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Abstract

I show that a real estate counterpart to the Fama-French Three Factor model fits the annual

house price returns very well. Using annual house price return and average wage data at the

metropolitan area level I construct three risk factors. The first factor is the annual house price

returns for the whole US housing market. The second factor replicates a diversified portfolio

that holds houses in low priced metropolitan areas and shorts houses in high price ones. The

third factor replicates a diversified portfolio that holds houses in metropolitan areas with high

price to wage ratios and shorts houses in areas with low price to wage ratio. Remarkably,

these three factors explain a nearly 90 percent of the time series and cross-sectional variation in

returns for twenty five diversified housing portfolios constructed by sorting metropolitan areas

on price level and price over wage ratios. As these portfolios are well diversified, I find that

idiosyncratic risk is not priced in the cross-section. These results mean that an investor would

not have to worry about location specific house price risk if they could hold these portfolios of

houses instead of only owning in one particular metropolitan area. On the other hand, when the

same analysis is carried out using individual metropolitan areas instead of portfolios, the three

factors explain a much lower share of the time series and cross-sectional variation in returns.

In addition, idiosyncratic risk is priced in the cross-section. Households that own only in one

metro area are exposed to a significant amount of local idiosyncratic risk and this is reflected in

house price returns.

1 Introduction

Characterizing and understanding the workings of the housing market has remained a challenge

both in the economics and the finance literature. What makes this market especially hard to study

from an asset pricing point of view is that residential real estate is a very a unique asset class. Simi-

larly to financial assets, homes provide households with returns from price changes and dividends in
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the form of utility from living in a particular home. These utility dividends are mainly derived from

housing services, the consumption of local amenities, and participation in the local labor market.

While financial assets pay out the same dividend to every investor, housing dividends do depend on

residents’ tastes and their match with the local labor market. Therefore, heterogeneity is important

for homeowners’ location decisions and house price determination. Frictions are also significantly

larger in housing than in asset markets: for individual households, homes are indivisible, cannot be

sold short, and large transaction costs impede frequent trades. Because of these unique complica-

tions of housing markets, standard asset pricing theory developed for financial assets is not entirely

suitable for studying residential markets.

While making considerable progress in modeling heterogeneity, spatial allocation of individuals,

and frictions very carefully, the urban economics literature treats homes as a consumption good

and ignores any risk associated with owning a home. Since most homeowners live near their

workplace, they are exposed to a considerable amount of location specific income and house price

risk. This risk is particularly hazardous since households cannot reoptimize very frequently due to

large reallocation costs and the indivisible nature of homes. From a portfolio management point of

view, households are especially concerned about location specific risk since a disproportionate share

of their wealth is invested in one particular house. What exacerbates this problem even more is

that much of the local income and house price risk may not be easily diversified away by individual

homeowners. The riskiness of a particular location can be an important factor that simultaneously

a↵ects house prices, and households’ location and portfolio choice decisions.

The national US housing market has been rather uneventful historically with very mild booms

and busts. As it can be seen in Figure 1, in the last 30 years the market has been very steadily

increasing to a total of about fifty percent over the whole period. However many households do

not live in areas that behave like the national housing market. There is much more volatility

and heterogeneity in returns across di↵erent metropolitan areas. The booms and the busts across

di↵erent markets do not always coincide, with some markets booming while others declining. If

we think of the national house price returns as the aggregate or market returns, it is clear from

Figure 1 that there is quite a bit of idiosyncratic volatility across di↵erent metropolitan areas. By

living in a particular metropolitan area, households are holding all of this idiosyncratic volatility.

Households would potentially benefit from owning shares of homes in many markets to diversify

this idiosyncratic risk away. A more practical way to hedge this risk is to use financial assets that

correlate with local housing returns. Creating a separate financial assets for each housing market
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can also be di�cult to implement. This is not necessary however since there is quite a bit of

common variation in housing markets. In principle only assets that correlate with the risk factors

that span housing market volatility are needed for diversification or hedging.

The goal of this paper is to study the common variation in housing markets and to find common

factors that drive the time-series and cross-sectional returns in di↵erent housing markets. In a quest

to find common risk factors that drive house price returns, I show that a real estate counterpart

to the Fama-French Three Factor model fits the yearly house price returns very well. Using yearly

housing return and average wage data at the metropolitan area level I construct three risk factors.

The first factor is the yearly house price returns for the whole US housing market. The second

factor replicates a diversified portfolio that holds houses in low priced metropolitan areas and shorts

houses in high price ones. The third factor replicates a diversified portfolio that holds houses in

metropolitan areas with high price to wage ratios and shorts houses in areas with low price to wage

ratio. Similarly to Fama-French factors, we can think of the first factor as the market factor,the

second factor as small minus big, and the third as high minus low.

Remarkably, these three factors explain a very large fraction of the time series and cross-sectional

variation in returns for twenty five diversified housing portfolios constructed by sorting metropolitan

areas on price level and price over wage ratios. The magnitudes of the estimated R-squares are

comparable to those found in Fama-French models of stock returns. As these portfolios are well

diversified, I find that idiosyncratic risk is not priced in the cross-section. These results mean that

an investor would not have to worry about location specific house price risk if they could hold a

portfolio of houses instead of only owning in one particular metropolitan area. On the other hand,

when the same analysis is carried out using individual metropolitan areas instead of portfolios, the

three factors explain a much lower share of the time series and cross-sectional variation in returns.

In addition idiosyncratic risk is priced in the cross-section. Households that own only in one metro

area are exposed to a significant amount of local idiosyncratic risk and this is reflected in house

price returns.

Even within metropolitan areas there is heterogeneity in growth rates for homes of di↵erent price

levels. The small minus big factor can explain some of the heterogeneity in returns for di↵erent

types of homes even within a metropolitan area. I construct separate indexes for di↵erent quartiles

of house prices for thirteen metropolitan areas. In the time series, cheaper homes are more volatile

and have sharper boom and bust cycles than expensive homes. Some of the di↵erence in returns

between these types of homes can be captured by the small minus big factor, which lends further
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Figure 1: The Heterogeneity Across Housing Markets

support to the conjecture of it being an important risk factor in housing markets as well as in the

equity markets.

2 A Three Factor Model for House Price Returns

In this section, I estimate a three factor model for house price returns in the spirit of the popu-

lar Fama-French three factor model. Using yearly housing return and average wage data at the

metropolitan area level I construct three risk factors, which are then used in time-series and cross-

sectional regressions to predict housing price returns. The price returns data considered in this

analysis are the OFHEO home price indices at the metropolitan area level. The wage data used

to construct one of the factors is the personal income per capita measure made available by the

Bureau of Economic Analysis. The final sample analyzed here consists yearly data for the period

from 1980 to 2008 for 216 metropolitan areas (MSAs hereafter).

The three factors considered here are constructed very similarly to the Fama-French factors.

The first factor, denoted housing market (HMKT hereafter), is the yearly house price returns for

the whole US housing market. The second factor, denoted housing small-minus-big (SMBH), is

defined as the average returns in MSAs in the bottom half of the price level distribution in a given
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year minus and the average return in MSAs in the top half. This factor replicates a self-financing

diversified portfolio that holds houses in low priced metropolitan areas and shorts houses in high

price ones. The third factor, denoted housing high-minus-low (HMLH), is defined as the average

returns in MSAs in the bottom 30 percent of the price level distribution in a given year minus and

the average return in MSAs in the top 30 percent. This factor replicates a self-financing diversified

portfolio that holds houses in metropolitan areas with high price-to-wage ratios and shorts houses

in areas with low price to wage ratio. Similar to the small-minus-big Fama-French factors, SMBH

intends to capture size e↵ects in MSA price returns. On the other hand, HMLH is intended to

capture growth e↵ects since a high price to wage ratio can be an indicator of high expected growth.

For ease of interpretation I orthogonalize the three factors through a series of regressions. First,

I regress SMBH on HMLH and HMKT and redefine SMBH as the regression residual. Then I

regress HMLH on HMKT and redefine HMLH as the regression residual. This procedure gives

three factors that are orthogonal to each other. The qualitative nature of the results is not a↵ected

by this orthogonalization.

The empirical analysis is conducted both by using individual MSAs and portfolios of them

constructed by sorting MSAs on price and price-to-wage ratios. To construct the twenty five

portfolios used in the empirical exercises, in each year, MSAs are grouped by price level quintiles.

Then, for each price quintile, a subgroup of MSAs is created for every price-to-wage ratio quintile.

The described procedure results in twenty five portfolios each containing MSAs with similar prices

and price-to-wage ratios.

2.1 Time series regressions

Following Fama and French (1993), I conduct a series of time-series regressions to determine whether

the proposed risk factors explain a good portion of variation in price returns. The empirical model

estimated in Table 1 takes the form:

Retit �Rft = ↵i + �i
HMKT (HMKTt �Rft) + �i

SMBH · SMBHt + �i
HMLH ·HMLHt + "it (1)

where Retit is the return of MSA or portfolio i at time t, and Rft is the one month T-bill rate.

Equation 1 is estimated for each portfolio or MSA separately and the resulting mean coe�cients

are displayed in Table 1. The number of MSAs for which the coe�cients are statistically significant

at the ten percent level are shown in parenthesis.
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Figure 2: The Three Housing Factors Over Time

The first three specifications of Table 1 estimate equation 1 for twenty five MSA portfolios.

Specification (1) shows that the excess market returns explains on average about 75 percent of the

time-series variation in portfolio returns. The coe�cient on market excess returns is very close to

one and statistically significant for all of the 25 portfolios. In specification (2), when only SMBH

and HMLH are included as factors, the R-squared drops on average to about eleven percent. The

R-squared is low here since the SMBH and HMLH factors have been orthogonalized and only

capture variation not present in the HMKT factor . In specification (3), all of the three factors are

included. The market beta is still very close to one on average and most of the estimated coe�cients

are statistically significant for all of the factors. The three factors combine to explain about 85

percent of the time series variation in portfolio excess returns on average. This high R-squared is

lower but comparable to what Fama and French (1993) find when using portfolios of US stocks.

The last three specifications of Table 1 estimate equation 1 separately for a sample of 216

MSAs.1 The magnitudes of the coe�cients are very similar to those found when using housing

portfolios. The main di↵erence is that the R-squared estimates found here are much lower in every

specification. The market factor alone explains on average about 44 percent of the excess return

1Appendix Table 1 displays that factor loading and the R-squared for each MSA separately.
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Table 1: Time Series Regressions of House Price Excess Returns on Three Risk
Factors

25 Housing Portfolios Individual MSAs

(1) (2) (3) (4) (5) (6)

HMKT-Rf .9923 .9944 .9790 1.004

(25) (25) (209) (213)

SMBH .3210 .1729 .1405 .1941

(7) (20) (121) (165)

HMLH .0382 .1540 .1764 .1212

(2) (10) (45) (85)

R2 distribution

Mean .7527 .1103 .8532 .4449 .1848 .6376

Min .5339 .0205 .6790 .0103 .0007 .2490

Max .8855 .2745 .9281 .8625 .6524 .9333

Groups 25 25 25 216 216 216

Note - The dependent variable in all of the regressions is the house price returns minus the

one month T-bill rate. The T-bill rate is also subtracted from the housing market factor HMKT.

Specifications (1)-(3) show the mean coe�cients from time-series regressions that are run sepa-

rately for twenty five housing portfolios constructed by sorting MSAs by price and price-to-wage

ratios. Specifications (4)-(6) show the mean coe�cients from time-series regressions that are run

separately for each MSA. In parentheses is shown the number of times a coe�cients is found to

be significantly di↵erent from zero at the 10% level. The sample consists of yearly data from 1980

to 2008.

variation for MSA returns. SMBH and HMLH combined explain about 18 percent of variation on

average. The three factors account on average for about 64 percent of the time series variation in

MSA excess returns. That the average R-squared estimates are lower when using individual MSAs

is not surprising since individual MSA carry idiosyncratic risk that is washed out on average when

they are combined in portfolios.

Table 2 shows similar results when the same regressions are estimated using returns instead of

excess returns. The R-squared estimates are lower for all of the specifications and the significance of

the estimated coe�cients is decreased for many of them. When using portfolios, the market factor

explains on average about 57 percent of the variation, while including all three factors explain about
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Table 2: Time Series Regressions of House Price Returns on Three Risk Factors

25 Housing Portfolios Individual MSAs

(1) (2) (3) (4) (5) (6)

HMKT .9647 .9677 .9537 .9527

(25) (25) (134) (134)

SMBH .1679 .0440 -.0494 -.0291

(5) (12) (29) (42)

HMLH .1975 .2207 .2464 .2336

(5) (10) (68) (98)

R2 distribution

Mean .5680 .1037 .6717 .2830 .1400 .4214

Min .1588 .0064 .3096 .0001 0.001 .0310

Max .8925 .3196 .8981 .8849 .6231 .9104

Groups 25 25 25 216 216 216

Note - The dependent variable in all of the regressions is the house price returns. Specifications

(1)-(3) show the mean coe�cients from time-series regressions that are run separately for twenty five

housing portfolios constructed by sorting MSAs by price and price-to-wage ratios. Specifications

(4)-(6) show the mean coe�cients from time-series regressions that are run separately for each MSA.

In parentheses is shown the number of times a coe�cients is found to be significantly di↵erent from

zero at the 10% level. The sample consists of yearly data from 1980 to 2008.
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67 percent of the time series variation. The R-squared estimates are significantly lower when using

individual MSA returns. The market factor explains only about 28 percent and the three factors

combined explain about 42 percent of the time series variation in returns.

Take together, the above results suggest that there are at least three common factors that

drive house price returns in the US market. A professional investor that can hold portfolios of

housing can therefore buy housing portfolios that the risk factors replicate and control the amount

of risk he is exposed to. On the other hand, typical households that only own a house in one

MSA are overexposed to idiosyncratic risk and may not be able to take advantage of the factor

structure of the housing returns. Unlike professional investors who have access to large amounts

of funds, an individual homeowner will find it very hard to buy the factor portfolios since homes

are expensive and indivisible. Even if the three factors were tradable in divisible quantities, an

individual homeowner would not be able to hedge as much risk away as professional investors

would since the three factors do not explain as much of the variation for individual MSAs as they

do for portfolios of MSAs.

2.1.1 Actual Fama-French factors and housing returns

An obvious question is: do the actual Fama-French factors from the stock market explain housing

returns? If they did then the housing factors here would be redundant and house price volatility

would be easily dealt with by holding portfolios that replicate the factors. To answer this question

I repeat the same analysis of Table 1, but this time I use the actual Fama-French factors that are

constructed from portfolios of stocks and not houses. The results are presented in Table 3. Across

all of the specifications the Fama-French factors do not seem to explain much of the housing market

volatility. The factor loadings are almost always insignificant whether we use housing portfolios

or individual MSAs. The R-squared is very low for all of the specifications ranging from .02 to

about .07. While they explain over 90 percent of the variation in returns for the stock market, the

Fama-French factors seem to not have anything in common with the variation in housing markets.

2.2 Cross-sectional regressions

We now turn to analyze whether the factor loadings estimated in the section above can explain

cross-sectional expected returns. Table 4 estimates the model:

E
⇣
Retit �Rf i

t

⌘
= a+ b1�̂

i
HMKT�Rf + b2�̂

i
SMBH + b3�̂

i
HHML + b4�̂

i
ERR + �i (2)
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Table 3: Time Series Regressions of House Price Excess Returns on Real
Fama-French Factors

25 Housing Portfolios Individual MSAs

(1) (2) (3) (4) (5) (6)

MKT-Rf .0323 .0441 .0200 .0258

(4) (4) (1) (1)

SMB .0072 -.0020 .0614 .0561

(0) (0) (22) (24)

HML .0437 .0372 .0219 .0325

(1) (2) (0) (0)

Mean R2 .0430 .0307 .0885 .0159 .0542 .0719

Groups 25 25 25 216 216 216

Note - The dependent variable in all of the regressions is the house price returns minus

the one month T-bill rate. The independent variables are the three Fama-French factors.

Specifications (1)-(3) show the mean coe�cients from time-series regressions that are run

separately for twenty five housing portfolios constructed by sorting MSAs by price and

price-to-wage ratios. Specifications (4)-(6) show the mean coe�cients from time-series

regressions that are run separately for each MSA. In parentheses is shown the number of

times a coe�cients is found to be significantly di↵erent from zero at the 10% level. The

sample consists of annual data from 1980 to 2008.
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where the � coe�cients are the estimated factor loadings from the previous subsection, and �̂i
ERR

is the standard deviation of the residual from the time series regression of excess returns on the

factors. Equation 2 is estimated using a panel data between e↵ect estimator for the 25 portfolios

and individual MSAs separately.

The first three specifications in Table 4 display the coe�cient estimates and the respective

standard errors for the 25 housing portfolios. The coe�cients on the idiosyncratic error standard

deviation are not statistically significant in any of the three specifications. Contrary, the three

proposed risk factor seem to be priced and enter with statistically significant coe�cients in all

specifications. The R-squared is fairly high across all specifications. Most notably, as seen in

specification (3), the amount of exposure to the three proposed factors explains about 92 percent

of the cross-sectional variation in average returns across portfolios. The estimated constant in

specification (3) is also very small in magnitude and statistically indistinguishable from zero. This

can be take as a sign that the three factors are capturing most of the cross-sectional variation in

expected returns.

The last three specifications of Table 4 conduct a similar analysis for individual MSAs. The R-

squared estimates here are about half of those estimated using portfolios. The three risk factors seem

to be priced under all the specifications. Contrary to the finding on portfolio returns, idiosyncratic

risk seems to be priced when looking at individual MSAs. In specification (3), which includes all of

the factors, the coe�cient on the idiosyncratic risk standard deviation is positive and statistically

significant.

Table 5 estimates similar regressions using returns instead of excess returns. Again the R-

squared estimates are fairly high and all of the factors seem to be priced across all specifications.

The magnitudes and the signs of some of the estimated coe�cients di↵erent from those estimated

in Table 4. This means that whether investors are concerned with returns or excess returns matters

for risk pricing of the three factors. This does not seem to be the case for pricing idiosyncratic

error. Even when looking at returns instead of excess returns, idiosyncratic risk is not priced for

returns in 25 diversified portfolios but is priced when looking at individual MSAs. In specification

(3) we can see that the coe�cient on �̂ERR for portfolios is small with a magnitude of 0.056 with

a standard error of 0.158. When using individual MSAs the coe�cient is 0.215 with a standard

deviation of 0.044.

Overall, the cross-sectional results suggest that the three proposed factors are indeed priced

factors and exposure to them does explain a large portion of the cross-sectional variation in house
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Table 4: Cross-Sectional Regressions of Housing Excess Returns on Factor Loadings

25 Housing Portfolios Individual MSAs

(1) (2) (3) (4) (5) (6)

�̂HMKT�Rf 3.496⇤⇤ -1.183⇤ 0.826⇤⇤ -0.542⇤⇤

(0.841) (0.595) (-0.185) (0.236)

�̂SMBH -1.189⇤⇤ -1.279⇤⇤ -0.594⇤⇤ -0.583⇤⇤

(0.129) (0.136) (0.059) (0.067)

�̂HHML 0.444⇤ 0.415⇤ 0.301⇤⇤ 0.300⇤⇤

(0.246) (0.237) (0.108) (0.132)

�̂ERR -0.157 -0.085 0.132 0.192⇤⇤ 0.019 0.203⇤⇤

(0.187) (0.112) (0.118) (0.051) (0.041) (0.049)

Const. -4.088⇤⇤ -0.239 0.086 -2.373⇤⇤ -0.781⇤⇤ -0.816⇤⇤

(0.657) (0.547) (0.563) (0.218) (0.232) (0.283)

R2 0.512 0.917 0.926 0.249 0.504 0.476

Groups 25 25 25 216 216 216

N. Obs. 725 725 725 5958 5958 5958

Note - The dependent variable is house price returns minus the risk free rate. The independent variables

are the factor loadings estimated from time-series regressions of excess returns on the proposed factors. The

variable �̂ERR is the standard deviation of the residual from each time-series regression. The coe�cients in this

table are estimated by a panel data between estimator that only uses cross-sectional variation. The standard

errors are shown in parentheses.
⇤ statistical significance at the 90% level
⇤⇤ statistical significance at the 95% level
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Table 5: Cross-Sectional Regressions of Housing Returns on Factor Loadings

25 Housing Portfolios Individual MSAs

(1) (2) (3) (4) (5) (6)

�̂HMKT 1.771⇤⇤ 1.072⇤⇤ 0.672⇤⇤ 0.386⇤⇤

(0.217) (0.206) (0.069) (0.072)

�̂SMBH -0.281⇤⇤ -0.318⇤⇤ -0.382⇤⇤ -0.415⇤⇤

(0.122) (0.126) (0.054) (0.0581)

�̂HHML -0.632⇤⇤ -0.469⇤ -0.307⇤⇤ -0.217⇤⇤

(0.190) (0.237) (0.074) (0.075)

�̂ERR -0.278⇤⇤ 0.412⇤⇤ 0.056 0.226⇤⇤ 0.241⇤⇤ 0.217⇤⇤

(0.119) (0.061) (0.158) (0.043) (0.024) (0.044)

Const. 3.624⇤⇤ 3.524⇤⇤ 3.711⇤⇤ 3.172⇤⇤ 3.601⇤⇤ 3.610⇤⇤

(0.238) (0.214) (0.248) (0.168) (0.131) (0.153)

R2 0.772 0.877 0.878 0.489 0.582 0.599

Groups 25 25 25 216 216 216

N. Obs. 725 725 725 5958 5958 5958

Note - The dependent variable is house price returns minus the risk free rate. The independent variables

are the factor loadings estimated from time-series regressions of excess returns on the proposed factors. The

variable �̂ERR is the standard deviation of the residual from each time-series regression. The coe�cients

in this table are estimated by a panel data between estimator that only uses cross-sectional variation. The

standard errors are shown in parentheses.
⇤ statistical significance at the 90% level
⇤⇤ statistical significance at the 95% level
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price returns. The finding that idiosyncratic risk is priced in individual metro areas supports the

idea that individual homeowners are overexposed to local risk of one particular MSA that cannot

be diversified away. In order to take on this unhedgable risk, households need to be rewarded by

higher expected returns and because of this, idiosyncratic risks end up being priced in equilibrium.

3 Within-City Heterogeneity in Returns

Not only is there significant heterogeneity in return across, but also within metropolitan areas.

Figure 2 illustrates this for di↵erent housing types in San Francisco. To construct this figure, we

first divide homes in San Francisco in four quartiles sorted by price level. We then compute the

price returns for each group and subtract the total returns for San Francisco from the return of

each group. Figure 2 therefore displays the returns of each group detrended by the average returns

in San Francisco as a whole. This procedure is repeated for other cities in figures 3-5.

Looking across di↵erent cities in Figures 2 through 5 it becomes apparent that lower priced

homes are more volatile than high price ones. There is also evidence in the data that the booms

and busts are more severe for cheaper homes. There seems to be a clear ordering in the rates of

price returns going from cheaper to expensive homes. This observation leads one to think that a

version of the small minus big factor would be able to explain some of the heterogeneity in returns

across di↵erent housing types.

To test this hypothesis I use quarterly data from thirteen metropolitan areas in US that span

as far as 1988 to the present for some metropolitan areas.2 I use transaction level data available

from Dataquick to construct four di↵erent price indexes for each metropolitan area, each of which

corresponding to a di↵erent quartile of the price level distribution. Each house type index within a

metropolitan area resembles a value-based portfolio that is frequently rebalanced such as the S&P

500.

In Table 6 I present results similar to Table 1. For each housing type i in metropolitan area j

I estimate the following time series regression:

Retijt �Rft = ↵ij + �ij
HMKT

⇣
HMKT j

t �Rft
⌘
+ �ij

SMBH · SMBHj
t + "ijt (3)

where HMKT j here is the house price index for the metropolitan area j as a whole. Whether we

use returns or excess returns we find similar results. The average metropolitan area index explains

2The metropolitan areas are Boston, Chicago, Cleveland, Denver, Las Vegas, Los Angeles, Miami, Orlando,
Phoenix, San Diego, San Francisco, Tampa and Tucson.
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Table 6: Time Series Regressions of House Price Returns on Risk Factors

Returns Returns - Rf

(1) (2) (3) (4) (5) (6)

HMKT 1.000 1.000 1.000 1.000

(48) (48) (48) (48)

SMBH .7655 .0001 .6688 .0001

(35) (44) (34) (44)

R2 distribution

Mean .7972 .2879 .9012 .8010 .2364 .9065

Min .1688 .0019 .3777 .2292 .0001 .4190

Max .9846 .8782 .9913 .9808 .8515 .9903

Groups 48 48 48 48 48 48

Note - The dependent variable in all of the regressions is the house price returns. The regres-

sions are run separately for each quartile of the house price level for each metropolitan area. There

are 13 metropolitan areas with 4 groups of types of homes. Averages of the coe�cients across

all the groups are displayed in this table. The HMKT variable is the house price index for the

whole metropolitan area. The 3 month T-bill rate is subtracted from the returns in specifications

(4)-(5) . The number of times a coe�cients is found to be significantly di↵erent from zero at the

10% level is shown in parentheses.

about 80 percent of the time series variance in house price returns. The local SMBH factor explains

about 25 percent of the volatility by itself. When both factors are included in specifications (3) and

(5) they jointly explain about 90 percent of the time series volatility. In other words the SMBH

factor explains about half of the volatility that is left unexplained by the HMKT factor. The fact

that the coe�cients on SMBH are significant for the majority of the cases, and that the R-squared

significantly increases with its inclusion, supports the idea that the “small minus big” idea spans

beyond the stock market and can help explain both within and across metropolitan area variation

in housing prices.

4 Conclusion
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Appendix

Table 7: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Washington-Arlington-Alexandria, DC-VA-MD-WV (MSAD) 1.739308 -1.684288 .3337293 .9333254

Tampa-St. Petersburg-Clearwater, FL 1.497663 -.4346753 1.509949 .8883613

Baltimore-Towson, MD 1.436699 -.9210098 .0785444 .888047

Miami-Miami Beach-Kendall, FL (MSAD) 1.814361 .1475109 1.527967 .8796331

Bethesda-Frederick-Rockville, MD (MSAD) 1.62632 -1.691602 .0029778 .8792134

Sebastian-Vero Beach, FL 2.118671 -.5116773 .9703341 .8773407

Ft. Lauderdale-Pompano Bch.-Deerfield Bch., FL(MSAD) 1.911126 -.9627584 1.474571 .8747436

Burlington-South Burlington, VT 1.156307 -1.080878 -.4205196 .8729107

Orlando-Kissimmee, FL 1.459906 -.6798369 1.613636 .8721479

Richmond, VA 1.081134 .0279757 .1811307 .8705068

Kansas City, MO-KS .8154212 .8574438 -.2368196 .8684527

West Palm Beach-Boca Raton-Boynton Beach, FL (MSAD) 1.949122 -1.260398 1.181732 .8676999

Cincinnati-Middletown, OH-KY-IN .7217553 .7190692 -.4900098 .8553255

Naples-Marco Island, FL 2.024173 -1.514975 1.863005 .8550392

Evansville, IN-KY .8007097 1.535286 -.4473409 .8514798

Jacksonville, FL 1.188899 .0163872 .9847685 .8510042

Milwaukee-Waukesha-West Allis, WI 1.009747 .9632559 -.4994464 .8505163

Cape Coral-Fort Myers, FL 1.989801 -1.410486 1.731332 .8495775

Rockford, IL .8158908 1.086065 -.3199082 .8444403

Topeka, KS .7303671 .9775323 -.4640892 .8418379

Fayetteville-Springdale-Rogers, AR-MO 1.142304 1.240988 .0617832 .8401812

Louisville-Je↵erson County, KY-IN .68191 .9566808 -.4102637 .8384024

St. Louis, MO-IL .9515434 .5587435 -.3589029 .8353294

Indianapolis-Carmel, IN .5462214 .4988295 -.5754967 .832612

Lakeland-Winter Haven, FL 1.512391 .3120809 1.323639 .8301613

Lubbock, TX .7083759 1.557587 -.2171553 .829029

Birmingham-Hoover, AL .7619334 1.08068 -.4064608 .8270332

Port St. Lucie, FL 1.967188 -1.469455 1.320553 .8222526

Columbus, OH .615291 .5484405 -.4315717 .8205214

Lima, OH .64823 .69586 -.5138151 .8197289

Deltona-Daytona Beach-Ormond Beach, FL 1.787195 -.4120438 1.367789 .8178752

Philadelphia, PA (MSAD) 1.246428 -1.281691 -.3960994 .8156589

Wilmington, DE-MD-NJ (MSAD) 1.206751 -.9446173 .1423215 .815185

Knoxville, TN .7421098 .8815386 -.1218146 .8143483

Chicago-Naperville-Joliet, IL (MSAD) 1.026744 -.1422347 -.4816524 .8038828

Minneapolis-St. Paul-Bloomington, MN-WI 1.079635 .5560411 .0469018 .8016554

Tallahassee, FL 1.16147 .6058424 .6325101 .7998915

South Bend-Mishawaka, IN-MI .5489847 .6219736 -.3689748 .7990227

Des Moines-West Des Moines, IA .7660007 1.401321 -.5593787 .7984626
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Table Continued: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Jackson, MS .6518641 1.199025 .0084519 .7975181

Bakersfield, CA 1.991107 -1.040892 1.692892 .7917277

Pittsburgh, PA .7406149 1.095093 -.6054807 .7899842

Stockton, CA 2.020129 -2.757999 1.451765 .789494

Santa Barbara-Santa Maria-Goleta, CA 1.860344 -2.595994 .2703788 .7886921

Charlottesville, VA 1.105693 -.4795941 .0866927 .788562

Omaha-Council Blu↵s, NE-IA .5715273 1.247763 -.002166 .7861776

Riverside-San Bernardino-Ontario, CA 2.050389 -2.186942 1.400772 .7780731

Los Angeles-Long Beach-Glendale, CA (MSAD) 1.921438 -2.650926 .6894765 .7773466

Camden, NJ (MSAD) 1.366554 -1.360979 -.0190126 .7762528

Tyler, TX 1.001905 2.140561 -.3075435 .771041

Oxnard-Thousand Oaks-Ventura, CA 1.875713 -2.804246 .4340868 .7707906

Fresno, CA 1.983159 -.6943497 1.371338 .7665764

Virginia Beach-Norfolk-Newport News, VA-NC 1.35446 -.4373583 .4298752 .764596

Canton-Massillon, OH .645337 1.350264 -.4059551 .7599728

Fort Wayne, IN .7169107 .6439775 -.6168843 .757945

Pueblo, CO .7693724 1.876023 -.0451366 .7572857

Modesto, CA 2.078117 -2.511245 1.391197 .7541206

Shreveport-Bossier City, LA 1.054404 2.123783 -.2499522 .7538227

Santa Ana-Anaheim-Irvine, CA (MSAD) 1.844272 -2.531147 .6129875 .7520804

Racine, WI .8458657 .6405373 -.0797245 .7492313

Savannah, GA .9937977 .915508 .1971703 .7454007

New Orleans-Metairie-Kenner, LA .8364047 1.694388 .3961949 .7435673

San Diego-Carlsbad-San Marcos, CA 1.805525 -1.908512 .0274773 .7425847

Lincoln, NE .7110559 1.287837 -.4415702 .7385578

Visalia-Porterville, CA 1.813891 -.8271581 1.24551 .738148

Little Rock-North Little Rock-Conway, AR .6433184 1.089155 -.1777053 .7368505

Columbia, SC .7054852 .7093366 -.2122757 .7368192

Augusta-Richmond County, GA-SC .7096264 .7789257 -.090963 .7357413

Salinas, CA 1.873605 -2.697279 .6528514 .7315196

Las Vegas-Paradise, NV 1.721299 -.6481834 1.866821 .7311755

Akron, OH .6759145 1.012473 -.5674334 .7282528

Dayton, OH .6465065 .6506191 -.7946156 .7275308

Merced, CA 2.111187 -2.347735 1.818743 .7266911

Cedar Rapids, IA .8311487 1.628492 -.6329429 .7261147

Oakland-Fremont-Hayward, CA (MSAD) 1.543055 -2.585988 .3737752 .7246303

Las Cruces, NM 1.035634 1.130979 .273275 .7211829

Greensboro-High Point, NC .5095644 .5468974 -.3719184 .7206948

Baton Rouge, LA .5737562 2.063165 .4980496 .7186484

Phoenix-Mesa-Scottsdale, AZ 1.61964 -.4817086 1.209447 .717735

Cleveland-Elyria-Mentor, OH .6914576 .8238608 -.6345518 .7167446

Davenport-Moline-Rock Island, IA-IL .7023618 1.81427 -.6830581 .7167389

Madera-Chowchilla, CA 1.939422 -.562028 1.542325 .7151922
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Table Continued: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Allentown-Bethlehem-Easton, PA-NJ 1.336653 -1.225229 -.1731088 .7146758

Reno-Sparks, NV 1.689274 -.4592462 .7952939 .7137267

Portland-South Portland-Biddeford, ME 1.292113 -1.388818 -.6657466 .7114705

College Station-Bryan, TX .8578327 2.31608 -.4907193 .7098317

Tucson, AZ 1.410266 .2697997 .4676438 .7080842

Dalton, GA .7214198 .5270991 -.0385685 .7066731

Atlanta-Sandy Springs-Marietta, GA .5958056 .2271154 -.061925 .7023659

Monroe, LA .7493076 1.935249 -.3832749 .7015089

Provo-Orem, UT .3615704 2.664353 .9528946 .697262

Springfield, MO .689736 1.249663 -.0024467 .6943635

Vallejo-Fairfield, CA 1.740226 -2.233208 .9873092 .6930622

Macon, GA .4792249 .5515304 -.0166951 .6903482

Longview, TX .7395616 1.813538 -.2347972 .6863852

Winston-Salem, NC .4890127 .4909766 -.4174719 .6849068

Edison-New Brunswick, NJ (MSAD) 1.6337 -1.740719 -.0750091 .683878

Redding, CA 1.780507 -.3187151 .4707254 .6806005

Reading, PA 1.144579 -.0984914 -.3441029 .6805886

Trenton-Ewing, NJ 1.556721 -1.703086 -.2971945 .6782304

Palm Bay-Melbourne-Titusville, FL 1.772163 -1.51054 .8605336 .6767127

Ogden-Clearfield, UT .4505608 2.59718 .2712373 .6761103

San Francisco-San Mateo-Redwood City, CA (MSAD) 1.378662 -2.489519 -.2840155 .6737127

Gary, IN (MSAD) .6727179 1.185609 -.4632751 .6732539

Providence-New Bedford-Fall River, RI-MA 1.673406 -1.893564 -.3813959 .6699049

Pensacola-Ferry Pass-Brent, FL 1.323018 -.0684129 .6633518 .6698949

Cheyenne, WY .8660207 1.641679 -.1513279 .6594113

Lake County-Kenosha County, IL-WI (MSAD) .8488795 -.1752657 -.5384995 .6564206

Napa, CA 1.491783 -2.05647 .226015 .6512488

La Crosse, WI-MN .6742157 1.301659 -.1857827 .6444252

Beaumont-Port Arthur, TX .4876319 1.860963 .0233338 .6383724

Springfield, MA 1.347718 -1.886504 -.7290127 .6382484

Sacramento-Arden-Arcade-Roseville, CA 1.631397 -2.277957 .6184312 .6377586

Toledo, OH .7143998 .7923267 -.3944279 .6370894

Saginaw-Saginaw Township North, MI .6767668 .8881786 -.5664833 .6342323

Poughkeepsie-Newburgh-Middletown, NY 1.409224 -2.201568 .1172559 .6323982

Salt Lake City, UT .52559 2.753828 .633231 .6318843

Kalamazoo-Portage, MI .6787431 .8879912 -.2601702 .6316655

Santa Cruz-Watsonville, CA 1.278158 -2.479003 .2067656 .631567

Madison, WI .8467524 1.094781 -.244353 .6313366

Bu↵alo-Niagara Falls, NY .7034171 -.0473415 -.7716198 .6298571

Elkhart-Goshen, IN .485018 .8475485 -.2109199 .6291088

Albany-Schenectady-Troy, NY 1.194681 -1.509796 -.3930397 .6269639

Peoria, IL .8170562 1.844367 -.6138718 .6263124

Newark-Union, NJ-PA (MSAD) 1.378988 -1.603297 -.1219449 .6259609
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Table Continued: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Eau Claire, WI .77459 1.315956 -.3764178 .6250588

Colorado Springs, CO .6058795 1.560365 .537026 .6247281

New York-White Plains-Wayne, NY-NJ (MSAD) 1.307997 -1.985643 -.016541 .6167334

Hartford-West Hartford-East Hartford, CT 1.341634 -1.831839 -.7649376 .616543

Portland-Vancouver-Beaverton, OR-WA 1.01516 1.960981 .4738016 .615577

Santa Rosa-Petaluma, CA 1.449629 -2.373837 .1712873 .6152416

York-Hanover, PA .839407 -.3582635 .1384559 .613829

Springfield, IL .460801 .7150641 -.2430681 .6135572

Nashville-Davidson–Murfreesboro–Franklin, TN .6188588 .888057 -.0557535 .609946

Casper, WY 1.509761 3.588137 -.0560974 .6079359

Mobile, AL .706376 1.77565 .2219398 .6078539

Albuquerque, NM .7575142 1.13136 .4895241 .6002863

Medford, OR 1.343997 .1110368 .8616053 .5976689

Huntsville, AL .7017776 .9299185 -.3452248 .5920952

San Luis Obispo-Paso Robles, CA 1.419758 -2.33961 .3095511 .5827718

Charlotte-Gastonia-Concord, NC-SC .4714094 .5713657 -.2081084 .5782187

Tulsa, OK .4649238 1.782646 .2430095 .5769485

Fort Collins-Loveland, CO .5828369 1.774395 -.2874013 .5741873

Bloomington-Normal, IL .4995199 .9633134 -.1621637 .5724351

Chico, CA 1.483063 -.7509338 .605621 .5723969

Barnstable Town, MA 1.793292 -1.228383 -.6043072 .5716577

Santa Fe, NM .9259953 1.499676 .2524053 .568601

Grand Rapids-Wyoming, MI .6137374 .2141422 -.3035836 .5682032

Harrisburg-Carlisle, PA .7471827 .5512564 .2399148 .5608615

Erie, PA .4302426 .7506689 -.3238311 .5532143

Rochester, MN .6874795 .6580055 -.4760609 .5479594

Memphis, TN-MS-AR .5905951 .6189292 -.1021572 .5458032

Durham-Chapel Hill, NC .4920477 .4414367 -.2911299 .5450884

Wilmington, NC .6872642 .1836205 1.051415 .5449303

Lansing-East Lansing, MI .7329772 .1433742 -.5737608 .5433531

Lexington-Fayette, KY .6417152 .7060852 -.5456493 .5429359

New Haven-Milford, CT 1.393027 -2.035726 -.4082982 .5397816

Salem, OR .7250468 1.948333 .5743516 .5346982

Flint, MI .7672482 .8305301 -.3207991 .5340522

Syracuse, NY .6899551 -.6944594 -.4288166 .533226

El Paso, TX .7251959 1.321312 .3214504 .5243231

Odessa, TX 1.033802 3.084394 -.0394553 .5197074

Eugene-Springfield, OR 1.066754 1.435725 .2200429 .5190672

Roanoke, VA .6677974 .5910771 -.4151526 .5178426

Boise City-Nampa, ID .9411757 1.506386 .6528531 .5156419

Manchester-Nashua, NH 1.316809 -1.534292 -.3990916 .5137551

Niles-Benton Harbor, MI .5256685 .0930884 -.3236447 .5053744

Spokane, WA .9405034 1.623723 .0290905 .5052919
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Table Continued: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Tacoma, WA (MSAD) .9295578 .6373944 .4381441 .503559

Bridgeport-Stamford-Norwalk, CT 1.307849 -1.626335 -.2394837 .5027904

Corpus Christi, TX .6118565 1.40475 .7813163 .5013151

Nassau-Su↵olk, NY (MSAD) 1.088609 -2.275699 .2087466 .4992297

Lafayette, LA .4937763 2.674303 .6704661 .4976621

Bremerton-Silverdale, WA 1.02068 .6028717 .859329 .4963641

San Jose-Sunnyvale-Santa Clara, CA 1.144956 -2.650034 -.0183004 .4942964

Rockingham County-Stra↵ord County, NH (MSAD) 1.330565 -1.45926 -.4081286 .4939736

Janesville, WI .5068198 1.314912 .1004011 .4927363

Warren-Troy-Farmington Hills, MI (MSAD) .8878476 .2355383 -.4371868 .4883039

Springfield, OH .447158 .6056952 -.4847924 .4834047

Amarillo, TX .4123472 1.627488 .0501059 .4777049

Oklahoma City, OK .4591314 1.826705 .3989972 .4725638

Midland, TX .8360136 2.780784 .8437225 .4678698

Worcester, MA 1.102941 -1.91699 -.2243702 .4559583

Grand Junction, CO 1.002298 2.848661 .3984976 .454966

Raleigh-Cary, NC .4046108 .7136046 -.2003931 .4528911

Ann Arbor, MI .8101884 -.17038 -.5188467 .449404

Mansfield, OH .5319757 1.027042 -.3614577 .4408271

Olympia, WA .9285134 .8269717 .2848945 .4346703

Chattanooga, TN-GA .4800681 .3207497 .3632457 .4309074

Greeley, CO .6227646 1.786674 -.0543916 .4303927

Rochester, NY .4699604 -.1500427 -.380169 .4261131

Charleston-North Charleston-Summerville, SC .830126 -.0858982 1.214496 .4182537

Wenatchee-East Wenatchee, WA .5002186 1.974003 .7142791 .4176424

Detroit-Livonia-Dearborn, MI (MSAD) .9417439 .2246782 -.3827778 .4140273

Boston-Quincy, MA (MSAD) .9702687 -2.056921 -.371001 .4091539

Binghamton, NY .9403079 -.1669429 -.6115076 .4067411

Corvallis, OR .2418263 1.608958 .8711832 .4050774

Denver-Aurora-Broomfield, CO .4715832 1.507636 .1316972 .40391

Houston-Sugar Land-Baytown, TX .5107293 1.472672 .164296 .384208

Holland-Grand Haven, MI .4732924 .1960437 -.2858527 .3784723

Anchorage, AK .9774389 1.995599 .0398737 .3573005

Kennewick-Pasco-Richland, WA .6543217 1.724071 -.133706 .350447

Cambridge-Newton-Framingham, MA (MSAD) .8098144 -1.767444 -.4109151 .3420412

Bellingham, WA 1.053322 .4531529 .2393851 .3327613

Boulder, CO .4453126 1.566551 .2013755 .3312142

Dallas-Plano-Irving, TX (MSAD) .3731183 .900737 .0101809 .3271432

Seattle-Bellevue-Everett, WA (MSAD) .8994183 .1631877 .2030598 .3267423

Peabody, MA (MSAD) .9155871 -1.745206 -.3595898 .3256481

San Antonio, TX .4404857 1.318324 .332029 .316411

Scranton-Wilkes-Barre, PA .3831452 -.6783717 -.2581123 .2998218

Monroe, MI .7178025 .5614451 -.2063572 .2984991

26



Table Continued: The Factor Loadings and the R-squared

Metropolitan Area HMKT SMBH HMLH R-squared

Honolulu, HI 1.331843 -1.098387 .8759465 .2969043

Longview, WA .2914874 1.047619 1.019819 .2881624

Austin-Round Rock, TX .2126772 1.940528 .2324161 .287369

Waterloo-Cedar Falls, IA .5993633 1.453493 -.3841994 .265759
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