Hedging Housing Risk with Stocks from Local Employers

Aurel Hizmo

NYU Stern

November 13, 2015

Introduction	Data	Results	Conclusion
•0	000	000000	

How to Hedge Local Housing Risk?

- Use traded securities that correlate negatively with housing
 - Traded Stocks: Local vs National
 - Case-Shiller Futures
- Can rent if volatility is high and plan on moving earlier
 - Only useful if owners live in other markets
 - Preference for owning in the US (\sim 70%)
- Put down less money, take equity out on house

Introduction	Data	Results	Conclusion
⊙●	000	0000000	
Questions			

- How much of housing variance can be hedged with national vs local stocks?
 - What is the relation between the stock returns of local companies and local housing returns?
- One of the stock of the stoc
 - What theoretical model gives rise to observed correlations

Introduction	Data	Results	Conclusion
00	●00	0000000	
Data			

- House price data: Dataquick
- National Establishment Time-Series Database
 - Annual XY coordinates of all firms, and employment data
- Local stock price index
 - Top 20 largest local employers
 - Stock Return data from CRSP 1985-2009

Introduction	Data	Results	Conclusion
00	000	000000	

Introduction	Data	Results	Conclusion
00	000	●000000	

Why Should There Be a Correlation?

• N islands where workers live and firms produce:

$$F_t = A_t f(K_t, L_t)$$

• Wages are set competitively:

$$W_t = A_t \partial f(L_t, K_t) / \partial L_t$$

• The price of stock of local firm is a function of its productivity:

$$P_t = E_t \sum_{j=t+1}^{\infty} m_j \left[A_j f(K_j, L_j) - W_t L_t \right]$$

• House prices are a function of local wages:

$$H_t = E_t \sum_{j=t+1}^{\infty} m_j A_j \partial f(L_j, K_j) / \partial L_j$$

Introduction	Data	Results	Conclusion
00	000	000000	

Hedging Housing Returns with Aggregate Indexes

	(1)	(2)	(3)
REIT	.0811		.0738
	(.0662)		(.0649)
MKT - rf		00885	0185
		(.157)	(.138)
SMB		0583	0665
		(.140)	(.135)
HML		.121	.0822
		(0.117)	(0.124)
MSA	16	16	16
N	384	384	384
R^2	0.053	0.031	0.072

Introduction	Data	Results	Conclusion
00	000	000000	

Correlations Between Housing and Local Stock Index

MSA	Correlation
Bakersfield	.52
Fresno	.41
Los Angeles-Long Beach-Glendale	.32
Oakland-Fremont-Hayward	.17
Oxnard-Thousand Oaks-Ventura,	.44
Oxnard-Thousand Oaks-Ventura	.51
Sacramento-Arden-Arcade-Roseville	.29
Salinas	.37
San Diego-Carlsbad-San Marcos	.23
San Francisco-San Mateo-Redwood City	.21
San Jose-Sunnyvale-Santa Clara	.16
Santa Ana-Anaheim-Irvine	.31
Santa Barbara-Santa Maria-Goleta	.20
Santa Rosa-Petaluma	.26
Stockton	.35
Vallejo-Fairfield	.39

Introduction	Data	Results	Conclusion
00	000	०००●०००	
Statistical Model			

- Micro level spatial correlations
 - Construct house specific price index by Locally Weighted Repeat Sales
 - Use spatial diffusion model to estimate correlations with local firms
- Construct mean-variance optimal portfolios for each house
- For some level of risk aversion, show aggregate hedging benefits for the whole market

Introduction	Data	Results	Conclusion
00	000	0000000	

Predicting Housing Returns with Lagged Returns

	(1)	(2)	(3)
LSret(t)	.118*	.148**	.0838**
	(.0637)	(.0524)	(.0266)
LSret(t-1)		.169**	.0967**
		(.0661)	(.0432)
LSret(t-2)		0.105**	.0315
		(.0468)	(.0391)
Hret(t-1)			.708**
			(.114)
MSA	16	16	16
N	384	352	352
R^2	0.096	0.252	0.567

Introduction	Data	Results	Conclusion
00	000	0000000	

Do Housing Returns Affect Stock Returns?

	(1)	(2)	(3)
Hret(t)	.816*	.760	.980
	(.472)	(.538)	(.595)
Hret(t-1)		.139	.0604
		(.609)	(.633)
Hret(t-2)		290	294
		(.537)	(.544)
LSret(t-1)			266
			(.230)
MSAs	16	16	16
N	384	352	352
R^2	0.096	0.102	0.154

Introduction	Data	Results	Conclusion
00	000	000000	

Quarterly Regressions of Housing on Stock Returns

	(1)	(2)	(3)
LSret(t)	0002	.0159	0206**
LSret(t-1)		.0288*	.0125
LSret(t-2)		.0674**	.0265**
LSret(t-3)		.0515**	0029
Hret(t-1)			0.830**
Ν	1568	1520	1520
R^2	0.000	0.104	0.705

Introduction	Data	Results	Conclusion
00	000	000000	

How to explain these findings?

- A rational expectations model could not give rise to such patterns
 - What kind of friction would we need?
- Is there evidence of a spatial information story?
 - Does the effect of lagged shocks spread slowly over space?