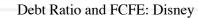
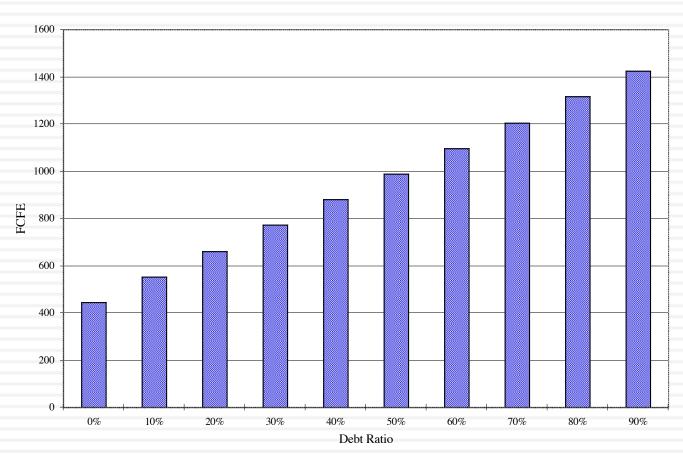
Estimating FCFE: Disney

155

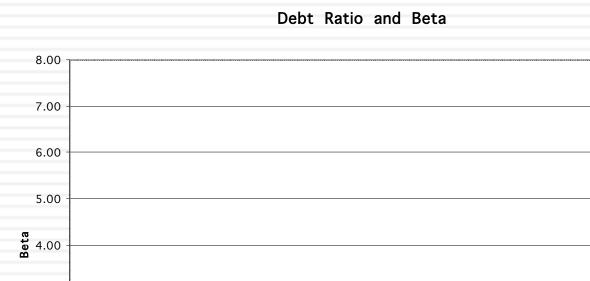
- Net Income=\$ 1533 Million
- □ Capital spending = \$ 1,746 Million
- Depreciation per Share = \$ 1,134 Million
- □ Increase in non-cash working capital = \$ 477 Million
- □ Debt to Capital Ratio (DR) = 23.83%
- Estimating FCFE (1997):

Net Income \$1,533 Mil


- (Cap. Exp - Depr)*(1-DR) \$465.90 [(1746-1134)(1-.2383)]


Chg. Working Capital*(1-DR) \$363.33 [477(1-.2383)]

= Free CF to Equity \$ 704 Million


Dividends Paid \$ 345 Million

FCFE and Leverage: Is this a free lunch?

FCFE and Leverage: The Other Shoe Drops

30%

40%

Debt Ratio

50%

60%

70%

80%

90%

3.00

2.00

1.00

0.00

0%

10%

20%

Leverage, FCFE and Value

- In a discounted cash flow model, increasing the debt/equity ratio will generally increase the expected free cash flows to equity investors over future time periods and also the cost of equity applied in discounting these cash flows. Which of the following statements relating leverage to value would you subscribe to?
 - a. Increasing leverage will increase value because the cash flow effects will dominate the discount rate effects
 - Increasing leverage will decrease value because the risk effect will be greater than the cash flow effects
 - c. Increasing leverage will not affect value because the risk effect will exactly offset the cash flow effect
 - d. Any of the above, depending upon what company you are looking at and where it is in terms of current leverage

Estimating Growth

Growth can be good, bad or neutral...

The Value of Growth

- When valuing a company, it is easy to get caught up in the details of estimating growth and start viewing growth as a "good", i.e., that higher growth translates into higher value.
- Growth, though, is a double-edged sword.
 - The good side of growth is that it <u>pushes up revenues and</u> <u>operating income</u>, perhaps at different rates (depending on how margins evolve over time).
 - The bad side of growth is that you have to set aside money to reinvest to create that growth.
 - The net effect of growth is whether the good outweighs the bad.

Ways of Estimating Growth in Earnings

- Look at the past
 - The historical growth in earnings per share is usually a good starting point for growth estimation
- Look at what others are estimating
 - Analysts estimate growth in earnings per share for many firms. It is useful to know what their estimates are.
- Look at fundamentals
 - With stable margins, operating income growth can be tied to how much a firm reinvests, and the returns it earns.
 - With changing margins, you have to start with revenue growth, forecast margins and estimate reinvestment.

162 Growth I

Historical Growth

Historical Growth

- Historical growth rates can be estimated in a number of different ways
 - Arithmetic versus Geometric Averages
 - Simple versus Regression Models
- Historical growth rates can be sensitive to
 - The period used in the estimation (starting and ending points)
 - The metric that the growth is estimated in..
- In using historical growth rates, you have to wrestle with the following:
 - How to deal with negative earnings
 - The effects of scaling up

Motorola: Arithmetic versus Geometric Growth Rates

164

	Re	evenues	% Change	El	BITDA	% Change	EBIT	% Change
1994	\$	22,245		\$	4,151		\$ 2,604	
1995	\$	27,037	21.54%	\$	4,850	16.84%	\$ 2,931	12.56%
1996	\$	27,973	3.46%	\$	4,268	-12.00%	\$ 1,960	-33.13%
1997	\$	29,794	6.51%	\$	4,276	0.19%	\$ 1,947	-0.66%
1998	\$	29,398	-1.33%	\$	3,019	-29.40%	\$ 822	-57.78%
1999	\$	30,931	5.21%	\$	5,398	78.80%	\$ 3,216	291.24%
Arithmetic Ave	erage		7.08%			10.89%		42.45%
Geometric Average		6.82%			5.39%		4.31%	
Standard deviation		8.61%			41.56%		141.78%	

A Test

- You are trying to estimate the growth rate in earnings per share at Time Warner from 1996 to 1997. In 1996, the earnings per share was a deficit of \$0.05. In 1997, the expected earnings per share is \$0.25. What is the growth rate?
- a. -600%
- b. +600%
- c. +120%
- d. Cannot be estimated

Dealing with Negative Earnings

- □ When the earnings in the starting period are negative, the growth rate cannot be estimated. (0.30/-0.05 = -600%)
- There are three solutions:
 - Use the higher of the two numbers as the denominator (0.30/0.25 = 120%)
 - Use the absolute value of earnings in the starting period as the denominator (0.30/0.05=600%)
 - Use a linear regression model and divide the coefficient by the average earnings.
- When earnings are negative, the growth rate is meaningless. Thus, while the growth rate can be estimated, it does not tell you much about the future.

The Effect of Size on Growth: Callaway Golf

Year Net F	Profit Growth Rate

1990 1.80

1991 6.40 255.56%

1992 19.30 201.56%

1993 41.20 113.47%

1994 78.00 89.32%

1995 97.70 25.26%

1996 122.30 25.18%

☐ Geometric Average Growth Rate = 102%

168

Year	Net Profit		
1996	\$ 122.30		
1997	\$ 247.05		
1998	\$ 499.03		
1999	\$ 1,008.05		
2000	\$ 2,036.25		
2001	\$ 4,113.23		

 If net profit continues to grow at the same rate as it has in the past 6 years, the expected net income in 5 years will be \$ 4.113 billion. 169

Growth II

Analyst Estimates

Analyst Forecasts of Growth

- While the job of an analyst is to find under and over valued stocks in the sectors that they follow, a significant proportion of an analyst's time (outside of selling) is spent forecasting earnings per share.
 - Most of this time, in turn, is spent forecasting earnings per share in the next earnings report
 - While many analysts forecast expected growth in earnings per share over the next 5 years, the analysis and information (generally) that goes into this estimate is far more limited.
- Analyst forecasts of earnings per share and expected growth are widely disseminated by services such as Zacks and IBES, at least for U.S companies.

How good are analysts at forecasting growth?

 Analysts forecasts of EPS tend to be closer to the actual EPS than simple time series models, but the differences tend to be small

	Study	Group tested	Analyst	Time Series
			Error	Model Error
Collins 8	& Hopwood	l Value Line Forecasts	31.7%	34.1%
Brown 8	& Rozeff V	alue Line Forecasts	28.4%	32.2%
Fried &	Givoly E	arnings Forecaster	16.4%	19.8%

- The advantage that analysts have over time series models
 - tends to decrease with the forecast period (next quarter versus 5 years)
 - tends to be greater for larger firms than for smaller firms
 - tends to be greater at the industry level than at the company level
- Forecasts of growth (and revisions thereof) tend to be highly correlated across analysts.

Are some analysts more equal than others?

- A study of All-America Analysts (chosen by Institutional Investor) found that
 - There is no evidence that analysts who are chosen for the All-America Analyst team were chosen because they were better forecasters of earnings. (Their median forecast error in the quarter prior to being chosen was 30%; the median forecast error of other analysts was 28%)
 - However, in the calendar year following being chosen as All-America analysts, these analysts become slightly better forecasters than their less fortunate brethren. (The median forecast error for All-America analysts is 2% lower than the median forecast error for other analysts)
 - Earnings revisions made by All-America analysts tend to have a much greater impact on the stock price than revisions from other analysts
 - The recommendations made by the All America analysts have a greater impact on stock prices (3% on buys; 4.7% on sells). For these recommendations the price changes are sustained, and they continue to rise in the following period (2.4% for buys; 13.8% for the sells).

The Five Deadly Sins of an Analyst

- <u>Tunnel Vision</u>: Becoming so focused on the sector and valuations within the sector that you lose sight of the bigger picture.
- Lemmingitis: Strong urge felt to change recommendations & revise earnings estimates when other analysts do the same.
- Stockholm Syndrome: Refers to analysts who start identifying with the managers of the firms that they are supposed to follow.
- <u>Factophobia</u> (generally is coupled with delusions of being a famous story teller): Tendency to base a recommendation on a "story" coupled with a refusal to face the facts.
- Dr. Jekyll/Mr.Hyde: Analyst who thinks his primary job is to bring in investment banking business to the firm.

Propositions about Analyst Growth Rates

- Proposition 1: There if far less private information and far more public information in most analyst forecasts than is generally claimed.
- Proposition 2: The biggest source of private information for analysts remains the company itself which might explain
 - why there are more buy recommendations than sell recommendations (information bias and the need to preserve sources)
 - why there is such a high correlation across analysts forecasts and revisions
 - why All-America analysts become better forecasters than other analysts after they are chosen to be part of the team.
- Proposition 3: There is value to knowing what analysts are forecasting as earnings growth for a firm. There is, however, danger when they agree too much (lemmingitis) and when they agree to little (in which case the information that they have is so noisy as to be useless).

175

Growth III

Sustainable growth and Fundamentals

Fundamental Growth Rates

176

Investment in Existing Projects \$ 1000

X

Current Return on Investment on Projects 12%

=

Current Earnings \$120

Investment in Existing Projects \$1000

X

Next Period's Return on Investment 12%

Investment in New Projects \$100

X

Return on Investment on New Projects 12%

NextPeriod'sEarnings132

Investment in Existing Projects \$1000

X

Change in ROI from current to next period: 0%

Investment in New Projects \$100

X

Return on Investment on New Projects 12%

Change in Earnings = \$ 12

Growth Rate Derivations

17

In the special case where ROI on existing projects remains unchanged and is equal to the ROI on new projects

Investment in New Projects Current Earnings	Χ	X Return on Investment		Change in Earnings Current Earnings
<u>100</u> 120	Χ	12%	=	<u>\$12</u> \$120
Reinvestment Rate	X	Return on Investment	=	Growth Rate in Earnings
83.33%	Χ	12%	=	10%

in the more general case where ROI can change from period to period, this can be expanded as follows:

For instance, if the ROI increases from 12% to 13%, the expected growth rate can be written as follows:

$$\frac{\$1,000 * (.13 - .12) + 100 (13\%)}{\$1000 * .12} = \frac{\$23}{\$120} = 19.17\%$$