant, Market Debt to Capital, Eff Tax Rate, Expected Growth in Revenues: next 5 years)

Coefficients^b

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Coefficients</th>
<th>Beta</th>
<th>t</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>8.344</td>
<td>.442</td>
<td>13.330</td>
<td>.000</td>
</tr>
<tr>
<td>Expected Growth in Revenues: next 5 years</td>
<td>.641</td>
<td>.458</td>
<td>.645</td>
<td>14.258</td>
</tr>
<tr>
<td>Eff Tax Rate</td>
<td>-11.104</td>
<td>1.564</td>
<td>-1.397</td>
<td>-7.230</td>
</tr>
<tr>
<td>Market Debt to Capital</td>
<td>-5.099</td>
<td>1.071</td>
<td>-0.975</td>
<td>-2.885</td>
</tr>
</tbody>
</table>

a. Dependent Variable: EV/EBITDA
b. Weighted Least Squares Regression – Weighted by Enterprise Value

Aswath Damodaran

EBITDA regressions across markets…
January 2011

<table>
<thead>
<tr>
<th>Region</th>
<th>Regression – January 2011</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>EV/EBITDA = 12.06 +21.03 Expected Growth Rate - 12.26 Tax Rate + 0.32 Reinvestment Rate</td>
<td>10.5%</td>
</tr>
<tr>
<td>Japan</td>
<td>EV/EBITDA = 14.11 - 17.15 Tax Rate + 10.43 Debt to Capital Ratio</td>
<td>11.9%</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>EV/EBITDA = 25.14 - 35.47 Tax Rate + 1.30 Reinvestment Rate - 12.69 Debt to Capital Ratio</td>
<td>11.3%</td>
</tr>
</tbody>
</table>

Aswath Damodaran
Price-Book Value Ratio: Definition

- The price/book value ratio is the ratio of the market value of equity to the book value of equity, i.e., the measure of shareholders’ equity in the balance sheet.
- Price/Book Value = \(\frac{\text{Market Value of Equity}}{\text{Book Value of Equity}} \)

Consistency Tests:
- If the market value of equity refers to the market value of equity of common stock outstanding, the book value of common equity should be used in the denominator.
- If there is more than one class of common stock outstanding, the market values of all classes (even the non-traded classes) needs to be factored in.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Median</th>
<th>25th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia NZ & Canada</td>
<td>6.17</td>
<td>1.93</td>
<td>0.98</td>
<td>5.77</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>17.34</td>
<td>1.61</td>
<td>0.90</td>
<td>3.14</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>5.41</td>
<td>1.54</td>
<td>0.86</td>
<td>3.94</td>
</tr>
<tr>
<td>Japan</td>
<td>3.56</td>
<td>1.35</td>
<td>0.93</td>
<td>3.39</td>
</tr>
<tr>
<td>US</td>
<td>9.56</td>
<td>1.06</td>
<td>0.93</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Price Book Value Ratio: Stable Growth Firm

- Going back to a simple dividend discount model,

\[P_0 = \frac{DPS_0}{r - g} \]

- Defining the return on equity (ROE) = EPS0 / Book Value of Equity, the value of equity can be written as:

\[P_0 = \frac{BV_0 \times ROE \times \text{Payout Ratio} \times (1 + g_n)}{r - g} \]

\[BV_0 = \frac{PBV}{1 + g_n} \]

\[P_0 = \frac{PBV \times ROE \times \text{Payout Ratio}}{r - g_n} \]

- If the return on equity is based upon expected earnings in the next time period, this can be simplified to,

\[P_0 = \frac{BV_0 \times ROE \times \text{Payout Ratio}}{r - g_n} \]
Price Book Value Ratio: Stable Growth Firm

Another Presentation

- This formulation can be simplified even further by relating growth to the return on equity:
 \[g = (1 - \text{Payout ratio}) \times \text{ROE} \]
- Substituting back into the P/BV equation,

\[
\frac{P_0}{BV_0} = \frac{\text{ROE} - g}{r - g}
\]

- The price-book value ratio of a stable firm is determined by the differential between the return on equity and the required rate of return on its projects.

Looking for undervalued securities - PBV Ratios and ROE

- Given the relationship between price-book value ratios and returns on equity, it is not surprising to see firms which have high returns on equity selling for well above book value and firms which have low returns on equity selling at or below book value.
- The firms which should draw attention from investors are those which provide mismatches of price-book value ratios and returns on equity - low P/BV ratios and high ROE or high P/BV ratios and low ROE.
An Eyeballing Exercise:
European Banks in 2010

<table>
<thead>
<tr>
<th>Name</th>
<th>PBV Ratio</th>
<th>Return on Equity</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYERISCHE HYPO-UND VEREINSB</td>
<td>0.80</td>
<td>-1.66%</td>
<td>49.06%</td>
</tr>
<tr>
<td>COMMERZBANK AG</td>
<td>1.09</td>
<td>-6.73%</td>
<td>36.17%</td>
</tr>
<tr>
<td>DEUTSCHE BANK AG -REG</td>
<td>1.23</td>
<td>1.32%</td>
<td>35.79%</td>
</tr>
<tr>
<td>BANCA INTESA SPA</td>
<td>1.66</td>
<td>1.56%</td>
<td>34.14%</td>
</tr>
<tr>
<td>BNP PARIBAS</td>
<td>1.73</td>
<td>12.40%</td>
<td>31.03%</td>
</tr>
<tr>
<td>BANCO SANTANDER CENTRAL HIS</td>
<td>1.86</td>
<td>11.06%</td>
<td>28.36%</td>
</tr>
<tr>
<td>SANPAOLO IMI SPA</td>
<td>1.96</td>
<td>8.55%</td>
<td>26.64%</td>
</tr>
<tr>
<td>BANCO BILBAO VIZCAYA ARGENT</td>
<td>1.98</td>
<td>11.17%</td>
<td>18.62%</td>
</tr>
<tr>
<td>SOCIETE GENERALE</td>
<td>2.04</td>
<td>9.71%</td>
<td>22.55%</td>
</tr>
<tr>
<td>ROYAL BANK OF SCOTLAND GROUP</td>
<td>2.08</td>
<td>20.22%</td>
<td>18.35%</td>
</tr>
<tr>
<td>HSBC PLC</td>
<td>2.15</td>
<td>22.45%</td>
<td>21.95%</td>
</tr>
<tr>
<td>BARCLAYS PLC</td>
<td>2.33</td>
<td>21.10%</td>
<td>25.73%</td>
</tr>
<tr>
<td>UNICREDITO ITALIANO SPA</td>
<td>2.30</td>
<td>14.86%</td>
<td>13.79%</td>
</tr>
<tr>
<td>KREDIETBANK SA LUXEMBOURGIS</td>
<td>2.45</td>
<td>17.74%</td>
<td>12.38%</td>
</tr>
<tr>
<td>ESSENTE BANK DER DEUTSCH SP</td>
<td>2.53</td>
<td>19.28%</td>
<td>21.91%</td>
</tr>
<tr>
<td>STANDARD CHARTERED PLC</td>
<td>2.59</td>
<td>20.18%</td>
<td>19.93%</td>
</tr>
<tr>
<td>HSBC HOLDINGS PLC</td>
<td>2.94</td>
<td>18.50%</td>
<td>19.66%</td>
</tr>
<tr>
<td>LLOYDS TSB GROUP PLC</td>
<td>2.33</td>
<td>32.84%</td>
<td>18.66%</td>
</tr>
<tr>
<td>Average</td>
<td>2.05</td>
<td>12.54%</td>
<td>24.99%</td>
</tr>
<tr>
<td>Median</td>
<td>2.07</td>
<td>11.82%</td>
<td>21.93%</td>
</tr>
</tbody>
</table>

Aswath Damodaran

The median test…

- We are looking for stocks that trade at low price to book ratios, while generating high returns on equity, with low risk. But what is a low price to book ratio? Or a high return on equity? Or a low risk
- One simple measure of what is par for the sector are the median values for each of the variables. A simplistic decision rule on under and over valued stocks would therefore be:
 - Undervalued stocks: Trade at price to book ratios below the median for the sector, (2.05), generate returns on equity higher than the sector median (11.82%) and have standard deviations lower than the median (21.93%).
 - Overvalued stocks: Trade at price to book ratios above the median for the sector and generate returns on equity lower than the sector median.

Aswath Damodaran
How about this mechanism?

- We are looking for stocks that trade at low price to book ratios, while generating high returns on equity. But what is a low price to book ratio? Or a high return on equity?
- Taking the sample of 18 banks, we ran a regression of PBV against ROE and standard deviation in stock prices (as a proxy for risk).

\[
\begin{align*}
\text{PBV} &= 2.27 + 3.63 \text{ ROE} - 2.68 \text{ Std dev} \\
&\quad \text{(5.56) (3.32) (2.33)} \\
R^2 \text{ of regression} &= 79\
\end{align*}
\]

And these predictions?

<table>
<thead>
<tr>
<th>Name</th>
<th>PBV</th>
<th>Return on Equity</th>
<th>Standard Deviation</th>
<th>Predicted PBV</th>
<th>Under/Over (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAYERISCHER HYPO-UND VEREINS</td>
<td>0.80</td>
<td>-1.66%</td>
<td>49.08%</td>
<td>0.89</td>
<td>-10.60%</td>
</tr>
<tr>
<td>COMMERZBANK AG</td>
<td>1.09</td>
<td>-6.72%</td>
<td>39.21%</td>
<td>1.05</td>
<td>2.25%</td>
</tr>
<tr>
<td>DEUTSCHE BANK AG -REG</td>
<td>1.23</td>
<td>1.22%</td>
<td>35.79%</td>
<td>1.35</td>
<td>-9.26%</td>
</tr>
<tr>
<td>BANCA INTESA SPA</td>
<td>1.66</td>
<td>1.65%</td>
<td>34.14%</td>
<td>1.41</td>
<td>17.83%</td>
</tr>
<tr>
<td>BNP PARIBAS</td>
<td>1.72</td>
<td>12.06%</td>
<td>31.03%</td>
<td>1.80</td>
<td>-8.75%</td>
</tr>
<tr>
<td>BANCO SANTANDER CENTRAL HIS</td>
<td>1.86</td>
<td>11.06%</td>
<td>28.36%</td>
<td>1.91</td>
<td>-2.66%</td>
</tr>
<tr>
<td>SANKAIOI INT SPA</td>
<td>1.96</td>
<td>8.55%</td>
<td>26.64%</td>
<td>1.86</td>
<td>5.23%</td>
</tr>
<tr>
<td>BANCO RILMA VIZCAYA ARGENT</td>
<td>1.98</td>
<td>11.17%</td>
<td>18.62%</td>
<td>2.17</td>
<td>-9.12%</td>
</tr>
<tr>
<td>SOCIETE GENERALE</td>
<td>2.04</td>
<td>9.71%</td>
<td>22.55%</td>
<td>2.02</td>
<td>1.37%</td>
</tr>
<tr>
<td>ROYAL BANK OF SCOTLAND GROUP</td>
<td>2.09</td>
<td>20.22%</td>
<td>18.35%</td>
<td>2.31</td>
<td>-15.95%</td>
</tr>
<tr>
<td>HIROS PLC</td>
<td>2.15</td>
<td>22.05%</td>
<td>24.95%</td>
<td>2.49</td>
<td>-13.71%</td>
</tr>
<tr>
<td>BARCLAYS PLC</td>
<td>2.23</td>
<td>21.16%</td>
<td>20.73%</td>
<td>2.48</td>
<td>-9.96%</td>
</tr>
<tr>
<td>UNICREDITO ITALIANO SPA</td>
<td>2.30</td>
<td>14.86%</td>
<td>13.79%</td>
<td>2.44</td>
<td>-5.72%</td>
</tr>
<tr>
<td>KREDIETBANK SA LUXEMBOURGO</td>
<td>2.46</td>
<td>17.74%</td>
<td>12.38%</td>
<td>2.58</td>
<td>-4.79%</td>
</tr>
<tr>
<td>ERSTE BANK DE OESTER SPARK</td>
<td>2.53</td>
<td>10.28%</td>
<td>21.91%</td>
<td>2.05</td>
<td>23.11%</td>
</tr>
<tr>
<td>STANDARD CHARTERED PLC</td>
<td>2.59</td>
<td>26.18%</td>
<td>18.93%</td>
<td>2.47</td>
<td>9.00%</td>
</tr>
<tr>
<td>HSBC HOLDINGS PLC</td>
<td>2.94</td>
<td>18.50%</td>
<td>19.66%</td>
<td>2.41</td>
<td>21.91%</td>
</tr>
<tr>
<td>LLOYDS TSB GROUP PLC</td>
<td>3.33</td>
<td>32.84%</td>
<td>18.65%</td>
<td>2.96</td>
<td>12.40%</td>
</tr>
</tbody>
</table>
The Valuation Matrix

Price to Book vs ROE: Largest Market Cap Firms in the United States: January 2010
What are we missing?

What else are we missing?
PBV, ROE and Risk: Large Cap US firms
Bringing it all together… Largest US stocks

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.819a</td>
<td>.670</td>
<td>.661</td>
<td>1.19253</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), ROE, Expected Growth in EPS: next 5 years, Regression Beta

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>Regression Beta</td>
<td>-.065</td>
<td>.253</td>
<td>-.015</td>
<td>-.256</td>
</tr>
<tr>
<td>Expected Growth in EPS: next 5 years</td>
<td>9.340</td>
<td>2.366</td>
<td>.228</td>
<td>3.947</td>
</tr>
<tr>
<td>ROE</td>
<td>10.546</td>
<td>.771</td>
<td>.777</td>
<td>13.672</td>
</tr>
</tbody>
</table>

a. Dependent Variable: PBV Ratio

Updated PBV Ratios – Largest Market Cap US companies
Updated to January 2011
Even in chaos, there is order…
US Banks (Mkt cap> $ 1 billion) in January 2009

In January 2010… Another look at US Banks
Banks again.. In January 2011

IBM: The Rise and Fall and Rise Again
PBV vs ROE: 1983-2000
PBV Ratio Regression: US
January 2011

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.721</td>
<td>.520</td>
<td>.519</td>
<td>137.405248</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), ROE, Payout Ratio, Regression Beta, Expected Growth in EPS next 5 years

Coefficients**

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.066</td>
<td>.134</td>
<td>-.431</td>
</tr>
<tr>
<td></td>
<td>Expected Growth in EPS rate 5 years</td>
<td>8.647</td>
<td>.560</td>
<td>.315</td>
</tr>
<tr>
<td></td>
<td>Payout Ratio</td>
<td>.611</td>
<td>.150</td>
<td>.075</td>
</tr>
<tr>
<td></td>
<td>Regression Beta</td>
<td>.731</td>
<td>.088</td>
<td>.077</td>
</tr>
<tr>
<td></td>
<td>ROE</td>
<td>11.591</td>
<td>.292</td>
<td>.683</td>
</tr>
</tbody>
</table>

a. Dependent Variable: PBV Ratio
b. Weighted Least Squares Regression - Weighted by Market Cap

PBV Ratio Regression- Other Markets
January 2011

<table>
<thead>
<tr>
<th>Region</th>
<th>Regression : January 2011</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>PBV = 1.49 + 0.98 Expected Growth + 0.32 Payout - 0.55 Beta + 7.89 ROE</td>
<td>44.0%</td>
</tr>
<tr>
<td>Japan</td>
<td>PBV = 0.87 + 6.09 ROE</td>
<td>28.2%</td>
</tr>
<tr>
<td>Emerging markets</td>
<td>PBV = 0.87 + 1.17 Expected Growth + 0.57 Payout + 7.20 ROE</td>
<td>28.1%</td>
</tr>
</tbody>
</table>
Value/Book Value Ratio: Definition

- While the price to book ratio is a equity multiple, both the market value and the book value can be stated in terms of the firm.
- Value/Book Value = \(\frac{\text{Market Value of Equity} + \text{Market Value of Debt}}{\text{Book Value of Equity} + \text{Book Value of Debt}} \)

Determinants of Value/Book Ratios

- To see the determinants of the value/book ratio, consider the simple free cash flow to the firm model:

\[
V_0 = \frac{\text{FCFF}_1}{WACC - g}
\]

- Dividing both sides by the book value, we get:

\[
\frac{V_0}{BV} = \frac{\text{FCFF}_1/BV}{WACC - g}
\]

- If we replace, FCFF = EBIT(1-t) - (g/ROC) EBIT(1-t), we get

\[
\frac{V_0}{BV} = \frac{\text{ROC} - g}{WACC - g}
\]
Value/Book Ratio: An Example

Consider a stable growth firm with the following characteristics:
- Return on Capital = 12%
- Cost of Capital = 10%
- Expected Growth = 5%

The value/BV ratio for this firm can be estimated as follows:
\[\text{Value/BV} = \frac{0.12 - 0.05}{0.10 - 0.05} = 1.40 \]

The effects of ROC on growth will increase if the firm has a high growth phase, but the basic determinants will remain unchanged.

Value/Book and the Return Spread

Aswath Damodaran
Price Sales Ratio: Definition

- The price/sales ratio is the ratio of the market value of equity to the sales.

\[
\text{Price/Sales} = \frac{\text{Market value of equity}}{\text{Revenues}}
\]

- Consistency Tests
 - The price/sales ratio is internally inconsistent, since the market value of equity is divided by the total revenues of the firm.
Price/Sales Ratio: Determinants

- The price/sales ratio of a stable growth firm can be estimated beginning with a 2-stage equity valuation model:

\[P_0 = \frac{DPS}{r - gn} \]

- Dividing both sides by the sales per share:

\[\frac{P_0}{Sales_0} = \frac{Net\ Profit\ Margin \times Payout\ Ratio \times (1 + gn)}{r - gn} \]
Price/Sales Ratio for High Growth Firm

- When the growth rate is assumed to be high for a future period, the dividend discount model can be written as follows:

\[
P_0 = \frac{\text{EPS}_0 \cdot \text{Payout Ratio} \cdot (1 + g) \cdot \left(1 - \frac{(1 + g)^n}{(1 + r)^n}\right)}{r - g} + \frac{\text{EPS}_0 \cdot \text{Payout Ratio}_n \cdot (1 + g)_n \cdot (1 + g_n)}{(r - g_n)(1 + r)^n}
\]

- Dividing both sides by the sales per share:

\[
P_0 \cdot \text{Sales}_0 = \frac{\text{Net Margin} \cdot \text{Payout Ratio} \cdot (1 + g) \cdot \left(1 - \frac{(1 + g)^n}{(1 + r)^n}\right) \cdot \text{Sales}_0}{r - g} + \frac{\text{Net Margin}_n \cdot \text{Payout Ratio}_n \cdot (1 + g)_n \cdot (1 + g_n) \cdot \text{Sales}_0}{(r - g_n)(1 + r)^n}
\]

where Net Margin, = Net Margin in stable growth phase

Price Sales Ratios and Profit Margins

- The key determinant of price-sales ratios is the profit margin.
- A decline in profit margins has a two-fold effect.
 - First, the reduction in profit margins reduces the price-sales ratio directly.
 - Second, the lower profit margin can lead to lower growth and hence lower price-sales ratios.

Expected growth rate = Retention ratio * Return on Equity
= Retention Ratio * (Net Profit / Sales) * (Sales / BV of Equity)
= Retention Ratio * Profit Margin * Sales/BV of Equity
Price/Sales Ratio: An Example

<table>
<thead>
<tr>
<th></th>
<th>High Growth Phase</th>
<th>Stable Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Period</td>
<td>5 years</td>
<td>Forever after year 5</td>
</tr>
<tr>
<td>Net Margin</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>Sales/BV of Equity</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Beta</td>
<td>1.25</td>
<td>1.00</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>20%</td>
<td>60%</td>
</tr>
<tr>
<td>Expected Growth</td>
<td>(.1)(2.5)(.8)=20%</td>
<td>(.06)(2.5)(.4)=.06</td>
</tr>
<tr>
<td>Riskless Rate =6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
PS = \frac{0.10 \times 0.2 \times (1.20) \times \left(1 - \left(\frac{1.12875}{1.20}\right)^5\right) + 0.06 \times 0.60 \times (1.20)^5 \times (1.06)}{0.12875 - 0.20} = 1.06
\]

Effect of Margin Changes

![Price/Sales Ratios and Net Margins](chart.png)
Price to Sales Multiples: Grocery Stores - US in January 2007

Whole Foods: In 2007, Net Margin was 3.41% and Price/Sales ratio was 1.41.

Predicted Price to Sales = 0.07 + 10.49 (0.0341) = 0.43

Reversion to normalcy: Grocery Stores - US in January 2009

Whole Foods: In 2009, Net Margin had dropped to 2.77% and Price to Sales ratio was down to 0.31.

Predicted Price to Sales = 0.07 + 10.49 (.0277) = 0.36
And again in 2010...

Whole Foods: In 2010, Net Margin had dropped to 1.44% and Price to Sales ratio increased to 0.50.

Predicted Price to Sales = 0.06 + 11.43 (0.0144) = 0.22

Here is 2011...

PS Ratio = -0.585 + 55.50 (Net Margin) \(R^2 = 48.2\%

PS Ratio for WFMI = -0.585 + 55.50 (0.0273) = 0.93

At a PS ratio of 0.98, WFMI is slightly over valued.
Current versus Predicted Margins

- One of the limitations of the analysis we did in these last few pages is the focus on current margins. Stocks are priced based upon expected margins rather than current margins.
- For most firms, current margins and predicted margins are highly correlated, making the analysis still relevant.
- For firms where current margins have little or no correlation with expected margins, regressions of price to sales ratios against current margins (or price to book against current return on equity) will not provide much explanatory power.
- In these cases, it makes more sense to run the regression using either predicted margins or some proxy for predicted margins.

A Case Study: Internet Stocks in January 2000

AdjMargin

Aswath Damodaran
PS Ratios and Margins are not highly correlated

- Regressing PS ratios against current margins yields the following
 \[PS = 81.36 - 7.54(\text{Net Margin}) \]
 \[R^2 = 0.04 \]
 \[(0.49) \]
- This is not surprising. These firms are priced based upon expected margins, rather than current margins. Consequently, there is little relationship between current margins and market values.

Solution 1: Use proxies for survival and growth: Amazon in early 2000

- Hypothesizing that firms with higher revenue growth and higher cash balances should have a greater chance of surviving and becoming profitable, we ran the following regression: (The level of revenues was used to control for size)
 \[PS = 30.61 - 2.77 \ln(\text{Rev}) + 6.42 (\text{Rev Growth}) + 5.11 (\text{Cash/Rev}) \]
 \[(0.66) \quad (2.63) \quad (3.49) \]
 \[R \text{ squared} = 31.8\% \]
 Predicted PS = 30.61 - 2.77(7.1039) + 6.42(1.9946) + 5.11 (.3069) = 30.42
 Actual PS = 25.63
 Amazon is undervalued, relative to other internet stocks.
Solution 2: Use forward multiples

- You can always estimate price (or value) as a multiple of revenues, earnings or book value in a future year. These multiples are called forward multiples.
- For young and evolving firms, the values of fundamentals in future years may provide a much better picture of the true value potential of the firm. There are two ways in which you can use forward multiples:
 - Look at value today as a multiple of revenues or earnings in the future (say 5 years from now) for all firms in the comparable firm list. Use the average of this multiple in conjunction with your firm’s earnings or revenues to estimate the value of your firm today.
 - Estimate value as a multiple of current revenues or earnings for more mature firms in the group and apply this multiple to the forward earnings or revenues to the forward earnings for your firm. This will yield the expected value for your firm in the forward year and will have to be discounted back to the present to get current value.

An Example of Forward Multiples: Global Crossing

- Global Crossing, a distressed telecom firm, lost $1.9 billion in 2001 and is expected to continue to lose money for the next 3 years. In a discounted cashflow valuation of Global Crossing, we estimated an expected EBITDA for Global Crossing in five years of $1,371 million.
- The average enterprise value/EBITDA multiple for healthy telecomm firms is 7.2 currently.
- Applying this multiple to Global Crossing’s EBITDA in year 5, yields a value in year 5 of
 - Enterprise Value in year 5 = 1371 * 7.2 = $9,871 million
 - Enterprise Value today = $9,871 million/1.1385 = $5,172 million
- This enterprise value does not fully reflect the possibility that Global Crossing will not make it as a going concern.
 - Based on the price of traded bonds issued by Global Crossing, the probability that Global Crossing will not make it as a going concern is 77% and the distress sale value is only a $1 billion (1/2 of book value of assets).
 - Adjusted Enterprise value = 5172 * .23 + 1000 (.77) = $1,960 million
PS Regression: United States - January 2011

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.701*</td>
<td>.492</td>
<td>.490</td>
<td>135.612836</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Net Margin, Expected Growth in EPS next 5 years, Regression Beta, Payout Ratio

Coeficients:

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
</tbody>
</table>

1. (Constant) 4.13 .118 .298 .001
Expected Growth in EPS next 5 years 7.213 .556 .278 14.099 .000
Payout Ratio .156 .155 .02 .018 .309
Regression Beta 4.11 .071 .112 5.365 .000
Net Margin 14.798 .402 .038 35.858 .000

a. Dependent variable: PS Ratio

Coeficients**

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
</tbody>
</table>

2. Expected Growth in EPS next 5 years 6.577 .484 .282 14.217 .000
Payout Ratio -.146 .117 -.018 -1.242 .214
Regression Beta .284 .056 .102 5.107 .000
Net Margin 12.768 .342 .039 30.211 .000

a. Dependent variable: PS Ratio
b. Linear Regression through the Origin
c. Weighted Least Squares Regression - Weighted by Market Cap

EV/Sales Ratio: Definition

- The value/sales ratio is the ratio of the market value of the firm to the sales.
- **EV/ Sales** = Market Value of Equity + Market Value of Debt-Cash / Total Revenues
EV Sales across markets

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Median</th>
<th>25th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia, NZ & Canada</td>
<td>100.56</td>
<td>7.68</td>
<td>1.72</td>
<td>4.35</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>841.21</td>
<td>1.51</td>
<td>0.64</td>
<td>4.35</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>115.64</td>
<td>1.46</td>
<td>0.62</td>
<td>4.26</td>
</tr>
<tr>
<td>Japan</td>
<td>25.57</td>
<td>1.38</td>
<td>0.60</td>
<td>3.70</td>
</tr>
<tr>
<td>US</td>
<td>152.85</td>
<td>1.61</td>
<td>0.66</td>
<td>4.74</td>
</tr>
</tbody>
</table>

EV/Sales Ratios: Analysis of Determinants

- If pre-tax operating margins are used, the appropriate value estimate is that of the firm. In particular, if one makes the assumption that:
 - Free Cash Flow to the Firm = EBIT (1 - tax rate) (1 - Reinvestment Rate)
- Then the Value of the Firm can be written as a function of the after-tax operating margins (EBIT (1-t)/Sales)

$$\text{Value} = \frac{\text{Sales}_0 \times (1 - \text{RIR}_{\text{growth}})(1 + g)^n \times (1 + \text{WACC})^n}{(1 + \text{WACC})^n}$$

$$\text{g} = \text{Growth rate in after-tax operating income for the first n years}$$

$$\text{g}_s = \text{Growth rate in after-tax operating income after n years forever (Stable growth rate)}$$

$$\text{RIR}_{\text{growth, Stable}} = \text{Reinvestment rate in high growth and stable periods}$$

$$\text{WACC} = \text{Weighted average cost of capital}$$
EV/Sales Ratio: An Example with Coca Cola

- Consider, for example, the Value/Sales ratio of Coca Cola. The company had the following characteristics:
 - After-tax Operating Margin = 18.56%
 - Sales/BV of Capital = 1.67
 - Return on Capital = 1.67 * 18.56% = 31.02%
 - Reinvestment Rate: 65.00% in high growth; 20% in stable growth;
 - Expected Growth = 31.02% * 0.65 = 20.16% (Stable Growth Rate = 6%)
 - Length of High Growth Period = 10 years
 - Cost of Equity = 12.33%
 - E/(D+E) = 97.65%
 - After-tax Cost of Debt = 4.16%
 - D/(D+E) = 2.35%
 - Cost of Capital = 12.33% (.9765) + 4.16% (.0235) = 12.13%

\[
\text{Value of Firm}_0 = \frac{0.1856 \times (1 - 0.65)(1.2016) - (1.2016)^{10}}{0.1213 - 0.06}(1.1213)^{10} = 6.10
\]
You have been hired to value Coca Cola for an analyst reports and you have valued the firm at 6.10 times revenues, using the model described in the last few pages. Another analyst is arguing that there should be a premium added on to reflect the value of the brand name. Do you agree?

- Yes
- No
- Explain.

The value of a brand name

- One of the critiques of traditional valuation is that it fails to consider the value of brand names and other intangibles.
- The approaches used by analysts to value brand names are often ad-hoc and may significantly overstate or understate their value.
- One of the benefits of having a well-known and respected brand name is that firms can charge higher prices for the same products, leading to higher profit margins and hence to higher price-sales ratios and firm value. The larger the price premium that a firm can charge, the greater is the value of the brand name.
- In general, the value of a brand name can be written as:
 \[\text{Value of brand name} = ((V/S)_b - (V/S)_g) \times \text{Sales} \]

 \((V/S)_b = \text{Value of Firm/Sales ratio with the benefit of the brand name}\)

 \((V/S)_g = \text{Value of Firm/Sales ratio of the firm with the generic product}\)
Valuing Brand Name

<table>
<thead>
<tr>
<th></th>
<th>Coca Cola</th>
<th>With Cott Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Revenues =</td>
<td>$21,962.00</td>
<td>$21,962.00</td>
</tr>
<tr>
<td>Length of high-growth period</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Reinvestment Rate =</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Operating Margin (after-tax)</td>
<td>15.57%</td>
<td>5.28%</td>
</tr>
<tr>
<td>Sales/Capital (Turnover ratio)</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td>Return on capital (after-tax)</td>
<td>20.84%</td>
<td>7.06%</td>
</tr>
<tr>
<td>Growth rate during period (g) =</td>
<td>10.42%</td>
<td>3.53%</td>
</tr>
<tr>
<td>Cost of Capital during period =</td>
<td>7.65%</td>
<td>7.65%</td>
</tr>
<tr>
<td>Stable Growth Period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate in steady state =</td>
<td>4.00%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Return on capital =</td>
<td>7.65%</td>
<td>7.65%</td>
</tr>
<tr>
<td>Reinvestment Rate =</td>
<td>52.28%</td>
<td>52.28%</td>
</tr>
<tr>
<td>Cost of Capital =</td>
<td>7.65%</td>
<td>7.65%</td>
</tr>
<tr>
<td>Value of Firm =</td>
<td>$79,611.25</td>
<td>$15,371.24</td>
</tr>
</tbody>
</table>

Value of brand name = $79,611.25 - $15,371.24 = $64,240 million

More on brand name value...

- When we use the difference in margins to value brand name, we are assuming that the difference in margins is entirely due to brand name and that it affects nothing else (cost of capital, for instance). To the extent that this is not the case, we may be under or over valuing brand name.
- In which of these companies do you think valuing brand name will be easiest to do and which of them will it be hardest?
 - Kelloggs
 - Sony
 - Goldman Sachs
 - Apple
 - Explain.
EV/Sales Ratio Regression: US in January 2011

<table>
<thead>
<tr>
<th>Region</th>
<th>Regression – January 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>EV/Sales = 0.38 + 3.20 Expected Growth + 12.74 Operating Margin – 2.50 t + 0.13 Reinvestment Rate</td>
</tr>
<tr>
<td>Japan</td>
<td>EV/Sales = 0.01 + 6.72 Operating Margin – 1.99 Tax rate + 5.58 Debt/Capital</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>EV/Sales = 2.15 - 3.50 t + 10.09 Operating Margin - 2.01 Debt/Capital + 0.16 Reinvestment Rate</td>
</tr>
</tbody>
</table>

R Squared

Europe: 73.4%
Japan: 26.4%
Emerging Markets: 40.7%
Choosing Between the Multiples

- As presented in this section, there are dozens of multiples that can be potentially used to value an individual firm.
- In addition, relative valuation can be relative to a sector (or comparable firms) or to the entire market (using the regressions, for instance).
- Since there can be only one final estimate of value, there are three choices at this stage:
 - Use a simple average of the valuations obtained using a number of different multiples
 - Use a weighted average of the valuations obtained using a number of different multiples
 - Choose one of the multiples and base your valuation on that multiple

Averaging Across Multiples

- This procedure involves valuing a firm using five or six or more multiples and then taking an average of the valuations across these multiples.
- This is completely inappropriate since it averages good estimates with poor ones equally.
- If some of the multiples are “sector based” and some are “market based”, this will also average across two different ways of thinking about relative valuation.
Weighted Averaging Across Multiples

- In this approach, the estimates obtained from using different multiples are averaged, with weights on each based upon the precision of each estimate. The more precise estimates are weighted more and the less precise ones weighted less.
- The precision of each estimate can be estimated fairly simply for those estimated based upon regressions as follows:

 \[
 \text{Precision of Estimate} = \frac{1}{\text{Standard Error of Estimate}}
 \]

 where the standard error of the predicted value is used in the denominator.
- This approach is more difficult to use when some of the estimates are subjective and some are based upon more quantitative techniques.

Picking one Multiple

- This is usually the best way to approach this issue. While a range of values can be obtained from a number of multiples, the "best estimate" value is obtained using one multiple.
- The multiple that is used can be chosen in one of two ways:
 - Use the multiple that best fits your objective. Thus, if you want the company to be undervalued, you pick the multiple that yields the highest value.
 - Use the multiple that has the highest R-squared in the sector when regressed against fundamentals. Thus, if you have tried PE, PBV, PS, etc. and run regressions of these multiples against fundamentals, use the multiple that works best at explaining differences across firms in that sector.
 - Use the multiple that seems to make the most sense for that sector, given how value is measured and created.
Self Serving … But all too common

- When a firm is valued using several multiples, some will yield really high values and some really low ones.
- If there is a significant bias in the valuation towards high or low values, it is tempting to pick the multiple that best reflects this bias. Once the multiple that works best is picked, the other multiples can be abandoned and never brought up.
- This approach, while yielding very biased and often absurd valuations, may serve other purposes very well.
- As a user of valuations, it is always important to look at the biases of the entity doing the valuation, and asking some questions:
 - Why was this multiple chosen?
 - What would the value be if a different multiple were used? (You pick the specific multiple that you want to see tried.)

The Statistical Approach

- One of the advantages of running regressions of multiples against fundamentals across firms in a sector is that you get R-squared values on the regression (that provide information on how well fundamentals explain differences across multiples in that sector).
- As a rule, it is dangerous to use multiples where valuation fundamentals (cash flows, risk and growth) do not explain a significant portion of the differences across firms in the sector.
- As a caveat, however, it is not necessarily true that the multiple that has the highest R-squared provides the best estimate of value for firms in a sector.
A More Intuitive Approach

- Managers in every sector tend to focus on specific variables when analyzing strategy and performance. The multiple used will generally reflect this focus. Consider three examples.
 - In retailing: The focus is usually on same store sales (turnover) and profit margins. Not surprisingly, the revenue multiple is most common in this sector.
 - In financial services: The emphasis is usually on return on equity. Book Equity is often viewed as a scarce resource, since capital ratios are based upon it. Price to book ratios dominate.
 - In technology: Growth is usually the dominant theme. PEG ratios were invented in this sector.

Sector or Market Multiples

- The conventional approach to using multiples is to look at the sector or comparable firms.
- Whether sector or market based multiples make the most sense depends upon how you think the market makes mistakes in valuation
 - If you think that markets make mistakes on individual firm valuations but that valuations tend to be right, on average, at the sector level, you will use sector-based valuation only.
 - If you think that markets make mistakes on entire sectors, but is generally right on the overall market level, you will use only market-based valuation
- It is usually a good idea to approach the valuation at two levels:
 - At the sector level, use multiples to see if the firm is under or over valued at the sector level
 - At the market level, check to see if the under or over valuation persists once you correct for sector under or over valuation.
Relative versus Intrinsic Value

- If you do intrinsic value right, you will bring in a company’s risk, cash flow and growth characteristics into the inputs, preserve internal consistency and derive intrinsic value. If you do relative value right, you will find the right set of comparables, control well for differences in risk, cash flow and growth characteristics. Assume you value the same company doing both DCF and relative valuation correctly, should you get the same value?
 a) Yes
 b) No
- If not, how would you explain the difference?
- If the numbers are different, which value would you use?
 a) Intrinsic value
 b) Relative value
 c) A composite of the two values
 d) The higher of the two values
 e) The lower of the two values
 f) Depends on what my valuation “mission” is.

Conventional usage…

<table>
<thead>
<tr>
<th>Sector</th>
<th>Multiple Used</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclical Manufacturing</td>
<td>PE, Relative PE</td>
<td>Often with normalized earnings</td>
</tr>
<tr>
<td>Growth firms</td>
<td>PEG ratio</td>
<td>Big differences in growth rates</td>
</tr>
<tr>
<td>Young growth firms w/ losses</td>
<td>Revenue Multiples</td>
<td>What choice do you have?</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>EV/EBITDA</td>
<td>Early losses, big DA</td>
</tr>
<tr>
<td>REIT</td>
<td>P/CFE (where CFE = Net income + Depreciation)</td>
<td>Big depreciation charges on real estate</td>
</tr>
<tr>
<td>Financial Services</td>
<td>Price/ Book equity</td>
<td>Marked to market?</td>
</tr>
<tr>
<td>Retailing</td>
<td>Revenue multiples</td>
<td>Margins equalize sooner or later</td>
</tr>
</tbody>
</table>
Process of Valuing Private Companies

- The process of valuing private companies is not different from the process of valuing public companies. You estimate cash flows, attach a discount rate based upon the riskiness of the cash flows and compute a present value. As with public companies, you can either value
 - The entire business, by discounting cash flows to the firm at the cost of capital.
 - The equity in the business, by discounting cashflows to equity at the cost of equity.
- When valuing private companies, you face two standard problems:
 - There is not market value for either debt or equity
 - The financial statements for private firms are likely to go back fewer years, have less detail and have more holes in them.
1. No Market Value?

- Market values as inputs: Since neither the debt nor equity of a private business is traded, any inputs that require them cannot be estimated.
 1. Debt ratios for going from unlevered to levered betas and for computing cost of capital.
 2. Market prices to compute the value of options and warrants granted to employees
- Market value as output: When valuing publicly traded firms, the market value operates as a measure of reasonableness. In private company valuation, the value stands alone.
- Market price based risk measures, such as beta and bond ratings, will not be available for private businesses.

2. Cash Flow Estimation Issues

- Shorter history: Private firms often have been around for much shorter time periods than most publicly traded firms. There is therefore less historical information available on them.
- Different Accounting Standards: The accounting statements for private firms are often based upon different accounting standards than public firms, which operate under much tighter constraints on what to report and when to report.
- Intermingling of personal and business expenses: In the case of private firms, some personal expenses may be reported as business expenses.
- Separating “Salaries” from “Dividends”: It is difficult to tell where salaries end and dividends begin in a private firm, since they both end up with the owner.
Private Company Valuation: Motive matters

- You can value a private company for
 - ‘Show’ valuations
 - Curiosity: How much is my business really worth?
 - Legal purposes: Estate tax and divorce court
 - Transaction valuations
 - Sale or prospective sale to another individual or private entity.
 - Sale of one partner’s interest to another
 - Sale to a publicly traded firm
 - As prelude to setting the offering price in an initial public offering

- You can value a division or divisions of a publicly traded firm
 - As prelude to a spin off
 - For sale to another entity
 - To do a sum-of-the-parts valuation to determine whether a firm will be worth more broken up or if it is being efficiently run.

Private company valuations: Three broad scenarios

- **Private to private transactions**: You can value a private business for sale by one individual to another.
- **Private to public transactions**: You can value a private firm for sale to a publicly traded firm.
- **Private to IPO**: You can value a private firm for an initial public offering.
- **Private to VC to Public**: You can value a private firm that is expected to raise venture capital along the way on its path to going public.
I. Private to Private transaction

- In private to private transactions, a private business is sold by one individual to another. There are three key issues that we need to confront in such transactions:
 1. Neither the buyer nor the seller is diversified. Consequently, risk and return models that focus on just the risk that cannot be diversified away will seriously under estimate the discount rates.
 2. The investment is illiquid. Consequently, the buyer of the business will have to factor in an “illiquidity discount” to estimate the value of the business.
 3. Key person value: There may be a significant personal component to the value. In other words, the revenues and operating profit of the business reflect not just the potential of the business but the presence of the current owner.

An example: Valuing a restaurant

- Assume that you have been asked to value a upscale French restaurant for sale by the owner (who also happens to be the chef). Both the restaurant and the chef are well regarded, and business has been good for the last 3 years.
- The potential buyer is a former investment banker, who tired of the rat race, has decide to cash out all of his savings and use the entire amount to invest in the restaurant.
- You have access to the financial statements for the last 3 years for the restaurant. In the most recent year, the restaurant reported $1.2 million in revenues and $400,000 in pre-tax operating profit. While the firm has no conventional debt outstanding, it has a lease commitment of $120,000 each year for the next 12 years.
Past income statements…

<table>
<thead>
<tr>
<th></th>
<th>3 years ago</th>
<th>2 years ago</th>
<th>Last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>$800</td>
<td>$1,100</td>
<td>$1,200</td>
</tr>
<tr>
<td>Operating lease expense</td>
<td>$120</td>
<td>$120</td>
<td>$120 (12 years left on the lease)</td>
</tr>
<tr>
<td>Wages</td>
<td>$180</td>
<td>$200</td>
<td>$200 (Owner/chef does not draw salary)</td>
</tr>
<tr>
<td>Material</td>
<td>$200</td>
<td>$275</td>
<td>$300 (75% of revenues)</td>
</tr>
<tr>
<td>Other operating expenses</td>
<td>$120</td>
<td>$165</td>
<td>$180 (15% of revenues)</td>
</tr>
<tr>
<td>Operating income</td>
<td>$180</td>
<td>$340</td>
<td>$400</td>
</tr>
<tr>
<td>Taxes</td>
<td>$72</td>
<td>$136</td>
<td>$160 (40% tax rate)</td>
</tr>
<tr>
<td>Net Income</td>
<td>$108</td>
<td>$204</td>
<td>$240</td>
</tr>
</tbody>
</table>

All numbers are in thousands

Step 1: Estimating discount rates

- Conventional risk and return models in finance are built on the presumption that the marginal investors in the company are diversified and that they therefore care only about the risk that cannot be diversified. That risk is measured with a beta or betas, usually estimated by looking at past prices or returns.

- In this valuation, both assumptions are likely to be violated:
 - As a private business, this restaurant has no market prices or returns to use in estimation.
 - The buyer is not diversified. In fact, he will have his entire wealth tied up in the restaurant after the purchase.
No market price, no problem… Use bottom-up betas to get the unlevered beta

- The average unlevered beta across 75 publicly traded restaurants in the US is 0.86.
- A caveat: Most of the publicly traded restaurants on this list are fast-food chains (McDonald’s, Burger King) or mass restaurants (Applebee’s, TGIF…). There is an argument to be made that the beta for an upscale restaurant is more likely to reflect high-end specialty retailers than it is restaurants. The unlevered beta for 45 high-end retailers is 1.18.

Private Owner versus Publicly Traded Company Perceptions of Risk in an Investment

- Private owner of business with 100% of your wealth invested in the business
 - Total Beta measures all risk: \(\text{Total Beta} = \frac{\text{Market Beta}}{(\text{Portion of the total risk that is market risk})} \)
 - Is exposed to all the risk in the firm
 - Demands a cost of equity that reflects this risk

- Publicly traded company with investors who are diversified
 - Market Beta measures just market risk
 - ELiminates firm-specific risk in portfolio
 - Demands a cost of equity that reflects only market risk

Total Beta measures all risk
Market Beta measures just market risk
Estimating a total beta

- To get from the market beta to the total beta, we need a measure of how much of the risk in the firm comes from the market and how much is firm-specific.
- Looking at the regressions of publicly traded firms that yield the bottom-up beta should provide an answer.
 - The average R-squared across the high-end retailer regressions is 25%.
 - Since betas are based on standard deviations (rather than variances), we will take the correlation coefficient (the square root of the R-squared) as our measure of the proportion of the risk that is market risk.

\[
\text{Total Unlevered Beta} = \frac{\text{Market Beta}}{\text{Correlation with the market}} = \frac{1.18}{0.5} = 2.36
\]

The final step in the beta computation: Estimate a Debt to equity ratio and cost of equity

- With publicly traded firms, we re-lever the beta using the market D/E ratio for the firm. With private firms, this option is not feasible. We have two alternatives:
 - Assume that the debt to equity ratio for the firm is similar to the average market debt to equity ratio for publicly traded firms in the sector.
 - Use your estimates of the value of debt and equity as the weights in the computation. (There will be a circular reasoning problem: you need the cost of capital to get the values and the values to get the cost of capital.)
- We will assume that this privately owned restaurant will have a debt to equity ratio (14.33%) similar to the average publicly traded restaurant (even though we used retailers to the unlevered beta).
 - Levered beta = 2.36 \times (1 + (1-\text{D/E})(.1433)) = 2.56
 - Cost of equity = 4.25\% + 2.56 \times (4\%) = 14.50\%

(T Bond rate was 4.25\% at the time; 4\% is the equity risk premium)
Estimating a cost of debt and capital

- While the firm does not have a rating or any recent bank loans to use as reference, it does have a reported operating income and lease expenses (treated as interest expenses)
 - Coverage Ratio = Operating Income/ Interest (Lease) Expense
 \[\frac{400,000}{120,000} = 3.33 \]
 - Rating based on coverage ratio = BB+ Default spread = 3.25%
 - After-tax Cost of debt = (Riskfree rate + Default spread) (1 – tax rate)
 \[(4.25\% + 3.25\%) (1 - 0.40) = 4.50\% \]
- To compute the cost of capital, we will use the same industry average debt ratio that we used to lever the betas.
 - Cost of capital = 14.50\% (100/114.33) + 4.50\% (14.33/114.33) = 13.25\%
 (The debt to equity ratio is 14.33%; the cost of capital is based on the debt to capital ratio)

Step 2: Clean up the financial statements

<table>
<thead>
<tr>
<th></th>
<th>Stated</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>$1,200</td>
<td>$1,200</td>
</tr>
<tr>
<td>Operating lease exp.</td>
<td>$120</td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>$300</td>
<td>$350</td>
</tr>
<tr>
<td>Material</td>
<td>$300</td>
<td>$300</td>
</tr>
<tr>
<td>Other operating exp.</td>
<td>$120</td>
<td>$180</td>
</tr>
<tr>
<td>Operating income</td>
<td>$400</td>
<td>$450</td>
</tr>
<tr>
<td>Interest exp.</td>
<td>$0</td>
<td>$60.62</td>
</tr>
<tr>
<td>Taxable income</td>
<td>$400</td>
<td>$460.62</td>
</tr>
<tr>
<td>Taxes</td>
<td>$160</td>
<td>$180.15</td>
</tr>
<tr>
<td>Net Income</td>
<td>$240</td>
<td>$180.23</td>
</tr>
<tr>
<td>Debt</td>
<td>$0</td>
<td>$928.23</td>
</tr>
</tbody>
</table>

PV of $120 million for 12 years at 7.5%
Step 3: Assess the impact of the “key” person

- Part of the draw of the restaurant comes from the current chef. It is possible (and probable) that if he sells and moves on, there will be a drop off in revenues. If you are buying the restaurant, you should consider this drop off when valuing the restaurant. Thus, if 20% of the patrons are drawn to the restaurant because of the chef’s reputation, the expected operating income will be lower if the chef leaves.
 - Adjusted operating income (existing chef) = $370,000
 - Operating income (adjusted for chef departure) = $296,000

- As the owner/chef of the restaurant, what might you be able to do to mitigate this loss in value?

Step 4: Don’t forget valuation fundamentals

- To complete the valuation, you need to assume an expected growth rate. As with any business, assumptions about growth have to be consistent with reinvestment assumptions. In the long term,
 \[\text{Reinvestment rate} = \frac{\text{Expected growth rate}}{\text{Return on capital}} \]

- In this case, we will assume a 2% growth rate in perpetuity and a 20% return on capital.
 \[\text{Reinvestment rate} = \frac{g}{\text{ROC}} = \frac{2\%}{20\%} = 10\% \]

- Even if the restaurant does not grow in size, this reinvestment is what you need to make to keep the restaurant both looking good (remodeling) and working well (new ovens and appliances).
Step 5: Complete the valuation

- **Inputs to valuation**
 - Adjusted EBIT = $296,000
 - Tax rate = 40%
 - Cost of capital = 13.25%
 - Expected growth rate = 2%
 - Reinvestment rate = 10%

- **Valuation**

 Value of the restaurant = \(\frac{\text{Expected FCFF next year}}{(\text{Cost of capital} - \text{g})} \)

 = \(\frac{\text{Expected EBIT next year} \times (1-\text{tax rate}) \times (1-\text{Reinv Rate})}{(\text{Cost of capital} - \text{g})} \)

 = \(\frac{296,000 \times (1.02) \times (1-.4) \times (1-.10)}{(0.1325 - 0.02)} \)

 = $1.449 million

 Value of equity in restaurant = $1.449 million - $0.928 million (PV of leases)

 = $0.521 million

Step 6: Consider the effect of illiquidity

- **In private company valuation, illiquidity is a constant theme. All the talk, though, seems to lead to a rule of thumb. The illiquidity discount for a private firm is between 20-30% and does not vary across private firms.**

- **But illiquidity should vary across:**
 - **Companies:** Healthier and larger companies, with more liquid assets, should have smaller discounts than money-losing smaller businesses with more illiquid assets.
 - **Time:** Liquidity is worth more when the economy is doing badly and credit is tough to come by than when markets are booming.
 - **Buyers:** Liquidity is worth more to buyers who have shorter time horizons and greater cash needs than for longer term investors who don’t need the cash and are willing to hold the investment.
The Standard Approach: Illiquidity discount based on illiquid publicly traded assets

- **Restricted stock**: These are stock issued by publicly traded companies to the market that bypass the SEC registration process but the stock cannot be traded for one year after the issue.

- **Pre-IPO transactions**: These are transactions prior to initial public offerings where equity investors in the private firm buy (sell) each other’s stakes.

In both cases, the discount is estimated to be the difference between the market price of the liquid asset and the observed transaction price of the illiquid asset.

- Discount$_{\text{Restricted stock}} = \text{Stock price} - \text{Price on restricted stock offering}$
- Discount$_{\text{IPO}} = \text{IPO offering price} - \text{Price on pre-IPO transaction}$

The Restricted Stock Discount

- **Aggregate discount studies**
 - Maher examined restricted stock purchases made by four mutual funds in the period 1969-73 and concluded that they traded an average discount of 35.43% on publicly traded stock in the same companies.
 - Moroney reported a mean discount of 35% for acquisitions of 146 restricted stock issues by 10 investment companies, using data from 1970.
 - In a study of restricted stock offerings from the 1980s, Silber (1991) finds that the median discount for restricted stock is 33.75%.

- Silber related the size of the discount to characteristics of the offering:
 \[\ln(\text{RPRS}) = 4.33 + 0.036 \ln(\text{REV}) - 0.142 \ln(\text{RBRT}) + 0.174 \text{DERN} + 0.332 \text{DCUST} \]
 - RPRS = Relative price of restricted stock (to publicly traded stock)
 - REV = Revenues of the private firm (in millions of dollars)
 - RBRT = Restricted Block relative to Total Common Stock in %
 - DERN = 1 if earnings are positive; 0 if earnings are negative;
 - DCUST = 1 if there is a customer relationship with the investor; 0 otherwise;
Cross sectional differences in Illiquidity: Extending the Silber regression

The IPO discount: Pricing on pre-IPO transactions (in 5 months prior to IPO)
The “sampling” problem

- With both restricted stock and the IPO studies, there is a significant sampling bias problem.
 - The companies that make restricted stock offerings are likely to be small, troubled firms that have run out of conventional financing options.
 - The types of IPOs where equity investors sell their stake in the five months prior to the IPO at a huge discount are likely to be IPOs that have significant pricing uncertainty associated with them.

- With restricted stock, the magnitude of the sampling bias was estimated by comparing the discount on all private placements to the discount on restricted stock offerings. One study concluded that the “illiquidity” alone accounted for a discount of less than 10% (leaving the balance of 20-25% to be explained by sampling problems).

An alternative approach: Use the whole sample

- All traded assets are illiquid. The bid-ask spread, measuring the difference between the price at which you can buy and sell the asset at the same point in time is the illiquidity measure.

- We can regress the bid-ask spread (as a percent of the price) against variables that can be measured for a private firm (such as revenues, cash flow generating capacity, type of assets, variance in operating income) and are also available for publicly traded firms. Using data from the end of 2000, for instance, we regressed the bid-ask spread against annual revenues, a dummy variable for positive earnings (DERN: 0 if negative and 1 if positive), cash as a percent of firm value and trading volume.

\[
\text{Spread} = 0.145 - 0.0022 \ln (\text{Annual Revenues}) - 0.015 (\text{DERN}) - 0.016 (\text{Cash/Firm Value}) - 0.11 (\$ \text{Monthly trading volume/Firm Value})
\]

- You could plug in the values for a private firm into this regression (with zero trading volume) and estimate the spread for the firm.
Estimating the illiquidity discount for the restaurant

<table>
<thead>
<tr>
<th>Approach used</th>
<th>Estimated discount</th>
<th>Value of restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bludgeon (Fixed discount)</td>
<td>25%</td>
<td>$0.521 (1-.25) = $0.391 million</td>
</tr>
<tr>
<td>Refined Bludgeon (Fixed discount with adjustment for revenue size/profitability)</td>
<td>28.75% (Silber adjustment for small revenues and positive profits to a base discount of 25%)</td>
<td>$0.521 (1-.2875) = $0.371 million</td>
</tr>
<tr>
<td>Bid-ask spread regression</td>
<td>0.145 – 0.0022 ln (1.2) -0.015 (1) – 0.016 (.05) – 0.11 (0)= 12.88%</td>
<td>$0.521 (1-.1288) = $0.454 million</td>
</tr>
</tbody>
</table>

II. Private company sold to publicly traded company

- The key difference between this scenario and the previous scenario is that the seller of the business is not diversified but the buyer is (or at least the investors in the buyer are). Consequently, they can look at the same firm and see very different amounts of risk in the business with the seller seeing more risk than the buyer.
- The cash flows may also be affected by the fact that the tax rates for publicly traded companies can diverge from those of private owners.
- Finally, there should be no illiquidity discount to a public buyer, since investors in the buyer can sell their holdings in a market.
Revisiting the cost of equity and capital: Restaurant Valuation

<table>
<thead>
<tr>
<th></th>
<th>Private</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlevered beta</td>
<td>2.36</td>
<td>1.18</td>
</tr>
<tr>
<td>Debt to equity ratio</td>
<td>14.33%</td>
<td>14.33%</td>
</tr>
<tr>
<td>Tax rate</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Pre-tax cost of debt</td>
<td>7.50%</td>
<td>7.50%</td>
</tr>
<tr>
<td>Levered beta</td>
<td>2.56</td>
<td>1.28</td>
</tr>
<tr>
<td>Riskfree rate</td>
<td>4.25%</td>
<td>4.25%</td>
</tr>
<tr>
<td>Equity risk premium</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Cost of equity</td>
<td>14.5%</td>
<td>9.38%</td>
</tr>
<tr>
<td>After-tax cost of debt</td>
<td>4.50%</td>
<td>4.50%</td>
</tr>
<tr>
<td>Cost of capital</td>
<td>13.25%</td>
<td>8.76%</td>
</tr>
</tbody>
</table>

Revaluing the restaurant to a “public” buyer

<table>
<thead>
<tr>
<th></th>
<th>Private</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted EBIT =</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>Key person discount =</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>EBIT =</td>
<td>296</td>
<td>296</td>
</tr>
<tr>
<td>Expected growth rate =</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Return on capital =</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Reinvestment rate =</td>
<td>10.00%</td>
<td>10.00%</td>
</tr>
<tr>
<td>FCFF next year =</td>
<td>$163.04</td>
<td>$163.04</td>
</tr>
<tr>
<td>Cost of capital =</td>
<td>13.25%</td>
<td>8.76%</td>
</tr>
<tr>
<td>Value of business =</td>
<td>$1,449.22</td>
<td>$2,411.79</td>
</tr>
<tr>
<td>- Debt</td>
<td>$928.23</td>
<td>$928.23</td>
</tr>
<tr>
<td>Value of equity =</td>
<td>$520.99</td>
<td>$1,483.56</td>
</tr>
<tr>
<td>- Illiquidity discount</td>
<td>12.88%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Value of equity</td>
<td>$453.88</td>
<td>$1,483.56</td>
</tr>
</tbody>
</table>
So, what price should you ask for?

- Assume that you represent the chef/owner of the restaurant and that you were asking for a “reasonable” price for the restaurant. What would you ask for?
 - $454,000
 - $1.484 million
 - Some number in the middle
- If it is “some number in the middle”, what will determine what you will ultimately get for your business?
- How would you alter the analysis, if your best potential bidder is a private equity or VC fund rather than a publicly traded firm?

III. Private company for initial public offering

- In an initial public offering, the private business is opened up to investors who clearly are diversified (or at least have the option to be diversified).
- There are control implications as well. When a private firm goes public, it opens itself up to monitoring by investors, analysts and market.
- The reporting and information disclosure requirements shift to reflect a publicly traded firm.
Current Cashflows to Firm

\[
\begin{align*}
\text{EBIT}(1-t) : & \quad 2,933 \\
- \text{Nt CpX} : & \quad 2,633 \\
- \text{Chg WC} : & \quad 500 \\
\Rightarrow \text{FCFF} : & \quad <200 \\
\end{align*}
\]

Reinvestment Rate = 106.82%

Expected Growth in EBIT (1-t)

\[1.1217^{*}.2367 = .2528\]

25.28%

Expected terminal value

\[
\frac{\text{EBIT}(1-t)}{\text{FCFF}} = \frac{2,933}{<200} = 14.67
\]

Growth rate

\[
5\% \times (1.30) = 6.52 \%
\]

Return on Capital

\[\text{ROC} = 17.2\%\]

Terminal Value

\[
\frac{6743}{.1038 - .05} = 125,391
\]

Cost of Equity

11.16%

Cost of Debt

6 + 0.80%(1-.35) = 4.42%

Weighting E = 93.38% D = 6.62%

Riskfree Rate

Government Bond Rate = 6%

\[
\begin{align*}
\text{Beta} & = 1.29 \\
\times \text{Risk Premium} & = 4\%
\end{align*}
\]

Risk Premium for Sectors: 1.24

Risk Premium for Firm’s D/E Ratio: 7.09%

Risk Premium for Historical/US Country Risk: 3%

Discount capital (WACC) = 11.16% E = 93.38% D = 6.62% = 10.71%

Firm Value

\[
\begin{align*}
\text{Firm Value} & = 73,899 + \text{Cash} - \text{Debt} \\
& = 69,826
\end{align*}
\]

Riskfree Rate

6%

Beta

1.29

Risk Premium

4%

The twists in an initial public offering

- Valuation issues:
 - Use of the proceeds from the offering: The proceeds from the offering can be held as cash by the firm to cover future investment needs, paid to existing equity investors who want to cash out or used to pay down debt.
 - Warrants/ Special deals with prior equity investors: If venture capitalists and other equity investors from earlier iterations of fund raising have rights to buy or sell their equity at pre-specified prices, it can affect the value per share offered to the public.

- Pricing issues:
 - Institutional set-up: Most IPOs are backed by investment banking guarantees on the price, which can affect how they are priced.
 - Follow-up offerings: The proportion of equity being offered at initial offering and subsequent offering plans can affect pricing.
A. Use of the Proceeds

- The proceeds from an initial public offering can be
 - Taken out of the firm by the existing owners
 - Used to pay down debt and other obligations
 - Held as cash by the company to cover future reinvestment needs

- How you deal with the issuance will depend upon how the proceeds are used.
 - If taken out of the firm -> Ignore in valuation
 - If used to pay down debt -> Change the debt ratio, which may change the cost of capital and the value of the firm
 - If held as cash to cover future reinvestment needs -> Add the cash proceeds from the IPO to the DCF valuation of the company.

The Infosoft example

- We valued the equity in the DCF model at approximately $70 million.
 Assume that 20% of the equity in Infosoft will be offered to the public and that $10 million of the proceeds will be held by the firm to cover future investment needs and the rest will be withdrawn by existing equity investors. If the plan is to have 10 million shares outstanding in the firm, estimate the value per share.
B. Claims from prior equity investors

- When a private firm goes public, there are already equity investors in the firm, including the founder(s), venture capitalists and other equity investors. In some cases, these equity investors can have warrants, options or other special claims on the equity of the firm.
- If existing equity investors have special claims on the equity, the value of equity per share has to be affected by these claims. Specifically, these options need to be valued at the time of the offering and the value of equity reduced by the option value before determining the value per share.

C. The Investment Banking guarantee…

- Almost all IPOs are managed by investment banks and are backed by a pricing guarantee, where the investment banker guarantees the offering price to the issuer. If the price at which the issuance is made is lower than the guaranteed price, the investment banker will buy the shares at the guaranteed price and potentially bear the loss.
- Earlier, we estimated the value of equity per share in Infosoft at $8/share. As the investment banker, would this also be your offering price? If not, why not?
The evidence on IPO pricing

An investment opportunity?

- Assume that investment banks try to under price initial public offerings by approximately 10-15%. As an investor, what strategy would you adopt to take advantage of this behavior?

- Why might it not work?
D. The offering quantity

- Assume now that you are the owner of Infosoft and were offering 100% of the shares in the company in the offering to the public? Given the estimated equity value of $80 million, how much do you lose because of the under pricing (15%)?

- Assume that you were offering only 20% of the shares in the initial offering and plan to sell a large portion of your remaining stake over the following two years? Would your views of the under pricing and its effect on your wealth change as a consequence?

IV. An Intermediate Problem

Private to VC to Public offering…

- Assume that you have a private business operating in a sector, where publicly traded companies have an average beta of 1 and where the average correlation of firms with the market is 0.25. Consider the cost of equity at three stages (Riskfree rate = 4%; ERP = 5%):

 Stage 1: The nascent business, with a private owner, who is fully invested in that business.

 Perceived Beta = 1/0.25 = 4

 Cost of Equity = 4% + 4 (5%) = 24%

 Stage 2: Angel financing provided by specialized venture capitalist, who holds multiple investments, in high technology companies. (Correlation of portfolio with market is 0.5)

 Perceived Beta = 1/0.5 = 2

 Cost of Equity = 4% + 2 (5%) = 14%

 Stage 3: Public offering, where investors are retail and institutional investors, with diversified portfolios:

 Perceived Beta = 1

 Cost of Equity = 4% + 1 (5%) = 9%
To value this company…

Assume that this company will be fully owned by its current owner for two years, will access the technology venture capitalist at the start of year 3 and that is expected to either go public or be sold to a publicly traded firm at the end of year 5.

Growth rate 2% forever after year 5

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flow</th>
<th>Beta</th>
<th>Correlation</th>
<th>Cost of Equity</th>
<th>Terminal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$100</td>
<td>1</td>
<td>0.25</td>
<td>24.00%</td>
<td>$2,500</td>
</tr>
<tr>
<td>2</td>
<td>$125</td>
<td>1</td>
<td>0.25</td>
<td>24.00%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$150</td>
<td>1</td>
<td>0.5</td>
<td>14.00%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$165</td>
<td>1</td>
<td>0.5</td>
<td>14.00%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$170</td>
<td>1</td>
<td>0.5</td>
<td>14.00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$175</td>
<td>1</td>
<td>1</td>
<td>9.00%</td>
<td></td>
</tr>
</tbody>
</table>

Cumulated COE:

- Year 1: 1.2400
- Year 2: 1.5376
- Year 3: 1.7529
- Year 4: 1.9983
- Year 5: 2.2780
- Terminal: 2.4830

PV:

- Year 1: $80.65
- Year 2: $81.30
- Year 3: $85.57
- Year 4: $82.57
- Terminal: $1,172.07

Value of firm:

- Correct value, using changing costs of equity: $1,502
- Using 24% as cost of equity forever: $1,221
- Using 9% as cost of equity forever: $2,165

Private company valuation: Closing thoughts

- The value of a private business will depend on the potential buyer.
- If you are the seller of a private business, you will maximize value, if you can sell to:
 - A long term investor
 - Who is well diversified (or whose investors are)
 - And does not think too highly of you (as a person)
- If you are valuing a private business for legal purposes (tax or divorce court), the assumptions you use and the value you arrive at will depend on which side of the legal divide you are on.
- As a final proposition, always keep in mind that the owner of a private business has the option of investing his wealth in publicly traded stocks. There has to be a relationship between what you can earn on those investments and what you demand as a return on your business.