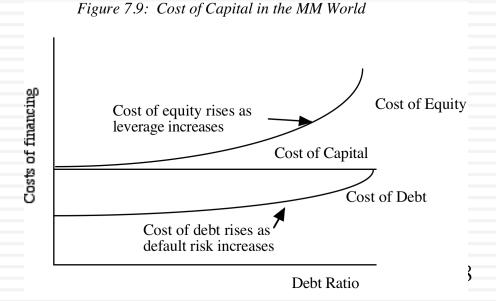
A Hypothetical Scenario

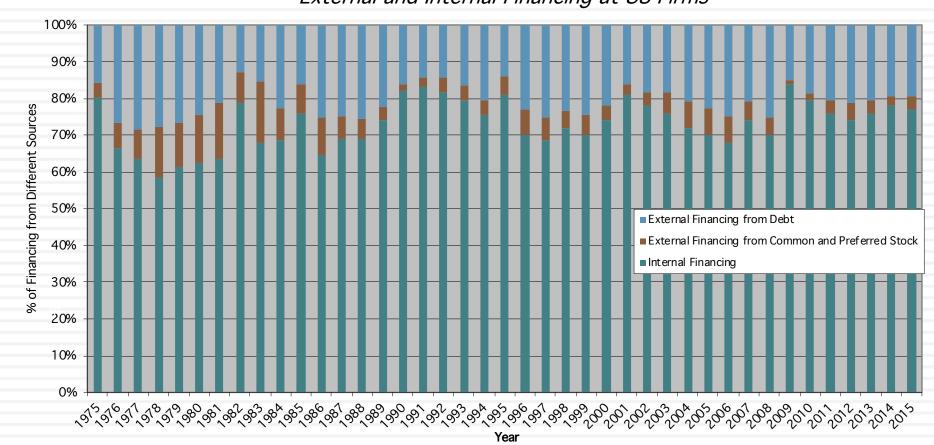

Assume that you live in a world where

- (a) There are no taxes
- (b) Managers have stockholder interests at heart and do what's best for stockholders.
- (c) No firm ever goes bankrupt
- (d) Equity investors are honest with lenders; there is no subterfuge or attempt to find loopholes in loan agreements.
- (e) Firms know their future financing needs with certainty
- ■What happens to the trade off between debt and equity? How much should a firm borrow?

The Miller-Modigliani Theorem

- In an environment, where there are no taxes, default risk or agency costs, capital structure is irrelevant.
- □ If the Miller Modigliani theorem holds:
 - A firm's value will be determined the quality of its investments and not by its financing mix.
 - The cost of capital of the firm will not change with leverage. As a firm increases its leverage, the cost of equity will increase just enough to

offset any gains to the leverage.


What do firms look at in financing?

- 29
- There are some who argue that firms follow a financing hierarchy, with retained earnings being the most preferred choice for financing, followed by debt and that new equity is the least preferred choice. In particular,
 - Managers value flexibility. Managers value being able to use capital (on new investments or assets) without restrictions on that use or having to explain its use to others.
 - Managers value control. Managers like being able to maintain control of their businesses.
- With flexibility and control being key factors:
 - Would you rather use internal financing (retained earnings) or external financing?
 - With external financing, would you rather use debt or equity?

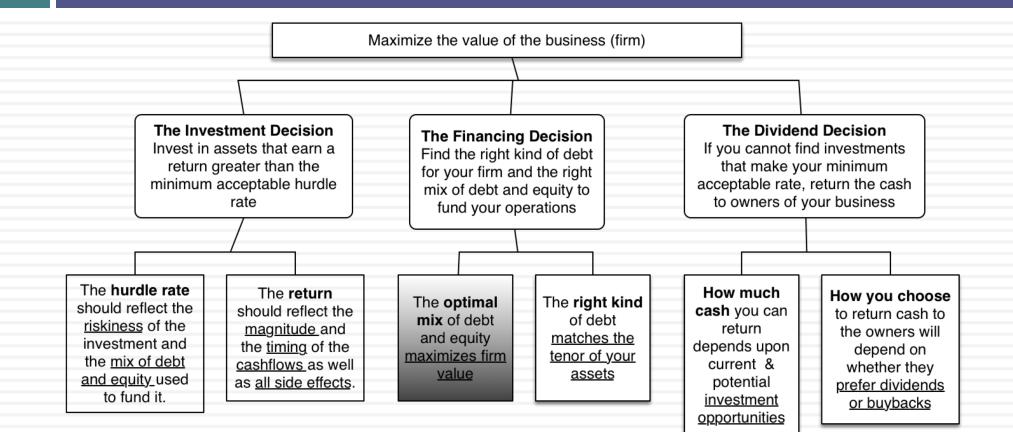
Preference rankings long-term finance: Results of a survey

Ranking	Source	Score
1	Retained Earnings	5.61
2	Straight Debt	4.88
3	Convertible Debt	3.02
4	External Common Equity	2.42
5	Straight Preferred Stock	2.22
6	Convertible Preferred	1.72

And the unsurprising consequences..

External and Internal Financing at US Firms

Aswath Damodaran

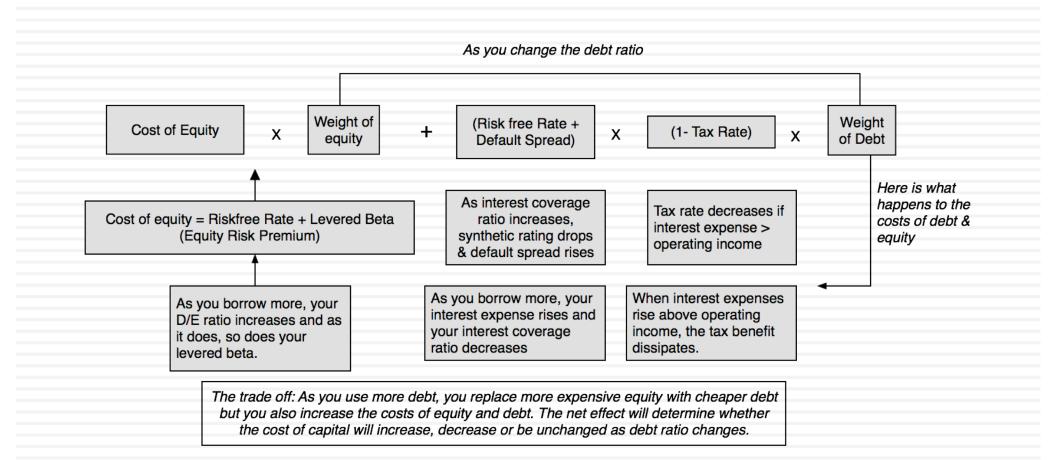

- You are reading the Wall Street Journal and notice a tombstone ad for a company, offering to sell convertible preferred stock. What would you hypothesize about the health of the company issuing these securities?
- a. Nothing

- b. Healthier than the average firm
- c. In much more financial trouble than the average firm

CAPITAL STRUCTURE: FINDING THE RIGHT FINANCING MIX

You can have too much debt... or too little..

The Big Picture..


Pathways to the Optimal

- 35
- 1. <u>The Cost of Capital Approach</u>: The optimal debt ratio is the one that minimizes the cost of capital for a firm.
- 2. <u>The Enhanced Cost of Capital approach</u>: The optimal debt ratio is the one that generates the best combination of (low) cost of capital and (high) operating income.
- 3. <u>The Adjusted Present Value Approach</u>: The optimal debt ratio is the one that maximizes the overall value of the firm.
- 4. <u>The Sector Approach</u>: The optimal debt ratio is the one that brings the firm closes to its peer group in terms of financing mix.
- 5. <u>The Life Cycle Approach</u>: The optimal debt ratio is the one that best suits where the firm is in its life cycle.

I. The Cost of Capital Approach

- Value of a Firm = Present Value of Cash Flows to the Firm, discounted back at the cost of capital.
- If the cash flows to the firm are held constant, and the cost of capital is minimized, the value of the firm will be maximized.
- Cost of Capital = Cost of Equity (E/(D+E)) + Pre-tax Cost of Debt (1-t) (D/(D+E)
 - The question then becomes a simple one. As the debt ratio changes, how does the cost of capital change?

The Debt Trade off on the Cost of Capital

- An article in an Asian business magazine argued that equity was cheaper than debt, because dividend yields are much lower than interest rates on debt.
 Do you agree with this statement?
- a. Yes

- b. No
- Can equity ever be cheaper than debt?
- a. Yes
- b. No

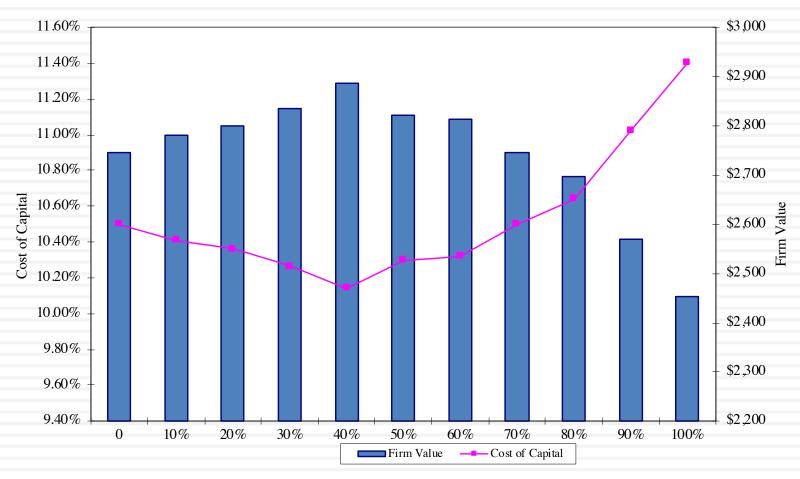
Applying Cost of Capital Approach: The Textbook Example

39

Assume the firm has \$200 million in cash flows, expected to grow 3% a year forever.

					-
D/(D+E)	Cost of Equity	After-tax Cost of Debt	Cost of Capital	Firm Value	
0	10.50%	4.80%	10.50%	\$2,747	
10%	11.00%	5.10%	10.41%	\$2,780	
20%	11.60%	5.40%	10.36%	\$2,799	
30%	12.30%	5.52%	10.27%	\$2,835	
40%	13.10%	5.70%	10.14%	\$2,885	
50%	14.50%	6.10%	10.30%	\$2,822	
60%	15.00%	7.20%	10.32%	\$2,814	
70%	16.10%	8.10%	10.50%	\$2,747	
80%	17.20%	9.00%	10.64%	\$2,696	
90%	18.40%	10.20%	11.02%	\$2,569	
100%	19.70%	11.40%	11.40%	\$2,452	

Value = $\frac{\text{Expected Cash flow to firm next year}}{(\text{Cost of capital } - g)} = -$


Aswath Damodaran

200(1.03) (Cost of capital -g) $\frac{1}{39}$

The U-shaped Cost of Capital Graph...

40

Cost of Capital and Firm Value

Aswath Damodaran

Current Cost of Capital: Disney

The beta for Disney's stock in November 2013 was 1.0013. The T. bond rate at that time was 2.75%. Using an estimated equity risk premium of 5.76%, we estimated the cost of equity for Disney to be 8.52%:

Cost of Equity = 2.75% + 1.0013(5.76%) = 8.52%

Disney's bond rating in May 2009 was A, and based on this rating, the estimated pretax cost of debt for Disney is 3.75%. Using a marginal tax rate of 36.1, the after-tax cost of debt for Disney is 2.40%.

After-Tax Cost of Debt = 3.75% (1 - 0.361) = 2.40%

The cost of capital was calculated using these costs and the weights based on market values of equity (121,878) and debt (15.961):

Cost of capital =

$$= 8.52\% \ \frac{121,878}{(15,961+121,878)} + 2.40\% \ \frac{15,961}{(15,961+121,878)} = 7.81\%$$

Mechanics of Cost of Capital Estimation

- 1. Estimate the Cost of Equity at different levels of debt:
 - Equity will become riskier -> Beta will increase -> Cost of Equity will increase.
 - Estimation will use levered beta calculation
- 2. Estimate the Cost of Debt at different levels of debt:
 - Default risk will go up and bond ratings will go down as debt goes up -> Cost of Debt will increase.
 - To estimating bond ratings, we will use the interest coverage ratio (EBIT/Interest expense)
- 3. Estimate the Cost of Capital at different levels of debt
- 4. Calculate the effect on Firm Value and Stock Price.

Laying the groundwork:

1. Estimate the unlevered beta for the firm

The Regression Beta: One approach is to use the regression beta (1.25) and then unlever, using the average debt to equity ratio (19.44%) during the period of the regression to arrive at an unlevered beta.

Unlevered beta = = 1.25 / (1 + (1 - 0.361)(0.1944)) = 1.1119

The Bottom up Beta: Alternatively, we can back to the source and estimate it from the betas of the businesses.

		_	Value of	Proportion	Unlevered		
Business	Revenues	EV/Sales	Business	of Disney	beta	Value	Proportion
Media Networks	\$20,356	3.27	\$66,580	49.27%	1.03	\$66,579.81	49.27%
Parks & Resorts	\$14,087	3.24	\$45,683	33.81%	0.70	\$45,682.80	33.81%
Studio							
Entertainment	\$5,979	3.05	\$18,234	13.49%	1.10	\$18,234.27	13.49%
Consumer Products	\$3,555	0.83	\$2,952	2.18%	0.68	\$2,951.50	2.18%
Interactive	\$1,064	1.58	\$1,684	1.25%	1.22	\$1,683.72	1.25%
Disney Operations	\$45,041		\$135,132	100.00%	0.9239	\$135,132.11	100.00%

Aswath Damodaran

2. Get Disney's current financials...

	Most recent fiscal year (2012-13)	Prior year
Revenues	\$45,041	\$42,278
EBITDA	\$10,642	\$10,850
Depreciation & Amortization	\$2,192	\$1,987
EBIT	\$9,450	\$8,863
Interest Expenses	\$349	\$564
EBITDA (adjusted for leases)	\$12,517	\$11,168
Depreciation (adjusted for leases)	\$ 2,485	\$2,239
EBIT (adjusted for leases)	\$10,032	\$8,929
Interest Expenses (adjusted for leases)	\$459	\$630