

Debt and Agency Costs

- Assume that you are a lender. Which of the following businesses would you perceive the greatest agency costs?
- A Technology firm
- A Large Regulated Electric Utility
- A Real Estate Corporation
- □ Why?

Loss of future financing flexibility

- When a firm borrows up to its capacity, it loses the flexibility of financing future projects with debt.
- Thus, if the firm is faced with an unexpected investment opportunity or a business shortfall, it will not be able to draw on debt capacity, if it has alread used it up.
- Proposition 5: Other things remaining equal, the more uncertain a firm is about its future financing requirements and projects, the less debt the firm will use for financing current projects.

What managers consider important in deciding on how much debt to carry...

 A survey of Chief Financial Officers of large U.S. companies provided the following ranking (from most important to least important) for the factors that they considered important in the financing decisions

Factor	Ranking (0-5)
1. Maintain financial flexibility	4.55
2. Ensure long-term survival	4.55
3. Maintain Predictable Source of Funds	4.05
4. Maximize Stock Price	3.99
5. Maintain financial independence	3.88
6. Maintain high debt rating	3.56
7. Maintain comparability with peer group	2.47

Debt: Summarizing the trade off

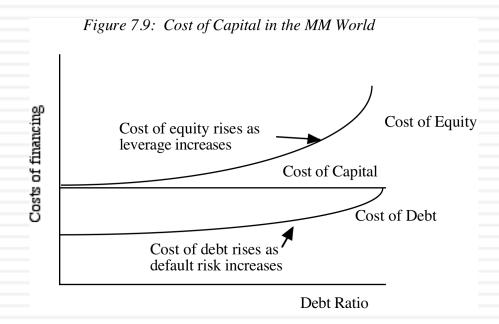
Advantages of Debt	Disadvantages of debt
1. Tax Benefit : Interest expenses on debt are tax deductible	1. Expected Bankruptcy Cost : The expected cost of going
but cash flows to equity are generally not.	bankrupt is a product of the probability of going bankrupt and
Implication: The higher the marginal tax rate, the greater the	the cost of going bankrupt. The latter includes both direct and
benefits of debt.	indirect costs. The probability of going bankrupt will be
	higher in businesses with more volatile earnings and the cost
	of bankruptcy will also vary across businesses.
	Implication:
	1. Firms with more stable earnings should borrow more, for any
	given level of earnings.
	2. Firms with lower bankruptcy costs should borrow more, for
	any given level of earnings.
2. Added Discipline: Borrowing money may force managers	2. Agency Costs: Actions that benefit equity investors may
to think about the consequences of the investment decisions a	hurt lenders. The greater the potential for this conflict of
little more carefully and reduce bad investments.	interest, the greater the cost borne by the borrower (as higher
Implication: As the separation between managers and	interest rates or more covenants).
stockholders increases, the benefits to using debt will go up.	Implication: Firms where lenders can monitor/ control how
	their money is being used should be able to borrow more than
	firms where this is difficult to do.
	3. Loss of flexibility : Using up available debt capacity today
	will mean that you cannot draw on it in the future. This loss of
	flexibility can be disastrous if funds are needed and access to
	capital is shut off.
	Implication:
	1. Firms that can forecast future funding needs better
	should be able to borrow more.
	2. Firms with better access to capital markets should be
	more willing to borrow more today.

The Trade off for Disney, Vale, Tata Motors and Baidu

Debt trade off	Discussion of relative benefits/costs					
Tax benefits	Marginal tax rates of 40% in US (Disney & Bookscape), 32.5% in India (Tata					
	Motors), 25% in China (Baidu) and 34% in Brazil (Vale), but there is an offsetting					
	tax benefit for equity in Brazil (interest on equity capital is deductible).					
Added	The benefits should be highest at Disney, where there is a clear separation of					
Discipline	ownership and management and smaller at the remaining firms.					
Expected	Volatility in earnings: Higher at Baidu (young firm in technology), Tata Motors					
Bankruptcy	(cyclicality) and Vale (commodity prices) and lower at Disney (diversified across					
Costs	entertainment companies).					
	Indirect bankruptcy costs likely to be highest at Tata Motors, since it's products					
	(automobiles) have long lives and require service and lower at Disney and Baidu.					
Agency Costs	Highest at Baidu, largely because it's assets are intangible and it sells services and					
	lowest at Vale (where investments are in mines, highly visible and easily					
	monitored) and Tata Motors (tangible assets, family group backing). At Disney,					
	the agency costs will vary across its business, higher in the movie and					
	broadcasting businesses and lower at theme parks.					
Flexibility	Baidu will value flexibility more than the other firms, because technology is a					
needs	shifting and unpredictable business, where future investment needs are difficult to					
	forecast. The flexibility needs should be lower at Disney and Tata Motors, since					
	they are mature companies with well-established investment needs. At Vale, the					
	need for investment funds may vary with commodity prices, since the firm grows					
	by acquiring both reserves and smaller companies. At Bookscape, the difficulty of					
	accessing external capital will make flexibility more necessary.					

Application Test: Would you expect your firm to gain or lose from using a lot of debt?

- Consider, for your firm,
 - a. The potential tax benefits of borrowing
 - b. The benefits of using debt as a disciplinary mechanism
 - c. The potential for expected bankruptcy costs
 - d. The potential for agency costs
 - e. The need for financial flexibility
- Would you expect your firm to have a high debt ratio or a low debt ratio?
- Does the firm's current debt ratio meet your expectations?

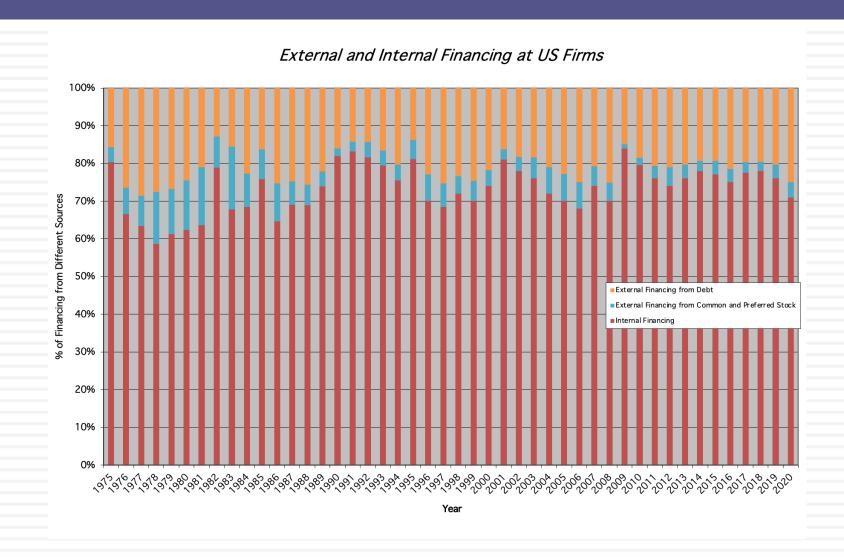

A Hypothetical...

Assume that you live in a world where

- (a) There are no taxes
- (b) Managers have stockholder interests at heart and do what's best for stockholders.
- (c) No firm ever goes bankrupt
- (d) Equity investors are honest with lenders; there is no subterfuge or attempt to find loopholes in loan agreements.
- (e) Firms know their future financing needs with certainty
- What happens to the trade off between debt and equity? How much should a firm borrow?

The Miller-Modigliani Theorem


- In an environment, where there are no taxes, default risk or agency costs, capital structure is irrelevant.
- If the Miller Modigliani theorem holds:
 - A firm's value will be determined the quality of its investments and not by its financing mix.
 - The cost of capital of the firm will not change with leverage.


What do firms look at in financing?

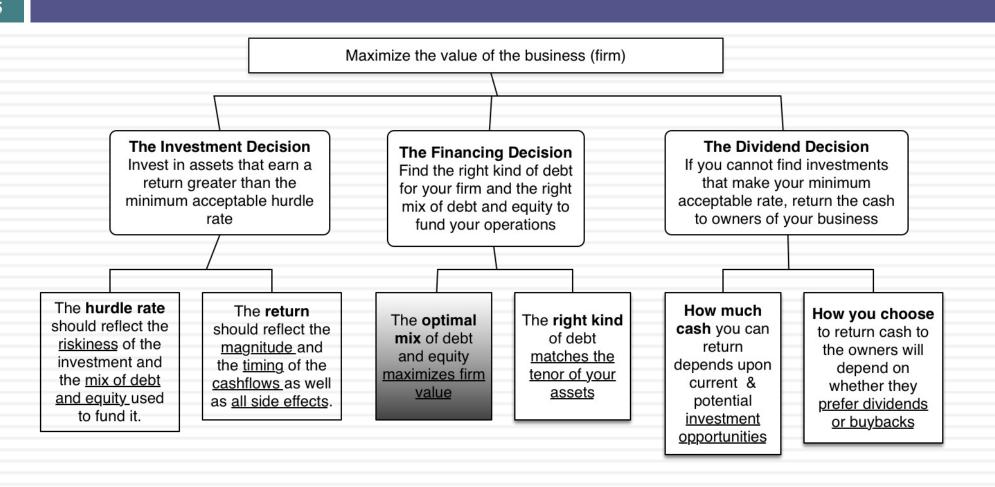
- There are some who argue that firms follow a financing hierarchy, with retained earnings being the most preferred choice for financing, followed by debt and that new equity is the least preferred choice. In particular,
 - Managers value flexibility. Managers value being able to use capital (on new investments or assets) without restrictions on that use or having to explain its use to others.
 - Managers value control. Managers like being able to maintain control of their businesses.
- With flexibility and control being key factors:
 - Would you rather use internal financing (retained earnings) or external financing?
 - With external financing, would you rather use debt or equity?

A Financing Hierarchy

And the unsurprising consequences..

Financing Choices

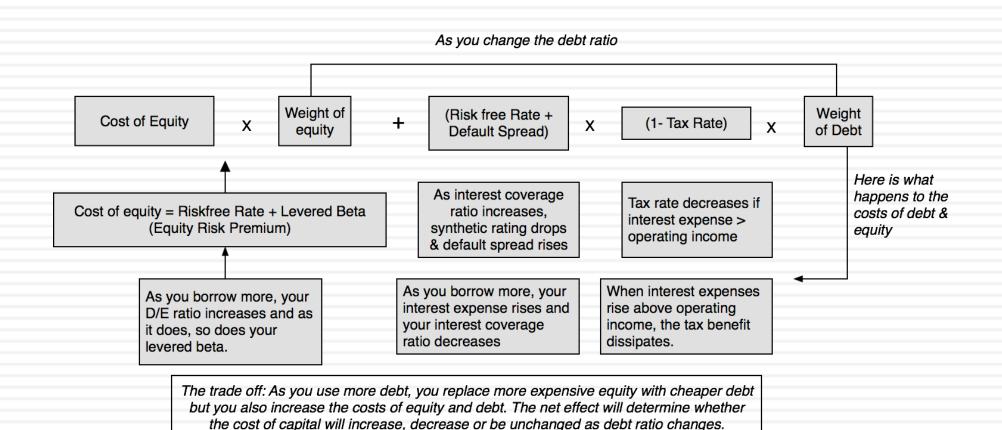
- You are reading the Wall Street Journal and notice a tombstone ad for a company, offering to sell convertible preferred stock. What would you hypothesize about the health of the company issuing these securities?
 - a. Nothing
 - b. Healthier than the average firm
 - c. In much more financial trouble than the average firm


Bed Bath & Beyond Inc.
Announces Proposed Offering
of Series A Convertible
Preferred Stock and Warrants

CAPITAL STRUCTURE: FINDING THE RIGHT FINANCING MIX

You can have too much debt... or too little..

The Big Picture..


Pathways to the Optimal

- The Cost of Capital Approach: The optimal debt ratio is the one that minimizes the cost of capital for a firm.
- The Enhanced Cost of Capital approach: The optimal debt ratio is the one that generates the best combination of (low) cost of capital and (high) operating income.
- The Adjusted Present Value Approach: The optimal debt ratio is the one that maximizes the overall value of the firm.
- The Sector Approach: The optimal debt ratio is the one that brings the firm closes to its peer group in terms of financing mix.
- 5. The Life Cycle Approach: The optimal debt ratio is the one that best suits where the firm is in its life cycle.

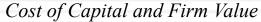
I. The Cost of Capital Approach

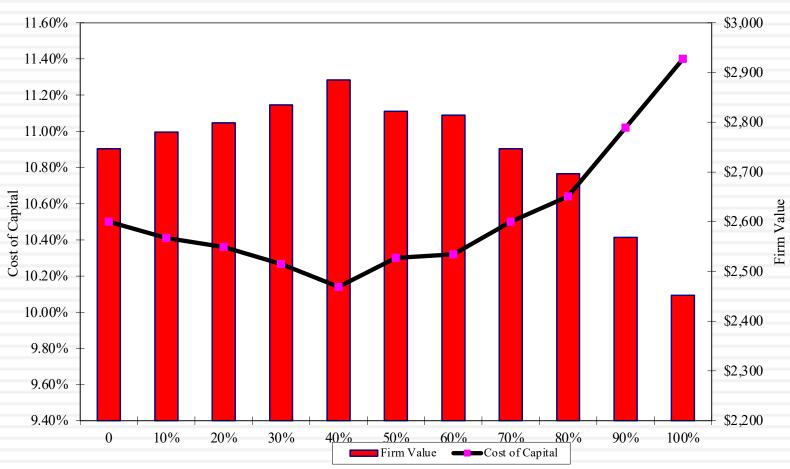
- Value of a Firm = Present Value of Cash Flows to the Firm, discounted back at the cost of capital.
- If the cash flows to the firm are held constant, and the cost of capital is minimized, the value of the firm will be maximized.
- Cost of Capital = Cost of Equity (E/(D+E)) + Pre-tax
 Cost of Debt (1- tax rate) (D/(D+E)
 - ☐ The question then becomes a simple one. As the debt ratio changes, how does the cost of capital change?

The Debt Trade off on the Cost of Capital

Costs of Debt & Equity

- An article in an Asian business magazine argued that equity was cheaper than debt, because dividend yields are much lower than interest rates on debt. Do you agree with this statement?
- a. Yes
- b. No
- Can equity ever be cheaper than debt?
- a. Yes
- b. No


Applying Cost of Capital Approach: The Textbook Example


Assume the firm has \$200 million in cash flows, expected to grow 3% a year forever.

D/(D+E)	Cost of Equity	After-tax Cost of Debt	Cost of Capital	Firm Value
0	10.50%	4.80%	10.50%	\$2,747
10%	11.00%	5.10%	10.41%	\$2,780
20%	11.60%	5.40%	10.36%	\$2,799
30%	12.30%	5.52%	10.27%	\$2,835
40%	13.10%	5.70%	10.14%	\$2,885
50%	14.50%	6.10%	10.30%	\$2,822
60%	15.00%	7.20%	10.32%	\$2,814
70%	16.10%	8.10%	10.50%	\$2,747
80%	17.20%	9.00%	10.64%	\$2,696
90%	18.40%	10.20%	11.02%	\$2,569
100%	19.70%	11.40%	11.40%	\$2,452

Value =
$$\frac{\text{Expected Cash flow to firm next year}}{\text{(Cost of capital - g)}} = \frac{200(1.03)}{\text{(Cost of capital - g)}}$$

The U-shaped Cost of Capital Graph...

Current Cost of Capital: Disney

The beta for Disney's stock in November 2013 was 1.0013. The T. bond rate at that time was 2.75%. Using an estimated equity risk premium of 5.76%, we estimated the cost of equity for Disney to be 8.52%:

Cost of Equity =
$$2.75\% + 1.0013(5.76\%) = 8.52\%$$

Disney's bond rating in May 2009 was A, and based on this rating, the estimated pretax cost of debt for Disney is 3.75%. Using a marginal tax rate of 36.1, the after-tax cost of debt for Disney is 2.40%.

After-Tax Cost of Debt =
$$3.75\%$$
 (1 – 0.361) = 2.40%

□ The cost of capital was calculated using these costs and the weights based on market values of equity (121,878) and debt (15.961):

Cost of capital =
$$= 8.52\% \frac{121,878}{(15,961+121,878)} + 2.40\% \frac{15,961}{(15,961+121,878)} = 7.81\%$$

Mechanics of Cost of Capital Estimation

- 1. Estimate the Cost of Equity at different levels of debt:
 - Equity will become riskier -> Beta will increase -> Cost of Equity will increase.
 - Estimation will use levered beta calculation
- 2. Estimate the Cost of Debt at different levels of debt:
 - Default risk will go up and bond ratings will go down as debt goes up -> Cost of Debt will increase.
 - To estimating bond ratings, we will use the interest coverage ratio (EBIT/Interest expense)
- 3. Estimate the Cost of Capital at different levels of debt
- 4. Calculate the effect on Firm Value and Stock Price.

Laying the groundwork:

1. Estimate the unlevered beta for the firm

The Regression Beta: One approach is to use the regression beta (1.25) and then unlever, using the average debt to equity ratio (19.44%) during the period of the regression to arrive at an unlevered beta.

Unlevered beta =
$$= 1.25 / (1 + (1 - 0.361)(0.1944)) = 1.1119$$

The Bottom up Beta: Alternatively, we can back to the source and estimate it from the betas of the businesses.

			Value of	Proportion	Unlevered		
Business	Revenues	EV/Sales	Business	of Disney	beta	Value	Proportion
Media Networks	\$20,356	3.27	\$66,580	49.27%	1.03	\$66,579.81	49.27%
Parks & Resorts	\$14,087	3.24	\$45,683	33.81%	0.70	\$45,682.80	33.81%
Studio							
Entertainment	\$5,979	3.05	\$18,234	13.49%	1.10	\$18,234.27	13.49%
Consumer Products	\$3,555	0.83	\$2,952	2.18%	0.68	\$2,951.50	2.18%
Interactive	\$1,064	1.58	\$1,684	1.25%	1.22	\$1,683.72	1.25%
Disney Operations	\$45,041		\$135,132	100.00%	0.9239	\$135,132.11	100.00%

2. Get Disney's current financials...

	Most recent fiscal year (2012-13)	Prior year
Revenues	\$45,041	\$42,278
EBITDA	\$10,642	\$10,850
Depreciation & Amortization	\$2,192	\$1,987
EBIT	\$9,450	\$8,863
Interest Expenses	\$349	\$564
EBITDA (adjusted for leases)	\$12,517	\$11,168
Depreciation (adjusted for leases)	\$ 2,485	\$2,239
EBIT (adjusted for leases)	\$10,032	\$8,929
Interest Expenses (adjusted for leases)	\$459	\$630

Step 1: Cost of Equity

Debt to Capital Ratio	D/E Ratio	Levered Beta	Cost of Equity
0%	0.00%	0.9239	8.07%
10%	11.11%	0.9895	8.45%
20%	25.00%	1.0715	8.92%
30%	42.86%	1.1770	9.53%
40%	66.67%	1.3175	10.34%
50%	100.00%	1.5143	11.48%
60%	150.00%	1.8095	13.18%
70%	233.33%	2.3016	16.01%
80%	400.00%	3.2856	21.68%
90%	900.00%	6.2376	38.69%

Levered Beta = 0.9239 (1 + (1 - .361) (D/E))Cost of equity = 2.75% + Levered beta * 5.76%

Step 2: Estimating Cost of Debt

```
Start with the market value of the firm = 121,878 + 15,961 = 137,839 million
D/(D+E)
                 0.00%
                         10.00%
                                  Debt to capital
                                  D/E = 10/90 = .1111
                         11.11%
D/E
                 0.00%
$ Debt
                         $13,784 10% of $137,839
                 $0
                 $12,517 $12,517 Same as 0% debt
EBITDA
                 $ 2,485 $ 2,485 Same as 0% debt
Depreciation
EBIT
                 $10,032 $10,032 Same as 0% debt
                         $434 Pre-tax cost of debt * $ Debt
                 $0
Interest
Pre-tax Int. cov
                         23.10
                                  EBIT/ Interest Expenses
Likely Rating
                 AAA
                         AAA
                                  From Ratings table
Pre-tax cost of debt 3.15%
                         3.15%
                                  Riskless Rate + Spread
```

The Ratings Table

		I	1
Interest coverage ratio is	Rating is	Spread is	Interest rate
> 8.50	Aaa/AAA	0.40%	3.15%
6.5 - 8.5	Aa2/AA	0.70%	3.45%
5.5 - 6.5	A1/A+	0.85%	3.60%
4.25 - 5.5	A2/A	1.00%	3.75%
3 - 4.25	A3/A-	1.30%	4.05%
2.5 -3	Baa2/BBB	2.00%	4.75%
2.25 –2.5	Ba1/BB+	3.00%	5.75%
2 - 2.25	Ba2/BB	4.00%	6.75%
1.75 -2	B1/B+	5.50%	8.25%
1.5 - 1.75	B2/B	6.50%	9.25%
1.25 -1.5	B3/B-	7.25%	10.00%
0.8 -1.25	Caa/CCC	8.75%	11.50%
0.65 - 0.8	Ca2/CC	9.50%	12.25%
0.2 - 0.65	C2/C	10.50%	13.25%
< 0.2	D2/D	12.00%	14.75%

T.Bond rate =2.75%

A Test: Can you do the 30% level?

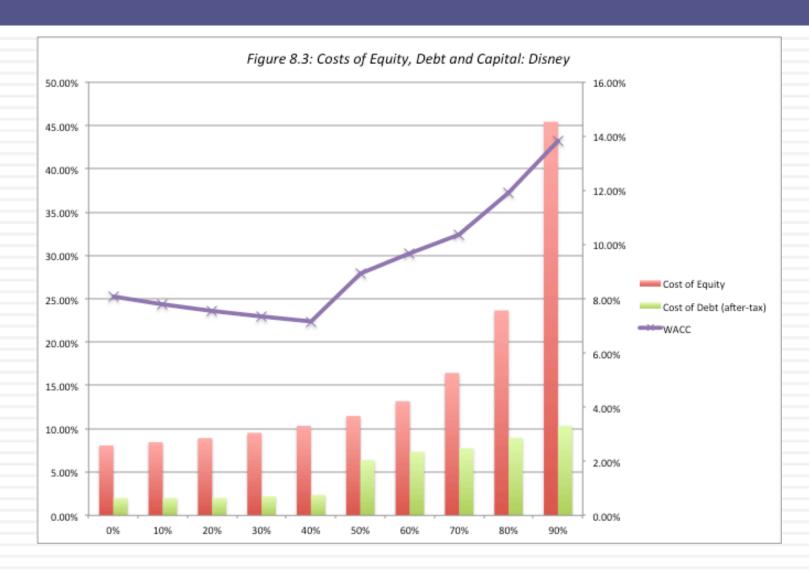
		Iteration 1 (Debt @AAA rate)	Iteration 2 (Debt @AA rate)
D/(D+E)	20.00%	30.00%	30.00%
D/E	25.00%	30/70=42.86%	
\$ Debt	\$27,568	\$41,352	
EBITDA	\$12,517	\$12.517	
Depreciation	\$2,485	\$2,485	
EBIT	\$10,032	\$10.032	
Interest expense	\$868	41352*.0315=1,302	41352*.0345=1427
Interest coverage ratio	11.55	10032/1302=7.7	10032/1427=7.03
Likely rating	AAA	AA	AA
Pretax cost of debt	3.15%	3.45%	3.45%

Aswath Damodaran

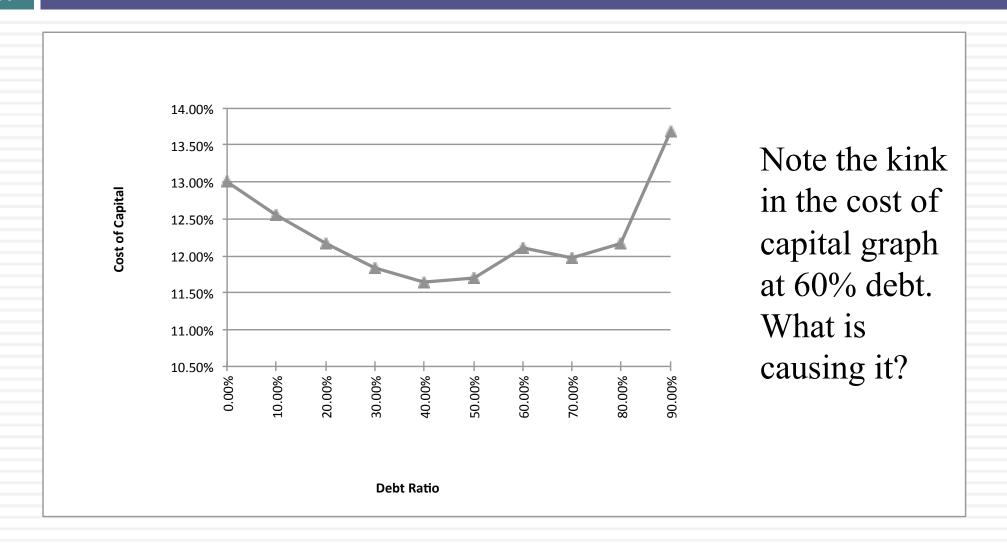
49

Bond Ratings, Cost of Debt and Debt Ratios

			Interest		Pre-tax		After-tax
Debt		Interest	Coverage		cost of		cost of
Ratio	\$ Debt	Expense	Ratio	Bond Rating	debt	Tax rate	debt
0%	\$0	\$0	8	Aaa/AAA	3.15%	36.10%	2.01%
10%	\$13,784	\$434	23.10	Aaa/AAA	3.15%	36.10%	2.01%
20%	\$27,568	\$868	11.55	Aaa/AAA	3.15%	36.10%	2.01%
30%	\$41,352	\$1,427	7.03	Aa2/AA	3.45%	36.10%	2.20%
40%	\$55,136	\$2,068	4.85	A2/A	3.75%	36.10%	2.40%
50%	\$68,919	\$6,892	1.46	B3/B-	10.00%	36.10%	6.39%
60%	\$82,703	\$9,511	1.05	Caa/CCC	11.50%	36.10%	7.35%
70%	\$96,487	\$11,096	0.90	Caa/CCC	11.50%	32.64%	7.75%
80%	\$110,271	\$13,508	0.74	Ca2/CC	12.25%	26.81%	8.97%
90%	\$124,055	\$16,437	0.61	C2/C	13.25%	22.03%	10.33%


Stated versus Effective Tax Rates

- You need taxable income for interest to provide a tax savings. Note that the EBIT at Disney is \$10,032 million. As long as interest expenses are less than \$10,032 million, interest expenses remain fully tax-deductible and earn the 36.1% tax benefit. At an 60% debt ratio, the interest expenses are \$9,511 million and the tax benefit is therefore 36.1% of this amount.
- At a 70% debt ratio, however, the interest expenses balloon to \$11,096 million, which is greater than the EBIT of \$10,032 million. We consider the tax benefit on the interest expenses up to this amount:
 - Maximum Tax Benefit = EBIT * Marginal Tax Rate = \$10,032 million * 0.361= \$ 3,622 million
 - Adjusted Marginal Tax Rate = Maximum Tax Benefit/Interest Expenses = \$3,622/\$11,096 = 32.64%


Step 3: Disney's cost of capital schedule...

			Cost of Debt (after-	
Debt Ratio	Beta	Cost of Equity	tax)	WACC
0%	0.9239	8.07%	2.01%	8.07%
10%	0.9895	8.45%	2.01%	7.81%
20%	1.0715	8.92%	2.01%	7.54%
30%	1.1770	9.53%	2.20%	7.33%
40%	1.3175	10.34%	2.40%	7.16%
50%	1.5143	11.48%	6.39%	8.93%
60%	1.8095	13.18%	7.35%	9.68%
70%	2.3762	16.44%	7.75%	10.35%
80%	3.6289	23.66%	8.97%	11.90%
90%	7.4074	45.43%	10.33%	13.84%

Disney: Cost of Capital Chart

Disney: Cost of Capital Chart: 1997

The cost of capital approach suggests that Disney should do the following...

- Disney currently has \$15.96 billion in debt. The optimal dollar debt (at 40%) is roughly \$55.1 billion. Disney has excess debt capacity of 39.14 billion.
- To move to its optimal and gain the increase in value,
 Disney should borrow \$ 39.14 billion and buy back stock.
- Given the magnitude of this decision, you should expect to answer three questions:
 - Why should we do it?
 - What if something goes wrong?
 - What if we don't want (or cannot) buy back stock and want to make investments with the additional debt capacity?

Aswath Damodaran