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Abstract

Predatory pricing—a deliberate strategy of pricing aggressively in order to eliminate
competitors—is one of the more contentious areas of antitrust policy and its existence
and efficacy are widely debated. The purpose of this paper is to formally characterizes
predatory pricing in a modern industry dynamics framework. We endogenize competi-
tive advantage and industry structure through learning-by-doing. We show that we can
isolate and measure a firm’s predatory incentives by decomposing the equilibrium pric-
ing condition. Our decomposition maps into existing economic definitions of predation
and provides us with a coherent and flexible way to develop alternative characteriza-
tions of a firm’s predatory incentives. We ask three interrelated questions. First, when
does predation-like behavior arise? Second, what drives pricing and, in particular, how
can we separate predatory incentives for pricing aggressively from efficiency-enhancing
incentives for pricing aggressively in order to move further down the learning curve?
Third, what is the impact of predatory incentives on industry structure, conduct, and
performance? In answer to the first question, we find widespread existence of Markov
perfect equilibria involving behavior that resembles conventional notions of predatory
pricing in the sense that possibility of rival’s exit is associated with aggressive pric-
ing. We answer the second question by presenting an analytical decomposition of the
Markov equilibrium pricing condition that allows us to isolate predatory incentives in a
vareity of plausible ways. To answer the third question, we show how conduct restric-
tions corresponding to a variety of different definitions of predatory incentives affects
equilibrium behavior. Based on our numerical analysis, conduct restrictions based on
definitions of predatory incentives that isolate advantage-denying motives in pricing —
i.e., the marginal benefit to a firm from denying a rival the opportunity to develop a
competitive advantage or overcome a competitive disadvantage—appear to provide the
best balance of short-run and long-run welfare improvements.
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1 Introduction

Predatory pricing—a deliberate strategy of pricing aggressively in order to eliminate competitors—

is one of the more contentious areas of antitrust policy. Scholars such as Edlin (2010) argue

that predatory pricing can, under certain circumstances, be a profitable business strategy.

Others—commonly associated with the Chicago School—suggest that predatory pricing is

rarely rational and thus unlikely to be practiced or, as Baker (1994) puts it, somewhere

between a white tiger and a unicorn—a rarity and a myth.

At the core of predatory pricing is a trade-off between lower profit in the short run due

to aggressive pricing and higher profit in the long run due to reduced competition. But as

the debate over the efficacy—and even the existence—of predatory pricing suggests, it is

not necessarily straightforward to translate this intuitive understanding into a more precise

characterization of what predatory pricing actually is.1

Characterizing predatory pricing is especially complicated because aggressive pricing

with subsequent recoupment can also arise when firms face other intertemporal trade-offs

such as learning-by-doing, network effects, or switching costs. The empirical literature pro-

vides ample evidence that the marginal cost of production decreases with cumulative expe-

rience in a variety of industrial settings.2 The resulting tension between predatory pricing

and mere competition for efficiency on a learning curve was a key issue in the policy debate

about the “semiconductor wars” between the U.S. and Japan during the 1970s and 1980s

(Flamm 1993, Flamm 1996). The European Commission case against Intel in 2009 over the

use of loyalty reward payments to computer manufacturers (that lead to a record-breaking

fine of $1.5 billion) likewise revolved around whether Intel’s behavior was exclusionary or

efficiency enhancing (Willig, Orszag & Levin 2009).3 More generally, contractual arrange-

ments such as nonlinear pricing and exclusive dealing that can be exclusionary are often

also efficiency enhancing (Jacobson & Sher 2006, Melamed 2006).

While predatory pricing is difficult to disentangle from pricing aggressively to pursue

efficiency, being able to do so is obviously important in legal cases involving alleged preda-

1Edlin (2002) provides a comprehensive overview of the current law on predatory pricing. Bolton, Brodley
& Riordan (2000) and Edlin (2010) provide excellent reviews of the theoretical and empirical literature.

2See Wright (1936), Hirsch (1952), DeJong (1957), Alchian (1963), Levy (1965), Kilbridge (1962),
Hirschmann (1964), Preston & Keachie (1964), Baloff (1971), Dudley (1972), Zimmerman (1982), Lieber-
man (1984), Argote, Beckman & Epple (1990), Gruber (1992), Irwin & Klenow (1994), Jarmin (1994),
Pisano (1994), Bohn (1995), Darr, Argote & Epple (1995), Hatch & Mowery (1998), Benkard (2000), Shafer,
Nembhard & Uzumeri (2001), Thompson (2001), Thornton & Thompson (2001), and Thompson (2003).

3For example, Intel CEO Paul Otellini argued “[w]e have . . . consistently invested in innovation, in man-
ufacturing and in developing leadership technology. The result is that we can discount our products to
compete in a highly competitive marketplace, passing along to consumers everywhere the efficiencies of
being the world’s leading volume manufacturer of microprocessors.” http://www.zdnet.com/blog/btl/ec-
intel-abused-dominant-position-vs-amd-fined-record-145-billion-in-antitrust-case/17884 (accessed on June 7,
2011).
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tion. Moreover, if one entertains the possibility that predatory pricing is a viable business

strategy, then a characterization of predatory pricing is required to allow economists, legal

scholars, and antitrust practitioners to detect its presence and measure its extent.

The purpose of this paper is to formally characterize predatory pricing in a modern

industry dynamics framework along the lines of Ericson & Pakes (1995). Unlike much of

the previous literature, we do not attempt to deliver an ironclad definition of predatory

pricing. Instead, our contribution is to show that we can usefully isolate and measure a

firm’s predatory incentives by decomposing the equilibrium pricing condition. We ask three

interrelated questions. First, when does predation-like behavior arise in a dynamic pricing

model with endogenous competitive advantage and industry structure? Second, what drives

pricing and, in particular, how can we separate predatory incentives for pricing aggressively

from efficiency-enhancing incentives? Third, what is the impact of the predatory incentives

on industry structure, conduct, and performance? We discuss these questions—and our

answers to them—in turn.

When does predation-like behavior arise? We develop a dynamic pricing model with

endogenous competitive advantage and industry structure similar to the models of learning-

by-doing in Cabral & Riordan (1994) and Besanko, Doraszelski, Kryukov & Satterthwaite

(2010). While there is a sizeable literature that attempts to rationalize predatory pricing

as an equilibrium phenomenon by means of reputation effects (Kreps, Milgrom, Roberts

& Wilson 1982), informational asymmetries (Fudenberg & Tirole 1986), or financial con-

straints (Bolton & Sharfstein 1990), our model forgoes these features and thus “stacks the

deck” against predatory pricing. Our numerical analysis nevertheless reveals the widespread

existence of Markov perfect equilibria involving behavior that resembles conventional no-

tions of predatory pricing in the sense that possibility of rival’s exit is associated with

aggressive pricing. The fact that predation-like behavior arises routinely and without re-

quiring extreme or unusual parameterizations calls into question the idea that economic

theory provides prima facie evidence that predatory pricing is a rare phenomenon.

Our paper relates to earlier work by Cabral & Riordan (1994), who establish analytically

the possibility that predation-like behavior can arise in a model of learning-by-doing, and

Snider (2008), who uses the Ericson & Pakes (1995) framework to explore whether American

Airlines engaged in predatory capacity expansion in the Dallas-Fort Worth to Wichita

market in the late 1990s. Our paper goes beyond establishing possibility by way of an

example or a case study by showing just how common predation-like behavior is.

Our paper moreover reinforces and formalizes a point made by Edlin (2010) that preda-

tory pricing is common “if business folks think so.” Equilibria involving predation-like be-

havior typically coexist in our model with equilibria involving much less aggressive pricing.
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Multiple equilibria arise in our model if, for given demand and cost fundamentals, there is

more than one set of firms’ expectations regarding the value of continued play that is consis-

tent with rational expectations about equilibrium behavior and industry dynamics.4 Which

of these equilibria is realized therefore depends on firms’ expectations. Loosely speaking,

if firms anticipate that predatory pricing may work, then they have an incentive to choose

the extremely aggressive prices that, in turn, ensure that predatory pricing does work.

What drives pricing? We isolate a firm’s predatory pricing incentive by analytically

decomposing the equilibrium pricing condition. Our decomposition is reminiscent of that

of Ordover & Saloner (1989), but it extends to the complex strategic interactions that arise

in the equilibrium of a dynamic stochastic game. The cornerstone of our decomposition is

the insight that the price that a firm sets reflects two goals besides short-run profit. First,

by pricing aggressively the firm may move further down its learning curve and improve

its competitive position in the future, giving rise to what we call the advantage-building

motive. Second, by pricing aggressively the firm may prevent its rival from moving further

down its learning curve and becoming a more formidable competitor, giving rise to the

advantage-denying motive.

Decomposing the equilibrium pricing condition with even more granularity reveals that

the probability that the rival exits the industry—the linchpin of any notion of predatory

pricing—affects both motives. For example, one component of the advantage-building mo-

tive is the advantage-building/exit motive. This is the incremental benefit from an increase

in the probability of rival exit that results if the firm moves further down its learning curve.

Similarly, the advantage-denying/exit motive is the incremental benefit from preventing a

decrease in the probability of rival exit that results if the rival moves further down its

learning curve. Other terms in the decomposed equilibrium pricing condition capture the

impact of the firm’s pricing decision on its competitive position, its rival’s competitive po-

sition, and so on. In this way our decomposition corresponds to the common practice of

antitrust authorities to question the intent behind a business strategy.

Certain terms of our decomposition map into the existing economic definitions of pre-

dation including those due to Ordover & Willig (1981) and Cabral & Riordan (1997). Our

decomposition therefore allows us to clarify the relationship between the existing economic

definitions of predation. Most important, however, our decomposition provides us with a

coherent and flexible way to develop alternative characterizations of a firm’s predatory pric-

ing incentives, some of which are motivated by the existing literature while others are novel.

To detect the presence of predatory pricing antitrust authorities routinely ask whether a

4Multiple equilibria can potentially also arise in our model if the best replies of the one-shot game that
is being played given continuation values intersect more than once. This cannot happen in the model in
Besanko et al. (2010).
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firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. One way to test for sacrifice is to determine whether the derivative

of a profit function that “incorporate[s] everything except effects on competition” is pos-

itive at the price the firm has chosen (Edlin & Farrell 2004, p. 510). Our alternative

characterizations of predatory incentives correspond to different operationalizations of the

everything-except-effects-on-competition profit function and identify clusters of terms in

our decomposition as the firm’s predatory incentives.

What is the impact of firms’ predatory incentives? While much of the previous

literature has argued for (or against) the merits of particular definitions of predatory pricing

on conceptual grounds, we instead directly measure the impact of firms’ predatory incentives

on industry structure, conduct, and performance. To do this, we note that our alternative

definitions of predatory incentives correspond to conduct restrictions of different severity.

These conduct restrictions can be enforced by requiring firms to ignore the predatory pricing

incentive in setting their prices. We compute counterfactual equilibria that arise when firms

are subject to conduct restrictions corresponding to each of our definitions of predatory

incentives. We then compare these counterfactuals to the actual equilibria over a wide

range of parameterizations.

We present these comparisons in two ways. First, we show that a conduct restriction

typically eliminates equilibria for those parameterizations for which there are multiple equi-

libria, so for each definition, we compare structure, conduct, and performance metrics of

the eliminated and surviving equilibria. Second, we directly compare structure, conduct,

and performance metrics in the actual equilibria and the counterfactual equilibria for each

definition.

We find that more severe conduct restrictions typically eliminate more equilibria than

less severe restrictions. We also find that more severe conduct restrictions have, on av-

erage, a greater impact on industry structure, conduct, and performance than less severe

conduct restrictions, including those inspired by Ordover & Willig (1981) and Cabral & Ri-

ordan (1997). This occurs because the less severe restrictions tend to preserve some of the

equilibria with predation-like behavior, while the more severe restrictions tend to eliminate

most or all of the equilibria with predation-like behavior and, at the same time, cause little

change in equilibria involving less aggressive pricing. A risk of a severe restriction, however,

is that it may “throw the baby out with the bath water” in the sense that it can eliminate

equilibria with intense competition for the market and high levels of consumer surplus in

the short run. In other words, a severe restriction runs the risk of eliminating what Cabral

& Riordan (1997) call welfare-improving predation.

Overall, our numerical analysis shows that there may be sensible ways of disentangling

5



predatory incentives from efficiency-enhancing incentives in pricing. In particular, a conduct

restriction based on either the advantage-denying motive or the advantage-denying/exit mo-

tive appears to minimize the likelihood of prohibiting welfare-improving predation. Since

advantage-denying motives are principally about the returns to a firm from preventing a

rival from improving its competitive position, our analysis suggests that the line separating

efficiency-enhancing pricing behavior from predation should be based on exclusion of oppor-

tunity : is a firm’s pricing behavior primarily driven by the benefits from building its own

competitive advantage, or is it based on the benefits from excluding a rival the opportunity

to build its own advantage or overcome an existing disadvantage?

The organization of the remainder of this paper is as follows. In Section 2, we describe

the model and state the conditions that describe equilibrium entry and exit decisions and

equilibrium pricing behavior. In Section 3, we describe our computational approach and

present representative numerical results that illustrate equilibrium behavior and industry

dynamics. We also summarize how equilibrium outcomes vary with the progress ratio,

product differentiation, and expected salvage value. In Section 4, we decompose the equi-

librium pricing condition and interpret the terms in the decomposition. We then relate the

decomposition to economic definitions of predatory behavior that have been offered in the

literature, and we use the decomposition to formulate alternative definitions of predatory

pricing incentives. In Section 5, we analyze the economic impact of these predatory pricing

incentives. Section 6 summarizes and concludes. Appendix A contains derivations of se-

lected expressions, while Appendix B contains proofs of propositions. All figures are at the

end of the paper. A separate Online Appendix contains additional figures and tables.

2 Model

Because predatory pricing is an inherently dynamic phenomenon, we consider a discrete-

time, infinite-horizon dynamic stochastic game between two firms that compete in an indus-

try characterized by learning-by-doing. At any point in time, firm n ∈ {1, 2} is described by

its state en ∈ {0, 1, . . . ,M}. A firm can be either an incumbent firm that actively produces

or a potential entrant. State en = 0 indicates a potential entrant. States en ∈ {1, . . . ,M}
indicate the cumulative experience or stock of know-how of an incumbent firm. By making a

sale in the current period, an incumbent firm can add to its stock of know-how and, through

learning-by-doing, lower its production cost in the subsequent period. Thus, competitive

advantage is determined endogenously in our model. At any point in time, the industry’s

state is the vector of firms’ states e = (e1, e2) ∈ {0, 1, . . . ,M}2.
In each period, firms first set prices and then decide on exit and entry. As illustrated in

Figure 1, during the price-setting phase the industry’s state changes from e to e′ depending
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on the outcome of pricing game between the incumbent firms. During the exit-entry phase,

the state then changes from e′ to e′′ depending on the exit decisions of the incumbent

firm(s) and the entry decisions of the potential entrant(s). The state at the end of the

current period (e′′) finally becomes the state at the beginning of the subsequent period. We

model entry as a transition from state e′n = 0 to state e′′n = 1 and exit as a transition from

state e′n ≥ 1 to state e′′n = 0 so that the exit of an incumbent firm creates an opportunity

for a potential entrant to enter the industry.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,

we describe the remaining primitives.

Demand. The industry draws customers from a large pool of potential buyers. In each

period, one buyer enters the market and purchases one unit of either one of the “inside

goods” that are offered by the incumbent firms at prices p = (p1, p2) or an “outside good”

at an exogenously given price p0. The probability that firm n makes the sale is given by

the logit specification

Dn(p) =
exp(−pn

σ )∑2
k=0 exp(

−pk
σ )

,

where σ > 0 is a scale parameter that governs the degree of product differentiation. As

σ → 0, goods become homogeneous. If firm n is a potential entrant, then we set its price

to infinity so that Dn(p) = 0.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of pro-

duction c(en) depends on its stock of know-how through a learning curve with a progress

ratio ρ ∈ [0, 1]:

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤ M.

Marginal cost decreases by 100(1− ρ)% as the stock of know-how doubles, so that a lower

progress ratio implies a steeper learning curve. The marginal cost for a firm without prior

experience, c(1), is κ > 0. The firm can add to its stock of know-how by making a sale.5

Once the firm reaches state m, the learning curve “bottoms out” and there are no further

experience-based cost reductions. Following Cabral & Riordan (1994), we refer to an in-

cumbent firm in state en ≥ m as a mature firm and an industry in state e ≥ (m,m) as a

mature duopoly. In the same spirit, we refer to an incumbent firm in state en = 1 as an

emerging firm and an industry in state (1, 1) as an emerging duopoly.

5We obviously have to ensure en ≤ M . To simplify the exposition we abstract from boundary issues in
what follows.
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Scrap value and setup cost. If incumbent firm n exits the industry, it receives a scrap

value Xn drawn from a symmetric triangular distribution FX(·) with support [X−∆X , X+

∆X ], where EX(Xn) = X and ∆X > 0 is a scale parameter. If potential entrant n enters

the industry, it incurs a setup cost Sn drawn from a symmetric triangular distribution FS(·)
with support [S − ∆S , S + ∆S ], where ES(Sn) = S and ∆S > 0 is a scale parameter.

Scrap values and setup costs are independently and identically distributed across firms and

periods, and their realization is observed by the firm but not its rival.

2.1 Firms’ decisions

To analyze the pricing decision pn(e) of incumbent firm n, the exit decision ϕn(e
′, Xn) ∈

{0, 1} of incumbent firm n with scrap value Xn, and the entry decision ϕn(e
′, Sn) ∈ {0, 1}

of potential entrant n with setup cost Sn, we work backwards from the exit-entry phase

to the price-setting phase. Because scrap values and setup costs are private to a firm,

its rival remains uncertain about the firm’s decision. Combining exit and entry decisions,

we let ϕn(e
′) denote the probability, as viewed from the perspective of its rival, that firm

n decides not to operate in state e′: If en ̸= 0 so that firm n is an incumbent, then

ϕn(e
′) = EX [ϕn(e

′, Xn)] is the probability of exiting; if e′n = 0 so that firm n is an entrant,

then ϕn(e
′) = ES [ϕn(e

′, Sn)] is the probability of not entering.

We use Vn(e) to denote the expected net present value (NPV) of future cash flows to

firm n in state e at the beginning of the period and Un(e
′) to denote the expected NPV

of future cash flows to firm n in state e′ after pricing decisions but before exit and entry

decisions are made. The price-setting phase determines the value function Vn(e) along with

the policy function pn(e); the exit-entry phase determines the value function Un(e
′) along

with the policy function ϕn(e
′).

Exit decision of incumbent firm. To simplify the exposition we focus on firm 1; the

derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the

scrap value X1 in the current period and perishes. If it does not exit and remains a going

concern in the subsequent period, its expected NPV is

X̂1(e
′) = β

[
V1(e

′)(1− ϕ2(e
′)) + V1(e

′
1, 0)ϕ2(e

′)
]
,

where β ∈ [0, 1) is the discount factor. Incumbent firm 1’s decision to exit the industry in

state e′ is thus ϕ1(e
′, X1) = 1

[
X1 ≥ X̂1(e

′)
]
, where 1 [·] is the indicator function and X̂1(e

′)

the critical level of the scrap value above which exit occurs. The probability of incumbent

firm 1 exiting is ϕ1(e
′) = 1− FX(X̂1(e

′)). It follows that before incumbent firm 1 observes
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a particular draw of the scrap value, its expected NPV is given by the Bellman equation

U1(e
′) = EX

[
max

{
X̂1(e

′), X1

}]
= (1− ϕ1(e

′))β
[
V1(e

′)(1− ϕ2(e
′)) + V1(e

′
1, 0)ϕ2(e

′)
]

+ϕ1(e
′)EX

[
X1|X1 ≥ X̂1(e

′)
]
, (1)

where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry.

Entry decision of potential entrant. If potential entrant 1 does not enter the industry,

it perishes. If it enters and becomes an incumbent firm (without prior experience) in the

subsequent period, its expected NPV is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− ϕ2(e

′)) + V1(1, 0)ϕ2(e
′)
]
.

In addition, it incurs the setup cost S1 in the current period. Potential entrant 1’s decision

to not enter the industry in state e′ is thus ϕ1(e
′, S1) = 1

[
S1 ≥ Ŝ1(e

′)
]
, where Ŝ1(e

′) is

the critical level of the setup cost. The probability of potential entrant 1 not entering is

ϕ1(e
′) = 1 − FS(Ŝ1(e

′)) and before potential entrant 1 observes a particular draw of the

setup cost, its expected NPV is given by the Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− ϕ1(e
′))

{
β[V1(1, e

′
2)(1− ϕ2(e

′)) + V1(1, 0)ϕ2(e
′)]

−ES

[
S1|S1 ≤ Ŝ1(e

′)
]}

, (2)

where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry.6

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of

incumbent firm 1 is

V1(e) = max
p1

(p1 − c(e1))D1(p1, p2(e)) +D0(p1, p2(e))U1(e)

+D1(p1, p2(e))U1(e1 + 1, e2) +D2(p1, p2(e))U1(e1, e2 + 1). (3)

6See Appendix A.1 for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e

′)
]

in equation (1) and

ES

[
S1|S1 ≤ Ŝ1(e

′)
]
in equation (2).
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Because D0(p) = 1 − D1(p) − D2(p), we can equivalently formulate the maximization

problem on the right-hand side of the Bellman equation (3) as maxp1 Π1(p1, p2(e), e), where

Π1(p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e)) + U1(e)

+D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)]−D2(p1, p2(e)) [U1(e)− U1(e1, e2 + 1)] (4)

is the long-run profit of incumbent firm 1. Because Π1(p1, p2(e), e) is strictly quasiconcave

in p1 (given p2(e) and e), the pricing decision p1(e) is uniquely determined by the first-order

condition

mr1(p1, p2(e))−c(e1)+[U1(e1 + 1, e2)− U1(e)]+Υ(p2(e)) [U1(e)− U1(e1, e2 + 1)] = 0, (5)

where mr1(p1, p2(e)) = p1 − σ
1−D1(p1,p2(e))

is the marginal revenue of incumbent firm 1, or

what Edlin (2010) calls inclusive price,7 and Υ(p2(e)) =
D2(p1,p2(e))

1−D1(p1,p2(e))
=

exp
(
− p2(e)

σ

)
exp(− p0

σ )+exp
(
− p2(e)

σ

)
is the probability of firm 2 making a sale conditional on firm 1 not making a sale.

Equations (4) and (5) show that, besides short-run profit (p1 − c(e1))D1(p1, p2(e)), the

price that an incumbent firm sets reflects two distinct goals. First, by winning the sale in

the current period, the firm moves further down its learning curve and improves its future

competitive position. The reward that the firm thereby receives is [U1(e1 + 1, e2)− U1(e)],

which we call the advantage-building motive. Second, by winning the sale in the current

period, the firm prevents its rival from moving down its learning curve and becoming a

more formidable competitor in the future. The penalty that the firm thereby avoids is

[U1(e)− U1(e1, e2 + 1)], which we call the advantage-denying motive.8 The pricing decision

in our model is thus akin to an investment decision in that it encompasses the short run

and the long run.

Because mr1(p1, p2(e)) is strictly increasing in p1, equation (5) implies that any in-

crease in the advantage-building or advantage-denying motives makes the firm more ag-

gressive in pricing. To the extent that an improvement in the firm’s competitive posi-

tion is beneficial and an improvement in the rival’s competition position is harmful, i.e.,

[U1(e1 + 1, e2)− U1(e)] > 0 and [U1(e)− U1(e1, e2 + 1)] > 0, the inclusive price is less than

marginal cost and the firm charges a price below the static optimum.9 If these motives are

7See Appendix A.2 for an explanation.
8With quantity instead of price setting an advantage-denying motive does not arise because the firm’s

quantity has no direct effect on its rival’s quantity. However, if producing additional quantity requires
installing additional durable capacity, then an advantage-denying motive may arise if the firm’s quantity
(and hence capacity) makes it less attractive for its rival to produce in the future (for fear of lower prices),
thereby crimping its opportunity to achieve a competitive advantage through learning-by-doing.

9The value function U1(e) is endogenously determined in equilibrium. For some parameterizations, the
advantage-building and advantage-denying motives fail to be positive.
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sufficiently large, price may be below marginal cost.

2.2 Equilibrium

Because our demand and cost specification is symmetric, we restrict ourselves to symmetric

Markov perfect equilibria. The focus on symmetric equilibria does not imply that the

industry inevitably evolves towards a symmetric structure. Depending on how successful a

firm is in moving down its learning curve, it may have a cost and charge a price different

from that of its rival.

Existence of a symmetric Markov perfect equilibrium in pure strategies follows from the

arguments in Doraszelski & Satterthwaite (2010). In a symmetric equilibrium, the decisions

taken by firm 2 in state (e1, e2) are identical to the decisions taken by firm 1 in state (e2, e1).

It therefore suffices to determine the value and policy functions of firm 1.

3 Equilibrium behavior and industry dynamics

We use the homotopy method in Besanko et al. (2010) to compute the Markov perfect

equilibria of our dynamic stochastic game. Although it cannot be guaranteed to find all

equilibria, the advantage of this method is its ability to search for multiple equilibria in a

systematic fashion.10

Let (V1,U1,p1,ϕ1) denote the vector of values and policies that are determined by the

model, Ω the vector of parameters of the model, and H(V1,U1,p1,ϕ1;Ω) = 0 the system

of equations (Bellman equations and optimality conditions) that defines an equilibrium.

The equilibrium correspondence mapping parameters into values and policies is

H−1(Ω) = {(V1,U1,p1,ϕ1)|H(V1,U1,p1,ϕ1;Ω) = 0}.

The equilibrium correspondence is a potentially complicated set of multidimensional sur-

faces. To explore the equilibrium correspondence, we compute slices of it by varying one

parameter of the model, such as the progress ratio ρ. A slice of the equilibrium correspon-

dence along ρ, denoted as H−1(ρ) in what follows, consists of a finite number of differen-

tiable paths through (V1,U1,p1,ϕ1, ρ) space. The homotopy algorithm traces out a path

by numerically solving the differential equation that describes it.

Baseline parameterization. To compute a slice of the equilibrium correspondence, we

hold all but one parameter fixed at the values in Table 1. While this baseline parameteri-

zation is not intended to be representative of any particular industry, it is neither entirely

10See Borkovsky, Doraszelski & Kryukov (2010) for an explanation. Our codes are available upon request.
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parameter value

maximum stock of know-how M 30
price of outside good p0 10
product differentiation σ 1
cost at top of learning curve κ 10
bottom of learning curve m 15
progress ratio ρ 0.75

scrap value X, ∆X 1.5, 1.5

setup cost S, ∆S 4.5, 1.5
discount factor β 0.95

Table 1: Baseline parameterization.

unrepresentative nor extreme. The discount factor is consistent with discount rates and

product life cycle lengths in high-tech industries where learning-by-doing may be particu-

larly important.11 The baseline value for the progress ratio lies well within the range of

empirical estimates (Dutton & Thomas 1984). Setup costs are about three times scrap

values and therefore largely sunk. Scrap values and setup costs are reasonably variable.12

Under the baseline parameterization, an emerging firm has a reasonable shot at gaining

traction and a mature firm enjoys a modest degree of market power. Profit opportunities

are reasonably good: in a mature duopoly the annual rate of return on the investment of

setup costs is about 22% at static Nash equilibrium prices.

3.1 Predation-like behavior

To illustrate the types of behavior that can emerge in our model, we examine the equilibria

that arise for the baseline parameterization in Table 1. For two of these three equilibria

Figure 2 shows the pricing decision of firm 1, the non-operating probability of firm 2, and

the time path of the probability distribution over industry structures (empty, monopoly,

and duopoly).13

11The discount factor can be thought of as β = ζ
1+r

, where r > 0 is the per-period discount rate and
ζ ∈ (0, 1] is the exogenous probability that the industry survives from one period to the next. Consequently,
our baseline value of β corresponds to a variety of scenarios that differ in the length of a period. For example,
it corresponds to a period length of one year, a yearly discount rate of 5.26%, and certain survival. But
it also corresponds to a period length of one month, a monthly discount rate of 1% (corresponding to a
yearly discount rate of 12.7%), and a monthly survival probability of about 0.96. To put this in perspective,
technology companies such as IBM and Microsoft had costs of capital in the range of 11 to 15% per annum
in the late 1990s. Further, an industry with a monthly survival probability of 0.96 has an expected lifetime
of 26.25 months. This scenario is therefore consistent with a pace of innovative activity that is expected to
make an industry’s current generation of products obsolete within two to three years.

12Any predatory incentives vanish as ∆X → ∞ because the probability that the rival exits the industry
approaches 0.5 irrespective of the behavior of the firm.

13The third equilibrium is essentially intermediate between the two shown in Figure 2.
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The upper panels of Figure 2 exemplify what we call a trenchy equilibrium.14 The pricing

decision in the upper left panel exhibits a deep well in state (1, 1) with p1(1, 1) = −34.78.

A well is a preemption battle where firms vie to be the first to move down from the top

of their learning curves in order to gain a competitive advantage. The pricing decision

further exhibits a deep trench along the e1 axis with p1(e1, 1) ranging from 0.08 to 1.24 for

e1 ∈ {2, . . . , 30}.15 A trench is a price war that the leader (firm 1) wages against the follower

(firm 2). One can think of a trench as an endogenously arising mobility barrier in the sense

of Caves & Porter (1977). In the trench the follower exits the industry with a positive

probability of ϕ2(1, e2) = 0.22 for e2 ∈ {2, . . . , 30} as the upper middle panel shows. The

follower remains in in this exit zone as long as it does not win the sale. Once the follower

exits, the leader raises its price and the industry becomes an entrenched monopoly.16 This

sequence of events resembles conventional notions of predatory pricing. The industry may

also evolve into a mature duopoly if the follower manages to crash through the mobility

barrier by winning the sale but, as the upper right panel of Figure 2 shows, this is far less

likely than an entrenched monopoly.

The lower panels of Figure 2 are typical for a flat equilibrium. There is a shallow well

in state (1, 1) with p1(1, 1) = 5.05 as the lower left panel shows. Absent mobility barriers

in the form of trenches, however, any competitive advantage is temporary and the industry

evolves into a mature duopoly as the lower right panel shows.

3.2 Industry structure, conduct, and performance

We succinctly describe an equilibrium by the industry structure, conduct, and performance

that it implies. First, we use the policy functions p and ϕ to construct the matrix of state-to-

state transition probabilities that characterizes the Markov process of industry dynamics.

From this, we compute the transient distribution over states in period T , µT , starting

from state (1, 1) in period 0. This tells us how likely each possible industry structure is in

period T given that the game began as an emerging duopoly. Depending on T , the transient

distributions can capture short-run or long-run (steady-state) dynamics. We think of period

1000 as the long run and, with a slight abuse of notation, denote µ1000 by µ∞. Finally, we

use the transient distributions to compute six metrics of industry structure, conduct, and

performance.

14Our terminology is similar, but not identical, to that of Besanko et al. (2010).
15Because prices are strategic complements, there is also a shallow trench along the e2 axis with p1(1, e2)

ranging from 3.63 to 4.90 for e2 ∈ {2, . . . , 30}.
16In this particular equilibrium, ϕ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so that a potential entrant does not

enter if the incumbent firm has moved down from the top of its learning curve.
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Structure. Expected long-run Herfindahl index:

HHI∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
HHI(e),

where

HHI(e) =

2∑
n=1

[
Dn(e)

D1(e) +D2(e)

]2
is the Herfindahl index in state e and Dk(e) = Dk(p1(e), p2(e)) is the probability that the

buyer purchases good k ∈ {0, 1, 2} in state e. The expected long-run Herfindahl index is a

summary measure of industry concentration. If HHI∞ > 0.5, then an asymmetric industry

structure arises and persists.

Conduct. Expected long-run average price:

p∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
p(e),

where

p(e) =

2∑
n=1

Dn(e)

D1(e) +D2(e)
pn(e)

is the (share-weighted) average price in state e.

Performance. Expected long-run consumer surplus:

CS∞ =
∑
e

µ∞ (e)CS(e),

where

CS(e) = σ log

{
exp

(
−p0
σ

)
+
∑2

n=1
exp

(
−pn(e)

σ

)}
is consumer surplus in state e.

Expected long-run total surplus:

TS∞ =
∑
e

µ∞ (e)

{
CS(e) +

2∑
n=1

PSn(e)

}
,

where PSn(e) is the producer surplus of firm n in state e.17

17See Appendix A.3 for a derivation.
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trenchy flat
metric equilibrium equilibrium

HHI∞ 0.96 0.50
p∞ 8.26 5.24
CS∞ 1.99 5.46
TS∞ 6.09 7.44
CSNPV 104.17 109.07
TSNPV 110.33 121.14

Table 2: Industry structure, conduct, and performance. Trenchy and flat equilibria.

Expected discounted consumer surplus:

CSNPV =

∞∑
T=0

βT
∑
e

µT (e)CS(e).

Expected discounted total surplus:

TSNPV =

∞∑
T=0

βT
∑
e

µT (e)

{
CS(e) +

2∑
n=1

PSn(e)

}
.

By focusing on the states that arise in the long run (as given by µ∞), CS∞ and TS∞

summarize the long-run implications of equilibrium behavior for industry performance. In

contrast, CSNPV and TSNPV summarize the short-run and the long-run implications that

arise along entire time paths of states (as given by µ0, µ1, . . . ). Hence, CSNPV and TSNPV

reflect any short-run competition for the market as well as any long-run competition in the

market.

Table 2 illustrates industry structure, conduct, and performance for the equilibria in

Section 3.1. The Herfindahl index reflects that the industry is substantially more likely

to be monopolized under the trenchy equilibrium than under the flat equilibrium. In the

entrenched monopoly prices are higher. Finally, consumer and total surplus are lower

under the trenchy equilibrium than under the flat equilibrium. The difference between the

equilibria is smaller for CSNPV than for CS∞ because the former metric accounts for the

competition for the market in the short run that manifests itself in the deep well and trench

of the trenchy equilibrium and mitigates the lack of competition in the market in the long

run.
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3.3 Equilibrium correspondence

Progress ratio. The upper panel of Figure 3 illustrates the equilibrium correspondence

by plotting HHI∞ against ρ.18 If ρ = 1 there is no learning-by-doing, while if ρ = 0 the

learning economies become infinitely strong in the sense that the marginal cost of production

jumps from κ for the first unit to 0 for any further unit. The progress ratio ρ therefore

determines the possible extent of efficiency gains from pricing aggressively in order to move

down the learning curve.

There are multiple equilibria for ρ from 0 to 0.80. H−1(ρ) involves a main path (labeled

MP ) with one equilibrium for ρ from 0 to 1, a semi-loop (SL) with two equilibria for ρ

from 0 to 0.80, and three loops (L1, L2, and L3) each with two equilibria for ρ from 0.25 to

0.70, 0.35 to 0.65, and 0.36 to 0.53, respectively.

The equilibria on MP are flat. The industry evolves into a mature duopoly with

HHI∞ = 0.5 as in the flat equilibrium in Section 3.1. The equilibria on the lower fold

of SL similarly involve an almost symmetric industry structure. The equilibria on the up-

per fold of SL as well as those on L1, L2, and L3 are trenchy. As in the trenchy equilibrium

in Section 3.1, the industry evolves into an entrenched monopoly with HHI∞ ≈ 1.0.19

Product differentiation. The middle panel of Figure 3 plots HHI∞ against σ. The

degree of product differentiation σ influences how desirable it is for a firm to induce its rival

to exit the industry: As σ → 0 the goods become homogenous, competition intensifies, and

profits fall. Product differentiation is already very weak for σ = 0.3 and moderately strong

for σ = 3.20

There are multiple equilibria for σ below 1.10. While H−1(σ) involves just a main path

(labeled MP ), multiple equilibria arise as this path bends back on itself. The equilibria

on the lower fold of MP are flat and the industry evolves into a mature duopoly. The

equilibria on the upper fold of MP are trenchy and the industry evolves into an entrenched

monopoly.

Scrap value. The lower panel of Figure 3 plots HHI∞ against the X. The expected

scrap value X determines how easy it is for a firm to induce its rival to exit the industry.

Because a firm can always guarantee itself a nonnegative short-run profit, exit is impossible if

X+∆X < 0 ⇔ X < −1.5. As X → ∞, exit becomes inevitable. At the same time, however,

18The remaining metrics are presented in the Online Appendix.
19Trenchy equilibria can arise even if there is practically no learning-by-doing, e.g., if ρ = 0.99 and σ = 0.10

or ρ = 0.98, σ = 0.35, and p0 = 20.
20Our algorithm sometimes fails for σ below 0.3. For σ = 0.3 in an emerging duopoly the own- and

cross-price elasticities of demand are −28.17 and 6.38, respectively, at static Nash equilibrium prices and
−6.42 and 6.42 in a mature duopoly. For σ = 3 the own- and cross-price elasticities are −3.72 and 0.84,
respectively, in an emerging duopoly, and −1.66 and 1.07 in a mature duopoly.
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exit is immediately followed by entry. In particular, if X −∆X > S +∆S ⇔ X > 7.5, then

a potential entrant has an incentive to incur the setup cost for the exclusive purpose of

receiving the scrap value.21

There are multiple equilibria for X from 0.7 to 5. H−1(X) involves a main path (labeled

MP ) that bends back on itself. The equilibria on the lower fold of MP are flat and the

industry evolves into a mature duopoly. The equilibria on the upper fold of MP are trenchy

and the industry evolves into an entrenched monopoly.

Overall, many equilibria are trenchy. In these equilibria predation-like behavior arises.

Multiplicity of equilibria is the norm rather than the exception, and trenchy equilibria

typically coexist with flat equilibria.

4 Isolating predatory incentives

To isolate a firm’s predatory pricing incentives, we write the equilibrium pricing condition

(5) as

mr1(p1(e), p2(e))− c(e1) +

[
5∑

k=1

Γk
1(e)

]
+Υ(p2(e))

[
4∑

k=1

Θk
1(e)

]
= 0. (6)

∑5
k=1 Γ

k
1(e) decomposes the advantage-building motive [U1(e1 + 1, e2)− U1(e)] and

∑4
k=1Θ

k
1(e)

decomposes the advantage-denying motive [U1(e)− U1(e1, e2 + 1)]. Each term in this de-

composition has a distinct economic interpretation that we describe below.22

Advantage building. The decomposed advantage-building motives summarized in Table

3 are the various sources of marginal benefit to the firm from winning the sale in the current

period and moving further down its learning curve.

Baseline advantage-building motive:

Γ1
1(e) = (1− ϕ1(e))β [V1(e1 + 1, e2)− V1(e)] .

The baseline advantage-building motive is the marginal benefit to the firm from an im-

provement in its competitive position, assuming that its rival does not exit in the current

period. It captures both the lower marginal cost and any future advantages (winning the

sale, exit of rival, etc.) that stem from this lower cost.

21Our model cannot capture perfect contestability which requires ∆X = ∆S = 0 in addition to X = S.
22The decomposition applies to an industry with two incumbent firms in state e ≥ (1, 1) and we focus on

firm 1. We use equation (1) to express U1(e) in terms of V1(e). Because the terms Γk
1(e) and Θk

1(e) are
typically positive, we refer to them as marginal benefits. To streamline the exposition, we further presume
monotonicity of the value and policy functions. For some parameterizations these assumptions fail.
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advantage-building motives if the firm wins the sale and moves further down its learn-
ing curve, then the firm. . .

Γ1
1(e) baseline . . . improves its competitive position within the duopoly

Γ2
1(e) exit . . . increases its rival’s exit probability

Γ3
1(e) survival . . . decreases its exit probability

Γ4
1(e) scrap value . . . increases its expected scrap value

Γ5
1(e) market structure . . . gains from an improved competitive position as a mo-

nopolist versus as a duopolist

Table 3: Decomposed advantage-building motives.

Advantage-building/exit motive:

Γ2
1(e) = (1− ϕ1(e)) [ϕ2(e1 + 1, e2)− ϕ2(e)]β[V1(e1 + 1, 0)− V1(e1 + 1, e2)].

The advantage-building/exit motive is the marginal benefit to the firm from increasing its

rival’s exit probability from ϕ2(e) to ϕ2(e1 + 1, e2).

Advantage-building/survival motive:

Γ3
1(e) = [ϕ1(e)− ϕ1(e1 + 1, e2)]β [ϕ2(e1 + 1, e2)V1(e1 + 1, 0) + (1− ϕ2(e1 + 1, e2))V1(e1 + 1, e2)] .

The advantage-building/survival motive is the marginal benefit to the firm from decreasing

its exit probability from ϕ1(e) to ϕ1(e1 + 1, e2).

Advantage-building/scrap value motive:

Γ4
1(e) = ϕ1(e1 + 1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
− ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
.

The advantage-building/scrap value motive is the marginal benefit to the firm from increas-

ing its scrap value in expectation from ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to ϕ1(e1+1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
.

Advantage-building/market structure motive:

Γ5
1(e) = (1− ϕ1(e))ϕ2(e)β {[V1(e1 + 1, 0)− V1(e1, 0)]− [V1(e1 + 1, e2)− V1(e)]} .

The advantage-building/market structure motive is the marginal benefit to the firm from

an improvement in its competitive position as a monopolist versus as a duopolist.

Advantage denying. The decomposed advantage-denying motives summarized in Table

3 are the various sources of marginal benefit to the firm from winning the sale in the current

period and, in so doing, preventing its rival from moving further down its learning curve.

The decomposed advantage-denying motives differ from the decomposed advantage-building

18



advantage-denying motives if the firm wins the sale and prevents its rival from moving
further down its learning curve, then the firm . . .

Θ1
1(e) baseline . . . prevents its rival from improving its competitive posi-

tion within the duopoly
Θ2

1(e) exit . . . prevents its rival’s exit probability from decreasing
Θ3

1(e) survival . . . prevents its exit probability from increasing
Θ4

1(e) scrap value . . . prevents its expected scrap value from decreasing

Table 4: Decomposed advantage-denying motives.

motives in that they focus not on the firm becoming more efficient but on the firm preventing

its rival from becoming more efficient.

Baseline advantage-denying motive:

Θ1
1(e) = (1− ϕ1(e))(1− ϕ2(e1, e2 + 1))β [V1(e)− V1(e1, e2 + 1)] . (7)

The baseline advantage-denying motive is the marginal benefit to the firm from preventing

an improvement in its rival’s competitive position, assuming its rival does not exit in the

current period.

Advantage-denying/exit motive:

Θ2
1(e) = (1− ϕ1(e))[ϕ2(e)− ϕ2(e1, e2 + 1)]β[V1(e1, 0)− V1(e)].

The advantage-denying/exit motive is the marginal benefit to the firm from preventing its

rival’s exit probability from decreasing from ϕ2(e) to ϕ2(e1, e2 + 1).

Advantage-denying/survival motive:

Θ3
1(e) = [ϕ1(e1, e2 + 1)− ϕ1(e)]β [ϕ2(e1, e2 + 1)V1(e1, 0) + (1− ϕ2(e1, e2 + 1))V1(e1, e2 + 1)] .

The advantage-denying/survival motive is the marginal benefit to the firm from preventing

its exit probability from increasing from ϕ1(e) to ϕ1(e1, e2 + 1).

Advantage-denying/scrap value motive:

Θ4
1(e) = ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
− ϕ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.

The advantage-denying/scrap value motive is the marginal benefit to the firm from pre-

venting its scrap value from decreasing in expectation from ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to

ϕ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.

The upper panels of Table 5 illustrate the decomposition (6) for the trenchy equilibrium
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in Section 3.1 for a set of states where firm 2 is emerging. The competition for the market

in state (1, 1) is driven mostly by the baseline advantage-building motive Γ1
1(1, 1) and the

advantage-building/exit motive Γ1
2(1, 1). In contrast, the competition for the market in

the trench in states (e1, 1) for e1 ∈ {2, . . . , 30} is driven mostly by the baseline advantage-

denying motive Θ1
1(e1, 1) and the advantage-denying/exit motive Θ1

2(e1, 1). The predation-

like behavior in the trench thus arises not because by becoming more efficient the leader

increases the probability that the follower exits the industry but because by preventing the

follower from becoming more efficient the leader keeps the follower in the trench and thus

prone to exit. Another way to put this is that the leader makes the cost to the follower

of attempting to move down its learning curve comparable to the benefit to the follower of

doing so, so that exit is in the follower’s interest. Viewed this way, the aggressive pricing

in the trench can be viewed as raising the rival’s cost of remaining in the industry. The

decomposed advantage-denying motives remain in effect in states (e1, 1) for e1 ∈ {16, . . . , 30}
where the leader has exhausted all learning economies.

As can be seen in lower panels of Table 5 for a set of states where firm 2 has already

gained some traction neither the advantage-building nor the advantage-denying motives are

very large. To the extent that the price is below the static optimum this is due mostly to

the baseline advantage-building motive Γ1
1(e1, 4) for e1 ∈ {1, . . . , 30}.

4.1 Definitions of predation in the literature

To serve as a point of departure for defining predatory incentives, we show how our decom-

position (6) relates to economic definitions of predation formulated in the existing literature.

Cabral & Riordan (1997). Cabral & Riordan (1997) call “an action predatory if (1) a

different action would increase the probability that rivals remain viable and (2) the different

action would be more profitable under the counterfactual hypothesis that the rival’s viability

were unaffected” (p. 160). In the context of predatory pricing, it is natural to interpret

“a different action” as a higher price p̃1 > p1(e). To port the Cabral & Riordan definition

from their two-period model to our infinite-horizon dynamic stochastic game, we take the

“rival’s viability” to refer to the probability that the rival exits the industry in the current

period. Finally, we interpret “the different action would be more profitable” in the spirit

of Markov perfection to mean that by a setting a higher price in the current period but

returning to equilibrium play from the subsequent period onward, the firm can affect the

evolution of the state to increase its expected NPV if it believed, counterfactually, that the

probability that the rival exits the industry in the current period is fixed at ϕ2(e).

With these interpretations, Proposition 1 formalizes the relationship between the Cabral

& Riordan definition of predation and our decomposition:
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Proposition 1 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

ϕ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 + 1, 0) > V1(e1 + 1, e2), i.e., exit by the firm is less

than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
> 0, (8)

Γ2
1(e) ≥ 0, and Θ2

1(e) ≥ 0, with at least one of the last two inequalities being strict, then

the firm’s equilibrium price p1(e) in state e is predatory according to the Cabral & Riordan

(1997) definition.23 (b) If p1(e) is predatory according to the Cabral & Riordan definition,

then inequality (8) holds and Γ2
1(e) > 0 or Θ2

1(e) > 0.

Proof. See Appendix B.

Ordover & Willig (1981). According to Ordover & Willig (1981), “[p]redatory behav-

ior is a response to a rival that sacrifices part of the profit that could be earned under

competitive circumstances were the rival to remain viable, in order to induce exit and gain

consequent additional monopoly profit” (pp. 9–10). As Cabral & Riordan (1997) observe,

the premise in the Ordover & Willig definition is that the rival is viable with certainty.24

We have:

Proposition 2 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

ϕ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 + 1, 0) > V1(e1 + 1, e2), i.e., exit by the firm is less

than certain and the expected NPV of a monopolist exceeds that of a duopolist. (a) If

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=0

]
+ Γ5

1(e)

+Υ(p2(e))
[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=0

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=0

]]
> 0, (9)

Γ2
1(e) ≥ 0, and Θ2

1(e) ≥ 0, with at least one of the last two inequalities being strict, then

the firm’s equilibrium price p1(e) in state e is predatory according to the Ordover & Willig

(1981) definition. (b) If p1(e) is predatory according to the Ordover & Willig definition,

then inequality (9) holds and Γ2
1(e) > 0 or Θ2

1(e) > 0.

Proof. Omitted as it follows the same logic as the proof of Proposition 1.

23The notation ·|ϕ2=ϕ2(e)
signifies that we evaluate the relevant term under the assumption that ϕ2(e) =

ϕ2(e1 + 1, e2) = ϕ2(e1, e2 + 1) so that the probability that the rival exits the industry in the current period
is indeed fixed at ϕ2(e).

24This observation indeed motivates Cabral & Riordan (1997) to propose their own definition: “Is the
appropriate counterfactual hypothesis that firm B remain viable with probability one? We don’t think so.
Taking into account that firm B exits for exogenous reasons (i.e. a high realization of [the scrap value])
hardly means that firm A intends to drive firm B from the market” (p. 160).
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4.2 Definitions of predatory incentives

Propositions 1 and 2 hint at how our decomposition can be used to isolate a firm’s predatory

pricing incentives. To detect the presence of predatory pricing antitrust authorities routinely

ask whether a firm sacrifices current profit in exchange for the expectation of higher future

profit following the exit of its rival. This sacrifice test thus views predation as an “investment

in monopoly profit” (Bork 1978).25

Edlin & Farrell (2004) point out that one way to test for sacrifice is to determine

whether the derivative of a suitably defined profit function is positive at the price the firm

has chosen, which indicates that the chosen price is less than the price that maximizes

profit. Moreover, “[i]n principle this profit function should incorporate everything except

effects on competition” (p. 510, our italics). The Ordover & Willig (1981) and Cabral &

Riordan (1997) definitions of predation can be thought of as a sacrifice test in this spirit

as the underlying counterfactuals are particular operationalizations of “everything except

effects on competition.”

To formalize the sacrifice test and relate it to our model, we partition the profit func-

tion Π1(p1, p2(e), e) into an everything-except-effects-on-competition (EEEC) profit func-

tion Π0
1(p1, p2(e), e) and a remainder Ω0

1(p1, p2(e), e) = Π1(p1, p2(e), e) − Π0
1(p1, p2(e), e)

that by definition reflects the effects on competition. Because ∂Π1(p1(e),p2(e),e)
∂p1

= 0 in equi-

librium, the sacrifice test
∂Π0

1(p1(e),p2(e),e)
∂p1

> 0 is equivalent to

−∂Ω0
1(p1(e), p2(e), e)

∂p1
=

∂Ω0
1(p1(e), p2(e), e)

∂(−p1)
> 0. (10)

∂Ω0
1(p1(e),p2(e),e)

∂(−p1)
is the marginal return to a price cut in the current period due to changes

in the competitive environment. If profit is sacrificed, then inequality (10) tells us that

these changes in the competitive environment are to the firm’s advantage. In this sense,
∂Ω0

1(p1(e),p2(e),e)
∂(−p1)

is the marginal return to the “investment in monopoly profit” and thus a

natural measure of the firm’s predatory pricing incentives. For a variety of plausible spec-

ifications of the EEEC profit function, the associated predatory incentives
∂Ω0

1(p1(e),p2(e),e)
∂(−p1)

can be characterized using our decomposition (6).

Short-run profit. Expanding the above quote from Edlin & Farrell (2004) “[i]n principle

this profit function should incorporate everything except effects on competition, but in prac-

25A sacrifice test is closely related to the “no economic sense” test that holds that “conduct is not ex-
clusionary or predatory unless it would make no economic sense for the defendant but for the tendency to
eliminate or lessen competition” (Werden 2006, p. 417). Both tests have been criticized for “not generally
[being] a reliable indicator of the impact of allegedly exclusionary conduct on consumer welfare—the primary
focus of antitrust laws” (Salop 2006, p. 313).
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tice sacrifice tests often use short-run data, and we will often follow the conventional short-

hand of calling it short-run profit” (p. 510, our italics). Defining Π0
1(p1, p2(e), e) = (p1 −

c1(e1))D1(p1, p2(e)) to be short-run profit, it follows from our decomposition (6) and the sac-

rifice test (10) that
∂Ω0

1(p1(e),p2(e),e)
∂(−p1)

> 0 if and only if
∑5

k=1 Γ
k
1(e)+Υ(p2(e))

[∑4
k=1Θ

k
1(e)

]
>

0. Our first definition of predatory incentives thus comprises all decomposed advantage-

building and advantage-denying motives:

Definition 1 (short-run profit) The firm’s predatory pricing incentives are
∑5

k=1 Γ
k
1(e)+

Υ(p2(e))
[∑4

k=1Θ
k
1(e)

]
.

The sacrifice test based on Definition 1 is equivalent to the inclusive price mr1(p1(e), p2(e))

being less than short-run marginal cost c(e1).
26 Because mr1(p1(e), p2(e)) → p1(e) as

σ → 0, in an industry with very weak product differentiation it is also nearly equivalent

to the classic Areeda & Turner (1975) test that equates predatory pricing with below-cost

pricing.27

Dynamic competitive vacuum. Definition 1 may be too severe as it denies the effi-

ciency gains from pricing aggressively in order to move down the learning curve. Instead, the

firm should behave as if it were operating in a “dynamic competitive vacuum” in the sense

that the firm takes as given the competitive position of its rival in the current period but

ignores that its current price can affect the evolution of the competitive position of its rival

beyond the current period. Hence, Π0
1(p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e)) + U1(e) +

D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)], where we assume that from the subsequent period

onward play returns to equilibrium. To us, this best captures the idea that the firm is sacri-

ficing something now in exchange for a later improvement in the competitive environment.

It follows from our decomposition (6) and the sacrifice test (10) that
∂Ω0

1(p1(e),p2(e),e)
∂(−p1)

) > 0 if

and only if
∑4

k=1Θ
k
1(e) > 0. Our second definition of predatory incentives thus comprises

all decomposed advantage-denying motives:

Definition 2 (dynamic competitive vacuum) The firm’s predatory pricing incentives

are
∑4

k=1Θ
k
1(e).

The sacrifice test based on Definition 2 is equivalent to the inclusive price mr1(p1(e), p2(e))

being less than long-run marginal cost c(e1) −
[∑5

k=1 Γ
k
1(e)

]
. Note that a lower bound

on long-run marginal cost c(e1) −
[∑5

k=1 Γ
k
1(e)

]
is out-of-pocket cost at the bottom of

26Edlin (2010) interprets the arguments of the U.S. Department of Justice in a predatory pricing case
against American Airlines in the mid-1990s as implicitly advocating a sacrifice test based the comparison of
inclusive price and marginal cost. Edlin & Farrell (2004) and Snider (2008) provide detailed analyses of this
case.

27Below-cost pricing underpins the current Brooke Group standard for predatory pricing in the U.S.
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the learning curve c(m) (see Spence 1981). Hence, if mr1(p1(e), p2(e)) < c(m), then

mr1(p1(e), p2(e)) < c(e1) −
[∑5

k=1 Γ
k
1(e)

]
. This provides a one-way test for sacrifice that

can be operationalized given some basic knowledge of demand and cost.

Rival exit in current period. According to Definitions 1 and 2 the marginal return to

a price cut in the current period may be positive not because the rival exits the industry

in the current period but because the rival exits in some future period. The predatory

incentives therefore extend to the possibility that the rival exits in some future period

because the firm improves its competitive position in the current period. The economic

definitions of predation formulated in the existing literature instead focus more narrowly on

the immediate impact of a price cut on rival exit. Our remaining definitions of the firm’s

predatory pricing incentives embody this focus.

The Ordover &Willig definition of predation sets Π0
1(p1, p2(e), e) = Π1(p1, p2(e), e)|ϕ2=0

so that the EEEC profit function is the profit function under the counterfactual presumption

that the probability that the rival exits the industry in the current period is zero. In light

of Proposition 2 we have:

Definition 3 (Ordover & Willig) The firm’s predatory pricing incentives are

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=0

]
+ Γ5

1(e)

+Υ(p2(e))
[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=0

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=0

]]
.

Similarly, the Cabral & Riordan definition of predation sets Π0
1(p1, p2(e), e) = Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

.

In light of Proposition 1 we have:

Definition 4 (Cabral & Riordan) The firm’s predatory pricing incentives are

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
.

Our remaining three definitions of the firm’s predatory pricing incentives come from

partitioning the predatory incentives in Definition 4 more finely by maintaining that the

truly exclusionary effects on competition are the ones aimed at inducing exit by the firm

winning the sale and moving further down its learning curve and/or by the firm preventing

the rival from winning the sale and moving further down its learning curve:

Definition 5 (modified Cabral & Riordan I) The firm’s predatory pricing incentives

are Γ2
1(e) + Υ(p2(e))Θ

2
1(e).

25



definition predatory incentives

1. short-run profit all decomposed advantage-building
and advantage-denying motives

Γk
1(e), k = 1, . . . , 5,

Θk
1(e), k = 1, . . . , 5

2. dynamic competi-
tive vacuum

all decomposed advantage-denying
motives

Θk
1(e), k = 1, . . . , 4

3. Ordover & Willig marginal benefit from nonzero proba-
bility of rival exit in current period

Γ2
1(e), Θ2(e), Γ5

1(e),[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=0

]
,[

Θ1
1(e)− Θ1

1(e)
∣∣
ϕ2=0

]
,[

Θ3
1(e)− Θ3

1(e)
∣∣
ϕ2=0

]
4. Cabral & Riordan marginal benefit from nonconstant

probability of rival exit in current pe-
riod

Γ2
1(e), Θ2(e),[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
,[

Θ1
1(e)− Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

]
,[

Θ3
1(e)− Θ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
5. modified Cabral &
Riordan I

advantage-building/exit and
advantage-denying/exit motives

Γ2
1(e), Θ

2
1(e)

6. modified Cabral &
Riordan II

advantage-denying/exit motive Θ2
1(e)

7. Snider advantage-building/exit motive Γ2
1(e)

Table 6: Definitions of predatory incentives.

Definition 6 (modified Cabral & Riordan II) The firm’s predatory pricing incentives

are Θ2
1(e).

Definition 7 (Snider) The firm’s predatory pricing incentives are Γ2
1(e).

Definition 7 is used by Snider (2008) to explore whether American Airlines engaged in

predatory capacity expansion in the Dallas-Fort Worth to Wichita market in the late 1990s.

Table 6 summarizes our definitions of predatory incentives in what intuitively seems

to be decreasing order of severity. The right panels of Table 5 illustrate this point at the

example of the trenchy equilibrium in Section 3.1. A sacrifice test based on a later definition

has indeed a greater tendency to identify a price as predatory.

5 Economic significance of predatory incentives

Is predatory pricing detrimental to consumers and society at large? We use our model

to address this question by implementing an ideal conduct restriction that eliminates the

predatory incentives for each of the definitions in Section 4.2. Imagine an omniscient regu-

lator that can instantly flag a predatory profit sacrifice and can prevent a firm from pricing
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to achieve that sacrifice by forcing it to ignore its predatory pricing incentive. Each defi-

nition in Section 4.2 would then imply a conduct restriction that constrains the range of

each firm’s price. For example, Definition 1 would prevent the inclusive price from being

less than marginal cost.28

We can formalize a conduct restriction by rewriting our decomposition (6) as29

mr1(p1, p2(e))− c(e1) +

[
5∑

k=1

Γk
1(e)± Γ3

1(e)
∣∣
ϕ2=0

± Γ3
1(e)

∣∣
ϕ2=ϕ2(e)

]

+Υ(p2(e))

[
4∑

k=1

Θk
1(e)± Θ1

1(e)
∣∣
ϕ2=0

± Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

± Θ3
1(e)

∣∣
ϕ2=0

± Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]
= 0.

(11)

For each definition, a constraint Ξ1(p1, p2(e), e) = 0 is formed by “switching off” the preda-

tory incentives corresponding to that definition. For example, for Definition 2, the conduct

restriction would force firm 1 to ignore the term
∑4

k=1Θ
k
1(e) = 0, so the constraint on firm

1’s maximization problem would be Ξ1(p1, p2(e), e) = mr1(p1, p2(e))−c(e1)+
∑5

k=1 Γ
k
1(e) =

0. Firm 1’s profit-maximization problem in the price-setting phase is then:

max
p1∈{p̂1:Ξ(p̂1,p2(e),e)=0}

Π1(p1, p2(e), e)

For each definition of the predatory pricing incentive, we compute the Markov perfect

equilibria of a counterfactual game in which each firm faces the conduct restriction implied

by the definition. The pricing constraint facing each firm depends on equilibrium behavior

and is thus endogenous to the equilibrium. As in our analysis above, we use homotopy

methods to compute the counterfactual equilibria, and we characterize the counterfactual

equilibrium correspondence using the same industry structure, conduct, and performance

metrics used to characterize the actual equilibrium correspondence.

5.1 Counterfactual and equilibrium correspondences

We characterize the impact of these conduct restrictions in three steps. First, to build

intuition, we illustrate graphically how the equilibrium correspondence with a conduct re-

striction compares to the actual equilibrium correspondence. Those graphs show how the

conduct restrictions can “eliminate” certain equilibria. Second, over a wide set of param-

eterizations, we contrast the equilibria that are eliminated with those that survive. This

sheds light on the extent to which predatory incentives, defined in various ways, are re-

28And since price exceeds marginal revenue, it thus rules out price less than marginal cost.
29The notation ±· signifies that we add and subtract the relevant term.
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sponsible for “bad equilibria.” Third, we compare actual equilibria to the counterfactual

equilibria that arise under the conduct restrictions corresponding to each definition. This

sheds light on the impact of predatory incentives on industry structure, prices, and wel-

fare. If a conduct restriction associated with a particular definition of predatory pricing

incentives is beneficial, the predatory incentives can be inferred to be harmful; if not, the

predatory incentives are arguably beneficial.

Figures 4–6 illustrate the counterfactual correspondence for Definitions 1–7 by plotting

HHI∞ against ρ.30 We superimpose the equilibrium correspondence H−1(ρ) from Figure

3.

For Definitions 1 and 2, the counterfactual correspondence consists of a single main path

represented by a flat line that is identical to the main path for the actual equilibrium. Thus,

for values of ρ for which there are multiple equilibria (ρ ∈ [0, 0.8)), the conduct restrictions

associated with Definitions 1 and 2 eliminated all of the equilibria except those resulting in a

symmetric long-run industry structure. For example, for the showcase example of ρ = 0.75,

the conduct restrictions under Definitions 1 and 2 eliminate two of three equilibria, including

the trenchy equilibrium that gives rise to behavior that resembles conventional notions of

predatory pricing.

By contrast, the counterfactual correspondences for Definitions 3–7 resemble the equi-

librium correspondence and consists of a main path, a semi-loop, and one (Definitions 3–6)

or two (Definition 7) loops. The counterfactual equilibria span the same range of indus-

try structures as the actual equilibria. For these definitions, many of the actual equilibria

appear to have a counterfactual counterpart “nearby.”

5.2 Eliminated and surviving equilibria

Figures 4–6 intuitively suggest that some equilibria are eliminated by a particular conduct

restriction while other equilibria survive it. To make this intuition more precise, we perform

a homotopy analysis that matches actual equilibria with counterfactual equilibria. Instead

of abruptly “switching off” the predatory pricing incentive in equation (11), we gradually

drive it to zero. For Definition 2, for example, we put a weight λ on the terms Θk
1(e), k =

1, . . . , 4, and we then allow the homotopy method to vary λ (along with the vector of

values and policies (V1,U1,p1,ϕ1)). At λ = 1 we have the actual equilibrium, and at

λ = 0 we have the counterfactual equilibrium with the conduct restriction. We say that an

equilibrium survives the conduct restriction if, starting from λ = 1, the homotopy reaches

the counterfactual equilibrium correspondence. A surviving equilibrium smoothly deforms

into a counterfactual equilibrium by gradually tightening the conduct restriction. We say

30The remaining slices along σ and X are presented in the Online Appendix.
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definition

metric 1 2 3 4 5 6 7

surv. 19% 19% 64% 56% 64% 65% 86%
elim. 80% 77% 34% 44% 33% 35% 0%

HHI∞ surv. 0.50 0.50 0.74 0.70 0.74 0.74 0.81
elim. 0.90 0.91 0.99 0.99 0.99 0.99 NaN

EP∞ surv. 2.99 2.99 5.45 5.05 5.45 5.50 6.24
elim. 7.17 7.21 8.10 8.11 8.09 8.10 NaN

CS∞ surv. 7.71 7.71 4.98 5.42 4.98 4.93 4.12
elim. 3.09 3.05 2.07 2.05 2.07 2.07 NaN

TS∞ surv. 9.70 9.70 9.07 9.21 9.07 9.05 8.76
elim. 8.63 8.57 8.34 8.29 8.38 8.34 NaN

CSNPV surv. 158.28 158.28 158.96 160.54 158.96 158.64 154.66
elim. 157.55 156.24 154.52 153.04 155.14 154.58 NaN

TSNPV surv. 172.48 172.48 167.86 169.85 167.86 167.49 162.83
elim. 164.01 162.70 160.64 159.15 161.26 160.70 NaN

Table 7: Industry structure, conduct, and performance for eliminated and surviving equi-
libria for various definitions of predatory incentives, for a uniformly spaced grid ρ ∈
{0.05.0.10, . . . 1.0} (limited to paramterizations with multiple equilibria).

that an equilibrium is eliminated by the conduct restriction if the homotopy algorithm

returns to the actual equilibrium correspondence.31

Figure B, which plots HHI∞ against ρ, distinguishes between eliminated and surviving

equilibria for Definitions 2 and 5. Definition 2 (which has similar effects to Definition 1)

eliminates the trenchy equilibria that are associated with higher expected long-run Herfind-

ahl indices whereas the flatter equilibria that are associated with lower expected long-run

Herfindahl indices survive the conduct restriction. By contrast, Definition 5 (which is

broadly representative of Definitions 3–7) allows some of the trenchier equilibria to survive,

along with all of the flat ones. Still, with the exception of Definition 7, at least some of

trenchy equilibria are eliminated.

Table 7 compares the surviving and eliminated equilibria for a uniformly spaced grid

of parameter values ρ ∈ {0.05.0.10, . . . 1.0}.32 The first row shows, for each definition of

predatory incentives, the percentage of equilibria that survive the conduct restriction.33

The more severe conduct restrictions based on Definitions 1 and 2 eliminate many more

31For an example of such return, see Figure 1, case B in Borkovsky et al. (2010). In cases in which a
homotopy crashes, we deduce survival or elimination from adjacent equilibria along the solution path.

32The data reported in the table pertain only to those parameterization for which multiple equilibria
occurred, and they represent averages across these parameterizations.

33The percentages in the table may not add to 100%. This is because in some cases, the homotopy crashed,
and we were unable to deduce survival or elimination from adjacent equilibria along the solution path.
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equilibria than the weaker conduct restrictions based on Definitions 3–7.

The remaining rows of Table 7 contrast the metrics of industry structure, conduct, and

performance for eliminated and surviving equilibria. For all definitions, surviving equilibria

involve less concentration, lower average long-run prices, higher long-run consumer and to-

tal surplus welfare, and higher discounted consumer and total surplus than the eliminated

equilibria. Definitions 1 and 2 tend to have surviving equilibria with higher long-run con-

sumer and total surplus and higher discounted total surplus than the surviving equilibria

under (the weaker) Definitions 3–7. However, the weaker definitions tend to have surviving

equilibria with slightly higher levels of discounted consumer surplus. This is because some

trenchy equilibria that involve moderately strong competition for the market survive the

conduct restrictions for the weaker definitions, but are eliminated by the conduct restrictions

for the stronger definitions.

These results indicate that under any definition, removing the predatory pricing incen-

tive can eliminate “bad equilibria,” with Definitions 1 and 2 eliminating a much larger set of

“bad equilibria” than Definitions 3–7. Defining unlawful predation according to Definitions

3–7 would thus be compatible with some trenchy equilibria in which the market can evolve

into a monopoly. By contrast, using Definition 1 or 2 to identify unlawful predation would

generally be incompatible with equilibria that give rise to long-run asymmetries among

firms.

5.3 Impact of predatory incentives

The survival-elimination analysis indicates the extent to which predatory incentives are

responsible for “bad equilibria,” but it does not directly illustrate the economic impact

of the predatory pricing incentives. This economic impact is revealed by the impact of

the associated conduct restriction on equilibrium outcomes, and this involves comparing

counterfactual equilibria to actual equilibria.

But the multiplicity of equilibria complicates such a comparison: for a given parameter-

ization, which counterfactual equilibria should be compared to which actual equilibria? To

answer this question, we need to posit an out-of-equilibrium process by which agents adjust

to the shock to the system implied by the imposition of the conduct restriction.

To deal with this, we proceed as follows. A surviving equilibrium by construction can

be smoothly deformed into a counterfactual. To the extent that the out-of-equilibrium ad-

justment process is itself sufficiently smooth, it is plausible that it would lead to this coun-

terfactual (Doraszelski & Escobar 2010). Thus, for a given parameterization, we compare

each surviving equilibrium to its counterfactual counterpart. For an eliminated equilibrium,

in contrast, we assume that all counterfactuals (at the same parameterization) are equally

likely. Thus, we compare the structure, conduct, and performance metrics for each elimi-
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nated equilibrium to the value of these metrics averaged across all counterfactual equilibria

for that parameterization. To be precise, imagine that for a given parameterization, we

have I equilibria with measures xs1, ..., x
s
I for a particular structure, conduct, performance

metric s. Assume that for Definition d, the first J < I equilibria survive the associated

conduct restriction, and the measures for the corresponding counterfactual equilibria with

the conduct restriction are yds1 , ..., ydsJ . In addition, there are K − J counterfactuals that

have no corresponding equilibrium and measures ydsJ+1, ..., y
ds
K . The impact Zds of conduct

restriction d on metric s is then:34

Zds =
1

I

[∑J

i=1

(
ydsi − xsi

)
+

∑I

i=J+1

(
1

K

∑K
j=1 y

ds
j − xsi

)]
.

Table 8 summarizes conduct restriction impacts Zds(ρ) for the grid ρ ∈ {0.05.0.10, . . . 1.0}.35

Each cell pertains to a particular (d, s) combination and reports the percentage of param-

eterizations for which Zds(ρ) > 0 and Zds(ρ) < 0. It also shows the average impact across

all parameterizations, i.e., Zds =
∑

ρ∈{0.05.0.10,...1.0}
Zds(ρ)

20 .

For all definitions, the associated conduct restrictions tend to improve long-run out-

comes, i.e., they tend to decrease long-run price and market concentration and increase

long-run per-period consumer and total surplus. The long-run impact of the conduct re-

strictions for Definitions 1 and 2 is both more pronounced and more unambiguously benefi-

cial than for Definitions 3–7. For example, the conduct restrictions for Definitions 1 and 2

increase CS∞ in 80% of the parameterizations in the grid and never decrease it. On average,

CS∞ goes up by 2.8 for each definition, an increase of about 75% over the average value

in the actual equilibria. By contrast, the conduct restrictions for Definitions 3-6 increase

long-run consumer surplus in 50 to 55% of the parameterizations and (except for Definition

7) decrease it in 25% of them. On average these conduct restrictions increase CS∞ by 8

to 24% depending on the definition. The generally large impact of the predatory incen-

tives under Definitions 1 and 2 arise because they are, in effect, necessary for the trenchy

equilibria. The conduct restrictions for these definitions preserve the flat equilibria along

34For example, for the baseline parameterization recall from Section 3.1 there were three equilibria. HHI∞

for these equilibria was 0.50, 0.58, and 0.96, respectively. Imposing the conduct restriction associated with
Definition 1 eliminates the latter two equilibria, while the first equilibrium survives. The counterfactual
equilibrium with the conduct restriction has HHI∞ = 0.5. The three actual equilibria are then compared
to this sole counterfactual, and thus

Z1,HHI∞ =
[(0.50− 0.50) + (0.50− 0.58)− (0.50− 0.96)]

3
= −0.18.

35The Online Appendix presents analogous tables for σ and X.
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definitions

metric 1 2 3 4 5 6 7

p∞ Up - - 25% 25% 25% 25% -
Avg= Down 80% 80% 50% 55% 50% 50% 55%
6.7653 Change -2.5435 -2.5435 -0.5411 -0.8043 -0.5425 -0.5185 -0.2766

HHI∞ Up - - 25% 25% 25% 25% -
Avg= Down 80% 80% 50% 55% 50% 50% 40%
0.7406 Change -0.2406 -0.2406 -0.0558 -0.0816 -0.0560 -0.0536 -0.0234

CS∞ Up 80% 80% 50% 55% 50% 50% 55%
Avg= Down - - 25% 25% 25% 25% -
3.7407 Change +2.8046 +2.8046 +0.6001 +0.8913 +0.6017 +0.5752 +0.3027

TS∞ Up 80% 80% 50% 55% 50% 50% 35%
Avg= Down - - - - - 5% -
7.6554 Change +0.7411 +0.7411 +0.1701 +0.2496 +0.1706 +0.1633 +0.0728

CSNPV Up - - - 10% - 45% -
Avg= Down 95% 75% 60% 45% 60% - 75%
132.26 Change -62.8235 -2.9228 -2.7762 -2.3527 -2.7690 +0.7673 -2.2480

TSNPV Up - 80% 50% 55% 50% 50% 20%
Avg= Down 95% - - - - - -
142.04 Change -9.6971 +5.9320 +1.4464 +2.0791 +1.4466 +1.3928 +0.6780

Table 8: Impact of conduct restriction for ρ ∈ {0.05, 0.10, . . . , 1.0}.
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MP but eliminate all of the trenchy equilibria that arise for ρ less than about 0.8. On the

other hand, the conduct restriction for a definition such as Definition 3 not only does not

eliminate some of moderately trenchy equilibria on the lower fold of the semi-loop SL, but

it actually causes these equilibria to morph into equilibria with a greater degree of long-run

concentration.

In contrast to the long-run impacts, the impact of the conduct restrictions on discounted

consumer and total surplus is mixed. For Definitions 1-5 and 7, the corresponding conduct

restrictions generally reduce discounted consumer surplus CSNPV . This is due to the

elimination of the trenchiest equilibria that involve very intense competition for the market.

This effect is particularly large for Definition 1. The exception to this pattern is Definition

6. The conduct restriction associated with this definition (which identified the predatory

pricing incentive with the advantage-denying/exit motive) increases CSNPV in 45% of the

parameterizations in the grid and never decreases it. This is because the intense competition

for the market in an emerging industry is not due to the advantage-denying/exit motive

(recall Table 5), and so a conduct restriction based on Definition 6 does not restrict the

aggressive price competition between two firms who are on equal footing at the top of the

learning curve.

The conduct restrictions associated with Definitions 2-7 tend to increase discounted

total surplus TSNPV , while TSNPV decreases for the conduct restriction associated with

Definition 1. The decrease in total surplus from the Definition 1-conduct restriction is due

to slower learning in the industry as a whole that occurs when firms are constrained from

charging a price for which marginal revenue is less than marginal cost.36

Summing up, our impact analysis has several implications: First, our various defi-

nitions can be thought of offering different “takes” on what Edlin (2010) calls Stephen

Breyer’s “bird-in-hand” view of predatory pricing. In Barry Wright Corp. v. ITT Grin-

nell Corp., then-Judge (and now U.S. Supreme Court Justice) Breyer expressed skepticism

about declaring an above-cost price cut illegal: “[T]he antitrust laws rarely reject such ben-

eficial ‘birds in hand’ [an immediate price cut] for the sake of more speculative ‘birds in

the bush’ [preventing exit and thus preventing increases in price in the future].”37 Breyer’s

36Because it covers a large grid of possible values of ρ, the data in Table 8 provides a “broad brush” view
of the impact of the conduct restrictions associated each definition of predatory incentives. Since it seems
possible that a conduct restriction could have a different impact depending on parameter values, one might
prefer a more “scalpel-like” approach to examining economic impact of conduct restrictions.

To address this concern, the Online Appendix presents a table with the same data as in Table 8 except
it confines attention to a smaller grid of progress ratios, ρ ∈ {0.70.0.75, . . . 0.90} that coincides with the
empirically relevant range. Though the impact of the conduct restrictions are muted (since there are fewer
trenchy equilibria to eliminate in this range), the pattern of impacts is broadly similar to that shown in
Table 8. Except for Definition 7, there was no conduct restriction whose impact was qualitatively different
from that shown on Table 8. Over the empirically relevant range, Definition 7 had a negligible impact on
all of structure, conduct, and performance.

37Barry Wright Corp. v. ITT Grinnell Corp., 724 F.2d 227, 234 (1st Cir. 1983).
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“bird in hand” view might be thought of one that gives more weight to the immediate ben-

efits of short-run competition for the market as opposed to the future benefits of long-run

competition in the market. Our impact analysis indicates that to the extent that antitrust

policy inclines toward Breyer’s “bird in hand” view, our weaker definitions (Definitions 3-7)

of predatory incentives would be appealing; conduct restrictions based on these definitions

tend to “reject” fewer “birds in hand.” On the other hand, to the extent that antitrust

policy inclines away from Breyer’s “bird in hand” view—thus placing greater weight on

preserving competition in the market—the stronger definitions (Definitions 1 and 2) would

be a more compelling basis for defining predatory incentives.38

Second, defining the predatory pricing incentive according to Definition 1 is impact-

ful, but very restrictive. Though this restriction eliminates all trenchy equilibria and thus

improves long-run outcomes, it also stifles aggressive price competition to attain a compet-

itive advantage based on lower cost. This hurts consumers in the early stages of industry

evolution, and it reduces total surplus by slowing the rate at which firms move down their

learning curves. In an industry in which learning-based cost advantages are potentially

important, Definition 1 tends to “throw the baby” (aggressive price competition to attain

a cost advantage) “out with the bath water” (trenchy equilibria that involve predation-like

behavior).

Third, there is no definition of predatory incentives that is unambiguously harmful in

the sense that the associated conduct restriction increases long-run per-period consumers

and total surplus and, at the same time, also increases discounted consumer and total

surplus. In this respect, our analysis echoes a point made by Cabral & Riordan (1997):

predatory pricing (however defined) can sometimes be welfare improving. That said, two

definitions come close to the implication that predatory incentives are unambiguously harm-

ful: Definitions 2 and 6. The conduct restriction based on Definition 2 causes fairly small

decreases in CSNPV (only about 2.2% of actual equilibrium values when averaged over

all parameterizations in the grid) but otherwise unambiguously increases CS∞, TS∞, and

TSNPV .39 The conduct restriction based on Definition 6 may slightly decrease CS∞ and

TS∞ for some parameterizations, but more often than not it increases CS∞ and TS∞, and

it unambiguously increases CSNPV and TSNPV .

What unifies Definitions 2 and 6 is their emphasis on the advantage-denying motive as

38Edlin (2010) argues that Breyer’s “bird-in-hand” view is actually fallacious because it presumes entry,
but in equilibrium entry may not occur. Our analysis provides some support for this view because in a
trenchy equilibria, once one firm exits the market, future entry does not occur even though it is theoretically
possible and the incumbent firm is still close to the top of its learning curve.

39A relatively small increase in the discount factor used to compute CSNPV (holding the firms’ discount
factors fixed) would make the average impact of conduct restriction associated with Definition 2 on CSNPV

switch from negative to positive. Thus, if the social rate of time preference was sufficiently less than the
firms’ cost of capital, the conduct restriction associated with Definition 2 would unambiguously increase
consumer and total welfare in the long run and the short run.
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the basis of predation. This suggests that a sensible way to draw the line that separates

efficiency-enhancing pricing behavior from predatory pricing behavior is based on the extent

to which the behavior is driven by exclusion of opportunity. If a firm’s aggressive pricing

behavior is primarily driven by the benefits from building its own competitive advantage,

the behavior should be considered to be benign and (arguably) should not be restricted. If,

by contrast, the behavior is primarily driven by the benefits from excluding a rival from the

opportunity to build its own advantage or overcome an existing disadvantage, the behavior

should be considered predatory and (arguably) should be restricted. Of course, because

Definitions 2 and 6 are different (the former embodying a stronger notion of predation

than the latter), there is some latitude for how to draw this line. In particular, the choice

between these two definitions would depend, as just discussed, on whether antitrust policy

seeks to emphasize competition in the market or competition for the market. Still, broadly

speaking, our analysis highlights that the distinction between efficiency motives in pricing

from predatory motives is closely related to the distinction between advantage-building

motives and advantage-denying motives.

6 Conclusions

Our analysis shows how predatory pricing can be analyzed in a modern industry dynamics

framework. We have analyzed and computed equilibria for a dynamic stochastic game with

learning-by-doing, and by decomposing the equilibrium pricing condition, we proposed a

variety of ways to describe a firm’s predatory pricing incentives. Some of these definitions

map into definitions of predation that have been offered in the economics literature. More-

over, these definitions correspond to alternative implementations of sacrifice standards to

test for the presence of predatory pricing. Based on computations of equilibria using a base-

line set of parameterizations, we show the economic impact of these incentives on long-run

and transitory industry dynamics for (virtually) full ranges of values of the progress ratio

of the learning curve, the degree of product differentiation, and the scrap value.

Because our results are based on computations and not formal proofs, they are, of course,

necessarily tentative. We nevertheless believe that our results are suggestive and can enrich

policy discussions of predatory pricing. Here, we emphasize three implications.

First, our analysis confirms the analytical finding of Cabral & Riordan (1994) that

behavior that resembles conventional notions of predatory pricing can arise as a Markov

perfect equilibrium in a dynamic pricing game with learning-by-doing. This equilibrium

behavior is rooted in the fundamentals of demand and cost, rather than asymmetric in-

formation or capital market imperfections. And going beyond the “possibility” result in

Cabral & Riordan (1994), we show that the equilibria that spawn predatory behavior are
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not special cases or the results of extreme parameterizations. Rather, they arise for empir-

ically plausible parameter values and occur over rather wide ranges of certain parameter

values. For example, the trenchy equilibria that give rise to predation-like behavior arise

for all progress ratios less than about 0.80. Overall, our analysis, at the very least, calls

into question the claim that economic theory implies that predatory pricing is a myth and

need not taken seriously by antitrust authorities.

Second, the multiplicity of equilibria in our model confirms an important point about

predatory pricing made by Edlin (2010) who writes: “Whether predation is a successful

strategy depends very much on whether predator and prey believe it is successful strategy.”

Multiple equilibria arise in our model if, for given demand and cost fundamentals, there

is more than one set of firms’ expectations regarding the value of continued play that is

consistent with rational expectations about equilibrium behavior and industry dynamics.

As we have shown, conduct restrictions that force firms to ignore these incentives can short-

circuit some of these expectations and eliminate some or all (depending on the definition of

predatory incentives) of the trenchy equilibria that spawn predation-like behavior.

Third, our analysis has implications for defining predatory pricing incentives in situa-

tions in which a firm’s aggressive pricing may reflect both efficiency and predatory consider-

ations, and this in turn can provide insight into how a sacrifice test might be framed under

such circumstances. We find that definitions of predatory pricing incentives based on EEEC

profit functions that emphasize the direct impact of pricing on rival exit—in particular Def-

initions 3–7—seem, on average to have a relatively modest impact on long-run equilibrium

outcomes. By contrast, when predatory incentives are defined by Definition 1—a definition

that equates any departure from short-run profit maximization with predation—the preda-

tory incentives have a significant impact on long-run outcomes. This is because removing

these incentives tends to eliminate all the trenchy equilibria which give rise to long-run mo-

nopolization of the industry. But as firms move toward the long run, these incentives also

tend to lead to lower prices. In particular, the advantage-building motives that are included

within them are responsible for intense competition for the market in an emerging duopoly.

Our analysis suggests that in markets with learning curves, equating predation with Defini-

tion 1 incentives may involve giving up considerable consumer surplus (and modest amounts

of total surplus) as the industry transitions to an eventual state of maturity. An advantage

of sacrifice standards based on the “less strict” definitions of predation-like Definitions 3-

7 is that they could achieve some improvements in long-run outcomes, without the large

costs to consumers in the short run that would come from a standard based on Definition

1. Put another way, if one believes that a good policy is one that bends over backwards to

avoid labeling aggressive pricing as predatory in situations where firms are competing for

efficiency-based advantages, then one might prefer standards based on Definitions 3–7.
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Overall, our analysis suggests that the definitions of predatory incentives that reflect

the best balance of long-run and short-run welfare effects are Definitions 2 and 6. Both def-

initions emphasize advantage-denying motives — Definition 2 equates predatory incentives

with the entire advantage-denying motive, while Definition 6 equates predatory incentives

with the advantage-denying/exit motive — and thus they are both squarely focused on

exclusion of opportunity as the basis of predation. While conduct restrictions based on

each definition do not unambiguously increase long-run and short-run consumer and total

surplus for all of the parameterizations we studied, they come close to achieving this welfare

dominance. Thus, by defining predatory incentives according to either of these definitions,

a policy maker would minimize the likelihood of proscribing predatory behavior that en-

hances consumer or total welfare in the long run or short run. The choice between these

definitions would rest on whether one is more concerned about making policy errors that

tend to reduce competition in the market or competition for the market.

A Appendix: Omitted expressions

A.1 Expectations and probabilities

Given the assumed distribution for scrap values, the probability of incumbent firm 1 exiting
the industry in state e′ is

ϕ1(e
′) = EX

[
ϕ1(e

′, X1)
]

=

∫
ϕ1(e

′, X1)dFX(X1) = 1− FX(X̂1(e
′))

=


1 if X̂1(e

′) < X −∆X ,

1
2 − [X̂1(e′)−X]

2∆X
if X̂1(e

′) ∈ [X −∆X ,X +∆X ],

0 if X̂1(e
′) > X +∆X .

and the expectation of the scrap value conditional on exiting the industry is

EX

[
X1|X1 ≥ X̂1(e

′)
]

=

∫ X+∆X

F−1
X (1−ϕ1(e

′))
X1dFX(X1)

ϕ1(e
′)

=
1

ϕ1(e
′)

[
ZX (0)− ZX

(
1− ϕ1(e

′)
)]

,
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where

ZX (1− ϕ) =
1

∆2
X


−1

6

(
X −∆X

)3
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1
2

(
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) (
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)2
+ 1

3

(
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)3
if 1− ϕ ∈

[
0, 12

]
,

1
2

(
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) (
F−1
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)2 − 1
3

(
F−1
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)3 − 1
3X

3
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1
2 , 1
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1
6

(
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)3 − 1
3X

3
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F−1
X (1− ϕ) = X +∆X
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]
,

1−
√
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2 , 1

]
,

1 if 1− ϕ ≥ 1.

Given the assumed distribution for setup costs, the probability of potential entrant 1
not entering the industry in state e′ is

ϕ1(e
′) = ES

[
ϕ1(e

′, S1)
]

=

∫
ϕ1(e

′, S1)dFS(S1) = 1− FS(Ŝ1(e
′))

=


1 if Ŝ1(e

′) < S −∆S ,

1
2 − [Ŝ1(e′)−S]

2∆S
if Ŝ1(e

′) ∈ [S −∆S , S +∆S ],

0 if Ŝ1(e
′) > S +∆S

and the expectation of the setup cost conditional on entering the industry is
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[
S1|S1 ≤ Ŝ1(e
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]

=
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1 if 1− ϕ ≥ 1.
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A.2 Marginal revenue and inclusive price

mr1(p1, p2(e)) is the marginal revenue of incumbent firm 1 with respect to quantity and
therefore analogous to the traditional textbook concept. To see this, let q1 = D1(p1, p2(e))
be demand and p1 = P1(q1, p2(e)) inverse demand as implicitly defined by q1 = D1(P1(q1, p2(e)), p2(e)).
The marginal revenue of incumbent firm 1 is

MR1(q1, p2(e)) =
∂ [q1P1(q1, p2(e))]

∂q1
= q1

∂P1(q1, p2(e))

∂q1
+ P1(q1, p2(e)). (12)

Define mr1(p1, p2(e)) = MR1(D1(p1, p2(e)), p2(e)) to be the marginal revenue of incumbent
firm 1 evaluated at the quantity q1 = D1(p1, p2(e)) corresponding to prices p1 and p2(e).
Then we have

∂P1(D1(p1, p2(e)), p2(e))

∂q1
=

[
∂D1(p1, p2(e))

∂p1

]−1

= − σ

[1−D1(p1, p2(e))]D1(p1, p2(e))
.

(13)
Substituting equation (13) into equation (12), it follows thatmr1(p1, p2(e)) = p1− σ

1−D1(p1,p2(e))
.

A.3 Producer surplus

The producer surplus of firm 1 in state e is

PS1(e) = 1 [e1 > 0]

{
D0(e)ϕ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
+D1(e)

{
p1(e)− c(e1) + ϕ1(e1 + 1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]}
+D2(e)ϕ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]}

−1 [e1 = 0]

{
D0(e) (1− ϕ1(e))ES

[
S1|S1 ≤ Ŝ1(e)

]
+D1(e) (1− ϕ1(e1 + 1, e2))ES

[
S1|S1 ≤ Ŝ1(e1 + 1, e2)

]
+D2(e) (1− ϕ1(e1, e2 + 1))ES

[
S1|S1 ≤ Ŝ1(e1, e2 + 1)

]}
.

The first set of terms represents the contingency that firm 1 is an incumbent that participates
in the product market and receives a scrap value upon exit; the second set the contingency
that firm 1 is an entrant that incurs a setup cost upon entry.
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B Appendix: Proofs

Proof of Proposition 2. The probability that firm 2 exits the industry in the current
period (given p2(e) and e) is

Φ2(p1, p2(e), e) = ϕ2(e)D0(p1, p2(e))+ϕ2(e1+1, e2)D1(p1, p2(e))+ϕ2(e1, e2+1)D2(p1, p2(e)).

We say that p1(e) is predatory according to the Cabral & Riordan (1997) definition if
there exists a price p̃1 > p1(e) such that (1) Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e) and (2)
Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
.

Part (a): Let p̃1 = argmaxp1 Π1(p1, p2(e), e)|ϕ2=ϕ2(e)
. Then p̃1 is uniquely determined

by

mr1(p̃1, p2(e))− c(e1) +
[
Γ1
1(e) + Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

+ Γ4
1(e) + Γ5

1(e)
]

+Υ(p2(e))
[
Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

+ Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

+Θ4
1(e)

]
= 0. (14)

Subtracting equation (6) from equation (14), we have

mr1(p̃1, p2(e))−mr1(p1(e), p2(e)) =
[
Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
> 0

per inequality (8). Because mr1(p1, p2(e)) is strictly increasing in p1, it follows that p̃1 >
p1(e).

Because Γ2
1(e) ≥ 0 and Θ2

1(e) ≥ 0, with at least one of these inequalities being strict,
under the maintained assumptions of Proposition 1 it follows that ϕ2(e1+1, e2)−ϕ2(e) ≥ 0
and ϕ2(e)− ϕ2(e1, e2 + 1) ≥ 0, with at least one of these inequalities being strict. Because
D0(p) = 1−D1(p)−D2(p) we thus have

∂Φ2(p1, p2(e), e)

∂p1
= [ϕ2(e1 + 1, e2)− ϕ2(e)]

∂D1(p1, p2(e))

∂p1
−[ϕ2(e)− ϕ2(e1, e2 + 1))]

∂D2(p1, p2(e))

∂p1
< 0

since ∂D1(p1,p2(e))
∂p1

< 0 and ∂D2(p1,p2(e))
∂p1

> 0. Thus, Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e).
This establishes part (1) of the Cabral & Riordan definition above.

To establish part (2), recall that by construction Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)
≤ Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)

.
Moreover, this inequality is strict because Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

is strictly quasiconcave
in p1.

Part (b): Because p1(e) is predatory according to the Cabral & Riordan definition, there
exists a higher price p̃1 > p1(e) such that (1) Φ2(p1(e), p2(e), e) > Φ2(p̃1, p2(e), e) and (2)
Π1(p1(e, p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
. Thus we have

Φ2(p1(e), p2(e), e)− Φ2(p̃1, p2(e), e)

= [D1(p1(e), p2(e))−D1(p̃1, p2(e))] [ϕ2(e1 + 1, e2)− ϕ2(e)]

− [D2(p1(e), p2(e))−D2(p̃1, p2(e))] [ϕ2(e)− ϕ2(e1, e2 + 1)] > 0. (15)
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Because ∂D1(p1,p2(e))
∂p1

< 0 and ∂D2(p1,p2(e))
∂p1

> 0, D1(p1(e), p2(e)) − D1(p̃1, p2(e)) > 0 and
D2(p1(e), p2(e))−D2(p̃1, p2(e)) < 0. The only way for inequality (15) to hold is thus that
ϕ2(e1 + 1, e2)− ϕ2(e) > 0 or ϕ2(e)− ϕ2(e1, e2 + 1) > 0 which, in turn, implies Γ2

1(e) > 0 or
Θ2

1(e) > 0.
Because Π1(p1, p2(e), e)|ϕ2=ϕ2(e)

is strictly quasiconcave in p1, it follows from p̃1 > p1(e)
and Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

< Π1(p̃1, p2(e), e)|ϕ2=ϕ2(e)
that

∂ Π1(p1(e), p2(e), e)|ϕ2=ϕ2(e)

∂p1
= mr1(p1(e), p2(e))− c(e1)

+
[
Γ1
1(e) + Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

+ Γ4
1(e) + Γ5

1(e)
]

+Υ(p2(e))
[
Θ1

1(e)
∣∣
ϕ2=ϕ2(e)

+ Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

+Θ4
1(e)

]
< 0. (16)

Subtracting inequality (16) from equation (6) then yields

Γ2
1(e) +

[
Γ3
1(e)− Γ3

1(e)
∣∣
ϕ2=ϕ2(e)

]
+Υ(p2(e))

[[
Θ1

1(e)− Θ1
1(e)

∣∣
ϕ2=ϕ2(e)

]
+Θ2

1(e) +
[
Θ3

1(e)− Θ3
1(e)

∣∣
ϕ2=ϕ2(e)

]]
> 0.
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Figure 1: Possible state-to-state transitions.
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Figure 2: Pricing decision of firm 1 (left panels), non-operating probability of firm 2 (middle
panels), and time path of probability distribution over industry structures, starting from
e = (1, 1) at T = 0 (right panels). Trenchy (upper panels) and flat (lower panels) equilibria.
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Figure 3: Expected long-run Herfindahl index. Equilibrium correspondence: slice along
ρ ∈ [0, 1] (upper panel), σ ∈ [0.3, 3] (middle panel), and X ∈ [−1.5, 7.5] (lower panel).
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Figure 4: Expected long-run Herfindahl index. Equilibrium and counterfactual correspon-
dences for Definitions 1–3 (upper, middle, and lower panels). Slice along ρ ∈ [0, 1].
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Figure 5: Expected long-run Herfindahl index. Equilibrium and counterfactual correspon-
dences for Definitions 4–6 (upper, middle, and lower panels). Slice along ρ ∈ [0, 1].
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Figure 6: Expected long-run Herfindahl index. Equilibrium and counterfactual correspon-
dences for Definition 7. Slice along ρ ∈ [0, 1].
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Figure 7: Expected long-run Herfindahl index. Eliminated and surviving equilibria for
Definitions 2 and 5. Slice along ρ ∈ [0, 1].


