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Underlying	Theme:	Searching	for	an	Elusive	
Premium
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¨ Traditional	discounted	cashflow models	under	estimate	
the	value	of	investments,	where	there	are	options	
embedded	in	the	investments	to
¤ Delay	or	defer	making	the	investment	(delay)
¤ Adjust	or	alter	production	schedules	as	price	changes	(flexibility)
¤ Expand	into	new	markets	or	products	at	later	stages	in	the	
process,	based	upon	observing	favorable	outcomes	at	the	early	
stages	(expansion)

¤ Stop	production	or	abandon	investments	if	the	outcomes	are	
unfavorable	at	early	stages	(abandonment)

¨ Put	another	way,	real	option	advocates	believe	that	you	
should	be	paying	a	premium	on	discounted	cashflow
value	estimates.
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A	bad	investment…
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Becomes	a	good	one…
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Three	Basic	Questions
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¨ When	is	there	a	real	option	embedded	in	a	decision	
or	an	asset?

¨ When	does	that	real	option	have	significant	
economic	value?

¨ Can	that	value	be	estimated	using	an	option	pricing	
model?
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When	is	there	an	option	embedded	in	an	
action?
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¨ An	option	provides	the	holder	with	the	right	to	buy	
or	sell	a	specified	quantity	of	an	underlying	asset	at	
a	fixed	price	(called	a	strike	price	or	an	exercise	
price)	at	or	before	the	expiration	date	of	the	option.	

¨ There	has	to	be	a	clearly	defined	underlying	asset	
whose	value	changes	over	time	in	unpredictable	
ways.

¨ The	payoffs	on	this	asset	(real	option)	have	to	be	
contingent	on	an	specified	event	occurring	within	a	
finite	period.
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Payoff	Diagram	on	a	Call
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Payoff	Diagram	on	Put	Option
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When	does	the	option	have	significant	
economic	value?
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¨ For	an	option	to	have	significant	economic	value,	
there	has	to	be	a	restriction	on	competition	in	the	
event	of	the	contingency.	In	a	perfectly	competitive	
product	market,	no	contingency,	no	matter	how	
positive,	will	generate	positive	net	present	value.

¨ At	the	limit,	real	options	are	most	valuable	when	you	
have	exclusivity	- you	and	only	you	can	take	
advantage	of	the	contingency.	They	become	less	
valuable	as	the	barriers	to	competition	become	less	
steep.
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Determinants	of	option	value
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¨ Variables	Relating	to	Underlying	Asset
¤ Value	of	Underlying	Asset;	as	this	value	increases,	the	right	to	buy	at	a	fixed	price	

(calls)	will	become	more	valuable	and	the	right	to	sell	at	a	fixed	price	(puts)	will	
become	less	valuable.

¤ Variance	in	that	value;	as	the	variance	increases,	both	calls	and	puts	will	become	
more	valuable	because	all	options	have	limited	downside	and	depend	upon	price	
volatility	for	upside.

¤ Expected	dividends	on	the	asset,	which	are	likely	to	reduce	the	price	appreciation	
component	of	the	asset,	reducing	the	value	of	calls	and	increasing	the	value	of	
puts.

¨ Variables	Relating	to	Option
¤ Strike	Price	of	Options;	the	right	to	buy	(sell)	at	a	fixed	price	becomes	more	(less)	

valuable	at	a	lower	price.
¤ Life	of	the	Option;	both	calls	and	puts	benefit	from	a	longer	life.

¨ Level	of	Interest	Rates;	as	rates	increase,	the	right	to	buy	(sell)	at	a	fixed	
price	in	the	future	becomes	more	(less)	valuable.
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When	can	you	use	option	pricing	models	to	
value	real	options?
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¨ The	notion	of	a	replicating	portfolio	that	drives	option	pricing	
models	makes	them	most	suited	for	valuing	real	options	
where
¤ The	underlying	asset	is	traded	- this	yield	not	only	observable	prices	

and	volatility	as	inputs	to	option	pricing	models	but	allows	for	the	
possibility	of	creating	replicating	portfolios

¤ An	active	marketplace	exists	for	the	option	itself.
¤ The	cost	of	exercising	the	option	is	known	with	some	degree	of	

certainty.
¨ When	option	pricing	models	are	used	to	value	real	assets,	we	

have	to	accept	the	fact	that
¤ The	value	estimates	that	emerge	will	be	far	more	imprecise.
¤ The	value	can	deviate	much	more	dramatically	from	market	price	

because	of	the	difficulty	of	arbitrage.
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Creating	a	replicating	portfolio
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¨ The	objective	in	creating	a	replicating	portfolio	is	to	
use	a	combination	of	riskfree	borrowing/lending	and	
the	underlying	asset	to	create	the	same	cashflows	as	
the	option	being	valued.	
¤ Call	=	Borrowing	+	Buying	D	of	the	Underlying	Stock		
¤ Put	=	Selling	Short	D	on	Underlying	Asset	+	Lending
¤ The	number	of	shares	bought	or	sold	is	called	the	option	
delta.

¨ The	principles	of	arbitrage	then	apply,	and	the	value	
of	the	option	has	to	be	equal	to	the	value	of	the	
replicating	portfolio.	
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The	Binomial	Option	Pricing	Model
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The	Limiting	Distributions….
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¨ As	the	time	interval	is	shortened,	the	limiting	
distribution,	as	t	->	0,	can	take	one	of	two	forms.	
¤ If	as	t	->	0,	price	changes	become	smaller,	the	limiting	
distribution	is	the	normal	distribution	and	the	price	process	is	a	
continuous	one.	

¤ If	as	t->0,	price	changes	remain	large,	the	limiting	distribution	is	
the	poisson distribution,	i.e.,	a	distribution	that	allows	for	price	
jumps.

¨ The	Black-Scholes	model	applies	when	the	limiting	
distribution	is	the	normal	distribution	,	and	explicitly	
assumes	that	the	price	process	is	continuous	and	that	
there	are	no	jumps	in	asset	prices.	
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Black	and	Scholes…
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¨ The	version	of	the	model	presented	by	Black	and	Scholes	
was	designed	to	value	European	options,	which	were	
dividend-protected.

¨ The	value	of	a	call	option	in	the	Black-Scholes	model	can	
be	written	as	a	function	of	the	following	variables:
¤ S	=	Current	value	of	the	underlying	asset
¤ K	=	Strike	price	of	the	option
¤ t	=	Life	to	expiration	of	the	option
¤ r	=	Riskless	interest	rate	corresponding	to	the	life	of	the	option
¤ s2 =	Variance	in	the	ln(value)	of	the	underlying	asset
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The	Black	Scholes	Model
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Value	of	call	=	S	N	(d1)	- K	e-rt N(d2)
where

d2	=	d1	-s √t

¨ The	replicating	portfolio	is	embedded	in	the	Black-
Scholes	model.	To	replicate	this	call,	you	would	need	
to
¤ Buy	N(d1)	shares	of	stock;	N(d1)	is	called	the	option	delta
¤ Borrow	K	e-rt N(d2)	

d1 =  
ln S
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The	Normal	Distribution
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d N(d) d N(d) d N(d)
-3.00 0.0013       -1.00 0.1587       1.05 0.8531       
-2.95 0.0016       -0.95 0.1711       1.10 0.8643       
-2.90 0.0019       -0.90 0.1841       1.15 0.8749       
-2.85 0.0022       -0.85 0.1977       1.20 0.8849       
-2.80 0.0026       -0.80 0.2119       1.25 0.8944       
-2.75 0.0030       -0.75 0.2266       1.30 0.9032       
-2.70 0.0035       -0.70 0.2420       1.35 0.9115       
-2.65 0.0040       -0.65 0.2578       1.40 0.9192       
-2.60 0.0047       -0.60 0.2743       1.45 0.9265       
-2.55 0.0054       -0.55 0.2912       1.50 0.9332       
-2.50 0.0062       -0.50 0.3085       1.55 0.9394       
-2.45 0.0071       -0.45 0.3264       1.60 0.9452       
-2.40 0.0082       -0.40 0.3446       1.65 0.9505       
-2.35 0.0094       -0.35 0.3632       1.70 0.9554       
-2.30 0.0107       -0.30 0.3821       1.75 0.9599       
-2.25 0.0122       -0.25 0.4013       1.80 0.9641       
-2.20 0.0139       -0.20 0.4207       1.85 0.9678       
-2.15 0.0158       -0.15 0.4404       1.90 0.9713       
-2.10 0.0179       -0.10 0.4602       1.95 0.9744       
-2.05 0.0202       -0.05 0.4801       2.00 0.9772       
-2.00 0.0228       0.00 0.5000       2.05 0.9798       
-1.95 0.0256       0.05 0.5199       2.10 0.9821       
-1.90 0.0287       0.10 0.5398       2.15 0.9842       
-1.85 0.0322       0.15 0.5596       2.20 0.9861       
-1.80 0.0359       0.20 0.5793       2.25 0.9878       
-1.75 0.0401       0.25 0.5987       2.30 0.9893       
-1.70 0.0446       0.30 0.6179       2.35 0.9906       
-1.65 0.0495       0.35 0.6368       2.40 0.9918       
-1.60 0.0548       0.40 0.6554       2.45 0.9929       
-1.55 0.0606       0.45 0.6736       2.50 0.9938       
-1.50 0.0668       0.50 0.6915       2.55 0.9946       
-1.45 0.0735       0.55 0.7088       2.60 0.9953       
-1.40 0.0808       0.60 0.7257       2.65 0.9960       
-1.35 0.0885       0.65 0.7422       2.70 0.9965       
-1.30 0.0968       0.70 0.7580       2.75 0.9970       
-1.25 0.1056       0.75 0.7734       2.80 0.9974       
-1.20 0.1151       0.80 0.7881       2.85 0.9978       
-1.15 0.1251       0.85 0.8023       2.90 0.9981       
-1.10 0.1357       0.90 0.8159       2.95 0.9984       
-1.05 0.1469       0.95 0.8289       3.00 0.9987       
-1.00 0.1587       1.00 0.8413       

d1

N(d1)
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Adjusting	for	Dividends
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¨ If	the	dividend	yield	(y	=	dividends/	Current	value	of	the	
asset)	of	the	underlying	asset	is	expected	to	remain	
unchanged	during	the	life	of	the	option,	the	Black-Scholes	
model	can	be	modified	to	take	dividends	into	account.

¨ C	=	S	e-yt N(d1)	- K	e-rt N(d2)
where,

d2	=	d1	-s √t

¨ The	value	of	a	put	can	also	be	derived:
¨ P	=	K	e-rt (1-N(d2))	- S	e-yt (1-N(d1))

d1 =  
ln S

K
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Choice	of	Option	Pricing	Models
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¨ Most	practitioners	who	use	option	pricing	models	to	
value	real	options	argue	for	the	binomial	model	over	the	
Black-Scholes	and	justify	this	choice	by	noting	that
¤ Early	exercise	is	the	rule	rather	than	the	exception	with	real	
options

¤ Underlying	asset	values	are	generally	discontinous.
¨ If	you	can	develop	a	binomial	tree	with	outcomes	at	
each	node,	it	looks	a	great	deal	like	a	decision	tree	from	
capital	budgeting.	The	question	then	becomes	when	and	
why	the	two	approaches	yield	different	estimates	of	
value.
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The	Decision	Tree	Alternative
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¨ Traditional	decision	tree	analysis	tends	to	use
¤ One	cost	of	capital	to	discount	cashflows in	each	branch	to	the	present
¤ Probabilities	to	compute	an	expected	value
¤ These	values	will	generally	be	different	from	option	pricing	model	

values

¨ If	you	modified	decision	tree	analysis	to
¤ Use	different	discount	rates	at	each	node	to	reflect	where	you	are	in	

the	decision	tree	(This	is	the	Copeland	solution) (or)
¤ Use	the	riskfree rate	to	discount	cashflows in	each	branch,	estimate	

the	probabilities	to	estimate	an	expected	value	and	adjust	the	
expected	value	for	the	market	risk	in	the	investment

¨ Decision	Trees	could	yield	the	same	values	as	option	pricing	
models


