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A Model of Monetary Policy and Risk Premia
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ABSTRACT

We develop a dynamic asset pricing model in which monetary policy affects the risk
premium component of the cost of capital. Risk-tolerant agents (banks) borrow from
risk-averse agents (i.e., take deposits) to fund levered investments. Leverage exposes
banks to funding risk, which they insure by holding liquidity buffers. By changing the
nominal rate the central bank influences the liquidity premium, and hence the cost
of taking leverage. Lower nominal rates make liquidity cheaper and raise leverage,
resulting in lower risk premia and higher asset prices, volatility, investment, and
growth. We analyze forward guidance, a “Greenspan put,” and the yield curve.

IN TEXTBOOK MODELS (E.G., WOODFORD (2003)), monetary policy works by chang-
ing the real interest rate. Yet a growing body of empirical evidence shows that
monetary policy also has a large impact on the risk premium component of
the cost of capital.1 Moreover, many central bank interventions can be use-
fully interpreted as targeting risk premia. For instance, a “Greenspan put” in
the 1990s and low interest rates in the mid-2000s arguably led to excessive
leverage and compressed spreads.2 During the financial crisis, large-scale as-
set purchases, equity injections, and asset guarantees were all explicitly aimed
at supporting risky asset prices (see Bernanke (2013) for a discussion). Since
the crisis, with spreads near historic lows, an important debate has centered on
whether low interest rates fuel “reaching for yield” and as a result pose a threat
to financial stability (Stein (2014)). These observations point to an underlying
risk premium channel of monetary policy.
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1 Bernanke and Kuttner (2005) show that monetary policy surprises have a large impact on
stock prices and that this impact primarily reflects changes in risk premia. Hanson and Stein
(2015) and Gertler and Karadi (2015) find parallel results for long-term bond yields and credit
spreads. Gilchrist and Zakrajšek (2012) find that changes in risk premia have a strong influence
on the macroeconomy.

2 See, for example, Blinder and Reis (2005), Rajan (2011), and Yellen (2011).
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In this paper, we develop a dynamic asset pricing model of the risk premium
channel of monetary policy. In the model, taking leverage exposes financial
institutions to funding shocks that require them to liquidate assets. To avoid
engaging in costly fire sales, they hold buffers of liquid securities that can be
sold rapidly at full value. Consequently, the cost of taking leverage depends on
the cost of holding liquid securities—the liquidity premium. The central bank
governs this liquidity premium by varying the nominal interest rate. A low
nominal rate leads to a low liquidity premium, a relationship that has strong
empirical support. In turn, a low liquidity premium decreases the cost of taking
leverage and hence increases risk-taking, which reduces risk premia and the
cost of capital in the economy.

Our model features an economy populated by two types of agents who differ
in their risk aversion. We think of the more risk-tolerant agents as pooling
their wealth into the net worth (equity capital) of financial institutions, or
banks for short. In equilibrium, banks take levered positions in risky assets by
borrowing from the more risk-averse agents using short-term risk-free claims,
which we think of as taking deposits. Our view of banks as levered risk-takers
is purposely simplified, abstracting from other functions such as screening and
monitoring in order to focus on risk-taking and risk premia. This simplified
view has the advantage of accommodating a diverse set of financial institutions,
including commercial banks, broker-dealers, and hedge funds, whose unifying
characteristic is that they take leverage using short-term debt.

Taking deposits exposes banks to funding (rollover) risk (e.g., Allen and Gale
(1994)). When hit by a funding shock, banks are forced to redeem a fraction
of their deposits. To do so, they must immediately liquidate some of their as-
sets. Liquidating risky assets rapidly is costly because it leads to fire sales.
To avoid this, banks hold buffer stocks of liquid securities, which can be liq-
uidated rapidly at full value. Thus, to insure against losses in the event of a
funding shock, banks set aside a fraction of each deposit dollar they raise and
hold it in liquid securities. In this way, the risk of funding shocks creates a
complementarity between holding liquidity and taking leverage.

We model two types of liquid securities: central bank reserves, which have
the highest level of liquidity, and government bonds. Banks’ demand for liq-
uidity buffers causes liquid securities to command a premium in equilib-
rium. This liquidity premium depends on the nominal interest rate. The
liquidity premium of reserves equals the nominal rate because that is the
opportunity cost of holding them. The liquidity premium of government
bonds is likewise proportional to the nominal rate because government bonds
and reserves are substitutable sources of liquidity. Therefore, by changing
the nominal rate, the central bank changes the cost of holding all liquid
securities.3

3 Recently, interest on reserves (IOR) has attracted significant attention. When reserves pay
interest, reserves’ liquidity premium equals the difference between the nominal rate and their
rate of interest. In this case, the central bank targets this difference rather than the full level of
the nominal rate. Section III.B provides further discussion.
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Figure 1. The Fed funds-T-bill spread and the Fed funds rate. The figure plots the spread
between the fed funds rate and the three-Month T-bill (solid red, left axis), and the fed funds rate
(dashed black, right axis). Monthly data, 1955 to 2010. (Color figure can be viewed at wileyonlineli-
brary.com)

Figure 1 examines this prediction empirically. It plots the nominal short
rate, as measured by the Fed funds rate, against the liquidity premium on
government bonds, as measured by the spread between the Fed funds rate
and the three-month T-bill rate, from 1955 to 2010. As the figure shows, the
relationship between these two series, a rate and a spread, is very strong. Their
correlation is 78%, and they exhibit tight comovement both in the cycle and in
the trend, consistent with the transmission of the nominal rate to the liquidity
premium that we model.

The central bank’s ability to influence risk-taking works through this trans-
mission mechanism. When the central bank raises the nominal rate, the higher
liquidity premium increases banks’ cost of taking leverage and hence reduces
their risk-taking. The result is a decrease in the overall demand for risk-taking
in the economy, an increase in the effective aggregate risk aversion, and ulti-
mately an increase in risk premia.

Monetary policy in our model takes the form of a nominal interest rate rule,
which is a function of the single state variable—the share of banks’ net worth
of the total wealth in the economy. We consider a number of interest rate rules
and analyze their positive implications for equilibrium prices and quantities.4

4 We do not take a stance on optimality because doing so requires making two strong assump-
tions. The first is the choice of welfare criterion, which is difficult in our incomplete-markets
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We begin by analyzing results from the baseline version of the model, which is
set in an endowment economy where the risky asset is a claim on the aggregate
consumption stream. We compare outcomes under two monetary policy rules,
one in which the nominal rate is high and one in which it is low. To do so, we
solve the model numerically using global projection methods that capture its
inherent nonlinearities.

Our results show that under the high-rate policy, bank leverage is low and
both the price of risk (the market Sharpe ratio) and the risk premium are high.
In contrast, the real rate is low because the economy’s high effective risk aver-
sion increases the precautionary demand for savings. Overall, the effect on the
risk premium dominates, so that under the high-rate policy, discount rates are
substantially higher and valuations (price-dividend ratios) are substantially
lower than under the low-rate policy. The difference is largest at moderate
levels of banks’ share of net worth, because risk-sharing there is highest as
banks are large enough to influence asset prices yet small enough to take high
leverage.

We also show that monetary policy affects volatility. In particular, low nomi-
nal rates lead to higher volatility in the long run. The reason is that low nominal
rates lead banks to take greater leverage, which makes their net worth more
volatile and hence increases the volatility of discount rates. We further show
that under a low-rate policy, the stationary distribution of banks’ net worth
is characterized by a higher mean and much higher dispersion than under a
high-rate policy. The higher dispersion implies that low nominal rates result
in occasional periods of low bank net worth and depressed asset prices, as in
financial crises.

To implement its desired nominal rate rule and the liquidity premium it im-
plies, the central bank must ensure that the aggregate liquidity supply evolves
as required. We show that the central bank can produce the necessary shifts
in the liquidity supply via open market operations, exchanging reserves for
government bonds so that the liquidity supply contracts (expands) as required
in response to a nominal rate increase (decrease). The required changes in the
liquidity supply can also be carried out by shifts in the supply of liquid assets
produced by the private sector. Indeed, as Drechsler, Savov, and Schnabl (2017)
show, increases in the nominal rate induce big inward shifts in the supply of
retail bank deposits, a large and important class of liquid assets. For simplic-
ity, in the model we subsume such adjustments into the evolution of the supply
of “government bonds.” Either way, by changing the nominal rate, the central
bank affects the liquidity premium, as shown in Figure 1, and the model’s
implications follow from this relationship.

heterogeneous-agent setup. The second, and more important, assumption requires choosing among
the numerous frictions that the literature has argued create a need for regulating leverage, includ-
ing moral hazard arising from deposit insurance (e.g., Keeley (1990)), pecuniary externalities due
to financial constraints (e.g., Stein (2012)), and spillover effects to the economy (e.g., Farhi and
Werning (2016)). To preserve the model’s wide applicability and transparency, we do not settle on
any one of these arguments and therefore do not conduct welfare analysis.
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We further examine the impact of the nominal rate on banks’ holdings of
liquid assets. As the nominal rate decreases, so does the cost of liquidity, and
banks’ holdings of liquid assets grow. Indeed, when the nominal rate is near
zero, banks hold large amounts of liquid assets. The central bank achieves this
low cost (equivalently, relatively high return) to holding liquid securities by
ensuring that their nominal supply grows slowly, a positive illustration of the
Friedman (1969) rule.5

Nominal rates in the model are naturally bounded below by zero. They cannot
fall below zero as this would create an arbitrage in which banks raise deposits
to invest in liquid securities. Yet even when rates are at the zero lower bound,
the central bank can further support asset prices by using forward guidance.
Under forward guidance, the central bank commits to keeping nominal rates
low further into the future, even after the economy recovers (banks’ net worth
rises above some threshold). We show that forward guidance causes asset prices
to rise in anticipation of lower future discount rates. The effect on asset prices
peaks as the nominal rate nears liftoff. In this region a small change in the
timing of anticipated rate increases can provoke a large response in asset prices
(a market “tantrum”).

In a second application of a dynamic policy, we analyze the effects of a
Greenspan put policy in which the central bank progressively cuts rates fol-
lowing a large-enough sequence of negative shocks. We show that a Greenspan
put is effective at stabilizing asset prices locally by boosting bank leverage.
However, as ever-increasing leverage cannot be sustained indefinitely, further
negative shocks cause prices to fall drastically and volatility to surge. Thus,
in our framework a Greenspan put reduces volatility in the short run at the
expense of potentially greater instability in the long run.

We further analyze how the model’s asset pricing implications affect macroe-
conomic outcomes. To do so, we extend the baseline model in two ways. The first
is by adding production, which allows us to look at investment and economic
growth. The second is by introducing a persistent shock to the nominal interest
rate that is independent of other shocks in the economy. Such nominal rate
shocks make our analysis comparable to the monetary economics literature.
They also enrich our results by producing balance sheet amplification effects
(Bernanke, Gertler, and Gilchrist (1999)).6 As is common in the literature, we
present the results of the extended model in the form of impulse response func-
tions following a shock to the nominal rate from the model’s stochastic steady
state. These are computed without linearizing, using a global solution for the
extended model.

Consistent with the baseline model, a positive nominal rate shock causes
bank leverage and net worth to fall, and risk premia and Sharpe ratios to rise.

5 It is worth highlighting that it is in fact the growth rate rather than the number of liquid
securities that determines their holding period return and hence the nominal interest rate. For
instance, a one-off doubling of liquid securities simply doubles the price level, whereas a one-
percentage-point increase in their expected growth rate raises the nominal interest rate by 1%.

6 That is, a surprise rate hike raises risk premia, which reduces asset prices, which reduces
banks’ net worth, which raises risk premia more, which reduces asset prices more, and so on.
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It also causes the price of capital to fall, which leads to a drop in investment.
The result is that economic growth slows and output ends up at a permanently
lower level. These results demonstrate that the risk premium channel has
strong implications for aggregate economic activity, which is consistent with
the results of Gilchrist and Zakrajšek (2012).

We conclude the analysis by computing the term structure of nominal interest
rates implied by our extended model. The model generates an upward-sloping
term structure and a large positive term premium, as high nominal interest
rates are associated with a high liquidity premium and hence lower risk sharing
and higher marginal utility. Moreover, the term premium rises following a
positive shock to the nominal rate, consistent with the results of Hanson and
Stein (2015).

The rest of the paper is organized as follows. Section I reviews the literature.
Section II lays out the baseline model, Section III characterizes the equilibrium,
and Section IV presents the results. Section V lays out the extended model and
presents corresponding results. Finally, Section VI concludes.

I. Related Literature

Our paper is related to the literature on the bank lending channel of monetary
policy developed by Bernanke (1983), Bernanke and Blinder (1988), Kashyap
and Stein (1994), Bernanke and Gertler (1995), and Stein (1998, 2012). This
literature relies on a reserve requirement: a contraction in reserves forces
banks to shrink their deposits and hence their assets since deposits cannot
be easily replaced. In contrast, in our framework an increase in the nominal
rate reduces financial institutions’ willingness to take risk. This is because it
results in an increase in the liquidity premium, which makes it more costly
to insure against a loss of funding. Our model thus applies beyond traditional
banks to all types of levered institutions, such as broker-dealers, hedge funds,
and off-balance-sheet vehicles, and our focus extends beyond bank loans to risk
premia and asset prices more broadly.

Our paper also relates to the literature on the balance sheet channel
(Bernanke and Gertler (1989); Kiyotaki and Moore (1997)), in which mone-
tary policy shocks affect the net worth of borrowers and hence their ability
to raise capital and invest. Bernanke, Gertler, and Gilchrist (1999), Jermann
and Quadrini (2012), and Christiano, Motto, and Rostagno (2014) embed the
balance sheet channel into quantitative macro models. Since the financial cri-
sis, attention has shifted from firms’ balance sheets to those of financial in-
termediaries (He and Krishnamurthy (2012, 2013); Brunnermeier and San-
nikov (2014a)). A maturity mismatch between assets and liabilities causes
intermediary net worth to fall when interest rates rise unexpectedly, which
forces balance sheets to contract (e.g., Cúrdia and Woodford (2016); Adrian and
Shin (2010); Gertler and Kiyotaki (2010); Adrian and Boyarchenko (2012)). In
Brunnermeier and Sannikov (2014b), such balance sheet shocks cause banks
to contract money creation, which leads to deflation and further contraction.
In our model unexpected rate changes also act as an amplifier. However, our
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model differs from the literature in that it establishes a relationship between
the level of the nominal rate and the level of risk premia, which is important
for analyzing the effects of a low-rate environment on asset prices and financial
stability.

Our modeling of funding risk and its effects on risk taking has its roots in
the banking literature, which emphasizes the liquidity transformation role of
the banking sector (Gorton and Pennacchi (1990); Shleifer and Vishny (1997);
Kashyap, Rajan, and Stein (2002)). Banks hold assets that are prone to fire
sales and issue short-term safe liabilities against them. The resulting liquidity
mismatch exposes banks to funding risk, leading them to demand liquid as-
sets as insurance (Bhattacharya and Gale (1987); Allen and Gale (1994)). As
Holmström and Tirole (1998) show, the supply of liquidity by the private sector
is generally insufficient, which creates an important role for public liquidity
provision. Our model highlights how, by varying the supply of liquid assets,
monetary policy can have a powerful impact on risk-taking and by extension
risk premia and asset prices.

On the methodological side, our paper draws from the heterogeneous-agent
asset pricing literature. We model an economy populated by agents with dif-
ferent levels of risk aversion, which gives rise to a credit market as in Dumas
(1989), Wang (1996), Gârleanu and Panageas (2015), and Longstaff and Wang
(2012). Our model is also related to the literature on collateral or margin con-
straints and their effects on asset prices (e.g., Gromb and Vayanos (2002);
Geanakoplos (2003); Gârleanu and Pedersen (2011); Ashcraft, Garleanu, and
Pedersen (2011); Gorton and Ordoñez (2014); Moreira and Savov (2016)). In
our model the tightness of the leverage constraint depends on the nominal in-
terest rate, which gives monetary policy the power to influence leverage in the
financial sector.

Importantly for our mechanism, the nominal interest rate must influence the
premium investors pay for holding liquid assets, as in Figure 1. Nagel (2016)
shows that there is in fact a tight positive relationship between the nominal
rate and the liquidity premium for a wide variety of liquid (“near-money”)
assets within and across a number of countries and over a long sample period.
Drechsler, Savov, and Schnabl (2017) show that an increase in the nominal
rate causes an increase in the premium for holding retail bank deposits, an
important source of liquidity in the economy. Thus, the liquidity premium
mechanism at the heart of the model finds strong support in the data.

A large empirical literature documents a strong influence of monetary policy
on credit supply (Bernanke and Blinder (1992); Kashyap, Stein, and Wilcox
(1993); Bernanke and Gertler (1995); Kashyap and Stein (2000)). Recent pa-
pers employ microlevel data to rule out confounding factors (Jiménez et al.
(2014), Dell’Ariccia, Laeven, and Suarez (2017); Landier, Sraer, and Thes-
mar (2013); Scharfstein and Sunderam (2014); Drechsler, Savov, and Schnabl
(2017)). Broadly speaking, these papers find that nominal rate increases cause
banks to reduce deposits, lending, and risk-taking.

A central prediction of our model is that low nominal interest rates result in
low risk premia, which is sometimes called “reaching for yield.” A fast-growing
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literature finds support for this relationship. Bernanke and Kuttner (2005)
show that surprise rate increases induce large negative stock returns. Using
a vector autoregression, they find that this result is almost entirely driven by
higher expected excess returns, consistent with our model. Hanson and Stein
(2015), Gertler and Karadi (2015), and Bekaert, Hoerova, and Lo Duca (2013)
document parallel results for term premia, credit spreads, and the pricing of
volatility risk. Notably, Bekaert, Hoerova, and Lo Duca (2013) find that an
increase in the nominal rate raises the representative investor’s risk aversion,
which is precisely the channel of our model.

Finally, our paper is related to the literature on the role of safe assets in fi-
nancial markets (Lucas (1990); Woodford (1990); Gertler and Karadi (2011);
Caballero and Farhi (2013); Krishnamurthy and Vissing-Jorgensen (2012);
Greenwood, Hanson, and Stein (2015)). By providing liquidity to banks, gov-
ernment bonds in our model can “crowd in” investment and risk-taking.

II. Model

In this section we lay out our model. The setting is an infinite-horizon econ-
omy that evolves in continuous time t ≥ 0. For simplicity, we begin with an
endowment framework. We incorporate production in Section V.

A. Endowment and Agents

The aggregate endowment follows a geometric Brownian motion:
dYt

Yt
= μY dt + σY dBt. (1)

The economy is populated by a continuum of agents whose total mass is one.
There are two types of agents, A and B. Both types have recursive preferences
as in Duffie and Epstein (1992), the continuous-time analog of Epstein and Zin
(1989). These preferences allow us to separate the elasticity of intertemporal
substitution (EIS) from the coefficient of relative risk aversion. An EIS greater
than one ensures that discount rates are increasing in risk aversion, so that
higher risk premia result in lower asset prices and a higher cost of capital.

To ensure stationarity, we assume that agents die at a rate κ. New agents
are also born at a rate κ, with a fraction ω as type A and 1 − ω as type B. The
newly born inherit the wealth of the deceased on an equal per-capital basis.
Gârleanu and Panageas (2015) show that under these conditions, κ simply
increases agents’ effective rate of time preference. The lifetime utility V i

0 of an
agent of type i ∈ {A, B} is therefore given by the recursion

V i
0 = E0

[∫ ∞

0
f i (Ci

t ,V i
t

)
dt

]
(2)

f i (Ci
t ,V i

t

) =
(

1 − γ i

1 − 1/ψ

)
V i

t

⎡
⎣(

Ci
t[

(1 − γ i)V i
t
]1/(1−γ i )

)1−1/ψ

− (ρ + κ)

⎤
⎦ . (3)
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The felicity function f i is an aggregator over current consumption Ci
t and future

utility V i
t . The parameters ρ and ψ , which we take as common for simplicity,

denote agents’ subjective discount rate and EIS.
The essential source of heterogeneity in the model lies in the relative risk

aversion coefficients γ i. Without loss of generality, Aagents are less risk-averse
than B agents: γ A < γ B. It follows that in equilibrium A agents raise funds
from B agents and use these funds to make levered investments. We think of
the combined net worth of A agents as the pooled equity capital of financial
intermediaries. For brevity, we refer to these intermediaries simply as banks,
but they can be thought of more broadly as including not just commercial
banks but also off-balance-sheet vehicles, broker-dealers, and hedge funds.
The unifying trait of these institutions is that they lever up their equity using
short-term debt financing.7

Along the same lines, we refer to the liabilities of A agents to B agents as
deposits. As we discuss below, we interpret deposits as encompassing the many
types of short-term debt financing used by financial institutions, including
retail deposits and wholesale deposits (i.e., wholesale funding) such as large
CDs and commercial paper.

Let Wi
t be the combined wealth of type-i agents, and let ωt be the wealth

share of A agents,

ωt = W A
t

W A
t + W B

t
. (4)

As we show below, ωt summarizes the state of the economy for a given level of
output. Its law of motion can be expressed as

dωt = κ(ω − ωt)dt + ωt(1 − ωt)[μω(ωt)dt + σω(ωt) dBt]. (5)

This law of motion has an exogenous component due to demographics that
ensures a nondegenerate long-run distribution, and an endogenous component
(in brackets) due to differences in saving rates and portfolio choices across the
two types of agents.

All agents can trade a claim on the aggregate endowment, which we call the
risky asset. The price of this claim is Pt, its dividend yield is F(ωt) = Yt/Pt, and
its return process is

dRt = dPt + Ytdt

Pt
= μtdt + σtdBt. (6)

7 Our setting can also be applied to open-end mutual funds, including money market funds
and long-term equity and bond funds. Mutual funds issue shares that are redeemable daily at
net asset value (NAV), which creates funding risk that can lead to fire sales (Coval and Stafford
(2007)). A prominent example occurred in September 2008 when money market funds experienced
a run (Kacperczyk and Schnabl (2013)). Because their liquid assets were insufficient to meet
redemptions, the U.S. Treasury was compelled to issue them a blanket guarantee to prevent them
from “breaking the buck.” Similarly, to protect against sudden withdrawals, long-term equity and
bond funds on average hold 5% of total assets in cash, ranging from 1% for government bond funds
to 15% for global bond funds (Investment Company Institute (2014)).
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We solve for the expected return μt = μ(ωt) and volatility σt = σ (ωt) in
equilibrium.

Agents also trade instantaneous risk-free bonds—deposits—among each
other. Deposits pay the endogenously determined real interest rate rt = r(ωt).
The other securities in this economy are government bonds and reserves, which
we describe below.

B. The Demand for Liquid Assets

The different risk tolerances of Aand Bagents create gains from risk-sharing.
In equilibrium, Aagents raise deposits from B agents and use the funds to take
a levered position in the risky asset. However, in doing so they face a friction:
deposits are subject to funding shocks. We model these shocks as arriving
according to a Poisson process Nt with constant intensity η. Funding shocks
affect all A agents (banks) at once, that is, they are systematic in nature and
cannot be diversified away within the banking system.8 Consider an agent
that has raised deposit funding. If hit with a funding shock, the agent must
immediately redeem a fraction

λ

1 + λ
(7)

of her deposits, where λ > 0. Funding shocks are important because having to
rapidly liquidate risky assets results in a fire sale. Specifically, only a fraction
1 − φ ∈ (0,1) of the value of a risky asset can be recovered quickly enough to
absorb a funding shock. Fire sales can arise due to adverse selection or limited
expertise leading to “cash-in-the-market” pricing (Allen and Gale (1994)). These
problems are avoided when assets are sold over a longer period but not on such
short notice.

The combination of funding shocks and fire sales plays an important role
in the banking literature (Bhattacharya and Gale (1987); Shleifer and Vishny
(1997); Holmström and Tirole (1998)). In this literature, financial intermedi-
aries issue short-term liabilities and invest in risky illiquid assets. Households
demand these liabilities because of their safety and liquidity, but supplying
them exposes financial intermediaries to rollover risk. Our funding shocks cap-
ture this notion.9

Agents can self-insure by holding assets that are immune to fire sales and as
a result can be liquidated at low cost in the event of a funding shock. We call
these liquid assets. By holding enough liquid assets, banks can avoid having to
sell risky assets at fire sale prices in the event of a funding shock. By influencing

8 To clarify, we do not model idiosyncratic or bank-specific shocks since these can in principle be
shared perfectly in interbank markets and should therefore not command a premium. Equivalently,
we can view our representative A banks as having already perfectly shared all idiosyncratic risks.

9 Recently, rollover risk played a important role in the 2008 financial crisis (Acharya, Gale,
and Yorulmazer (2011)). Since the crisis, financial institutions have responded in part by stocking
greater quantities of liquid assets (Financial Stability Oversight Council (2014)), consistent with
our model.
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the liquidity premium, which is the opportunity cost of holding liquid assets,
monetary policy affects the cost of this self-insurance and hence banks’ demand
for risk-taking.

Note that because funding shocks require the banking system as a whole to
shrink its liabilities, interbank claims cannot serve as liquid assets. Rather,
the liquid assets held by banks must be claims on entities that lie outside
the banking system, such as the government. This point echoes the broader
argument in Holmström and Tirole (1998), who emphasize the special role of
public liquidity provision.

Policy makers have embraced the principle of holding liquid asset buffers
as insurance against funding risk (Stein (2013)). Regulations requiring liquid
asset buffers include reserve requirements and the liquidity coverage and net
stable funding ratios adopted by Basel III and U.S. regulators (Basel Commit-
tee on Banking Supervision (2013, 2014); Board of Governors of the Federal
Reserve System (2014)). These rules are meant to ensure that banks avoid
forced liquidations, a rationale in keeping with our framework. Banks in our
model self-insure voluntarily but the implications remain the same if they do
so to comply with regulation.

C. The Supply of Liquid Assets

We model two types of liquid assets. Both are in finite supply and cannot be
sold short by agents. The first is instantaneous risk-free government bonds.10

The important feature of government bonds is that they trade in markets
that remain highly liquid even at times of severe market stress. This feature is
shared not only by Treasury bonds but also by agency MBS and other implicitly
or explicitly guaranteed instruments. We therefore refer to all of these assets as
government bonds. We model government bonds as providing liquidity services
normalized to one.

The second liquid asset is central bank reserves (including currency), which
are long-lived. Banks trade reserves in large volumes in the federal funds
market (Afonso, Kovner, and Schoar (2011)). They are an even more efficient
source of liquidity than government bonds because of their fixed nominal value
and their ability to circulate more quickly within the banking system. We
therefore model reserves as having a liquidity multiplier: each dollar of reserves
provides m> 1 liquidity services.

The central bank creates and withdraws reserves by exchanging them for
government bonds (via open market operations). This has the effect of expand-
ing and contracting the outstanding supply of liquidity. Let Gt and Mt be the
dollar value of government bonds and reserves in the economy and let πt be the

10 In practice, government bonds have nonzero maturity and interest rate risk exposure. A way
to map the liquidity value of long-term bonds into our model is to measure it as the amount that can
be borrowed against them in a repo transaction. Because government bonds are safe and liquid,
their repo haircuts are small, so this amount is close to their full market value. Hence, making
such an adjustment would not significantly affect the interpretation of our model.
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value of a dollar in consumption units. Taking reserves as the numeraire (in
practice they are fungible with currency, so this is the natural choice), πt is the
inverse price level. Then the real value of liquidity held by the public, measured
in units of government bonds, and scaled by the value of the endowment Pt, is

�t = πt[Gt + (m− 1)Mt]
Pt

. (8)

As a result of open market operations, the remaining liquidity, which is given
by the value of government bonds held by the central bank, πt Mt, is held by the
central bank itself.

D. Inflation and the Nominal Rate

We restrict attention to policies under which inflation is locally deterministic,

− dπt

πt
= ιtdt. (9)

Besides being realistic, this restriction has the virtue of simplifying the analysis
without limiting the central bank’s ability to influence the economy. We discuss
this in more detail later when we show how (9) is achieved. Note that (9) implies
that deflation −ιt is the capital gain on reserves, and that reserves are locally
risk-free.

The nominal interest rate is equal to the real rate plus inflation:

nt = rt + ιt. (10)

In practice nt corresponds to the Fed funds rate. The Fed funds market is one
of two main sources of overnight unsecured funding for U.S. banks.11 The Fed
funds rate therefore equals the rate banks pay on a marginal dollar of funding.
In our model, banks are funded entirely with deposits and hence the Fed funds
rate and the deposit rate are the same.

In reality, banks issue a variety of deposits that pay different rates. There
are two broad classes, wholesale and retail deposits. Wholesale deposits in-
clude large CDs, commercial paper, Fed funds, and euros. Their rates are close
to the Fed funds rate and they map to the model’s notion of deposits in a
straightforward way.

Retail deposits, on the other hand, are sold in a setting in which banks
have market power and as a result pay substantially lower rates (Drechsler,
Savov, and Schnabl (2017)). They also involve significant noninterest (i.e., brick-
and-mortar) costs. As a result, the true marginal cost of retail deposits for
banks is higher than the rate they pay their depositors. Indeed, for banks to

11 The other is the euro market, whose prevailing rate, LIBOR, aligns closely with the Fed funds
rate (Kuo, Skeie, and Vickery (2012)).
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be indifferent between their alternative sources of funding, the marginal cost
of retail deposits must also equal the Fed funds rate. For the purposes of our
model, we therefore group retail and wholesale deposits into a single deposit
category.

The Fed funds rate has emerged as the key target of monetary policy in the
United States. Likewise, we take

nt = n (ωt) (11)

to be the central bank’s target and show how it gets implemented. The rule that
specifies the evolution of the target is a function of ωt, which summarizes the
state of the economy. We assume that agents have rational expectations and
therefore know this mapping. In Section V, we extend the model by introducing
unexpected shocks to the policy rule.

Turning to the supply of government bonds, for simplicity we assume that it
evolves according to an exogenous function of the stateωt, and that the Treasury
issues and redeems government bonds in exchange for deposits. This assump-
tion prevents Treasury issuance from having redistributive effects. Moreover,
as we show in Section III.B, equilibrium in our model does not depend on the
precise path of Treasury issuance because the central bank can respond as
required to achieve its nominal rate target.

E. The Liquidity Premium

The liquidity premium in our model depends directly on the nominal rate nt.
To understand this, consider the case of reserves. In equilibrium, the liquidity
premium on reserves must equal the opportunity cost of holding them in terms
of forgone returns. As reserves pay no interest, their return is equal to their
capital gain dπt/πt. Hence, the opportunity cost of reserves, as well as their
liquidity premium, is equal to

rt − dπt

πt
= rt + ιt = nt. (12)

In other words, the nominal interest is the liquidity premium on reserves.12

Let the real interest rate on government bonds be rg
t = rg(ωt). Since gov-

ernment bonds provide liquidity services that are 1/m those of reserves, their
liquidity premium is

rt − rg
t = 1

m
nt. (13)

12 How would paying IOR affect this relationship? Let iort be the interest paid on reserves. The
forgone return in (12) becomes nt − iort, which, all else equal, decreases with IOR. The central
bank can now target the difference nt − iort to achieve a desired liquidity premium just as it does
absent IOR. Hence, paying IOR in and of itself does not limit the central bank’s ability to target the
liquidity premium. Section III.B discusses the impact of IOR on the implementation of monetary
policy.
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Thus, the liquidity premium on government bonds moves with the nominal
rate (this relationship would extend to other liquid assets).

Figure 1 shows that this relationship holds empirically. The figure plots the
Fed funds rate (solid red line, left axis) against the spread between Fed funds
and the three-month T-bill (black squares, right axis) from January 1955 to
December 2009. The two series comove very strongly both in the trend and
in the cycle; their raw correlation is 78%.13 Nagel (2016) documents a similar
relationship over a long time period, across a number of liquid assets, and in
several countries. These results support the transmission mechanism under-
lying our model, namely, the tight relationship between the level of nominal
interest rates and liquidity premia.

In conducting monetary and fiscal policy, the government earns “seigniorage”
profits due to the differential liquidity of its assets and liabilities. Scaled by the
value of the endowment, this seigniorage accrues at the rate

πtGt

Pt

(
rt − rg

t
) + πt Mt

Pt

(
rg

t − dπt

πt

)
= �t

m
nt. (14)

The terms on the left are the Treasury and central bank accounts. The equality
follows by substituting (12) and (13) for the liquidity premia and simplifying
using (8). We see that seigniorage equals the liquidity premium on government
bonds, nt/m, times the total liquidity held by the public, �t, which is also
measured in government bonds. We further see that seigniorage is nonnegative
and indeed positive so long as the nominal rate is above zero. To close the model,
we assume that as seigniorage accrues, it is refunded to all agents in proportion
to their wealth. This assumption leaves the wealth distribution unaffected and
keeps the government’s net worth at zero.

F. Agents’ Optimization Problem

Let V i(Wt, ωt) denote the value function of an agent of type i ∈ {A, B}. The
agent chooses a consumption-wealth ratio ct and portfolio shares wS,t, wD,t,
wG,t, and wM,t in the risky asset, deposits, government bonds, and reserves,
respectively (these sum to one).

To simplify the portfolio problem, we use the fact that in equilibrium re-
serves and bonds are perfect substitutes in the agent’s portfolio to express her
optimization problem in terms of her overall demand for liquidity given by
wL,t = wG,t + mwM,t, in units of government bonds. The resulting Hamilton-
Jacobi-Bellman (HJB) equation is

0 = max
ct,wS,t,wL,t≥0

f i (ctWt,V i(Wt, ωt)
)

dt + Et
[
dV i(Wt, ωt)

]
, (15)

13 The occasional spikes in the Fed funds-T-bill spread coincide with “flight to quality” episodes
in which the T-bill rate plummets. The spread briefly widens because many non-banks (e.g.,
money market funds) cannot access reserves or invest in long-term government bonds. From
the perspective of our model, this can be understood as a temporary breakdown of the infinite
substitutability of government bonds and reserves.
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subject to the wealth dynamics14

dWt

Wt
=

[
rt − ct + wS,t(μt − rt) − wL,t

m
nt + �t

m
nt

]
dt + wS,tσtdBt

− φ

1 − φ
max

{
λ

1 + λ
(wS,t + wL,t − 1) − wL,t,0

}
dNt. (16)

(Appendix A contains the full derivation.) The drift component of wealth reads
as follows: the agent earns the deposit rate, pays for consumption, earns the
risk premium on the risky asset, pays the liquidity premium on her liquid
holdings, and receives seigniorage payments from the government.15 Liquidity
demand expressed in units of effective reserves is wL,t/m and the associated
excess return from (12) is −nt. Hence, holding liquidity is costlier when the
nominal rate is high.

The diffusive component of wealth in (16) depends only on exposure to the
risky asset. This is because all other assets are locally risk-free, including
reserves (see (9)).

The second line of (16) captures the agent’s exposure to the funding shock
dNt. Inside the braces is the amount of redemptions in excess of the available
liquid holdings. If there is enough liquidity to cover all redemptions, the funding
shock exposure is zero. If not, the agent must sell enough risky assets to cover
the shortfall. Because of the fire sale, it takes 1/(1 − φ) dollars of the risky asset
to meet one dollar of redemptions, and each dollar sold incurs φ dollars of fire
sale losses. Later we derive conditions under which it is optimal for banks to
fully self-insure so these fire sale losses are zero in equilibrium.

G. Market-Clearing Conditions

The homogeneity of preferences implies that the consumption and portfo-
lio policies are independent of wealth, so we can write them as functions of
type. We denote the aggregated consumption-wealth ratio of type-i agents by
ci

t = ci(ωt) = ∫
i ch

t Wh
t /W

i
t dh for i ∈ {A, B}, and similarly for the portfolio policies

wi
S,t = wi

S(ωt) and wi
L,t = wi

L(ωt).
In equilibrium, the markets for goods (i.e., consumption), the endowment

claim, government bonds, and reserves must clear. The deposit market clears
by Walras’ law. Since government bonds and reserves are perfect substitutes,
only the total demand for liquidity is pinned down and the two markets can
be consolidated. Since the public’s net deposit holdings are minus the value
of government bonds and reserves, aggregate wealth equals the value of the
endowment claim, W A

t + W B
t = Pt. The market-clearing conditions are thus

ωtcA
t + (1 − ωt)cB

t = Ft, (17)

14 These are the wealth dynamics should the agent cheat death over the next instant. The agent
accounts for the possibility of death directly in the felicity function (3).

15 From (14), total seigniorage is Pt�tnt/m. Since seigniorage is refunded in proportion to wealth
and since total wealth is Pt, each agent gets �tnt/m in seigniorage per unit of wealth.
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ωtw
A
S,t + (1 − ωt)wB

S,t = 1, (18)

ωtw
A
L,t + (1 − ωt)wB

L,t = �t. (19)

All three conditions are normalized by aggregate wealth. The first equation
gives the market-clearing condition for the consumption good, the second gives
the market-clearing condition for the endowment claim, and the third gives the
market-clearing condition for the liquid assets.

III. Equilibrium

In this section, we derive the equations that characterize the equilibrium.
While these equations do not permit closed-form solutions, we are able to derive
analytical expressions that highlight key mechanisms. In Section IV, we solve
the model fully using numerical methods.

All proofs and derivations are in Appendix A.

A. The Value Function and the Demand for Leverage

To simplify notation we now drop time subscripts, though it should be un-
derstood that they apply. By Itô’s Lemma, the HJB equation (15) expands into
the Lagrangian

0 = max
c,wS,wL≥0

f i(cW,V i) + V i
W W

[
r − c + wS(μ− r) − wL

m
n + �

m
n
]

+ V i
ω[κ(ω − ω) + ω(1 − ω)μω] + V i

WωWω(1 − ω)wSσωσ + 1
2

V i
WWW2(wSσ )2

+ 1
2

V i
ωωω

2(1 − ω)2σ 2
ω + η

(
V i

+ − V i) , (20)

where V i
+ = V i(W+, ω) and W+ is the agent’s wealth immediately following a

funding shock. Since the funding shock can only destroy wealth, W+ − W ≤ 0
with equality when the agent has sufficient liquidity to insure against the
funding shock.

This highlights the banks’ trade-off: holding liquidity requires paying a pre-
mium but it also reduces the negative impact of a funding shock, V i

+ − V i. It
is clear that as long as liquidity is costly, banks will never hold more liquidity
than is necessary to fully self-insure. For simplicity, from here on we restrict
the parameters so that banks in fact choose to fully self-insure.

ASSUMPTION: Let η and φ be such that for all n (ω),

η
φ

1 − φ

λ

1 + λ
≥ λ

m
n(ω). (21)
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For full self-insurance to be optimal, expected fire sale losses (the left side
of (21)) must be high enough to justify paying the liquidity premium on the
amount of liquidity required to insure a dollar of deposits, λ. We verify that
this condition holds for our chosen parameters (see Appendix A). Under full
insurance, banks’ liquidity demand is

wA
L = max

{
λ
(
wA

S − 1
)
,0

}
(22)

for a given level of risky asset demand wA
S. Equation (22) shows that liquid-

ity demand is proportional to net leverage. This is the key mechanism that
connects liquidity and risk taking in our model.16

We can now turn to the full optimization problem and characterize the value
function:

PROPOSITION 1: The value function of an agent of type i ∈ {A, B} has the form

V i(W, ω) =
(

W1−γ

1 − γ

)
Ji(ω)

1−γ
1−ψ , (23)

where Ji is the agent’s consumption-wealth ratio, c = Ji. If (λ/m)n ≤ (γ B −
γ A)σ 2

Y , Ji solves the second-order ordinary differential equation

ρ + κ = 1/ψ Ji + (1 − 1/ψ)
(

r + λθ i + �

m
n
)

− 1/ψ
Ji
ω

Ji

[
κ(ω − ω) + ω(1 − ω)μω

]

− 1/ψ
2

[(
ψ − γ i

1 − ψ

)(
Ji
ω

Ji

)2

+ Ji
ωω

Ji

]
ω2(1 − ω)2σ 2

ω

+ 1
2

(
1 − 1/ψ
γ i

)[
μ− r − λθ i

σ 2 +
(

1 − γ i

1 − ψ

)
Ji
ω

Ji ω(1 − ω)
σω

σ

]2

σ 2 (24)

with θ A = n/m and θ B = 0. If instead (λ/m)n> (γ B − γ A)σ 2
Y , Ji solves

ρ + κ = 1/ψ Ji + (1 − 1/ψ)
(
μ− γ i

2
σ 2

Y

)
− 1/ψ

Ji
ω

Ji [κ(ω − ω) + ω(1 − ω)μω]. (25)

Proposition 1 shows that the value function is homogeneous in wealth. It can
be characterized up to the consumption-wealth ratio Ji, which is type-specific
but not agent-specific and depends solely on the wealth distribution ω. As a

16 We stress that full insurance is not required for liquidity demand to increase with leverage.
Rather, it is enough that banks insure themselves up to some probability. In practice, banks do
hold large liquidity buffers (see the discussion in Section IV.A below). Bai, Krishnamurthy, and
Weymuller (2017) find that the largest banks typically hold enough liquid assets to withstand a
3-σ liquidity stress test.
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result, ω is a sufficient statistic for asset valuations and other equilibrium
quantities in this economy.

Using the value functions, we can solve for agents’ portfolio demands. Propo-
sition 2 provides the conditions under which A agents (banks) take leverage
(by issuing deposits), and shows how their demand for the risky asset depends
on monetary policy as captured by the nominal interest rate.

PROPOSITION 2: Banks take leverage/deposits (wA
S > 1) if and only if

λ

m
n<

(
γ B − γ A

)
σ 2

Y . (26)

In this case, their demand for the risky asset is given by

wA
S = 1

γ A

[
μ− r − (λ/m)n

σ 2 +
(

1 − γ A

1 − ψ

)
JA
ω

JAω(1 − ω)
σω

σ

]
. (27)

Equation (27), which describes banks’ leverage, has two terms. In the first,
(μ− r)/σ 2 is the canonical mean-variance trade-off for the risky asset, which
shows that banks take more leverage when there is a higher return premium
per unit of risk. The second term, which depends on JA

ω , captures the intertem-
poral hedging demand, which determines how much banks adjust their current
risk-taking to hedge future changes in investment opportunities. The invest-
ment opportunity set is stochastic because of variation in aggregate risk aver-
sion that is induced by changes in the relative wealth ω of the two types of
agents.

The term −(λ/m)n in (27) gives the direct impact of the nominal rate on bank
leverage, which we highlight with the following corollary.

COROLLARY 1: All else equal, an increase in the nominal interest rate reduces
bank leverage.

For each additional dollar of leverage, banks must expand their liquid hold-
ings to avoid fire sales. Doing so is costly because these assets carry a liquidity
premium. The liquidity premium is proportional to the nominal rate. As a
result, higher nominal rates raise the effective cost of leverage.17

Looking at (27), an increase in the nominal rate works like an increase in
banks’ effective risk aversion. As a result, an increase in the nominal rate
raises the economy’s effective aggregate risk aversion and, in equilibrium, the
risk premium.

17 The nominal interest rate thus acts as a tax on leverage. Our model thus highlights the
connection between monetary policy and macroprudential regulation. Stein (2012) argues that
monetary policy has several advantages that complement a regulation-based approach such as an
explicit tax. First, monetary policy permeates the entire financial system, affecting every institu-
tion that takes leverage implicitly or explicitly, thus making it less susceptible to distortions such
as regulatory arbitrage and hidden leverage. Second, monetary policy (the nominal rate) can be
adjusted dynamically in response to changing economic conditions. Third, the nominal rate and
liquidity premia represent a useful price-based signal of policy tightness that can guide policy
makers.
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Condition (26) shows that banks lever up only if there is enough scope for
risk sharing to overcome the cost of leverage. The difference in risk aversions
multiplied by the return variance, (γ B − γ A)σ 2

Y , measures the risk premium
earned by banks on their first dollar of leverage.18 This premium reflects the
gains from risk-sharing. For banks to take leverage, it must be greater than
the cost of leverage, which is given by the liquidity premium multiplied by the
required liquidity buffer, (λ/m)n.

If, on the other hand, the cost of leverage exceeds the benefit of sharing risk
even on the first dollar, then banks do not raise deposits and agents remain in
“financial autarky.”

COROLLARY 2: If (λ/m)n ≥ (γ B − γ A)σ 2
Y , then wA

S = wB
S = 1.

The demand for leverage equation (27) shows that in effect banks discount
assets using a risk-adjusted rate r + (λ/m)n that is higher than the rate they
pay on deposits, r. The difference, (λ/m)n, is the cost of holding liquidity as
insurance against funding shocks. This difference drives a wedge between the
cost of external funds for firms, the ultimate borrowers in the economy, and
the return earned by households, the ultimate lenders. The literature (e.g.,
Bernanke and Gertler (1995)) calls this wedge the external finance premium
and shows that it increases with the nominal rate, as implied by our model.

B. Policy Implementation

We now discuss in more detail how the central bank influences the nominal
interest rate in the model. We begin with the following proposition, which
characterizes the dynamics of aggregate liquidity required to implement a
given policy nt = n(ωt).

PROPOSITION 3: To implement the nominal rate rule nt = n(ωt), the nominal
supply of reserves Mt and government bonds Gt must grow according to

αt
dMt

Mt
+ (1 − αt)

dGt

Gt
= (nt − rt)dt + dPt

Pt
+ d�t

�t
+

(
dPt

Pt

)(
d�t

�t

)
, (28)

where αt = (m− 1)πt Mt/(�t Pt) is the net contribution of reserves to aggregate
liquidity and �t, the real value of liquidity as a share of wealth, is given by
�t = ωtλ(wA

S,t − 1).

Proposition 3 says that to implement a given nominal interest rate, the
supply of liquid assets must evolve according to (28). The evolution of the
supply of liquid assets is a weighted average of the changes in the supply
of reserves and government bonds because these two sources of liquidity are
perfectly substitutable. Hence, it is their combined supply that matters for
policy implementation.

To understand (28), first consider holding government bond issuance fixed. To
achieve a high nominal rate through open market operations, (28) shows that

18 In the no-leverage region, return volatility equals fundamental volatility, σ = σY .
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the central bank must issue reserves at a high rate going forward. Doing so
causes reserves to decline in value more quickly over time (i.e., inflation rises),
and hence increases the opportunity cost of holding them. As explained in
Section II.E, this opportunity cost is the nominal rate.19 When the nominal rate
rises, the liquidity premium of government bonds also rises. This leads banks to
reduce their demand for liquidity today and the real value of aggregate liquidity
falls (d�t/�t is low). The fall in aggregate liquidity is absorbed by open market
operations today (dMt/Mt is low). The right side of (28) further shows that the
liquidity supply must keep up with overall wealth in the economy (dPt/Pt).

Proposition 3 also shows that a given nominal rate and the liquidity premium
it implies can be implemented through changes in the supply of liquid assets
other than reserves (dGt/Gt). While we have labeled these government bonds,
in practice many liquid assets are originated by the private sector. The required
adjustment in the liquidity supply can occur through these assets, with only
a minimal need for open market operations. Indeed, Drechsler, Savov, and
Schnabl (2017) show that large flows of retail bank deposits play such a role. In
particular, they show that when the nominal rate increases, the premium for
holding retail deposits—a large and important class of liquid assets—increases
sharply, and their quantity shrinks. The authors argue that this is due to
pricing power in the retail deposit market, which increases with the nominal
rate.20 Although we do not explicitly incorporate this particular channel, it can
be subsumed into the process dGt/Gt, which would then encompass the change
in both government bonds and other liquid securities. Regardless of whether
the change in the liquidity supply occurs through reserves (dMt/Mt) or other
liquid assets (dGt/Gt), the end result is that by changing the nominal rate, the
central bank changes the liquidity premium. Given this effect, which is clearly
visible in Figure 1, the model’s implications follow.

As we noted earlier, with IOR, the opportunity cost of holding reserves equals
nt − iort. In this case banks’ demand for leverage wA

S,t − 1 is given by (27), but
with nt − iort replacing nt. Proposition 3 is then adapted to the case with IOR
by substituting this expression in forwA

S,t − 1. This shows that when the spread
nt − iort is low, banks’ demand for liquid assets is high, similar to when nt is
low and the real value of liquidity as a share of wealth �t is high. Thus, by
paying high IOR, the central bank can keep outstanding liquid holdings high
even as it raises the nominal rate. It may be interested in doing so if raising
the nominal rate (though without changing the liquidity premium) helps to
maintain price stability.21

19 Introducing price rigidities into our model would dampen the change in reserves growth
required to implement a change in the nominal rate, as an increase in the nominal rate would
result in a similar increase in the real rate (i.e., the change in nt − rt would be small).

20 The mechanism for the increase in pricing power is as follows. When the nominal rate is low,
retail deposits must compete with cash and zero-interest accounts, whereas when it is high, banks
are able to charge a bigger liquidity premium (pay relatively lower rates). The increased liquidity
premium leads to outflows and a reduction in the supply of liquid assets in the economy.

21 We note the following caveat. Segmentation frictions can lead to an imperfect pass-through
of IOR to the marginal cost of liquidity in the financial system (see Bech and Klee (2011) for an
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Table I
Parameter Values

This table lists the parameter values used to illustrate the model in Section IV and generate
Figures 2 to 6.

Description Parameter Value

Risk aversion of type A γ A 1.5
Risk aversion of type B γ B 15
Elasticity of intertemporal substitution (EIS) ψ 3
Rate of time preference ρ 0.01
Agent death rate κ 0.01
Population share of type A ω 0.1
Endowment growth rate μY 0.02
Endowment volatility σY 0.02
Funding shock size λ/(1 + λ) 0.29
Funding shock frequency η 0.10
Fire sale loss φ 0.15
Government bond liquidity services ratio 1/m 0.25
Nominal rate policy 1 n1 0%
Nominal rate policy 2 n2 5%

IV. Results

In this section, we further analyze the effects of monetary policy by setting
parameter values, specifying a nominal rate policy, and solving for the result-
ing equilibrium. This requires solving the HJB equations of the two types of
agents simultaneously. Since these do not permit closed-form solutions, we ap-
ply numerical methods, specifically, Chebyshev collocation, which provides a
global solution.

A. Parameter Values

Table I displays our benchmark parameter values. While our main goal is
to illustrate the mechanisms of the model, we pick parameter values that we
view as reasonable.

To create substantial demand for risk-sharing and leverage, we set the risk
aversions of A and B agents to 1.5 and 15, respectively. We set the common
EIS to 3.22 An EIS greater than one implies that an increase in effective risk
aversion decreases valuations.

example from the post-2008 period). Despite these frictions, when reserve balances are large, the
level of IOR is likely to have a strong influence on the marginal cost of liquidity. This may no longer
hold when reserves are small. Still, as long as the supply of other liquid assets (such as retail bank
deposits) responds to changes in the nominal rate, the nominal rate will influence the liquidity
premium.

22 Campbell (1999) estimates an EIS less than one based on a regression of aggregate consump-
tion growth on the real interest rate. Running this regression within our model would produce an
estimate that is even lower—in fact zero—as consumption growth is i.i.d. Our model provides an
example where this regression is misspecified due to limited risk sharing.
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We set agents’ rate of time preference ρ and death rate κ to 0.01, which
results in real interest rates near 2%. To stabilize banks’ share of wealth ωt at
moderate levels, we set the fraction of A agents, ω, to 0.1. We set the growth
rate and volatility of the endowment to 2%, consistent with standard estimates
for aggregate U.S. consumption.

Next we set λ, which governs the size of funding shocks (see (7)). There are
several approaches we can take. One approach is to look at the recent 2008 fi-
nancial crisis, which saw a dramatic contraction in wholesale funding markets.
Acharya, Schnabl, and Suarez (2013) show that from July to December 2007,
the outstanding amount of asset-backed commercial paper contracted by 36%.
Krishnamurthy, Nagel, and Orlov (2014) calculate that from 2007 to 2009, the
overall amount of short-term debt used to fund purchases of risky private-label
ABS and corporate bonds contracted by 66% and 29%, respectively, and by 57%
overall.

As the recent crisis may have been particularly severe, a more reliable ap-
proach may be to look at the amount of liquid assets that banks hold on their
balance sheets. Intuitively, the amount of insurance that banks buy is infor-
mative about their perceived funding risk. In 2004, 2008, and 2013, U.S. com-
mercial banks held 18%, 21%, and 25% of assets in liquid securities and had
73%, 76%, and 77% of liabilities in deposits and other short-term debt. Hence,
banks’ liquid securities as a proportion of deposits were 25%, 29%, and 34% in
these years.23

A third approach is to follow Brunnermeier, Krishnamurthy, and Gorton
(2013) and Bai, Krishnamurthy, and Weymuller (2017), who propose and im-
plement a comprehensive measure of funding risk. They estimate that under
a severe adverse scenario, the 50 largest U.S. bank holding companies stand
to lose about 40% of their total funding (including equity). In our context, a
funding shock of this magnitude is arguably on the high side.

In light of these considerations, we take an intermediate value and set λ so
that the funding shocks in (7) are equal to 29% of deposits (i.e., λ/(1 + λ) = 0.29).
We also set the intensity η to 0.10 and the fire sale loss φ to 0.15. In our analysis,
these two parameters are important only for guaranteeing that banks fully
insure against funding shocks (see (21)).

Next, we set the government bond liquidity services ratio, 1/m. To estimate
it, we use (13) and the corresponding series shown in Figure 1, and regress the
Fed funds-T-bill spread on the Fed funds rate, both in levels and in changes.
The estimated sensitivities are 0.17 and 0.38, respectively. We take a number
in the middle of this range and set 1/m = 0.25.

We compare equilibria across two nominal rate policies. In the first the nom-
inal rate is identically zero. This makes holding liquidity costless, so the model

23 The numbers are from the U.S. Flow of Funds, Table L.110. Liquid assets are calculated as
the sum of Treasury and agency bonds, agency-backed MBS, and federal funds sold and security
repos (asset). Deposits and other short-term debt are calculated as the sum of checkable deposits,
small time and savings deposits, large time deposits, federal funds and security repos (liability),
open market paper, and net interbank liabilities.
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is equivalent to a frictionless one with no funding risk and hence serves as a
useful benchmark. In the second policy the nominal rate is 5%, which makes
liquidity costly and constrains leverage. While the model allows for much more
complex policy rules, we start with these simple ones to convey the main intu-
ition. We consider dynamic policies in Section IV.E below.

B. Risk-Taking and Risk Premia

We begin by looking at risk-taking and risk premia as they are directly
impacted by monetary policy through its effect on the cost of leverage. The
top two panels of Figure 2 show the risky asset portfolio weights of banks (A
agents) and depositors (B agents) under the low-rate policy nl = 0% (solid red
lines) and the high-rate policy nh = 5% (dashed black lines). The horizontal
axis covers the range of banks’ wealth share ω, the model’s sole state variable.

Under the high-rate policy nh, bank leverage is lower throughout the state-
space, especially when banks’ wealth share is small. When ω is close to zero,
banks’ risky asset holdings fall from around 10 times net worth under nl to
less than two under nh. At the other extreme, when ω is close to one, banks
take almost no leverage under either policy as they effectively dominate the
economy. At moderate levels of ω between 0.2 and 0.4, where the economy
spends most of its time, banks’ holdings of risky assets decrease from between
two and four times net worth under the low-rate policy nl to barely above
one under the high-rate policy nh. This represents a substantial decrease in
leverage.

As higher nominal rates cause banks to contract their risky asset holdings,
depositors must expand theirs. For instance, as the top right panel of Figure 2
shows, when ω is in the 0.2 to 0.4 range, depositors hold between 20% and 40%
of their wealth in the risky asset under the low-rate policy nl, versus almost
100% under the high-rate policy nh. This shift in the allocation of risk in the
direction of the more risk-averse depositors amounts to an increase in the risk
aversion of the representative investor.

The relationship between portfolio weights and the wealth share ω in
Figure 2 is the result of market clearing. When ω is close to either zero or
one, a single type of agent dominates the economy, which reduces the opportu-
nity for risk sharing. Agents of the dominant type must hold all of their wealth
in the endowment claim, whereas agents of the vanishing type can be satisfied
with only a small amount of borrowing or lending. Thus, when ω is near zero,
depositors set prices, so banks take high leverage as long as the nominal rate
is not prohibitively high. Conversely, when ω is near one, banks set prices, so
depositors pull back from the risky asset unless a high nominal rate keeps the
risk premium sufficiently high.

We see that under the high-rate policy (nh = 5%), holding liquidity to insure
against a loss of funding is very costly so banks take little leverage. This is
why under nh, portfolio demand is relatively flat in ω. At even higher levels of
the nominal rate, the economy enters financial autarky (see Corollary 2): the
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Figure 2. Risk taking, risk premia, and the price of risk. The figure plots the portfolio weight
in the risky assetwS for Aagents (banks) and Bagents (depositors), and the risk premiumμ− r and
Sharpe ratio (μ− r)/σ of the risky asset. Each line corresponds to a nominal rate policy: nl = 0%
(solid red) and nh = 5% (dashed black). (Color figure can be viewed at wileyonlinelibrary.com)

credit market shuts down and all agents hold their entire wealth in the risky
asset regardless of ω.

The bottom two panels of Figure 2 show how the reallocation of risk induced
by changing the nominal interest rate influences the Sharpe ratio (bottom left)
and risk premium (bottom right) of the risky endowment claim. As noted above,
by making leverage more costly, higher nominal rates increase effective risk
aversion in the economy. This has a strong effect on the Sharpe ratio or price
of risk. At moderate levels of ω between 0.2 and 0.4, the price of risk increases
from between 0.07 and 0.12 under the low-rate policy nl to about 0.28 under nh.
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This corresponds to an increase in effective risk aversion from between three
and five to 14.24

The bottom right panel of Figure 2 shows that the risk premium largely
tracks the Sharpe ratio. In the range of ω between 0.2 and 0.4, it rises from
between 0.15% and 0.30% under the low-rate policy to about 0.57% under the
high-rate policy. Note that this is the premium to a claim on the aggregate
endowment, which has a relatively low volatility of 2%. By comparison, equity
volatility is around 15%. Hence, the equity premium implied by the equilibrium
Sharpe ratios is seven- to eight-times larger than that of the endowment claim,
which puts it in the range of standard estimates.

Overall, Figure 2 shows that monetary policy has substantial direct effects
on risk-taking and risk premia. By raising the cost of holding liquid securities,
a higher nominal rate makes taking leverage expensive and causes banks to
reduce risk-taking. The resulting rise in effective risk aversion increases risk
premia and the price of risk by large amounts.

C. Asset Prices and Volatility

By changing risk premia and the allocation of risk, monetary policy also
affects real rates, asset prices, and volatility. These effects are shown in
Figure 3. The top left panel focuses on the real deposit rate r. It shows that
under the high nominal rate policy (nh = 5%) the real rate is lower than under
nl = 0%, with the difference largest near ω = 1. While it may seem surprising
that an increase in the nominal rate decreases the real rate, this is a direct con-
sequence of the increase in effective risk aversion. This increase implies both a
higher risk premium and a greater precautionary savings motive. The greater
precautionary savings motive accounts for the decrease in the real rate.25

Overall, a higher nominal rate unambiguously results in higher discount
rates and lower asset prices. This is shown in the top left panel of Figure 3,
which plots the equilibrium price dividend ratio P/Y = 1/F(ω) of the risky
endowment claim. At all levels of ω, the price of the endowment claim is lower
under the high-rate policy nh.

We note that the impact of the nominal rate on valuations depends on the
EIS. When the EIS exceeds one, the substitution effect dominates the income
effect, so that greater risk aversion reduces asset demand and valuations fall.
In this case the rise in the risk premium exceeds the fall in the real rate. In
contrast, if the EIS is less than one, greater risk aversion counterintuitively
causes the valuations of risky assets to increase.

24 This effective risk aversion is the one that would produce the same price of risk in a homoge-
neous economy (i.e., the Sharpe ratio divided by the volatility). Note that even at ω = 1 the Sharpe
ratio and the risk premium do not converge to their values in an economy populated only by A
agents (banks). The reason is that the risk-averse B agents (depositors) remain marginal because
they are unconstrained. See Kogan, Makarov, and Uppal (2007) for a discussion.

25 Indeed, the same result obtains in a homogeneous economy in a comparative static with
respect to risk aversion. Specifically, in a homogeneous economy with RRA γ and EIS ψ , we have
∂(μ− r)/∂γ = σ 2 > 0 and ∂r/∂γ = −(σ 2/2)(1 + 1/ψ) < 0.
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Figure 3. The real rate, valuations, volatility, and bank net worth. The figure plots the
real interest rate r, the valuation ratio P/Y , and volatility σ of the risky asset, and the sta-
tionary density of ω, the wealth share of A agents (banks). The stationary density is obtained
by solving the associated forward Kolmogorov equation. Each line corresponds to a nominal rate
policy: nl = 0% (solid red lines) and nh = 5% (dashed black lines). (Color figure can be viewed at
wileyonlinelibrary.com)

The effect of nominal rates on valuations is strongest near the middle of the
state-space where asset prices are about 12% higher when the nominal rate is
low. In this region, the lower leverage induced by a high nominal rate has a
large impact on the allocation of risk: it causes the overall demand for leverage
and supply of deposits to decrease the most. In contrast, when ω is near zero,
even a large reduction in leverage per dollar of bank net worth has little effect
since bank net worth itself is very low. Similarly, when ω is close to one, the
supply of deposits is low regardless of the nominal rate. Even so, valuations
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continue to be significantly higher at these two extremes under the low-rate
policy. The reason is a dynamic effect: agents anticipate lower discount rates
in the future when aggregate risk-sharing will be higher, and capitalize these
lower rates into today’s asset price.

Figure 3 also plots the volatility of returns σ (bottom left panel). Even though
fundamental (cash flow) volatility is constant, return volatility is time-varying.
Moreover, it exceeds fundamental volatility in a hump-shaped pattern. Under
the low-rate policy nl, return volatility peaks near ω = 0.2 at about 2.7%, which
is 35% higher than fundamental volatility.

This excess volatility is the result of changing discount rates, which are
determined by a wealth-weighted average of the risky-asset demands of the
two types of agents. At low nominal rates and moderate values of ω, banks take
significant leverage yet command enough wealth to affect prices. As a result,
endowment shocks have a large effect on banks’ wealth share ω. Negative cash
flow news hits banks disproportionately, causing ω to fall. Moreover, when the
nominal rate is low, leverage is very sensitive to ω, as we see in Figure 2.
The combination of large movements in bank wealth and a high sensitivity of
leverage to bank wealth implies that effective risk aversion and discount rates
fluctuate strongly with fundamental shocks, which leads to high volatility. In
contrast, when one type of agent dominates the economy or when nominal rates
are high, bank wealth and leverage are insensitive to shocks and hence there
is little variation in discount rates and little excess volatility.

Finally, the bottom right panel of Figure 3 plots the stationary distribution of
banks’ net worth share ω, which we compute by solving the associated forward
Kolmogorov equation. This stationary distribution helps illustrate the nominal
rate’s dynamic effects. The impact of the nominal rate on the wealth distribu-
tion is significant. The central feature is that under the low-rate policy nl, the
density of ω centers around a higher mean but is also much more disperse. The
greater dispersion is a result of greater leverage, which makes banks’ wealth
more volatile. The higher mean occurs because banks’ greater leverage causes
their wealth to grow faster on average.

The volatility and wealth distribution plots in Figure 3 show that low nominal
rates are associated with significantly greater endogenous risk. As a result of
greater leverage, excess volatility is greater and banks’ net worth is much
more variable under the low-rate policy nl. This result illustrates the potential
influence of monetary policy on financial stability.

D. Aggregate Liquidity and Policy Implementation

The results so far show that monetary policy has a large effect on asset prices.
To understand how this effect is achieved, we now analyze the equilibrium
supply of liquidity and how the central bank implements its nominal rate
policy.

The top two panels of Figure 4 plot aggregate liquidity, scaled by total wealth
on the left and bank assets on the right. In both panels, aggregate liquidity is
small under the high-rate policy nh. Since higher nominal rates raise liquidity
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Figure 4. Aggregate liquidity and open market operations. The figure plots the liquidity
supply as a share of aggregate wealth �, the liquidity supply as a share of bank assets �/(ωwA

S),
and the drift rate μM and stochastic exposure σM of open market operation (reserves growth)
required to implement a given nominal rate policy. To calculate open market operations, we assume
government bonds grow with total wealth (dG/G = ιdt + dP/P) and that reserves represent 14%
of the liquidity-services-adjusted liquidity supply (α = 0.14). See the text for details. Each line
corresponds to a nominal rate policy: nl = 0% (solid red lines) and nh = 5% (dashed black lines).
(Color figure can be viewed at wileyonlinelibrary.com)

premia and make holding liquid assets more costly, banks reduce their demand
for liquid assets and take less leverage. In contrast, under nl, where nominal
rates are zero, the liquidity premium vanishes and holding liquid assets be-
comes costless. Banks satiate their demand for liquidity and increase leverage
to its unconstrained level.
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Looking across the state space, aggregate liquidity scaled by total wealth
peaks at moderate values of ω, where aggregate risk-sharing is greatest. Scaled
by bank assets, aggregate liquidity is highest for low ω, where bank leverage
is greatest. The variation in aggregate liquidity is much larger under the zero-
rate policy nl because leverage is much more volatile.

We now look at how the central bank conducts open market operations to
achieve its nominal rate target. To do so, we must first specify the evolution
of the government bond supply. For simplicity, we assume that the nominal
supply of government bonds Gt grows with nominal wealth:

dGt

Gt
= ιtdt + dPt

Pt
, (29)

where ιt = nt − rt (equation (10)) is the inflation rate. In practice, the supply
of liquid assets such as retail bank deposits (which we subsume in Gt) ac-
tually tends to shrink in response to a nominal rate increase, as noted in
Section III.B. This contraction reinforces the central bank’s actions, decreasing
the liquidity supply and hence increasing liquidity premia in response to a
nominal rate increase. We abstract from this particular mechanism and fix the
simple specification in (29) to illustrate the mechanics of open market opera-
tions.

Substituting (29) into (28), open market operations must follow

dMt

Mt
= (nt − rt)dt + dPt

Pt
+ 1
αt

[
d�t

�t
+

(
dPt

Pt

)(
d�t

�t

)]
≡ μM,tdt + σM,tdBt. (30)

That is, reserves must grow with nominal wealth while absorbing fluctuations
in the demand for liquidity (the term in brackets). To obtain the dynamics of
open market operations, we must also take a stance on αt, the contribution of
reserves to total liquidity held by banks (Proposition 3). We look at a single
point in time, setting α = 0.14 based on pre-crisis data from the U.S. Flow of
Funds.26

The bottom two panels of Figure 4 show the drift μM and shock sensitivity
σM of open market operations under the two nominal rate policies nl = 0% and
nh = 5%. Note from Figure 3 that the economy spends the vast majority of its
time near moderate levels of ω, where both quantities are relatively flat. At
the extremes of ω, one type of agent starts to disappear and hence liquidity
demand is small and sensitive to ω. Reserves are then very small and their
growth rate μM is large.

The growth rate of reserves μM is higher under the high-rate policy. To
achieve a high nominal rate, the central bank must make liquid assets costly
to hold. It does so by issuing reserves at a high rate, which causes them to
depreciate. In contrast, under the low-rate policy, μM is low and sometimes

26 We calculate this number as follows. Looking at commercial banks in Table L.110, from 2004
to 2007 reserves (vault cash plus depository institution reserves) average $69 billion, while other
liquid assets average $1,621 billion (see the discussion in Section IV.A). Applying the liquidity
services parameter from Table I implies α = 0.14. From 2008 to 2013, this number rises to 0.62 as
banks have accumulated large excess reserves. We work with the pre-crisis number.
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turns negative. In this case the central bank makes liquidity less costly by re-
purchasing reserves over time, causing them to appreciate. When the nominal
rate is zero, liquidity is costless and the central bank is following the Friedman
(1969) rule.

The shock sensitivity of open market operations σM is near zero under the
high-rate policy nh because aggregate liquidity is almost constant, as seen in
the top panels of Figure 4. Under this policy, banks take little leverage and
hence their net worth and demand for liquidity are stable.

In contrast, under the low-rate policy nl, the sensitivity σM is positive at low
levels of ω and negative at high levels of ω. The explanation lies in the shape
of aggregate liquidity in the top left panel of Figure 4. When ω is low, a posi-
tive endowment shock increases aggregate leverage. To keep the nominal rate
stable, the central bank must accommodate the additional demand for liquid-
ity. When ω is higher, positive shocks reduce aggregate leverage, requiring the
central bank to “mop up” the excess liquidity.

E. Dynamic Policy Applications

We now analyze two applications in which the dynamic aspect of monetary
policy plays a key role. The first shows how the central bank can stimulate
asset prices through forward guidance even when the nominal rate is already
at zero. In the second application we implement a Greenspan put policy in
which the central bank stabilizes asset prices by cutting rates in response to a
sequence of bad shocks.

E.1. Forward Guidance and the Zero Lower Bound

A zero lower bound arises endogenously in the model. With the nominal
rate at zero, the liquidity premium is also zero and banks’ demand for leverage
becomes satiated. Attempting to push the nominal rate below zero would create
an arbitrage opportunity in which banks can raise deposits to invest in risk-free
liquid assets. Nevertheless, the central bank can still influence asset prices by
changing the course of future nominal rates (i.e., through forward guidance).

Figure 5 illustrates how forward guidance works. The left panel plots two
nominal rate policies: a benchmark policy n0 and a forward guidance policy
nfg. Consider a situation in which bank capital has fallen to a low level as in a
financial crisis, and as a result the central bank has lowered the nominal rate
to zero. Under the benchmark policy n0 (dashed black line), investors anticipate
that the central bank will increase the nominal rate as soon as bank capital
has recovered to a value of ω = 0.25. Under the forward guidance policy nfg
(solid red line), the central bank commits to delaying the rate increase until
ω = 0.3. Hence, under forward guidance, rates are expected to remain low for
a longer period.

The right panel of Figure 5 plots the ratio of the prices of the risky asset
under the two policies, Pfg/P0. Consider the region ω < 0.25, in which nominal
rates have hit the zero lower bound under both policies. The plot shows that
the central bank is nevertheless able to induce an increase in asset prices by
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Figure 5. Forward guidance and asset prices. The figure plots the impact of forward guidance
on asset prices. The left panel plots the two nominal rate policies n0 (dashed black line) and nfg
(solid red line). The right panel plots the ratio of the price of the risky asset for nfg relative to n0,
Pfg/P0. (Color figure can be viewed at wileyonlinelibrary.com)

guiding down expectations of future rates under policy nfg. Forward guidance
has a substantial impact on asset prices. For example, for ω = 0.25 the price of
the endowment claim is around 4% higher under the forward guidance policy
nfg than under the benchmark policy n0.

Guiding future nominal rates down increases prices by inducing a decrease
in future discount rates. Investors expect that assets will be worth more in the
future, and they are therefore willing to pay more for them today. This effect
is purely dynamic—it does not work by changing the cost of taking leverage
today since this cost is already zero.

The impact of forward guidance on asset prices peaks close to the point where
nominal rates are set to lift off. In this region, the timing delay under forward
guidance pushes valuations up by as much as 6%. This means that a policy
reversal would provoke a large correction, similar to the “taper tantrum” of
mid-2013 (see Sahay et al. (2014)).

Finally, prices remain higher under forward guidance even at values of
ω > 0.3, where rates under the two policies are the same. This happens be-
cause investors take into account the positive impact of forward guidance on
valuations when bank capital is low. This result illustrates the two-sided na-
ture of forward guidance: the same commitment that allows the central bank
to cushion downturns causes it to amplify booms.

E.2. The Greenspan Put

As our second application of a dynamic policy, we implement a Greenspan
put.27 We interpret a Greenspan put as a policy that reduces nominal interest

27 The term dates to the late 1990s when critics faulted Federal Reserve chairman Alan
Greenspan for “encouraging excessive risk taking by creating what came to be called ‘the Greenspan
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Figure 6. “Greenspan put” policy and asset prices. The figure plots the impact of a
Greenspan put policy on prices, risk premia, and volatility. The top left panel plots the two
nominal rate policies n0 (dashed black line) and ngp (solid red line). The top right panel plots
the price-dividend ratio P/Y = 1/F. The bottom left panel plots the risk premium μ− r, and the
bottom right panel plots return volatility σ . (Color figure can be viewed at wileyonlinelibrary.com)

rates in the event of a large-enough sequence of negative shocks. We capture
this policy with the nominal rate rule

ngp(ωt) = min
{

0.05,
0.05
0.3

ωt

}
(31)

and compare it to the constant-rate benchmark n0(ωt) = 0.04. The top left panel
of Figure 6 plots these two policy rules. Under ngp, the nominal rate rises from

put’, that is, the belief that the Fed would, if necessary, support the economy and therefore the
stock market” (Blinder and Reis (2005)).
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0% at ω = 0 at a constant slope until it reaches 5% at ω = 0.3, where it levels
off. This implies that a sequence of negative shocks that pushes banks’ net
worth share ω below 0.3 triggers progressive rate cuts. We set the level of
the constant benchmark n0 so that the two policies have similar unconditional
averages (integrated against the stationary distribution of ω).

The top right panel of Figure 6 compares the risky asset’s price-dividend
ratio under the two policies. Compared to the constant benchmark, under the
Greenspan put policy valuations are higher when ω is low and lower when ω is
high. This pattern mirrors that of the nominal rate. When bank capital is high,
the nominal rate is higher under the Greenspan put policy, so valuations are
lower. As ω approaches the “strike” of the put near 0.3 and rate cuts become
imminent, valuations under the two policies converge. As ω falls below 0.3,
valuations under ngp flatten out and even mildly increase, whereas under n0
they fall steadily.

This illustrates how the central bank supports asset prices under the
Greenspan put policy by cutting rates and inducing greater bank leverage.
However, should ω continue to fall, there is little room for increasing leverage
further. High valuations can no longer be supported, and prices start to fall
steeply. By the time ω nears zero, prices are about the same under the two poli-
cies. Thus, the Greenspan put policy stabilizes prices in a moderate downturn
but cannot forestall a severe price decline in a highly adverse scenario.

The bottom left panel of Figure 6 plots the corresponding risk premia. When
bank capital is high, the higher nominal rates of the Greenspan put policy result
in a higher risk premium. As ω declines toward 0.3, the stabilization effect of
the policy results in lower risk premia. Once ω falls below 0.3, the risk premium
drops precipitously as a result of the aggressive rate cutting. However, when ω
nears zero, prices are set to fall even more steeply than under the benchmark
policy, so the risk premium under the Greenspan put eventually exceeds that
under the benchmark policy.

The bottom right panel of Figure 6 plots the corresponding return volatil-
ity. The pattern here is striking. Under the Greenspan put policy ngp, volatil-
ity is lower when ω is high. This is due to the higher nominal rate in this
region, which reduces risk-taking and stabilizes effective risk aversion. As
ω declines toward 0.3, volatility dips further as the prospect of intervention
keeps prices from falling. Past 0.3, the put goes “into the money” and the
rate cutting kicks in, causing volatility to fall even more so that it briefly
dips below fundamental volatility. The Greenspan put is thus able to reduce
volatility in moderate downturns. However, if ω declines even further, the
temporary support runs out, and volatility spikes sharply due to the high
level of leverage built up under the Greenspan put policy. Thus, although the
model predicts that low nominal rates increase volatility in the long run, the
short-run relationship depends on how the policy rule responds to economic
shocks.

The results in Figure 6 convey the basic trade-off that underlies the
Greenspan put. On the one hand, the policy achieves short-run stability
by boosting leverage in moderate downturns. However, that same leverage
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build-up leads to instability if the downturn proves severe. Moreover, greater
leverage raises the likelihood that bank capital will fall to the low levels as-
sociated with a severe downturn. These results formalize the concern that the
Greenspan put has short-term benefits but long-term costs (see Blinder and
Reis (2005)).

V. Nominal Rate Shocks and the Real Economy

In our baseline model the nominal rate follows a known policy rule that is
a function of the state variable ωt. As there are no independent nominal rate
shocks, we have so far analyzed the impact of monetary policy by compar-
ing across equilibria with different policy rules. In this section, we introduce
shocks to the nominal rate that are independent of ωt, which allows us to study
propagation within a single equilibrium.

When a nominal rate shock occurs, the central bank changes the nominal
rate independently of the endowment shock. Let n0(ωt) be the benchmark policy
rule, which can be interpreted as the nominal rate that would prevail absent
independent rate shocks. To introduce these shocks, let the actual nominal rate
nt follow the process

dnt = −κn[nt − n0(ωt)]dt + σn

√
(nt − n) (n − nt) dBn

t , (32)

where dBn
t is independent of the other shocks in the economy. Under this

process, the nominal rate reverts toward the benchmark n0(ωt) at the rate
κn. The diffusive loading ensures that nt is bounded below by n and above
by n, which keeps it from straying too far from the benchmark rule. Given
this structure, the nominal rate nt becomes an additional state variable in the
model.

In addition to asset prices and risk premia, we are also interested in the
effects of monetary policy on economic activity. To examine these effects, we
further extend the model by adopting a production framework. This allows us
to look at the propagation of nominal rate changes to investment and output.

In introducing production, we follow Brunnermeier and Sannikov (2014a)
and replace the endowment process (1) with the capital accumulation equation

dkt

kt
= [φ(it) − δ]dt + σkdBk

t , (33)

where φ is a concave function that captures investment adjustment costs, it
is the investment rate, and δ is the depreciation rate. Output from capital is
produced at a rate

Yt = akt, (34)

where a is productivity. As in the baseline model, the economy is homogeneous
in Yt, or equivalently kt. Agents of both types trade capital, which represents



A Model of Monetary Policy and Risk Premia 35

the economy’s risky asset. Its total (real) value is Pt = qtkt, where qt = q(ωt,nt)
is the price of a unit of capital, with endogenous dynamics

dqt

qt
= μq,tdt + σ ′

q,t

[
dBk

t
dBn

t

]
≡ μq,tdt + σ ′

q,tdBt. (35)

The return to holding capital is given by

dRt =
(

a − it

qt
+ φ(it) − δ + μq,t + σ ′

q,t

[
σk
0

])
dt +

(
σq,t +

[
σk
0

])′ [
dBk

t
dBn

t

]
(36)

≡ μtdt + σ ′
t dBt. (37)

The expected return on capital μt is given by cash flows generated per dollar of
capital net of investment expenditures (a − it)/qt (in the baseline model this is
the dividend yield Ft), the accumulation of new capital φ(it), the depreciation
of existing capital −δ, the expected price appreciation of capital μq,t, and the
covariance between the price of capital and cash flows. Return volatility σt is
the sum of price volatility σq,t and cash flow volatility σk.

The optimization problem of each agent now includes investment choice. This
choice boils down to maximizing the expected return in (36), which gives

qtφ
′(it) = 1. (38)

This is Tobin’s (1969)) q-theory of investment. It states that investment and eco-
nomic growth depend on the price of capital. Because monetary policy impacts
asset prices, it affects investment and economic growth.

As discussed in Section IV, in addition to raising risk premia higher, nominal
rates in our baseline model also lower real rates due to precautionary savings.
In conventional models nominal and real rates move together because output is
not fixed in the short run: it falls temporarily following a nominal rate increase
and then recovers, causing the real rate to rise.

To aid the fit of the model, we follow the literature and introduce such a
transitory component of output—an output gap—which we denote by o(ωt,nt)kt.
We do so in a narrowly targeted way. We construct the output gap so that the
real rate is simply unaffected (rather than increased) by nominal rate shocks,
that is, we require that ∂rt(ωt,nt)/∂nt = 0 in equilibrium, and set the output
gap to zero at the benchmark nominal rate (i.e., o(ωt,n0(ωt)) = 0). This implies
that the output gap turns negative when the nominal rate is shocked up and
positive when it is shocked down, and that it subsequently recovers.28

Total output is then output from capital (34) plus the output gap, and hence
the market-clearing condition for the consumption good (17) becomes

ωtcA
t + (1 − ωt) cB

t = a − it

qt
+ ot

qt
. (39)

28 A natural interpretation is that the output gap comes from the labor market, capturing the
deviation of labor income from its full-employment level.
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Table II
Parameter Values for the Extended Model

This table lists the parameter values used to illustrate the model in Section V and generate Figures
7 to 9. The investment adjustment cost function is parameterized as φ(it) = 1/ϕ(

√
1 + 2ϕit − 1). The

endowment process parameters μY and σY are replaced by the technology parameters a, δ, ϕ, and
σk. All remaining parameters are as in Table I.

Description Parameter Value

Productivity of capital a 0.03
Capital depreciation rate δ 0.0075
Adjustment cost parameter ϕ 1
Volatility of cash flows σk 0.02
Nominal rate lower bound n 0.00
Nominal rate upper bound n 0.05
Benchmark policy rule n0(ωt) 0.01
Mean-reversion κn 0.2
Volatility parameter σn 0.5

As with seigniorage income, we assume for simplicity that the output gap is
borne by households in proportion to their wealth. We emphasize that as in
the baseline model, monetary policy affects asset prices entirely through risk
premia as the output gap has no impact on the cash flows of the risky asset
(capital).

The rest of the model is unchanged. Appendix B presents the solution of the
extended model, which largely follows that of the baseline model.

A. Extended Model Parameter Values

To facilitate comparison with the baseline model results, we keep all common
parameters at their levels in Table I. The values of the new parameters are in
Table II. As before, we set the volatility of cash flows to 2% with σk = 0.02. We
set productivity to a = 0.03 and depreciation to δ = 0.0075. We specify the ad-
justment cost function as φ(it) = 1/ϕ

√
1 + 2ϕi − 1 and use ϕ = 1, which implies

modest quadratic adjustment costs.
Turning to the parameters of the nominal rate process (32), we set n = 0 and

n = 0.05, which bounds the nominal rate between the levels we considered for
the results of the baseline model. For simplicity, we set a constant benchmark
rule with n0 = 0.01. We set κn = 0.2, which implies that the annual persistence
of the nominal rate is 0.8.29 Finally, we set the volatility parameter to σn = 0.5,
which implies that the annualized standard deviation of nominal rate changes
at the benchmark is 100 basis points (bps).

29 The annual AC(1) coefficient of the Fed funds rate from 1955 to 2010 (1987 to 2010) is 0.79
(0.78). This number is also very similar to the persistense of changes in investor expectations about
nominal rates based on data from the Blue Chip survey (Nakamura and Steinsson (2017)).
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B. Nominal Rate Shocks and Financial Markets

We begin the analysis by looking at the effects of nominal rate shocks on
risk-taking and risk premia. We do so by tracing out the impulse responses
of demand for the risky asset, risk premia, and Sharpe ratios to a one-time
100 bps shock to nt from its benchmark value when banks’ net worth ωt is at
its stochastic steady state.

Figure 7 plots these impulse responses. The top left plot shows the path of the
nominal rate, which rises from 100 bps to 200 bps and then declines over time.
The plot to the right shows the response of banks’ net worth share ω, which
falls by 22 bps. It does so because the increase in the nominal rate causes the
value of the risky asset to fall. As banks are levered, their wealth falls faster
than that of depositors, and hence their share of total wealth declines.

Since risk premia in the model depend strongly on banks’ share of wealth,
this drop produces a second round of effects: lower bank net worth reduces
demand for leverage, causing risk premia to rise further and asset prices to
fall further. The literature calls this amplification mechanism a balance sheet
channel or financial accelerator (Bernanke, Gertler, and Gilchrist (1999)). Thus,
our extended model features both the direct effect present in the baseline model
and its amplification via bank balance sheets.

The impulse response of banks’ net worth in Figure 7 highlights a novel
feature of the interaction between changes in the nominal rate and the bank
balance sheet channel. At a high nominal rate, taking leverage becomes more
expensive and hence banks’ net worth grows more slowly. As a result, the gap
between banks’ net worth and its steady state value is much more persistent
than the nominal rate itself. This dynamic effect further adds to the strength
of the balance sheet channel: the increased nominal rate reduces banks’ net
worth not only today (as would any wealth shock), but also far into the future.

The middle panels of Figure 7 show the impact of the nominal rate on the
risky asset demand of banks (left panel) and depositors (right panel). As in the
baseline model, the higher nominal rate induces a decrease in banks’ leverage,
which falls by 0.21, and a corresponding increase in depositors’ risky asset
portfolio weight, which rises by 0.11. These numbers correspond a contraction
of about 8.5% in bank risk-taking.

The bottom panels of Figure 7 show that as in the baseline model, this
reduction in aggregate risk-bearing capacity results in a higher risk premium
and price of risk. The 100 bps nominal rate shock causes the risk premium
to rise from 27 bps to 36 bps. The Sharpe ratio rises from 0.13 to 0.17, which
corresponds to effective risk aversion rising roughly from 6.25 to 8.50. As we
show next, the rise in risk premia leads to a fall in asset prices, investment,
and economic growth.

C. Nominal Rate Shocks and Economic Activity

Figure 8 shows the impulse responses of various macroeconomic variables
to the nominal rate shock. The top right panel plots the response of the price
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Figure 7. Nominal rate shocks and financial markets. The figure plots impulse response
functions following a 100 bps shock to the nominal rate from the benchmark level n0 = 1% and
the steady state ω0 = 0.33. The horizontal axis denotes time. Solid red lines are conditional on
the shock, dashed black lines are absent the shock. (Color figure can be viewed at wileyonlineli-
brary.com)

of capital q. As the nominal rate increases by 100 bps, the rise in risk premia
seen in Figure 7 causes the value of the aggregate capital stock to drop by
42 bps. This result is consistent with the finding in Bernanke and Kuttner
(2005) that a positive nominal rate shock is associated with a substantial nega-
tive stock market return contemporaneously and positive future excess returns
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Figure 8. Nominal rate shocks and economic activity. The figure plots impulse response
functions following a 100 bps shock to the nominal rate from the benchmark level n0 = 1% and
the steady state ω0 = 0.33. The horizontal axis denotes time. Solid red lines are conditional on
the shock, dashed black lines are absent the shock. (Color figure can be viewed at wileyonlineli-
brary.com)

several years out. Indeed, the magnitudes are similar after adjusting for the
stock market’s seven to eight times higher volatility relative to the aggregate
capital stock we price. The drop reverts slowly over time, although q remains
persistently below its initial value due to the slow growth of banks’ net worth
share highlighted in Figure 7. The substantial response of the capital price to
the nominal rate shock reflects the sizable increase in effective risk aversion
that we discussed above.
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The drop in the capital price results in a drop in investment as dictated by
q-theory (see (38)). As the middle-left panel of Figure 8 shows, the investment
rate falls by 42 bps, dipping below the depreciation rate δ, so that for one period
the economy in effect disinvests. Subsequently, investment starts to rebound
but remains persistently below its initial value.

The reduction in the investment rate decreases the rate of capital accumula-
tion. This results in a lower rate of output growth as seen in the middle-right
panel of Figure 8. The plot shows log Y , output produced by capital, which does
not include the output gap. The dashed line shows the cumulative growth of
log Y in the steady state, while the solid red line shows its response to the
100 bps nominal rate shock. The plot shows that output from capital grows
more slowly following the shock. The gap relative to the steady state continues
to widen over time and grows into a roughly 200 bps permanent loss of output.

The bottom two panels of Figure 8 show the output gap o and the cumulative
growth of consumption log C. The output gap is negative following the nominal
rate shock as expected and then reverts back as the shock itself subsides. This
reduction comes in addition to the fall in output from capital Y . However, while
the loss in output from capital grows over time, the output gap is transitory.
Despite the loss of output, consumption actually increases initially. This occurs
because of the drop in investment induced by the increased risk premium.
Indeed, the initial drop in investment is larger than the initial drop in output,
implying increased consumption.30 Consumption then grows more slowly as
investment begins to normalize while capital accumulation remains low. In
the long run, consumption is lower than in the steady state, reflecting the
permanently lower level of output.

Overall, Figures 7 and 8 show that by increasing the cost of holding liquidity,
a positive shock to the nominal rate causes risk premia to rise and asset prices
to fall, which in turn leads to a downturn in investment and economic growth.

D. The Term Structure of Nominal Rates

To better understand our model, it is interesting to look at the term structure
of nominal interest rates. This analysis is informative about interest rates and
risk premia at various horizons and their response to nominal rate shocks.

Let pτt = pτ (ωt,nt) be the nominal price and yτt = −(1/τ ) log pτt be the yield at
time t of a bond that pays one dollar at the maturity date t + τ (equivalently, the
bond pays πt+τ units of consumption). For simplicity, we assume that the bond
does not provide any special liquidity services and therefore price its cash flow
using the discount factor implied by the Fed funds rate. Doing so avoids having
to make assumptions about how bonds’ liquidity services vary with maturity.
The bond’s yield is therefore equivalent to the fixed rate on an equal-maturity
interest rate swap whose floating rate is the Fed funds rate.

30 The initial rise in consumption is arguably stark. Using adjustment costs over the change in
the investment rate rather than its level, as used in the literature (e.g., Christiano, Motto, and
Rostagno (2014)), would smooth the adjustment in investment and hence also in consumption.
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As markets in the model are incomplete due to imperfect risk sharing, pτt is
not pinned down by the prices of the existing securities. We therefore price
the nominal bond by calculating the amount that depositors, who are un-
constrained, are willing to pay for it at the margin. Note that the nominal
bond price is a function of three state variables. To address this added level
of complexity, we construct a routine for pricing a sequence of nominal bonds
recursively, starting from the terminal condition and working backwards. The
details are in Appendix B.

Figure 9 depicts the model’s nominal term structure in steady state and
in response to a 100 bps nominal rate shock. We continue to use the same
parameters and initial conditions as in Figures 7 and 8. The top left panel of
Figure 9 shows the expected path of the nominal rate over time and is the same
as the impulse response shown in Figures 7 and 8.

The top right panel plots the yields yτ against their maturity τ (i.e., the yield
curve). The dashed line plots the yield curve at the steady state. The steady-
state yield curve has a pronounced upward slope. The short end is pinned down
at the benchmark nominal rate of 100 bps, whereas at the long end yields exceed
150 bps. As short-rate expectations are flat in steady state, the difference in
yields is due solely to a term premium. The plot therefore shows that our model
generates a substantial term premium.

Our model generates this term premium because higher nominal rates imply
a higher cost of liquidity and therefore decreased risk-sharing and higher risk
premia. Thus, these are high marginal utility states, and because nominal
bond price fall in these states, agents view nominal bonds as risky. Agents
therefore demand a risk premium to hold long-term nominal bonds and this
generates a substantial term premium. The presence of a liquidity premium
therefore allows our model to capture the upward-sloping shape of the yield
curve.

The bottom left plot of Figure 9 shows the forward rates implied by the
nominal yield curve. The dashed line shows the steady-state forward curve. As
the yield curve is upward-sloping, the forward rates slope upward even more
steeply, exceeding 170 bps at the long end. The difference between these forward
rates and the expected future short rate gives the term structure of forward
premia, the risk premia at each horizon, which is plotted in the lower right
panel of Figure 9. Because the expected short rate is constant in steady state,
this is just the forward curve shifted down by the benchmark short rate. The
figure confirms that term premia in the model are substantial and increasing
with horizon.

The solid red lines in each panel of Figure 9 show responses to the nominal
rate shock. On the top right, the yield curve becomes much flatter, sloping up
slightly at the short end and down at the long end. The forward curve displays
the same pattern. Both curves are flat due to the combination of a decreasing
expected short rate and an increasing term premium.

The forward premium curve in the lower right panel isolates the term pre-
mium component by subtracting the expected short rate from the forward
rates. Following the nominal rate shock, forward premia become even more
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Figure 9. The term structure of nominal interest rates. The figure plots the expected path
of the nominal rate and the term structure of nominal yields, forward rates, and forward premia
before and after a 100-bps shock to the nominal rate from the benchmark level n0 = 1% and the
stochastic steady state ω0 = 0.33. Nominal bonds are priced at the margin by B agents who are
unconstrained. The horizontal axis denotes time for the expected path of the nominal rate and
maturity for the term structure plots. Solid red lines condition on the policy shock, dashed black
lines do not. (Color figure can be viewed at wileyonlinelibrary.com)

steeply increasing with horizon. The rise in forward premia is greatest at
medium horizons and roughly 10 bps at the long end. This substantial in-
crease in long-horizon forward premia in response to a nominal rate shock
is consistent with the findings of Gertler and Karadi (2015) and Hanson and
Stein (2015).
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VI. Conclusion

There is a growing consensus that monetary policy has a powerful impact on
the prices of risky assets and the stability of financial markets. Indeed, many
central bank interventions are aimed not just at the level of the interest rate
but also at the risk premium component of the cost of capital.

We develop a dynamic asset pricing framework that captures the effect of
monetary policy on risk premia. In our framework, the central bank sets the
nominal interest rate, which drives the liquidity premium in financial markets.
This affects the cost of leverage for financial institutions that hold liquid se-
curities to protect against a loss of funding. Low nominal rates lead to greater
leverage, lower risk premia, higher asset prices, and more volatility. Our anal-
ysis further shows that by influencing risk premia, monetary policy can have
a large impact on real investment and economic growth.

We examine a number of policy interventions that are conducted through the
nominal interest rate, including high versus low interest rate rules, forward
guidance, a Greenspan put, and unexpected rate changes. Our framework can
also be used to analyze unconventional policy interventions that are conducted
through means other than the nominal interest rate. For example, quantitative
easing reduces effective risk aversion by deploying the central bank’s balance
sheet to increase overall risk-taking. And, in its capacity as lender of last
resort, the central bank provides liquidity directly, which reduces banks’ need
for liquidity buffers and enables them to expand credit supply. We leave these
applications for future work.
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Appendix A: Baseline Model

Return dynamics. We begin by writing the dynamics of returns,

dR = dY/F
Y/F

+ Fdt = dY
Y

− dF
F

−
(

dY
Y

)(
dF
F

)
+

(
dF
F

)2

+ Fdt (A1)

μ = μY + F − Fω
F
ω[κ(ω − ω) + (1 − ω)(μω + σωσY )]

+
[(

Fω
F

)2

− 1
2

Fωω
F

]
ω2(1 − ω)2σ 2

ω (A2)

σ = σY − Fω
F
ω(1 − ω)σω, (A3)

where F = Y/P is the dividend yield.
Optimization Problem. Let m> 1 be the amount of redemptions that a dollar

of reserves can backstop. We will link m to m, the liquidity services multiplier
of reserves, shortly.
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Dropping agent and time subscripts, an agent’s wealth dynamics are

dW
W

=
[
r − c + wS(μ− r) + wG(rg − r) + wM

(
dπ
π

− r
)

+�
n
m

]
dt + wSσdB

− φ

1 − φ
max

{
− λ

1 + λ
wD − (wG + mwM),0

}
dN. (A4)

UsingwD = 1 − wS − wG − wM, each dollar of government bonds reduces excess
redemptions by 1 − λ/(1 + λ) dollars. Reserves, on the other hand, reduce excess
redemptions by m− λ/(1 + λ). Therefore, the liquidity services multiplier on
reserves is

m =
m− λ

1 + λ

1 − λ
1+λ

= m+ λ(m− 1), (A5)

which is larger than mbecause reserves require less funding per unit of liquidity
services than government bonds.

As long as the liquidity premium on bonds is 1/mtimes the liquidity premium
on reserves, which itself is equal to the nominal rate n, reserves and money
are perfect substitutes. We can thus define the liquid asset portfolio share as
wL = wG + mwM and state the agent’s optimization problem as in (15) and (16):

0 = max
c,wS,wL≥0

f (cW ,V (W, ω))dt + E[dV (W, ω)] (A6)

dW
W

=
[
r − c + wS(μ− r) − wL

m
n + �

m
n
]

dt + wSσdB

− φ

1 − φ
max

{
λ

1 + λ
(wS + wL − 1) − wL,0

}
dN. (A7)

Conditions for Full Self-Insurance. From (20), the optimality condition for
liquidity is

V i
W W

1
m

n = ηV i
W+
∂W+

∂wL
= ηV i

W+ W
φ

1 − φ

1
1 + λ

. (A8)

The left side is the marginal cost of holding liquidity: the marginal value of
wealth times the liquidity premium. The right side is the marginal benefit: the
marginal value of wealth following a funding shock times the reduction in the
expected fire sale losses a dollar of liquidity provides. Agents fully self-insure if
benefits exceed costs. As V is concave in wealth (see Proposition 1), V i

W+ ≥ V i
W .

Thus, a sufficient condition for full insurance is

η
φ

1 − φ

λ

1 + λ
≥ λ

m
n. (A9)

Since n is a function of ω, which is bounded, there is always a high enough φ
or η to ensure that (A9) holds. Finally, from (16), fully meeting redemptions in
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the event of a funding shock requires holding liquidity in the amount given by
(22).

PROOF OF PROPOSITION 1: From (22), we can substitute wL = max{λ(wS − 1),0}
in the HJB equation (20). The nonnegativity constraint on liquidity is already
satisfied so it can be dropped. We conjecture that V i has the form in (23) and
substitute for f i from (3). Simplifying, wealth drops out and we get

0 = max
c,wS

(
1 − γ i

1 − 1/ψ

)⎡
⎣(

c

(Ji)
1

1−ψ

)1−1/ψ

− (ρ + κ)

⎤
⎦

+ (1 − γ i)
[
r − c + wS(μ− r) − γ i

2
(wSσ )2 − 1

m
max{λ(wS − 1),0}n + �

m
n
]

+
(

1 − γ i

1 − ψ

)[
Ji
ω

Ji [κ(ω − ω) + ω(1 − ω)μω] + (1 − γ i)
Ji
ω

Ji ω(1 − ω)wSσωσ

]

+ 1
2

(
1 − γ i

1 − ψ

)[(
1 − γ i

1 − ψ
− 1

)(
Ji
ω

Ji

)2

+ Ji
ωω

Ji

]
ω2(1 − ω)2σ 2

ω . (A10)

The first-order condition for consumption gives c = Ji, which can be substituted
to simplify (A10).

There are three possibilities for wS: an interior optimum with wS > 1, an
interior optimum with wS < 1, and a corner solution with wS = 1. Let

wS = 1
γ i

[
μ− r − (λ/m)n

σ 2 +
(

1 − γ

1 − ψ

)
Ji
ω

Ji ω(1 − ω)
σω

σ

]
(A11)

wS = 1
γ i

[
μ− r
σ 2 +

(
1 − γ

1 − ψ

)
Ji
ω

Ji ω(1 − ω)
σω

σ

]
. (A12)

The three possibilities are

wS =
⎧⎨
⎩
wS if wS ≤ 1
1 if wS ≤ 1 < wS
wS if 1 < wS.

(A13)

The market-clearing equation for the endowment claim (18) implies that only
one type of agent, if any, takes leverage, so the equilibrium must be in one of
the three cases,

wA
S > 1, wB

S < 1 (A14)

wA
S = 1, wB

S = 1 (A15)

wA
S < 1, wB

S > 1. (A16)
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Substituting,{
wA

S, w
B
S

}
=

⎧⎨
⎩
{
wA

S, w
B
S

}
if wB

S ≤ 1 < wA
S

{1,1} if wA
S, w

B
S ≤ 1 < wA

S, w
B
S{

wA
S, w

B
S

}
if wA

S ≤ 1 < wB
S.

(A17)

Call these three cases (i), (ii), and (iii). Under case (i),

wA
S = 1

γ A

[
μ− r − (λ/m)n

σ 2 +
(

1 − γ A

1 − ψ

)
JA
ω

JAω(1 − ω)
(σω
σ

)]
(A18)

wB
S = 1

γ B

[
μ− r
σ 2 +

(
1 − γ B

1 − ψ

)
JB
ω

JBω(1 − ω)
(σω
σ

)]
. (A19)

To get the dynamics of ω, apply Itô’s Lemma to (4) and use W A + W B = P to
obtain

dω
ω(1 − ω)

=
(

dW A

W A − dW B

W B

)
−

(
dW A

W A − dW B

W B

)(
dP
P

)
. (A20)

Substituting for the evolution of aggregate type-A and type-B wealth gives

μω =
(
wA

S − wB
S

)
(μ− r) − λ

m

(
wA

S − 1
)

n −
(

JA − JB
)

− σωσ (A21)

σω =
(
wA

S − wB
S

)
σ. (A22)

Note that by the market-clearing condition for the endowment claim (18),

σω

σ
= wA

S − wB
S = 1

1 − ω

(
wA

S − 1
)
. (A23)

From (A3), return volatility is then

σ = σY − Fω
F
ω(1 − ω)σω = σY

1 + Fω
F ω

(
wA

S − 1
) . (A24)

From the market-clearing condition for the consumption good (17), the divi-
dend yield is F = ωJA + (1 − ω)JB. Expressing wB

S in terms of wA, the market-
clearing condition for the endowment claim (18) gives

1 = ωwA
S + (1 − ω)wB

S (A25)

= ωwA
S + (1 − ω)

1
γ B
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γ AwA

S +
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σ 2
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−
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1 − ψ
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JA −
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1 − ψ

)
JB
ω

JB

]
ω
(
wA

S − 1
)}
. (A26)
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This gives a quadratic equation for wA
S in terms of exogenous quantities and

the conjectured JA and JB. The solution is the positive root. From here wB
S

follows from the market-clearing condition for the endowment claim. We need
to verify wA

S > 1. Plugging wA
S = 1 into (A26) shows that this requires

λ

m
n< (γ B − γ A)σ 2

Y . (A27)

From wA
S we can get (μ− r)/σ 2 and σω/σ . This also gives σ and hence σω, and

as a result, μ− r and μω from (A21). We can then get μ from (A2), which gives
r = μ− (μ− r). Finally, plug wA

S = wA
S and wB

S = wB
S into the HJB equations

to verify the conjectures for JA and JB. For the value of liquidity, use the
market-clearing equation for the liquid assets (19),

{
wA

L, w
B
L

}
=

{
�

ω
,0

}
. (A28)

The binding leverage constraint pins down the value of liquidity:

� = ωλ
(
wA

S − 1
)
. (A29)

Under case (ii), {wA
S, w

B
S} = {1,1} and {wA

L, w
B
L} = {0,0}. The stock market

clears and � = 0. From here, we get σω = 0 and so σ = σY . Next, use

μω = −(JA − JB) (A30)

in the dynamics of returns (A2) and (A3) to get μ and σ . Substituting into the
HJB equations and simplifying, we get

ρ + κ = 1/ψ Ji + (1 − 1/ψ)
(
μ− γ i

2
σ 2

Y

)
− 1/ψ

Ji
ω

Ji [κ(ω − ω)

+ω(1 − ω)μω]. (A31)

This case requires (λ/m)n> |γ A − γ B|σ 2
Y (there is no excess volatility because

σω = 0). The real interest rate lies inside a range between a lending rate and a
borrowing rate.

Case (iii) is analogous to case (i) with the roles reversed. It requires (λ/m)n<
(γ A − γ B)σ 2

Y , which is ruled out by γ B > γ A. This completes the proof. �

PROOF OF PROPOSITION 2: Type-A agents take leverage in case (i) in the proof of
Proposition 1. From (A27), this requires (λ/m)n< (γ B − γ A)σ 2

Y . Type-A agents’
demand wA

S is as in (A18). �

PROOF OF PROPOSITION 3: The value of�t follows from the fact that Aagents, if
anyone, use leverage and buy liquidity insurance to the point of full insurance
(see (A29)). To obtain (28), apply Itô’s Lemma to �t Pt = πtGt + (m− 1)πt Mt
(see (8)) and use the fact that inflation −dπt/πt = ιtdt = (nt − rt)dt is locally
deterministic (see (9)). �
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Appendix B: Extended Model

This appendix contains derivations for the extended model in Section V.
Adjustment Cost Function. We consider a specification for φ consistent

with quadratic investment adjustment costs (see Brunnermeier and Sannikov
(2014a)):

φ(i) = 1
ϕ

(√
1 + 2ϕi − 1

)
. (B1)

Using (38), this gives optimal investment i = 1
2ϕ (q2 − 1) and φ(i) = 1

ϕ
(q − 1).

The expected return is μ = (a + 1/(2ϕ))/q + q/(2ϕ) − 1/ϕ − δ + μq + σqσk. Sub-
stituting into (39) for i, using cA = JA and cB = JB (see below), and solving for
q (the positive root), we get

q = ϕ

(
−[ωJA + (1 − ω)JB] +

√[
ωJA + (1 − ωt)JB

]2 + 2
ϕ

(
a + o + 1

2ϕ

))
. (B2)

Denote the dynamics of ω by

dω = κ(ω − ω)dt + ω(1 − ω)[μω(ω,n)dt + σω(ω,n)′dB]. (B3)

Applying Itô’s Lemma, the dynamics of q are

μq = qω
q

[κ(ω − ω) + ω(1 − ω)μω] − qn

q
κn(n − n0) + 1

2
qωω
q
ω2(1 − ω)2σ ′

ωσω

+ qωn

q
ω(1 − ω)

√
(n − n)(n − n)σ ′

ω

[
0
σn

]
+ qnn

q
(n − n)(n − n)σ 2

n (B4)

σq = qω
q
ω(1 − ω)σω + qn

q

√
(n − n)(n − n)

[
0
σn

]
. (B5)

These can be plugged into (36) to obtain expressions for μ and σ .

PROPOSITION B.1: Under the extended model, the value function of an agent of
type i ∈ {A, B} has the form

V i(W, ω,n) =
(

W1−γ

1 − γ

)
Ji(ω,n)

1−γ
1−ψ , (B6)

where Ji(ω,n) represents agents’ optimal consumption-wealth ratio, c = Ji.
Type-A agents (banks) take leverage (wA

S > 1) if and only if

λ

m
n< (γ B − γ A)

[
σ 2

k +
(

qn

q

)2

(n − n)(n − n)σ 2
n

]

+
[(

1 − γ A

1 − ψ

)
JA

n

JA −
(

1 − γ B

1 − ψ

)
JB

n

JB

] [
qn

q
(n − n)(n − n)σ 2

n

]
. (B7)
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In this case, their holdings of the risky asset are given by

wA
S = 1

γ A

{
μ− r − (λ/m) n

σ ′σ

+
(

1 − γ A

1 − ψ

)[
JA
ω

JAω(1 − ω)
(
σ ′
ωσ

σ ′σ

)
+ JA

n

JA

√
(n − n)(n − n)

(
σ ′

σ ′σ

[
0
σn

])]}
.

(B8)

PROOF OF PROPOSITION B.1: In the extended model, the HJB equation (20)
becomes

0 = max
c,i,wS,wL≥0

f (cW ,V ) + VW W
[
r + o

q
− c + wS(μ− r) − wL

m
n + �

m
n
]

+ Vω[κ(ω − ω) + ω(1 − ω)μω] + Vnκn(n − nb) + VWωWω(1 − ω)wSσ
′
ωσ

+ VWnWwS

√
(n − n)(n − n)σ ′

[
0
σn

]
+ 1

2
VWW W2w2

Sσ
′σ

+ 1
2

Vωωω2(1 − ω)2σ ′
ωσω + Vωnω(1 − ω) +

√
(n − n)(n − n)σ ′

ω

[
0
σn

]

+ 1
2

Vnn(n − n)(n − n)σ 2
n + η(V+ − V ). (B9)

The full-insurance liquidity demand is the same as before (see (21)). When it
holds, V+ − V = 0. Plugging into the HJB equation,

0 = max
c,i,wS

f (cW ,V ) + VW W
[
r + o

q
− c + wS(μ− r) − 1

m
max[λ(wS − 1),0]n + �

m
n
]

+ Vω[κ(ω − ω) + ω(1 − ω)μω] + Vnκn(n − nb) + VWωWω(1 − ω)wSσ
′
ωσ

+ VWnWwS

√
(n − n)(n − n)σ ′

[
0
σn

]
+ 1

2
VWW W2w2

Sσ
′σ + 1

2
Vωωω2(1 − ω)2σ ′

ωσω

+ Vωnω(1 − ω)
√

(n − n)(n − n)σ ′
ω

[
0
σn

]
+ 1

2
Vnn(n − n)(n − n)σ 2

n . (B10)

As shown in (38), the optimal investment policy satisfies φ′(i)q = 1. In what
follows, we evaluate the return on capital μ at this optimal level of investment.

Conjecture that the value function has the form

V (W, ω,n) =
(

W1−γ

1 − γ

)
J(ω,n)

1−γ
1−ψ . (B11)

Then wealth drops out of the HJB equation:

0 = max
c,wS

c1−1/ψ J1/ψ − (ρ + κ) + (1 − 1/ψ)
[
r + o

q
− c + wS(μ− r) + �

m
n − γ

2
w2

Sσ
′σ

− 1
m

max[λ(wS − 1),0]n
]

− 1/ψ
[

Jω
J

[κ(ω − ω) + ω(1 − ω)μω] + Jn

J
κn(n − nb)
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+ (1 − γ )
Jω
J
ω(1 − ω)wSσ

′
ωσ + (1 − γ )

Jn

J
wS

√
(n − n)(n − n)σ ′

[
0
σn

]]

− 1/ψ
2

[(
1 − γ

1 − ψ
− 1

)(
Jω
J

)2

+ Jωω
J

]
ω2(1 − ω)2σ ′

ωσω

− 1/ψ
[(

1 − γ

1 − ψ
− 1

)(
Jω
J

)(
Jn

J

)
+ Jωn

J

]
ω(1 − ω)

√
(n − n)(n − n)σ ′

ω

[
0
σn

]

− 1/ψ
2

[(
1 − γ

1 − ψ
− 1

)(
Jn

J

)2

+ Jnn

J

]
(n − n)(n − n)σ 2

n . (B12)

The first-order condition for consumption gives c = J. Let

wS = 1
γ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μ− r − (λ/m) n

σ ′σ

+
(

1 − γ

1 − ψ

)
⎡
⎢⎢⎢⎢⎣

Jω
J
ω(1 − ω)

(
σ ′
ωσ

σ ′σ

)
+ Jn

J

√
(n − n)(n − n)

⎛
⎜⎜⎜⎜⎝
σ ′

[
0
σn

]

σ ′σ

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (B13)

wS = 1
γ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μ− r
σ ′σ

+
(

1 − γ

1 − ψ

)
⎡
⎢⎢⎢⎢⎣

Jω
J
ω(1 − ω)

(
σ ′
ωσ

σ ′σ

)
+ Jn

J

√
(n − n)(n − n)

⎛
⎜⎜⎜⎜⎝
σ ′

[
0
σn

]

σ ′σ

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (B14)

There are three possible cases:

wS =

⎧⎪⎨
⎪⎩
wS if wS ≤ 1
1 if wS ≤ 1 < wS

wS if 1 < wS.

(B15)

Market clearing implies that only one type of agent, at most, takes leverage,
so there are three possible cases in equilibrium:

wA
S > 1, wB

S < 1 (B16)

wA
S = 1, wB

S = 1 (B17)
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wA
S < 1, wB

S > 1. (B18)

Call these three cases (i), (ii), and (iii). Under case (i), wA
S = wA

S and wB
S = wB

S.
Using (A23) and (B5), we can simplify σ in (36) as follows:

σ =
[
1 − qω

q
ω
(
wA

S − 1
)]−1

([
σk

0

]
+ qn

q

√
(n − n)(n − n)

[
0
σn

])
. (B19)

From (B5) and (B19),

σ ′
ωσ

σ ′σ
= 1

1 − ω

(
wA

S − 1
)

(B20)

σ ′
[

0
σn

]

σ ′σ
=

[
1 − qω

q
ω
(
wA

S − 1
)] qn

q

√
(n − n)(n − n)σ 2

n

σ 2
k +

(
qn
q

)2
(n − n) (n − n)σ 2

n

. (B21)

Expressing wB
S in terms of wA, the market-clearing condition for the endowment

claim (18) gives

1 = ωwA
S + (1 − ω)wB

S (B22)

= ωwA
S + (1 − ω)

1
γ B

⎧⎪⎨
⎪⎩γ AwA

S +
(
λ

m
n
) [

1 − qω
q ω

(
wA

S − 1
)]2

σ 2
k +

(
qn
q

)2
(n − n)(n − n)σ 2

n

−
[(

1 − γ A

1 − ψ

)
JA
ω

JA −
(

1 − γ B

1 − ψ

)
JB
ω

JB

]
ω
(
wA

S − 1
)

−
[
1 − qω

q
ω
(
wA

S − 1
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·
[(

1 − γ A

1 − ψ

)
JA

n

JA −
(

1 − γ B

1 − ψ

)
JB

n

JB

]⎡
⎢⎣ qn

q (n − n)(n − n)σ 2
n

σ 2
k +

(
qn
q

)2
(n − n)(n − n)σ 2

n

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (B23)

This gives a quadratic equation for wA
S in terms of exogenous quantities and the

conjectured JA, JB, and o (q is given by (B2)). The solution is the positive root.
From here wB

S follows from the market-clearing condition for the endowment
claim. We need to verify wA

S > 1, which requires

λ

m
n < (γ B − γ A)

[
σ 2

k +
(

qn

q

)2

(n − n) (n − n)σ 2
n

]

+
[(

1 − γ A

1 − ψ

)
JA

n

JA −
(

1 − γ B

1 − ψ

)
JB

n

JB

] [
qn

q
(n − n) (n − n)σ 2

n

]
. (B24)

The first term on the right is once again (γ B − γ A)σ ′σ as in the baseline model,
while the second term takes into account differences in n-hedging demand that
persist in autarky.
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From wA
S, we get (μ− r)/(σ ′σ ), (σ ′

ωσ )/(σ ′σ ), and (σ ′[ 0
σn

])/(σ ′σ ). This also gives

σ and hence σω, and as a result, μ− r. Next, calculate wB
S and

μω =
(
wA

S − wB
S

)
(μ− r) − λ

m

(
wA

S − 1
)

n − (JA − JB) − σ ′
ωσ. (B25)

This can be plugged into the dynamics of returns to get μ. Finally, plug into
the two HJB equations and r = r to solve for JA, JB, and l. The liquid asset
market must clear: {

wA
L, w

B
L

}
=

{
�

ω
,0

}
. (B26)

Type-A agents’ liquidity demand pins down the liquidity supply � = ωλ(wA
S −

1).
Under case (ii), {wA

S, w
B
S} = {1,1} and {wA

L, w
B
L} = {0,0}. The stock market

clears and� = 0. From here, we get σω = 0 and so σ = σk + qn
q

√
(n − n) (n − n)σn.

Next, use μω = −(JA − JB) in the dynamics of returns to get μ and σ . Substi-
tuting into the HJB equations and simplifying, we get

ρ + κ = 1/ψ J + (1 − 1/ψ)

[
μ+ o

q
+

(
1 − γ
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)
Jn

J

√
(n − n)(n − n)σ ′
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0
σn

]
− γ

2
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−1/ψ
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J

[κ(ω − ω) + ω(1 − ω)μω] + Jn

J
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n . (B27)

This case requires

λ

m
n >

∣∣∣∣∣(γ B − γ A)

[
σ 2

k +
(

qn

q

)2

(n − n) (n − n) σ 2
n

]

+
[(

1 − γ A

1 − ψ

)
JA

n

JA −
(

1 − γ B

1 − ψ

)
JB

n

JB

] [
qn

q
(n − n) (n − n)σ 2

n

]∣∣∣∣ . (B28)

The real interest rate lies inside a range between a lending rate and a borrowing
rate.

Case (iii) is analogous to Case (i) with the roles of A and B agents reversed.
This completes the proof. �

We solve the model using Chebyshev collocation with complete polynomials
up to order N in both ω and n with N = 30.

The Term Structure of Interest Rates. Consider a zero-coupon nominal bond
with maturity τ and face value one. The bond is issued at t = 0 and pays πτ
units of consumption at t = τ , where we have normalized the initial inverse
price level to π0 = 1. Let pτt = pτ (t, ωt,nt) be the nominal shadow price of the
bond from the perspective of B agents who are unconstrained (the real shadow
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price is πt pτt ). The stochastic discount factor of Bagents is their marginal utility

of wealth VW = W−γ (JB)
1−γ
1−ψ . Then pτt solves the terminal value problem

Et

[
dpτt
pτt

− ιtdt

]
− rtdt = −Et

[(
−γ dW

W
+ γ − 1
ψ − 1

dJB
t

JB
t

)(
dpτt
pτt

− ιtdt

)]
(B29)

pττ = 1. (B30)

The pricing equation can equivalently be derived by solving type-B agents’
optimization problem for the optimal portfolio weight for the nominal bond
and setting that weight to zero. Using nt = rt + ιt, applying Itô’s Lemma, and
rearranging,

nt = ∂ pτt /∂t
pτt

+ ∂ pτt /∂ω
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√
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. (B31)

The nominal yield is yτt = −(1/τ ) log pτt . We solve this equation backwards from
t = τ .
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