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Risk Management with Benchmarking

Abstract

Portfolio theory must address the fact that, in reality, portfolio managers are evaluated relative to
a benchmark, and therefore adopt risk management practices to account for the benchmark per-
formance. We capture this risk management consideration by allowing a prespecified shortfall from
a target benchmark-linked return, consistent with growing interest in such practice. In a dynamic
setting, we demonstrate how a risk averse portfolio manager optimally under- or overperforms a
target benchmark under different economic conditions, depending on his attitude towards risk and
choice of the benchmark. The analysis therefore illustrates how investors can achieve their desired
gain/loss characteristics for funds under management through an appropriate combined choice of
the benchmark and money manager. We consider a variety of extensions, and also highlight the
ability of our setting to shed some light on documented return patterns across segments of the

money management industry.

JEL Classifications: G11, G23, D81.
Keywords: Benchmarking, Investments, Shortfall Risk, Tracking Error, Value-at-Risk.



1. Introduction

Classic portfolio theory, a cornerstone of financial economics, counterfactually assumes that all
individuals invest directly in financial markets (Allen (2001)). In practice, most investments are
professionally managed. While investors’ preferences and/or managerial risk profiles drive invest-
ment decisions, investment performance is evaluated ex post. Relative performance evaluation is
widespread across many segments of the financial industry, and may arise naturally in the presence
of various market imperfections, as well as be rooted in behavioral explanations.! If it is too costly
to assess the causes of a particular performance, an evaluation relative to a visible benchmark may
be an optimally economizing compromise.? Similarly, inherent cognitive resource constraints natu-
rally lead to adopting heuristic simplifications (Hirshleifer (2001)), and evaluating performance in
relative terms may be such a simplification. Due to this scrutiny of performance, professional port-
folio managers use risk management practices that account explicitly for benchmark performance.

In this paper we study the optimal policies under risk management with benchmarking.

It is well-recognized (Jorion (2000)) that, in the presence of benchmarking, any meaningful risk
management framework should consider the investment portfolio’s deviation from a given bench-
mark return, the so-called tracking error, with a particular focus on the possibility of the portfolio
underperforming its benchmark. Such downside risk may be completely hedged (or insured against)
by specifying a minimum required return via portfolio insurance (Basak (1995), Grossman and Zhou
(1996)) for a riskless money market benchmark, or via minimum performance constraints (Tepla
(2001)) for a stochastic benchmark. Nevertheless, a serious shortcoming of this (strict) downside
hedging with respect to a benchmark is that it may be too costly to never allow a shortfall, and this
may entail giving up considerable, otherwise-attainable, upside potential. Moreover, the minimum
required return must be lower than that from buying-and-holding the benchmark; overperforming
a tradable benchmark as a goal is ruled out because it is infeasible (by no arbitrage). In this paper,
we consider a more flexible and affordable risk management framework, where the risk manager is
allowed to target overperforming (beating) the benchmark return by a minimum amount, or under-
performing by not more than a maximum amount. These targets are feasible since not delivering a
target return is allowed with a prespecified shortfall probability. Such a “tracking error constraint”
with a potential shortfall is intuitively appealing since risk managers, or those who evaluate their
performance, may tolerate various forms of shortfall in order to meet other goals (like beating
the stock market in some states). As a result, the use of such a downside risk measure is indeed
rapidly spreading in practice, and has also been advocated in the professional literature (RISK
(1998, 2000a, 2000b), Jorion (2000, Chapter 17)), beckoning further investigations. While in the

1Relative performance evaluation is used almost universally: see discussions in, e.g., Fung and Hsieh (1997), p. 276;
Chan, Karceski, and Lakonishok (1999), p. 956; the Economist (September 1, 2001), pp. 60-61.

2The focus on visible investment opportunities in the presence of informational costs is discussed in Merton (1987)
and in Shapiro (2002).




academic literature, shortfall-based risk management practices have been argued to have adverse
implications (Artzner, Delbaen, Eber, and Heath (1999), Basak and Shapiro (2001), Alexander and
Baptista (2003)), in this paper we will demonstrate that in conjunction with benchmarking such

practices offer a variety of attractive features.

Our primary objective is to investigate the optimal dynamic behavior of a risk manager striving
to meet a tracking error constraint, in a standard utility maximizing framework. Consistent with
the leading benchmarking practice, the risk manager benchmarks the stock market return over his
investment horizon. We adopt the familiar Black and Scholes (1973) economy for the financial in-
vestment opportunities, and assume the benchmarking risk manager is guided by constant relative
risk aversion preferences.® Our setting offers a unified approach to risk management, containing
important practices as special cases. However, many of our findings fall outside the predictions of
existing work. Throughout the analysis, we compare the optimal behavior of the benchmarker with
that of the downside hedger and the non-risk manager (the latter behavior hereafter referred to as
the “normal” policy, as that in Merton (1971) and Cox and Huang (1989)). Our focus is on the
implications of benchmarking. An explicit treatment of market imperfections or behavioral under-
pinnings leading to benchmark-based constraints is beyond the scope of this paper, and we take
the tracking error constraint as given. While it is clear that benchmarking is not necessarily always
warranted under delegated portfolio management (Admati and Pfleiderer (1997)), Basak, Pavlova,
and Shapiro (2003) provide an analysis of delegation in which benchmarking practices may be wel-
fare improving. As an example for benchmarking arising in a behavioral setting, Gémez, Priestley,
and Zapatero (2002) capture “keeping up with the Joneses”-type behavior by modeling investors
who compare their consumption to a benchmark given by peer consumption. Benchmarking could
also be argued to be in the spirit of Keynes’s (1958) “beauty contest,” in which investors are guided

not by their individual expectations, but by their expectations of peer expectations.

Risk management with benchmarking, when shortfall is allowed, emerges as rich in implications.
Absent benchmarking considerations, a risk manager’s optimal (normal) policy is driven by its
sensitivity (given by the manager’s risk tolerance) to changing economic conditions (represented by
changes in state prices). Under benchmarking, a manager may be required or simply choose to focus
on a specific benchmark out of a broad menu of possible alternatives. Here, our analysis identifies
economies characterized by the sensitivity of the benchmark relative to that of the normal policy,

and additionally relative to unity, in which the risk manager exhibits distinct patterns of economic

3Benchmarking practices captured by our analysis are somewhat related to standard risk-adjusted performance
measures, however the latter do not compare performance to benchmark returns but rather to a constant, the
expected return based on some model (e.g., the Capital Asset Pricing Model as in Jensen (1969), the Arbitrage
Pricing Theory as in Connor and Korajczyk (1986), or their non-linear analogues as in Glosten and Jagannathan
(1994)). In fact, our analysis combines standard absolute performance consideration (via the risk manager’s utility)
with relative-performance concerns (embedded as a risk management constraint), a combination relevant in many

financial situations (Chow (1995), Kritzman and Rich (1998)).



behavior in choosing his optimal horizon wealth and trading strategies. In economies in which
the stock market benchmark reacts less to changes in economic conditions than the normal policy,
the benchmark beats the normal policy in economic downturns (bad states), but underperforms
in upturns (good states). Consequently, downside hedging with respect to the stock market leads
a risk manager to maintain the normal-type policy in good states, while matching the allowed
underperformance level relative to the stock market in bad states. When shortfall is allowed, the
risk manager additionally optimally chooses in which states to fall short of the target return. Here,
he identifies the states with the highest state-contingent relative cost of matching his target versus
following the normal policy, so that the benefit from reverting to the normal policy is highest.
Indeed, when benchmark sensitivity is at or below unity shortfall occurs in bad states, whereas for
benchmark sensitivity above unity it occurs in intermediate states. In the former case, losses in bad
states are higher than for the normal policy; in the latter case as well as with downside hedging,
they are lower. The practical usefulness of our framework is underscored by the fact that losses
under benchmarking can be further reduced relative to those under downside hedging. This is due
to the fact that while the downside hedger and the benchmarker both match their target returns in
the bad states, for the downside hedger this necessarily entails underperforming the stock market,
whereas the benchmarker can target overperformance. As the latter behavior does account for risk

aversion, it may be appealing to some investors, as well as merit regulatory consideration.

In economies in which the benchmark reacts more to changes in economic conditions than the
normal policy, the benchmark beats the normal policy in good states. This leads the downside
hedger to match a minimum target return in good states, while adopting the normal policy in bad
states. This is in sharp contrast to the findings of related work on portfolio insurance and Value-at-
Risk-based risk management, in which good states are not insured. Shortfall, when allowed, occurs
in good or intermediate states. In the latter case as well as with downside hedging, the gains in
good states are higher than for the normal policy. The novelty of our analysis is to demonstrate
that, since the benchmarker can target overperformance of the stock market while the downside
hedger cannot, the benchmarker’s gains can be chosen to be even higher in good states. Finally,
when the benchmark and normal policy have equal sensitivities, the risk manager matches the target
return in all states except the shortfall ones (either good or bad). Consequently, unlike in the other
economies, the risk manager never exceeds the target return, although matching this return does
involve overperforming the stock market (and hence resulting in either lower losses in bad states or

higher gains in good states).

An important by-product of our results is in offering guidance to achieve desirable gain/loss
characteristics for professionally managed investments, while adhering to the fundamental principles
of sound portfolio choice. Furthermore, our analysis can also indicate when a particular gain/loss

profile can be obtained under higher Sharpe ratios than those of the benchmark or of the normal



policy (Section 4.1). Controlling gain/loss (as well as other) characteristics may be accomplished by
entrusting funds to a money manager with an appropriate risk appetite (inherently his, or delegated
to him), thereby choosing the desired normal policy for a given benchmark. Alternatively, for a
given managerial risk profile, one can appropriately choose a hybrid benchmark index. The latter
is facilitated by our analysis remaining valid for indices composed of a given mix of money market

and stock market returns (Section 4.3).

We uncover further properties of the benchmarking risk manager’s behavior by studying his
optimal pre-horizon wealth and dynamic investments. In economies in which the benchmarker
chooses to not fall short in bad states, there is always a region of states where as economic conditions
deteriorate, the benchmarker becomes wealthier. The resulting non-monotonicity of the pre-horizon
wealth suggests caution in attempting to infer the state of the economy by observing portfolio
wealth alone. We also show that in economies in which the risk manager falls short of his target in
intermediate states, a small shift in economic conditions may trigger considerable reaction by the
risk manager in the form of changing his dynamic investments and risk exposure, possibly shifting

between large leveraged and short positions.?

The aforementioned results offer a range of implications for performance of various types of
money managers under different economic conditions. In this regard, the usefulness of our analysis
is highlighted in its ability to rationally generate optimal investment behavior, which may shed
some light on several intriguing, observed return patterns of mutual funds and hedge funds. For
example, there is growing empirical evidence (Moskowitz (2000), Kosowski (2002)) suggesting that
equity mutual funds, on average, overperform the market in recessions but underperform in non-
recessions, and that (up until the mid 1990s) in recessions the absolute performance of funds
is better than in non-recessions. Whereas we illustrate that this behavior cannot be reconciled
by risk management practices such as Value-at-Risk, portfolio insurance, or downside hedging, it
can indeed arise in economies with benchmarking. Moreover, evidence on trend-following hedge
funds indicates a straddle-like performance across states of the world, where the funds, on average,
perform equally well in bad and good states, underperforming the market in the latter (Fung and
Hsich (2001)). Our results can also shed some light on the economic environments that may support
this hedge-fund evidence. Finally, in ongoing work, we foresee potential applications of our model

in identifying economies which can generate well-documented volatility patterns (smiles, smirks).

Closely related to our analysis of tracking error are the works of Roll (1992), Brennan (1993),
Goémez and Zapatero (2002), and Jorion (2001b), within a static mean-variance framework. Roll
(1992) studies the portfolio problem of minimizing the tracking error variance for a given expected
tracking error, referred to as the TEV criterion. Accordingly, he derives the TEV frontier in the

mean-variance tracking error space, and demonstrates that TEV efficient portfolios are not total

4The risk manager will not deviate from the above-outlined optimal policies, because deviations will be detected
and penalized ex-post by those who evaluate the risk manager’s performance (Section 2.2 elaborates on this point).
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return mean-variance efficient.’> Jorion (2001b) complements Roll’s analysis by describing TEV-
constrained portfolios by an ellipse in the total return mean-variance space. Both consider how
imposing additional constraints can move the optimal portfolio closer to the total mean-variance
frontier. Brennan (1993) and Gémez and Zapatero (2002) study the equilibrium implications
of this type of benchmarking and derive a two-beta CAPM, where a new risk factor arises due
to benchmarking. Gdmez and Zapatero also provide strong empirical support for their model.
Bajeux-Besnainou, Portrait, and Tergny (2003) extend Roll’s analysis to a dynamic continuous-
time setting, and additionally incorporate a portfolio insurance constraint and a downside hedging
constraint. Also working in a continuous-time setting, Tepld (2001) solves the utility maximization
problem under downside hedging with respect to a stochastic benchmark, which is not necessarily
the stock market. Our analysis of downside hedging complements Tepld’s in that by choosing the
benchmark as the stock market (or its hybrid) and exploiting the stock market dependence on
economic conditions, we provide new results on the behavior of a downside hedging risk manager.
Finally, Browne (1999), in a similar continuous-time setting studies a number of objective functions
involving a stochastic benchmark, including minimizing the expected time to reach the benchmark,
and maximizing the probability of beating the benchmark without underperforming it by a given

amount.

Section 2 describes the economy with benchmarking practices, and provides results for special
settings of interest. Section 3 solves the optimization problem of a risk manager who is benchmark-
ing the stock market, discusses the empirical applicability of the risk manager’s ensuing behavior,
and analyzes the resulting portfolio strategies. Section 4 discusses alternative formulations and

extensions. Section 5 concludes the paper. Proofs are in the appendix.

2. The Economic Setting and Benchmarking Practices

2.1 The Economy

We consider a continuous-time, finite-horizon, [0,7] economy. Uncertainty is represented by a
filtered probability space (0, F,{F;}, P), on which is defined a 1-dimensional Brownian motion w.
All stochastic processes are assumed adapted to {Fy;t € [0,T]}, the augmented filtration generated

by w. All stated (in)equalities involving random variables hold P-almost surely.

Financial investment opportunities are given by an instantaneously riskless money market ac-

count and a risky stock, as in the Black and Scholes (1973) economy. The money market provides

SFoster and Stutzer (2002) provide a more general approach for ranking relative fund performance based on
overperformance probability, but do not study optimal portfolio choice.



a constant interest rate r. The stock price, S, follows a geometric Brownian motion
de, = /LStdt + O'Stdwt,

where the stock instantaneous mean return, u, and standard deviation, o, are constant. Dynamic
market completeness (under no-arbitrage) implies the existence of a unique state price density
process, &, given by

d§ = —r&§dt — kEdwy

where k = (i — 1) /0o is the constant market price of risk in the economy. As is well known (e.g.,
Karatzas and Shreve (1998)), the state price density serves as the driving economic state variable in
an agent’s dynamic investment problem.® The quantity &p(w) is interpreted as the Arrow-Debreu

price per unit probability P of one unit of wealth in state w € 2 at time T'.

An agent in this economy is endowed at time zero with an initial wealth of Wy. The agent
chooses a nonnegative, horizon wealth, Wp, and an investment policy, #, where 6; denotes the

fraction of wealth invested in the stock at time ¢. The agent’s wealth process W then follows
AWy = [r + 0:(p — r)] Widt + OroWidwy .

The agent is modeled as deriving utility, «, from horizon wealth. We assume that the agent has

1—v
constant relative risk aversion (CRRA) preferences, u(Wr) = VKTTV, v > 0.

With no further restrictions or considerations (such as risk management), this normal or non-
risk managing agent, N, chooses the optimal horizon wealth to be (see, e.g., Cox and Huang (1989))
1
Wi =1yNer) = ——17= -
(yNer)
where I(-) denotes the inverse of u/(-), and y" > 0 solves E[¢71(yNér)] = Wo. As demonstrated in
the sequel, an important feature of this horizon wealth is its elasticity with respect to the economic

state variable &, which is a constant given by

oWy & 1

or WN — 7

Henceforth, we refer to the quantity 1/ as the sensitivity of the normal, optimal horizon policy to

economic conditions.

2.2 Benchmarking the Stock Market

Given the importance and prevalence of benchmarking in practice, our objective is to model an

agent who manages the relative performance, or tracking error, of his portfolio along with other

In this Black and Scholes-type setting, the focus is on systematic risk. The extension to multiple sources of
uncertainty with multiple stocks is discussed in Section 4.2, where systematic risk is not the only consideration.
However, the main insights of our Black and Scholes economy remain.



objectives. Specifically, consistent with industry-wide practices and the academic literature, we
define the tracking error of an agent’s horizon wealth relative to a benchmark X as:
RY — RX = lln% —lln& ,
T Wo T Xo
where Ry denotes the continuously compounded return over the horizon [0, 7]. The benchmark X
represents the level of a portfolio, or an index, or any economic indicator. To embed benchmarking

within a risk management framework, we assume that the risk managing agent abides by the

following “tracking error constraint:”7
P(RY —Rf >e)>1-a. (1)

The constraint (1) states that the risk manager maintains his tracking error to be above some
prespecified level ¢ with confidence 1 — . The case of € > 0 corresponds to a risk manager aiming
to overperform (beat) the return on the benchmark by at least e, and ¢ < 0 to a risk manager aiming
to not underperform the benchmark return by more than |¢|. The realizations of risk manager’s
return, RZW , below the target return, R%( + &, are those of an unacceptable shortfall, and we refer
to « as the shortfall probability. That is, the risk manager permits the performance of his portfolio

to deteriorate below the target return (RY < Rf + ¢) with probability .

An important justification of our reduced form tracking error constraint stems from the fact
that risk-managers’ performance in practice is evaluated ex post, i.e., backtested, on a repeated
basis, with penalties imposed on those who unacceptably fall short of their target return. Although
currently tracking error based risk-management strategies are formally backtested by regulators
only relative to a state-independent benchmark (e.g., money market), backtesting relative to other
benchmarks is implicitly performed by the economic environment, and ultimately by clients whose
money is being managed. Clients, for example, can view the frequency at which the risk manager
reports shortfalls over fixed consecutive intervals (weeks, months). Following common practice
(e.g., Jorion (2000, 2001a)), this frequency can be translated into an unconditional probability, «,
of a shortfall over a given interval, [0,7]. We assume that maintaining a prespecified shortfall
probability, to avoid penalties, drives the risk manager to optimally follow over (0,7] a dynamic
policy designed at the outset (t+ = 0) to finance the horizon wealth, Wp. Penalties may include
outflow of funds resulting in lost fees, costs of legal actions, or damaged professional reputation.
The potential for backtesting penalties at time T is a leading implicit friction, which we capture in
a reduced form by specifying our tracking error constraint (1) only at time 0. It is this friction that

discourages the risk manager to deviate over (0,77 from the time-0 constrained optimal policy, as

"While our definition of tracking error as a difference in returns is consistent with that adopted in the academic
literature, in some practitioners’ literature tracking error is sometimes referred to as the standard deviation of this
difference.



deviations are penalized.®

In this paper, we focus on the most common, natural choice of benchmark: the stock market
(Section 4.3 extends the analysis to hybrid benchmarks). When the risk manager is benchmarking
the performance of the stock market, then RY = RTQ = %ln g—g In this case, the constraint (1)
leads the risk manager to strive to maintain his horizon wealth above a level given by:

X7 = Woe(R’f“JrE)T = GETIZ—(?ST . (2)

This is the wealth generated by investing the initial endowment at the target return, or equivalently
the wealth generated by investing a tracking error adjusted initial wealth, Xq = e/ Wy, in the stock
market. We refer to Xt as the horizon benchmark level, and note that terminal wealth W may fall
short of the benchmark level with probability « (because comparing Wy to the benchmark level X
is equivalent to comparing RTW to the target return R% + ¢). Although R% is independent of ¢
(by definition), we incorporate ¢ into the definition of the benchmark level X7 in (2) to highlight
that the risk manager’s wealth is determined by targeting stock market performance R% adjusted
for the level of required overperformance (¢ > 0), or allowed underperformance (¢ < 0). Since in
our economic setting St is decreasing in &7, so is the benchmark level X7; as economic conditions
deteriorate at the horizon, so does the level of the benchmark. We note that the stock market level
being decreasing in the state price density is consistent with all related equilibria studied in the
literature (e.g., normal pure-exchange economy of Lucas (1978)). An important quantity identified
in the subsequent analysis is the elasticity of the horizon level of the benchmark with respect to
the economic state variable &p, which is a constant given by

Xt & _
0t Xr

o
e

We refer to the quantity o/ as the sensitivity of the benchmark to economic conditions, and

assume o/k > 0 without loss of generality (see Section 3.2).

Our reduced form tracking error constraint (1), has the convenient property that it nests other

cases of interest investigated in the literature. When a = 1, it nests the non-risk managing agent,

8To maintain our focus, we implicitly take the mechanism of backtesting penalties as given. Such a mechanism
could arise naturally to promote truthful reporting to avoid capital charges (in a bank-regulatory context) or penalties
(in the context of the money-management industry). The mechanism could be implemented over a single period when
performance is verifiable state by state, or over consecutive periods where the shortfall probability is deduced via
historical exceedence frequency, or via more efficient statistical methods (Jorion (2001a)). Alternatively, competitive
pressure could force the risk manager to follow the constrained policy. When money managers compete for client fees,
clients can inflict penalties merely by observing competitors’ performance, with no need for state verification or for
collection of historical data. One could easily envision a setting, for example, with two money managers competing
for fees. Given appropriate fee structure, and absent collusion, neither manager would deviate over (0,7] from the
optimal policy solving our problem (and satisfying our constraint at t = 0) in fear of the competitor being the one
more likely to match the target return, and consequently the one to attract client fees. Finally, it is also conceivable
that the risk manager simply precommits to execute the constrained policy in light of many possible considerations
(e.g., to avoid transactions costs in dealing with third parties that may provide custom derivative instruments to
implement the policy, to minimize computational costs, or to demonstrate trading skills).



who is not concerned with benchmarking. For the case of the benchmark being the riskless money
market account, R%( = r, the formulation reduces to Value-at-Risk based risk management (Basak
and Shapiro (2001)). When « = 0 the constraint is a “hard constraint,” nesting the case of portfolio
insurance (Basak (1995), Grossman and Zhou (1996)) for the money market benchmark, and the

case of minimum performance constraint (Tepld (2001)) for the stock market benchmark.

2.3 Benchmarking with Downside Hedging

We here consider the case of the tracking error constraint being a hard constraint with a = 0.
This is a risk management practice with complete downside hedging with respect to a benchmark.
We note that such a hard constraint, prohibiting a shortfall, is feasible only if the risk manager
gives up some of the otherwise-attainable upside potential. In particular, for a tradable benchmark,
downside hedging necessarily requires ¢ < 0 (by no arbitrage). Consequently, a shortcoming of this
approach is that the case of the risk manager being required to outperform the stock market, ¢ > 0,
is ruled out because it is infeasible. The case of matching the benchmark return, ¢ = 0, leads to

the trivial policy of investing all wealth in the benchmark.

The optimal behavior of a risk manager, H, benchmarking the stock market with downside
hedging, is reported in Proposition 1 and depicted in Figure 1. Although downside hedging has
previously been analyzed in the literature, results below are new since we are able to exploit the

dependence of the stock market benchmark on economic conditions (level of &7).

Proposition 1. The optimal horizon wealth of a risk manager, H, benchmarking the stock market
with downside hedging (o =0), and e < 0, is given by,
(a) for economies with o /K < 1/v:

Wi Iyfer) if &r <€
H =
XT 7f §S£T7

(b) for economies with o/k > 1/v:

o) Xr if &r <&
T = .
I(y"er) if £<ér,
(¢) for economies with o[k = 1/v: WH = I(yH&rp),
where in all economies y > 0 solves E[&rWH] =Wy, £ = (yH ANV Oo/m1) - and A = Wy expl(e +
(n—0%/2) — (r + K?/2)o/k)T]. When e =0, then WH = X, and when ¢ > 0, downside hedging

is not feasible.

In economies where the stock market benchmark is less sensitive to economic conditions than the

normal policy, o/ < 1/v (Proposition 1(a), Figure 1(a)), the H agent’s optimal behavior is similar



to that of a portfolio insurer. When the benchmark reacts less to changes in economic conditions
than the normal policy, the stock market benchmark performs worse in good states ({7 < &) and
better in bad states (£ < {7), as compared to the normal policy. Consequently, to meet the tracking
error constraint (1), the benchmark level X (equation (2) with ¢ < 0) is matched in bad states,
while the normal policy I(y¢r) is adopted in good states.? The implication is that (similarly to
portfolio insurance) gains are lower in good states, and losses are lower in bad states compared to

those without risk management.

wi wi'

£ &r £ &r
(a) For economies with benchmark less (b) For economies with benchmark more
sensitive than normal policy, o/k < 1/7. sensitive than normal policy, o/k > 1/7.

Figure 1: Optimal horizon wealth, W& of a risk manager, H (Proposition 1), benchmarking the

stock market with downside hedging (solid plot), and of the non-risk manager N, W4 (dotted plot).

In economies where the stock market benchmark reacts more to changes in economic conditions
than a normal policy, o/k > 1/v (Proposition 1(b), Figure 1(b)), the benchmark performs better
in good states ({7 < §) and worse in bad states ({ < &7), as compared to the normal policy.
Consequently, it is now in the good states that the benchmark level is matched (complete insurance
against downside risk), and the bad states is where the normal policy is adopted (and no insurance
is undertaken). Interestingly, this is in contrast to the findings of related work on portfolio insurance
and Value-at-Risk, where good states are not insured. The implication is that gains are higher in
good states, and losses higher in bad states compared to those without risk management.

When the stock market sensitivity equals normal sensitivity (Proposition 1(c)), the benchmark
and normal policies respond similarly to economic fluctuations, the normal policy, WQN , delivers

the stock-market return in all states, and hence WT{{ = ijy .

9For expositional convenience, the function I appears in our figures without the y&r argument, and we refer to it
as the normal, non risk managing behavior.

10



3. Optimization under Risk Management with Benchmarking

In this section, we solve the optimization problem of a risk manager, who is required to maintain
his tracking error relative to the stock market return to be above some prespecified level ¢ with a

given confidence 1 — «, over an investment horizon [0, 7.

3.1 Agent’s Optimization with Benchmarking the Stock Market

The dynamic optimization problem of the risk manager, B, the benchmarker, who is benchmarking
the stock market can be restated as the following static variational problem [using the martingale

representation approach (Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987))]:
max Elu(Wr)]
subject to  E[&rWr] < Wy , (3)
PRY —Rf>e)>1—a.

One of the analytical subtleties here stems from the fact that the tracking error constraint compli-
cates the problem not only by introducing nonconcavity into the maximization (as with benchmark-
ing the money market), but also by linking the nature of the nonconcavity to the state-dependent
characteristics of the benchmark. Proposition 2 characterizes the optimal solution.!?

Proposition 2. The optimal horizon wealth of a risk manager, B, benchmarking the stock market

s given by,

for economies with o/k < 1/v:

(a) when o/k < 1, letting € satisfy P(€ < &r) = a, £ < &, we have

I(yPer) if &r <&
WE =< Xr if £<ér<E (4)
I(yPer) if €<ér,

(b) when o/k > 1, letting €, £* satisfy P(§ < &p <€) = o, g(€) = g(£%), £ < £ < &, we have

I(yPer) if &r <&
Xr if £<&r <€
I(yBeér) if €<ér <&
Xr if & <¢&r,
0The solution is in closed form, up to the constant Lagrange multiplier 4®, and in Section 3.3, we will pro-

vide explicit numerical solutions for a variety of parameter values. A feasibility condition for a solution is
ming Elér Xrlie, ca3] < Wo, where A =R, \ [a,b], and 0 < a < b < oo are such that, P(a < &r < b) = a.

11



for economies with o /k > 1/7:

(c) when o/k > 1, letting £ satisfy P({r < §*) = «, £ < &, we have

I(yB&r) if &r <&
WE =< Xr if & <ep<¢ (6)
I(yPer) if £€<¢r,

(d) when o /i < 1, letting €, &* satisfy P(E < & < &) = a, g(8) = g(€*), T < & < &, we have

Xr if &r <€
Wh — I(yBer) if €< &p <€ (7)
T Xr if & <&r<§

I(yBer) if £<é&r,
for economies with o /k = 1/v: ife <0, WE = I(yB¢r); if e =0, WE = Xp; and if e > 0,
(e) when o/k > 1, letting £ satisfy P(&p < £F) = a, we have
WE = I(yPéer) Z:f §r <&
XT Zf f* < fT )
(f) when o /K < 1, letting € satisfy P(E < &7) = o, we have
B _ { Xr if &r<§
Tl It i E<er,

where in all economies yB > 0 solves E[érWE] = Wy, € and £ denote downward and upward

(9)

discontinuities in W.E, respectively (Figure 2), £= (yBANY/(o/5=1) " A is as in Proposition 1, and
g(&) = (y(yBg)(V_l)/'Y - (A/f“/"")l_V) J(1=~)+yP A =9/% When the tracking error constraint (1)
is not binding, then W2 = I(yB&r), yP = yV.

Proposition 2 identifies six types of economies, as depicted in Figure 2, each characterized by the
sensitivities of the normal policy and the benchmark to changes in the state of the economy. We note
that none of the six economies may be ruled out on empirical grounds (see Section 3.2). In economies
where the benchmark is less sensitive than the normal policy, o/x < 1/7, downside hedging (when
feasible) leads to matching the stock market benchmark level in bad states (Proposition 1(a)).
When shortfall is allowed, the key difference is that the B risk manager has the option to choose
in which “a-fraction” of the states to fall short of the benchmark level and revert to a normal-type
policy, I(yP&r). In making his choice, he considers the state-contingent relative cost of matching
the benchmark level vs. following the normal-type policy; he identifies the states for which the cost
of matching the benchmark over and above the normal policy is highest, so that the benefit from

reverting to the normal policy is highest in these states.!! Proposition 2 reveals that the choice

1The notion of state-contingent relative cost of the benchmark with respect to the normal policy is formalized by
the difference in their respective deflated values, &7 X1 — 7I(y®&7). As highlighted in the appendix, this difference
is largest for high {7 in economies (a) and (f), has an interior maximum in (b) and (d), and is largest for low &7
in (c) and (e).
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depends on whether the benchmark sensitivity is below or above unity. For benchmark sensitivity
below unity (economy (a)), o/k < 1, the relative cost is highest in bad states, leading the B agent
to revert to the normal policy in those states, and to cause the single downward discontinuity
at € (Figure 2(a)).'2 On the other hand, for benchmark sensitivity above unity (economy (b)),
o/k > 1, it is now the “intermediate-bad” states in which the benchmark is least affordable,
leading the B agent to revert to the normal policy in those states, causing the two discontinuities
at & and ¢* (Figure 2(b)). When the benchmark sensitivity is still above unity, but is further
increased to coincide with normal sensitivity (economy (e)), o/k = 1/ > 1, it is the good states in
which the benchmark is least affordable, provided ¢ > 0, and the B risk manager beats the stock
market return by ¢ when matching the benchmark level in good states. (When the normal policy
and benchmark have the same sensitivity, the normal policy matches the stock market return in all

states, and hence for e < 0 the tracking error constraint (1) never binds).

In economies (a), (b), and (e), where the benchmark is not more sensitive than the normal policy,
the gains of the B risk manager are lower in good states (as for the downside hedger H), compared
to those without risk management. This is because in good states a normal-type policy is adopted,
giving up in these states some gains to provide extra funds required to match the benchmark level
in other states. In economies (b) and (e), since the benchmark level is matched in bad states,
the B agent’s losses are lower (as for the H risk manager), while in economy (a), since the normal
policy is adopted in bad states, losses are higher, compared to those without risk management.
The importance of the B risk manager’s ability to match the stock market benchmark level (X
in (2)) in bad states is underscored by the fact that when he targets overperformance (¢ > 0, indeed
feasible in bad states due to shortfall in other states), the B risk manager can cut bad-state losses
even further. This unique feature of the shortfall approach in economies (b) and (e), allowing risk
managers to beat the stock market return (when ¢ > 0) in bad states, is in sharp contrast to the
downside hedging approach forcing risk managers to give up returns (via ¢ < 0) in these states,
and necessarily incur larger losses than those with the shortfall approach. Therefore, for given
market parameters (o, k), by spotting/enforcing appropriate managerial characteristics () as in
Proposition 1(b) or (e), the practice of shortfall-based risk management with benchmarking could

be of value to investors, and may also merit regulatory consideration.

12The case of a Value-at-Risk risk manager (Basak and Shapiro (2001)), where the benchmark is the money market,
is similar to the benchmarker’s behavior depicted in Figure 2(a). This special case can be understood as an example
for a benchmark with zero sensitivity. In such a case, the benchmark is inherently relatively least affordable in bad
states compared to any normal policy, because the latter is adversely affected in bad states for any (risk averse)
preferences. As argued in the literature, this case inherits some unattractive features, such as higher losses in bad
states than those without risk management. However, as seen in our analysis (Proposition 2, Figure 2), such adverse
effects are not robust to changes in the economic environment (economies (a)-(e)) for a general benchmarking practice
with benchmark sensitivity o/x. Hence, the money market benchmark case is somewhat restrictive as it is limited
to only the type of behavior in Figure 2(a).

It is also evident that the case of negative sensitivity (0/k < 0) is captured by the solution in Proposition 2(a).
The only difference is that in Figure 2(a), X7 in the intermediate region will be depicted as increasing in &7 (and
similarly, in the bad states in Figure 1(a)).
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(a) Benchmark less sensitive than normal

policy, 0/k < 1/, and also o/k < 1.

(b) Benchmark less sensitive than normal

policy, 0/k < 1/, and also o/k > 1.

&* &r

(e) Benchmark as sensitive as normal

policy, o/k = 1/7, and also o /K > 1.

& ¢ &r

(¢) Benchmark more sensitive than normal

policy, o/k > 1/, and also o/k > 1.

Wy

£¢ ¢ &r

(d) Benchmark more sensitive than normal

policy, o/k > 1/, and also o /K < 1.

Wy

(f) Benchmark as sensitive as normal

policy, 0/k =1/, and also o/k < 1.

Figure 2: Optimal horizon wealth, W, of a risk manager, B (Proposition 2), benchmarking the

stock market (solid plot), and of the non-risk manager N, W& (dotted plot). Both I and I represent

the normal-type policy, with the latter denoting this policy across the shortfall (sf) states.
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The behavior of the Brisk manager in economies (¢), (d), and (f) may be understood analogously
to that in economies (a), (b), and (e). In economies where the benchmark reacts more to changes
in economic conditions than the normal policy, o/k > 1/v, downside hedging (when feasible) leads
to matching the stock market benchmark in good states (Proposition 1(b)). The B risk manager,
who is allowed a shortfall, reverts to the normal-type policy in the best states (economy (c)) up to
a probability of «, when the benchmark sensitivity exceeds unity; these are simply the states with
the highest state-contingent relative cost. This shortfall leads to the upward discontinuity of £* in
the B agent’s optimal horizon wealth (Figure 2(c)). When benchmark sensitivity is below unity
(economy (d)), it is now the “intermediate-good” states in which the benchmark is least affordable,
leading the B agent to revert to the normal policy in those states, causing the two discontinuities
at € and &* (Figure 2(d)). When the benchmark sensitivity is further decreased to coincide with
normal sensitivity (economy (f)), the B agent then reverts to the normal policy in the relatively
costliest bad states, provided ¢ > 0 (for ¢ < 0 the tracking error constraint never binds). Note that
unlike in the other economies, in economies (e) and (f) the B agent matches the target return in all
states except those in which he falls short (good states in (¢), bad states in (f)). Hence the B agent
never exceeds the target return, although by matching this return (for which e > 0 in (e) and (f))
he overperforms the stock market, and hence either incurs lower losses in bad states (in (e¢)) or

achieves higher gains in good states (in (f)).

In economies (¢), (d), and (f), where the benchmark is at least as sensitive as the normal policy,
the B risk manager’s losses are higher in bad states compared to those without risk management
(as for the H risk manager). This is due to the fact that the B risk manager, who adopts a
normal-type policy in bad states, must reduce his wealth in those states to be able to afford
matching the benchmark level in other states. In economies (d) and (f), since the benchmark
level is matched in good states, the B risk manager’s gains are higher (as for the H risk manager),
and in economy (c) gains are lower, since the normal policy is adopted, compared to without risk
management. However, since beating the stock market return is feasible for the B risk manager,
unlike for the H risk manager, the B risk manager’s gains in good states in economies (d) and (f)
can be chosen to always be higher than those of the H risk manager. This feature of enhanced gains
under the shortfall approach is yet another important reason why such risk management technique

may be widely adopted, as opposed to other alternatives.

3.2 Empirical Applicability

In this Section, we discuss the relevance of the economies identified in Proposition 2 in light of the
empirical evidence regarding the parameters that identify each economy. We then illustrate how

the risk manager’s ensuing behavior, as described in Proposition 2, may relate to some intriguing
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stylized facts characterizing the money management industry. Note that each economy is identi-
fied by conditions involving managerial risk profile as captured by . The empirical counterpart
thereof could be identified with the preferences of risk managers or of the investors whose funds
are being managed. Hence v does not capture the preferences of a representative agent. To as-
sess the plausibility of each economy, consider a risk premium of 6%, in line with the Mchra and
Prescott (1985) estimate, with an accepted value for market volatility of 18%, which translates
into benchmark sensitivity o/k = 0.54. Then, economy (a) arises for v < 1.85, (d) for v > 1.85,
and (f) for v = 1.85. On the other hand, recent studies such as those by Pastor and Stambaugh
(2001) and Fama and French (2002) suggest a lower value for the risk premium. For a risk premium
of 3%, which is within the 2.55% — 4.32% range estimated by Fama and French (2002), and using
the above volatility value, corresponding to benchmark sensitivity o/x = 1.08, economy (b) arises
for v < 0.93, (¢) for v > 0.93, and (e) for v = 0.93. If one were to attribute greater weight to the
latter, more recent empirical work, then one could argue that the more empirically relevant sce-
narios are (b), (¢), and (e). We also note that although economies (e) and (f) appear as knife-edge
cases in the parameter space, these two economies are of interest as under both cases in the absence

of benchmarking restrictions, the manager would be fully invested in the stock market benchmark.

The usefulness of our model is further highlighted in its ability to generate optimal investment
behavior, which may shed some light on recently documented return patterns in the money manage-
ment industry. Focusing on equity mutual funds, Moskowitz (2000) and Kosowski (2002) present
evidence suggesting that in recessions the funds, on average, overperform the market, while under-
performing in non-recessions. Although such return pattern could hypothetically be attributed to
cash balances held by these funds, the evidence of Kosowski (2002) is against this, showing that
their cash holdings tend to fall significantly in recessions. In addition to this stylized fact of relative
performance, in absolute terms the intriguing feature of the data is that, excluding the boom years
of the late 1990s, funds perform better in recessions than otherwise. To see how such patterns may
arise in a rational framework, note that economies (¢) and (e) agree with the stylized fact of relative
performance when ¢ > 0 (and non-recessions identified by & < €*).1% With a sufficiently high e,
and a plausible distribution of &7 (with enough probability mass just right of £*, near the upward
discontinuity), the absolute performance feature may arise as well when the average performance

over states in the [£*, 00) region being higher than in the good states [0,£*) in (c) and (e).

We note, however, that an empirically consistent behavior could not have been generated by

other leading risk management approaches. The Value-at-Risk approach, portfolio insurance, as

13Note that the statement of the problem in (3) is naturally of a very reduced form, and is intended to parsimoniously
capture the degrees of freedom that risk managers may have in the specification of the shortfall region. We do not
necessarily narrow the discussion to tight shortfall regions (like those prevalent in the context of banking Value-at-
Risk regulation). Rather, the manager here may have the flexibility to comply with high values of « (in principle «
may be even close to 1), because those may turn out to be attractive in terms of the gain-loss profile (as described
in the previous Section).
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well as downside hedging with a more sensitive benchmark than the normal policy (Figure 1(b)), all
prescribe results for the bad states which are inconsistent with respect to absolute fund performance.
Downside hedging with a less sensitive benchmark (Figure 1(a)) cannot reconcile either the relative
or the absolute return patterns of funds. For a different segment of the money management industry,
the trend-following hedge funds, Fung and Hsieh (2001) document a straddle-like return pattern,
where the funds underperform the market in good states and overperform in bad states, while
in absolute terms their returns are similar in good and bad states. This return pattern can be
generated in our setting by an appropriate adjustment of parameters across economies, as for
example economies (¢) and (e) readily deliver such behavior relative to the market, and for an
appropriate ¢ > 0 can support the absolute performance as well. Although we emphasized the link
between our model and observed return behavior, our setting may be of potential value in shedding

some light on volatility patterns as well.

3.3 Properties of the Optimal Solution

Proposition 3 presents explicit expressions for the risk manager’s optimal wealth and portfolio
strategies before the planning horizon, and also presents new results for the special case of downside

hedging.

Proposition 3.

(i) The time-t optimal wealth of the risk manager, B, benchmarking the stock market is given by:

wp = {1{a,c,d,f} +N(d(y, ) gapy — N, ) apa,ry
FN (A ENLpedey = N @A) Leay| 200 (yPE)
t+ [Lpey = N(d(5/0, ) apy + N (d(5/0,)Laa. 1y
~N(A(1/0, € U peder + N (A0, ) Leay| Z(k/0)AG 7" (10)

where the arguments of the indicator function 1¢y refer to the economies identified in Proposition 2,

N(-) is the standard-normal cumulative distribution function, y? is as in Proposition 2, and
, Y p )

ln%—k(r—FQQ_v”/@Q)(T—t)
kv T —t

v (e
Zv)=e " (+2v>(T g , d(v,x) =

(ii) The fraction of wealth invested in stocks is:
0F = a0

where ON | the optimal fraction of wealth invested in stocks under the normal policy, and qf, the

exposure relative to the normal policy, are given by
0N = (w/o)/7,
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where ¢(+) is the standard-normal probability density function.

(iii) When ¢ < 0, o/k # 1/7, and the risk manager benchmarks the stock market with downside
hedging, H, the optimal policies are given by (10) and (11), for a = 0, so that in (a) € = oo, in
(c) € =0, and in (b) and (d) € = &*. When € = oo, /K = 1/7, (10) and (11) coincide with the

normal policy. When ¢ = 0, X, is the optimal policy, with relative risk exposure of 1/6™.

Figures 3 and 4 depict the policies given in Proposition 3.1 Figure 3 presents the results for
economies (a) and (¢) when the B risk manager’s goal is merely to limit underperformance (¢ < 0),
allowing us to simultaneously study the policies of the risk manager, H, who downside hedges. In
economy (a), where the benchmark is less sensitive than the normal policy, both the B and H risk
managers match the horizon benchmark level in intermediate states, with the former choosing to
fall short in bad states. Thus, both managers’ pre-horizon wealth behaves similarly to that of a
non-risk manager, N, in good states (with the H policy giving up some of the upside), tending to
the current value of the benchmark in intermediate states. In bad states, the H risk manager’s
pre-horizon wealth continues to track the less sensitive benchmark, whereas the B risk manager’s
wealth reverts back to resemble that of the N agent. Similarly, the risk exposure, relative to that
without risk management, for both risk managers resembles the normal policy in good states, and
as & increases, this risk exposure decreases towards 1/0Y < 1, the relative risk exposure required
to replicate the benchmark. In bad states, the H risk manager remains invested in the benchmark.

The B risk manager, however, increases his exposure back up to, then above, and finally back down

14The optimal horizon wealth (Proposition 2) can be expressed as the wealth generated by a normal policy plus an
option to exchange this wealth for the horizon benchmark level, plus a short binary option position with exercise range
corresponding to the shortfall region, and payoff given by the shortfall amount. The expression in Proposition 3(i)
can be understood as the pre-horizon value of this option package in each economy (for a given state, &), explaining
the appearance of the Black and Scholes (1973)-type terms (due to lognormality), as well as the non-monotonous
patterns (due to the binary option) in the figures.
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Economy (a): Benchmark less sensitive than Economy (c): Benchmark more sensitive than
normal policy, 0/k < 1/7, and also o/ < 1. normal policy, o/k > 1/7, and also o/k > 1.

Figure 3: The time-¢ (i) wealth and (ii) exposure to risky assets relative to the normal policy (Propo-
sition 3), for the risk manager, B, benchmarking the stock market (solid plots), the risk manager, H,
with downside hedging (dashed plots), and the non-risk manager, N (dotted plots), in economies (a)
and (c) (see Figure 4 for economies (b), (d), (e), or (f)). In both economies, a = 0.01, e = —0.025,
t=08T=1,r=005and Wo = 1. In (a), 0/k = 0.5, 1/y = 1, o = 0.2, then y® = 1.15, £ = 0.76,
£€=223.In (c),0/k =1, 1/y = 0.5, 0 = 0.5, then y? = 1.35, &* = 0.26, §=128.

to, the normal policy level as & continues to increase. In states near &, there is a fair chance that

the B risk manager will be able to match the benchmark, but only if he takes a large stock position

and the economy does not experience a downturn (é7 < €).
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The behavior of pre-horizon wealth and risk exposure in economy (c) is explained similarly, after
allowing for the fact that the B risk manager falls short of the horizon benchmark level in good
states. In the region of £*, the B risk manager reduces, rather than increases, his stock market
exposure, possibly even taking a short position, to allow him to increase his wealth and match
the benchmark if economic conditions turn out to be not very favorable ({7 > £*). A noteworthy
feature of economy (c) is that due to the upward discontinuity at £* of the horizon policy, over
a region of the state space, the pre-horizon wealth of the B risk manager increases, rather than
decreases for deteriorating economic conditions. Therefore, contrary to standard results, where
optimal wealth suffers as economic conditions deteriorate, here we see the opposite feature. Under
shortfall-based risk management, over a region of the state space risk managers (and their clients)
become wealthier as the economy worsens. A byproduct of this behavior is that the same level
of wealth may be observed under three different economic scenarios (e.g., consider the W = 2.5
level obtained for three different values of & in Figure 3 for economy (c)), suggesting caution in
attempting to deduce the state of the economy by observing portfolio wealth alone. This feature
of increasing wealth can be observed under wide range of economic primitives, as it is prevalent

around &* in economies (b), (d), and (e) as well (for brevity not depicted in the figures).

Economy (b) differs from economy (a), and economy (d) from economy (c), in that the B risk
manager falls short of the benchmark in intermediately bad or in intermediately good states, re-
spectively. At time ¢, in both (b) and (d), the chances of a shortfall are higher in the region around
£ to &*, rather than for either very high or low values of &. Therefore, as in Figure 4, around the
lower end of this region, the B risk manager takes a large stock position allowing him to meet the
benchmark if the economy does not experience a downturn (7 < €, as in economy (a)), around
the upper end, the B risk manager reduces his stock market exposure allowing him to match the
benchmark if the economy does not prosper ({7 > £*, as in economy (c)). In the worst states in

economy (b), and the best states in economy (d), the B risk manager’s risk exposure tends to 1/6%.

An interesting implication of the optimal policy in economies (b) and (d) is that one can observe
considerable shifts in portfolio composition, possibly shifting from leveraged to short positions,
and vice versa, upon relatively minor changes in economic conditions (as captured by changes
in &).1° Hence, if shortfall-based risk management is indeed explicitly or implicitly being followed
by institutional investors, our results suggest a potential explanation to the puzzling, but yet

observed phenomena, where seemingly small arrivals of news regarding fundamentals may at times

'5In our initial analysis with one risky investment opportunity, such investment behavior is obviously permissible
for hedge funds. Equity mutual fund managers are likely to face borrowing and shortsale constraints, which in this
initial analysis we ignore for simplicity. However, the main insights of our results do not rely on the presence of short
positions per se, but more generally on the manager’s desire to take on “bearish” positions. Indeed, in reality with
many available investment opportunities, in line with our extension in Section 4.2, such bearish positions may be
implemented by mutual funds through exposure to securities that are of a contrarian nature relatively to the broad
market.
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indeed carry no considerable reaction from market participants, but at other times cause significant
portfolio rebalancing. Clearly, in economies (b) and (d) (as in the other economies), the nature of

the risk management practice («a, €) as well as the actual state of the economy (&;) determines how

2.5 8

&
1 -4
Economy (b): Benchmark less sensitive than Economy (d): Benchmark more sensitive than
normal policy, o/k < 1/, and also o/k > 1. normal policy, o/k > 1/, and also o/k < 1.
@’ @
3.5
1
1 1 2 3 4 5
3 &
Economy (e): Benchmark as sensitive as Economy (f): Benchmark as sensitive as
normal policy, o/k =1/, and also o/k > 1. normal policy, o/k = 1/, and also o/k < 1.

Figure 4: The time-t exposure to risky assets relative to the normal policy, for the risk manager, B,
benchmarking the stock market (Proposition 3) for economies (b), (d), (e) and (f). In all economies
T =1, r=0.05, Wog =1, @ = 0.05, and ¢ = 0.03. The solid, dashed, and dotted plots represent
t = 0.5, ¢t =0.25 and t = 0.75, respectively. In (b), o/k = 1.36, 1/y = 1.67, 0 = 0.33, then
yP? =1.92, £ =0.03, £ =1.35,¢ =162 In (d), o/k = 0.8, 1/y = 0.40, 0 = 0.45, then y® = 6.99,
£ =0.09, & =0.32, £=2822.1In (e), o/k = 1/y = 1.25, 0 = 0.3, then yP = 1.80, & = 0.62. In (f),
o/k=1/y=05,0=0.2, then y? =2.37, € =1.69 .
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pronounced the impact of external news is. An interesting implication of the optimal policy in
economies (b) and (d) is that one can observe considerable shifts in portfolio composition, pos-
sibly shifting from leveraged to short positions, and vice versa, upon relatively minor changes in
economic conditions (as captured by changes in &). Hence, if shortfall-based risk management is
indeed explicitly or implicitly being followed by institutional investors, our results suggest a po-
tential explanation to the puzzling, but yet observed phenomena, where seemingly small arrivals
of news regarding fundamentals may at times indeed carry no considerable reaction from market
participants, but at other times cause significant portfolio rebalancing. Clearly, in economies (b)
and (d) (as in the other economies), the nature of the risk management practice («, €) as well as

the actual state of the economy (&) determines how pronounced the impact of external news is.

In economy (e), the B risk manager falls short of the horizon benchmark level in good states, and
in economy (f) in bad states. In both economies, the relative risk exposure tends to unity for states
in which the B risk manager follows the normal policy, as well as for states in which he matches
the benchmark (because the replicating portfolio is given by the normal policy when o/k = 1/7).
In economy (e), the B risk manager reduces his relative stock market exposure in the region of &*
(as in (b), (c), and (d)), and in economy (f) he increases his relative exposure in the region of &
(as in (a), (b), and (d)) to allow him match the benchmark or fall short depending on how the
economy fares. Figure 4 also displays the dependence of the relative risk exposures in economies
(b), (d), (e) and (f) on time. In all economies (including (a) and (c), not displayed), decreasing the
time-to-horizon causes the B risk manager to deviate further from the normal policy in the region
in which chances of shortfall are highest, amplifying in that region the swings in portfolio positions

in response to news.

Sensitivities to the shortfall probability, «, and the extent of over/under-performance, e, are
depicted in Figure 5 for economy (a), and are suggestive of the results across other economies. The
B risk manager deviates further from the normal policy as a decreases and as € increases, in each
case reflecting the greater influence of the tracking error constraint. The effect is most pronounced
in the region of maximum exposure around &, as around &, the risk exposure is bounded below by
1/6Y (= 0.5 for the parameters in the figure). The maximum exposure for decreasing o occurs for
higher values of &, whereas the maximum exposure for increasing ¢ occurs at about the same value,
since in the former case the shortfall region is shrinking, whereas in the latter it is fixed. Therefore,
if simultaneous large portfolio swings by numerous risk managers are considered undesirable (either
because of price stability concerns, or transaction costs considerations), it may be desirable to not
encourage all risk managers to adopt the same confidence level, but rather promote diversity in the

choice of o (unlike the current uniform choice of a = 0.01 for VaR users in the banking sector).
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(i) the effect of « (ii) the effect of e
Figure 5: The benchmarking risk manager’s, B, relative risk exposure for varying levels of (i)
a € {0.001,0.01,0.1}, and (ii) ¢ € {—0.05,0,0.05} in economy (a). The solid plots represent the
following parameter values: o/k = 0.5, 1/y =1, a =0.01, e = 0, »r = 0.05, 0 = 0.2, and Wy = L.
Then y2 =128, ¢ = 0.55, and £ = 2.23.

4. Alternative Formulations and Extensions

4.1 Performance Measures

Section 3 illustrated how imposing a tracking error constraint on the risk manager can lead to
a rich diversity of gain/loss profiles for funds under management. While these gain/loss profiles
provide the most complete characterization of investment behavior, in practice investors may want
to obtain, or only have access to, certain “summary” measures of performance. The primary
measure of performance reported by various investment information providers is total return, while
volatility (standard deviation of returns) and Sharpe ratio (risk-adjusted risk premium) are also
commonly reported (see, for example, www.fidelity.com, www.morningstar.com). Moreover, returns
are typically reported relative to a benchmark; for example Morningstar, a leading information
provider, reports the amount by which a given fund over- or underperformed its primary index (the
S&P500 for stock-oriented funds) during a calendar year. Given how widely the above measures
are reported and the fact that they are often used to compare and rank investment performance, an
important question is whether a tracking error constraint will lead a risk manager to follow policies
with higher expected returns and Sharpe ratios than would obtain without risk management or by

investing directly in the benchmark.

To address this issue, we focus initially for simplicity on economies (¢) and (f), in which the

benchmark is as sensitive as the normal policy and the non-risk manager optimally invests all funds
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under management in the benchmark. Consequently, performance measure comparisons relative
to the normal policy are equivalent to those relative to the benchmark.'® Table 1 presents the
ex-ante expected return, volatility, and Sharpe ratio of the B risk manager for varying levels of the
shortfall probability «, and the target overperformance return e, expressed as percentages of the
corresponding normal policy or benchmark values.!” The parameter values are chosen to capture
reasonably realistic combinations, and thereby provide empirically relevant assessments of the ex-

ante performance measures of the B risk manager’s strategies.

Expected Return Volatility Sharpe Ratio
a = 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%
Economy (e)
e = 0.5% 100.2 1004 100.5 96.1 964  96.8 104.7 105.3 105.0
e=1% 98.6  100.1 100.6 93.3 931 93.7 101.8 108.0 109.1
e=2% 84.6 969 999 101.0 885  88.1 43.5 100.1 113.3
Economy (f)
e=0.5% 101.4 101.3 101.1 103.1 102.7 1024 99.0 993 994
e=1% 102.5 1024 102.2 107.1  105.8 105.0 96.9 98.0 985
e=2% 103.4 104.2 104.1 119.3 1135 110.7 88.1 93.8 96.1

Table 1: The ex-ante expected return, volatility, and Sharpe ratio in economies (e) and (f), calcu-
lated for varying levels of shortfall probability, «, and target overperformance return, e, expressed
as percentages of the corresponding normal policy (and benchmark) values. The fixed parameter

values are r = 0.05, 0 = 0.25, T =1, Wy = 1, and v = 0.8 in economy (e), v = 2 in economy (f).

In economies (e) and (f), the expected return for the B risk manager is a weighted average of
the expected target return, E[R#] + ¢, and the expected shortfall return, with weights (1 — «)
and «, respectively (see Appendix). The expected shortfall return (the expected return of the
normal type policy the B risk manager reverts to in the shortfall states) is less than or equal to

the expected return of the benchmark in economies (e¢) and (f), and decreases as the shortfall

161n the other economies, the analysis is complicated somewhat by the fact that the sensitivity of the normal policy
differs from that of the benchmark. In economies (a) and (c), depending on the choice of parameter values, the
expected return of the normal policy can be greater than, less than, or equal to the expected benchmark return. In
economies (b) and (d), the expected return of the normal policy is always less than that of the benchmark. At the
same time, the Sharpe ratio of the normal policy is always less than that of the benchmark in economies (a) and (b),
and greater in economies (¢) and (d). Further details are provided in the Appendix.

17Given a realized return, RY = % In(W.E /W), where W2 for a given economy is as in Proposition 2, the expected
return, E[RY], and variance, Var[RY ], over [0, T] are calculated as outlined in the Appendix. The Sharpe ratio is
defined as (E[RY] —r)/\/Var[R¥]. The expected return, variance, and Sharpe ratio for the non-risk manager and
the benchmark are defined and computed analogously. We also note that in economy (e) relative risk aversion has
to be less than 1. We disregard values below 0.5 as these lead to negative Sharpe ratios for the stock market. In
economy (f), relative risk aversion has to lie above 1. Results in Table 1 are representative for values of risk aversion
~v € [0.5,1) in economy (e), and v > 1 in economy (f).
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probability decreases or as the overperformance level increases. Inspection of the results in Table 1
establishes that, in both economies, the effect of the higher return attained by the B risk manager
in states in which he matches the target return can outweigh the lower return in the shortfall states.
Hence, attaining a higher expected return than without risk management, or by investing directly
in the benchmark, is possible, except when the tracking error constraint is difficult to meet (a small

shortfall probability combined with a high target overperformance return).

Whereas expected returns are higher for most scenarios across the two economies, after adjusting
for risk a different pattern emerges. As illustrated in Table 1, the ex-ante Sharpe ratio of the B
risk manager exceeds that of the non-risk manager (and the benchmark) for almost all the reported
values of both the shortfall probability and the target overperformance return in economy (e),
but always lies below it in economy (f). This difference in behavior of Sharpe ratios is driven by
the difference in risk exposures of the B risk manager across the two economies. As discussed in
Section 3.3, in economy (f), the B risk manager’s risk exposure is always greater than or equal to
the normal policy level and deviates further from this level, resulting in increased volatility, as «
decreases or ¢ increases. On the other hand, in economy (e), the B risk manager’s risk exposure is
always less than or equal to the normal level. As « decreases, or as e increases, the deviation in
economy (e) of the risk exposure from the normal level initially results in lower overall volatility,
contributing to a higher Sharpe ratio. However, as a continues to decrease or ¢ to increase, the
increased deviation from the normal level results in increasingly large short positions which increase
overall volatility back up to and then above the normal level. Correspondingly, the B risk manager’s
Sharpe ratio falls below that of the non-risk manager and that of the benchmark when the tracking
error constraint becomes extremely difficult to meet. Notwithstanding, note that in economy (e),
the effect of the reduced volatility can result in a risk manager’s Sharpe ratio being higher than

that without risk management, even when the corresponding expected return is lower.

In the other economies ((a) through (d)), the normal policy differs from the benchmark, nonethe-
less similar results obtain. For example, Table 2 reports the ex-ante expected return, volatility and
Sharpe ratios for varying levels of & and € in economy (a). The upper and lower rows of the table
report these values relative to the normal policy, and the benchmark, respectively. The parameter
values are chosen so that the expected returns for the normal policy and the benchmark are the
same. However, in economy (a) the volatility of the normal policy is greater than that of the
benchmark, whereas the Sharpe ratio of the normal policy is less than that of the benchmark (be-
cause in (a), o/k < 1/7, and the non-risk manager is always leveraged; 0 = (k/0)/y > 1). As
in economies (e) and (f), the expected return for the B risk manager exceeds that of the non-risk
manager and the benchmark, for many reasonable combinations of parameter values. However,
adjusting for risk, the Sharpe ratio of the B risk manager exceeds that of the non-risk manager

for almost all values of a and ¢, but lies below the benchmark Sharpe ratio. (This can once again
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be explained by the difference in risk exposure and can be shown to be robust to the relationship
between the expected returns of the normal policy and the benchmark.) In economy (c), the op-
posite relationship obtains: the Sharpe ratio of the B risk manager exceeds that of the benchmark

for almost all values of a and ¢, but lies below the Sharpe ratio of the normal policy.

Expected Return Volatility Sharpe Ratio
a = 25% 5% 10% 2.5% 5% 10% 25% 5% 10%
Values relative to the normal policy
e=-2% 101.2  100.9 100.6 80.8 86.4  92.6 126.6  117.9 109.3
e=0% 100.2 100.2 100.2 76.7  83.7 911 130.7 120.0 110.1
e=2% 93.6 982 99.1 83.6  82.0  89.9 104.7 117.7 109.3

Values relative to the benchmark

e =-2% 101.2  100.9 100.6 1347 1439 154.3 76.0 70.7 65.6
e= 0% 100.2 100.2 100.2 1279 1394 1518 784 720  66.1
e=2% 93.6 982 99.1 139.3 136.6 149.9 62.8 70.6 656

Table 2: The ex-ante expected return, volatility, and Sharpe ratio in economy (a), calculated
for varying levels of shortfall probability, «, and target overperformance return, ¢, expressed as
percentages of the corresponding normal policy and benchmark values. The fixed parameter values
are r = 0.05, 0 = 0.25, T = 1, and Wy = 1. Note that 1/y + o/k = 2, for the expected returns of
the benchmark and the normal policy to be equal, implying 0.5 < v < 1. We use a representative
value of 7 = 0.8 in the Table.

Based on comprehensive numerical analysis, our results indicate that for a given economy an
appropriate combined choice of a and e can lead to higher expected returns than without risk
management or than that of the benchmark. In considering the risk of achieving a given return, the
Sharpe ratio of the B risk manager can exceed that of the non-risk manager in certain economies,
but lies below it in others. Moreover, when the normal policy differs from the benchmark, the
Sharpe ratio of the B risk manager can exceed either the normal policy or the benchmark, but not
both. Thus, if investors or fund managers require high risk-adjusted measures of returns, such as
the Sharpe ratio, they should ensure that, given the basis for comparison (either the normal policy
or the benchmark), the characteristics of the economy (i.e., benchmark sensitivity, and managerial
risk profile) are such that it is indeed possible for the B risk manager’s Sharpe ratio to exceed the

reference Sharpe ratio.

26



4.2 Multiple Sources of Uncertainty with Multiple Stocks

When there are multiple sources of uncertainty in the economy, our results regarding benchmarking
the stock market remain the same provided stock market fluctuations are driven be the “aggre-
gate” / “systematic” uncertainty, as captured by the state price density process . Although bench-
marking the stock market is the most common practice, if one is interested in benchmarking some
sector of the market, that sector will in general not be driven solely by the “systematic” uncertainty,
but will also be affected by “specific” / “idiosyncratic” uncertainty. Notwithstanding, our insights

are still applicable.

Consider, for example, an economy where uncertainty is generated by two Brownian mo-
tions (w1, ws), and where financial investment opportunities are given by the money market account,
and two risky stocks (S, @), each with a price following a geometric Brownian motion. Further as-
sume that the risk manager has logarithmic preferences (v = 1), and benchmarks the performance
of the first stock (R = R‘;), with allowed shortfall probability «. Without loss of generality,
normalize Wy = Sy, and suppose that an exactly matched performance is desired (¢ = 0) so
that X7 = Sp. In this case, one can show that the optimal policy of a risk manager benchmarking

the stock S is given by:

I(yPer) =1/(yPer) if & <1/(y"Sr) (I
WE =< Sy if 1/(yBSr) <&r<c/Sr (1)
I(yPer) =1/(yP¢r) if ¢/Sr <&p . (I1I)

where ¢ satisfies P(¢0S7 > ¢) = «, and y® is determined by the budget constraint. Although the
primitive sources of uncertainty are the two Brownian motions, this two-dimensional state space
can be equivalently represented in terms of St and &pr. The optimal policy, WTB , exhibits three
distinct patterns of behavior over three regions of the (S, {r) state space, where region (III) is the
shortfall region (in which Wf? < St). However, it is the correlation between St and &7 that will

determine the location of each region within the (Sz,&r) plane.

When the benchmark, S7, represents a dominant sector within the economy, it is driven mainly
by &r. Then the risk manager’s problem becomes effectively one-dimensional, and the solution
resembles one of the three-regions policies in Proposition 2(a)(c) (depicted in Figure 2(a)(c)),
depending on the underlying parameters (7 = 1 means that we are either in economies (a) or (c)).
As the correlation between S and the & weakens, S can take many values upon a given realization
of &p. Still, whether the optimal policy follows the benchmark or the normal behavior is determined,
as in the one-dimensional case, by considering the relative sensitivities, and the state-contingent

relative costs of the two types of behavior.

If Sy has low sensitivity with respect to &p, it will tend to not rise significantly in good

states (low &r) and to not decrease significantly in bad states (high &p). Then, it is the condi-
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tion for region (I) that will hold in good states (because the product £7.S7 is low there), and the
condition for region (III) that will hold in bad states (because 7St is high there). Consequently,
the location of the shortfall region in the (S, &) plane will be where &p is high and where St is
not too low. If, on the other hand, St is highly sensitive with respect to &7, it will tend to rise
significantly in good states (low {7) and decrease significantly in bad states (high £7). Then, it is
the condition for region (III) that will hold in good states (because {7 St is now high there), and
the condition for region (I) that will hold in bad states (because &St is now low there). Therefore,
the location of the shortfall region in the (S, &) plane will now be where St is high and &7 is not

too low.

4.3 Hybrid Benchmarks and Other Extensions

Section 4.2 examined one particular benchmark that is different from the aggregate stock market,
and clearly many other alternatives may be of interest. Focusing on what is actually used in practice,
there appears to be considerable interest in hybrid composite benchmarks. These benchmarks
combine both money market and stock market returns in a hypothetical unmanaged combination.
Such hybrid returns are reported to the public by leading financial institutions, to be used as a
reference in evaluating performance of managed funds. The direct analog of a return on such a
benchmark in our setting is given by R¥ = fBr+ (1 — 3)R3, where 3 is the weighting of the money
market return, and 1 — 3 of the stock market return. The horizon level for the hybrid benchmark
is given by

ST> 1-5

X = WyelBrtoT <_
So

Clearly, for f =1 and § = 0, we obtain the money market and stock market benchmarks studied in
Sections 2 and 3, respectively. Moreover, our analysis in the previous sections goes through using
this hybrid level, and using the corresponding sensitivity (1 — 3)o/k (instead of the stock market
sensitivity, o/k). The applicability of our analysis for the hybrid benchmark offers important
flexibility in the benchmark choice. By choosing the appropriate benchmark (via the choice of 3)
one can lead a risk manager, with a given risk profile, to follow a particularly desirable policy out

of those presented in Proposition 2/Figure 2.

Another alternative benchmark to consider in combining both money market and stock mar-
ket exposure is a constant-mix benchmark. This dynamically managed benchmark continuously

maintains a weight ¢ in the money market, and 1—¢ in the stock market, with its dynamics given by
The horizon benchmark level, which follows from this dynamics, is given by

XT — Woe(A+E)T <ﬁ>15
So ’
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where A = §(r + (1 — 6)0?/2). For 6 = 1 and § = 0, we obtain the money market and stock
market benchmarks, respectively. Our analysis in the previous sections applies to the constant-mix
benchmark as well, by using its horizon level and its sensitivity, (1 — §)o/k, to replace those of the
stock market. Therefore, the appropriate choice of a constant-mix benchmark (via the choice of §),
also offers the desirable flexibility to direct a risk manager’s behavior to be one of those presented

in Proposition 2/Figure 2.

4.4 Benchmarking with Limited Expected Relative Losses

We have so far considered the most basic shortfall approach, captured by the quantile-based track-
ing error constraint (1), which focuses on the shortfall probability a of not meeting the target
return R¥ + e. An alternative approach is to limit both the probability and magnitude of the
shortfall, and the simplest way to achieve that is to adopt an expectations-based constraint that

limits the losses relative to the horizon benchmark level in (2):
R¥+e)T _ RYT
B [gr (9T — M) Ly <5 (12)

Proposition 4 presents the optimal policy of a risk manager, L, benchmarking the stock market

(R = R3) subject to limited expected relative losses (LERL) as in (12).18

Proposition 4. The optimal horizon wealth of a risk manager, L, benchmarking the stock market
subject to limited expected relative losses is given by,

(a) for economies with o /K < 1/v:

I(z167) if §r<§
Wi =< Xr if £E<Er<t
I((z1 — 22)€r) if €<&r .

(b) for economies with o/k > 1/~:

I((z1 = 22)ér) if ér <&
Wi = Xr if £<ér<g
I(z16r) if €<¢&r,
(¢) for economies with o /k = 1/v: Wk = I((21 — 22)&7) coincides with W,

where in all economies z1 > 2y > 0 solve E[&gWik] = Wy with (12) holding with equality, £ =

(23)1/(70/“71), £=((=1— 22)7)1/(70//€*1)7 and A is as in Proposition 1.

18The constraint in (12) is cast in units of wealth, because as we saw in Section 3, terminal wealth is in fact the rel-
evant choice variable. Another expectations-based constraint to consider is I {((R¥ +e)— R‘qy) Lipw_pxca| <0
A A

Although this constraint is less tractable to analyze, our insights can be extended to this case as well.
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Figure 6(a) highlights the result in Proposition 4(a), that in economies where the stock market
is less sensitive than the normal policy, the LERL approach guarantees lower losses in bad states
than those without risk management. Clearly, a similar conclusion will arise in the context of
benchmarking the money market with zero sensitivity. However, since it is most cost effective to
fall short of the benchmark in bad states, risk management with LERL is less desirable for those
interested in beating the stock market in bad states. It is the quantile shortfall approach that can
allow overperformance of the market in bad states (when investments are entrusted to managers

possessing appropriate characteristics as in Proposition 2(b)(e)).

Wi Wi

[ SRS &r
(a) For economies with benchmark less (b) For economies with benchmark more
sensitive than normal policy, o/k < 1/7. sensitive than normal policy, o/k > 1/7.

Figure 6: Optimal horizon wealth, Wk, of a risk manager, L (Proposition 4), benchmarking the

stock market with LERL (solid plot), and of the non-risk manager N, W& (dotted plot).

Figure 6(b) depicts the result in Proposition 4(b), that in economies where the stock market
is more sensitive than the normal policy, the LERL approach leads to larger losses in bad states,
compared to those without risk management. This is similar to the outcome under the quantile-
based approach. However, the quantile shortfall approach offers the flexibility (under appropriate
characteristics) of beating the stock market in good states, an option unavailable to the L risk
manager. Therefore, contrary to the case of benchmarking the money market, the expectations
based risk measure is not unambiguously more desirable than the quantile measure on a gain/loss
basis.

We discussed above only one particular expectations-based risk management approach, whereas
another alternative could be to focus on a second moment. Limiting the volatility of the tracking
error is also possible in our setting (although less tractable). However, since this limits the upside

potential as well, we do not pursue this direction in our analysis. Furthermore, when working
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with more general price dynamics, our insights in the paper are ecasy to apply, and it is clear
how additional patterns of behavior may arise depending on the characteristics of the pertinent
benchmark. Under the quantile based approach, the shortfall states will still be chosen using our

general principle of reverting to the normal policy when the benchmark is least affordable.

5. Conclusion

Advances in portfolio theory must account for the institutional features of the asset management
industry. In this paper, we focus on an important aspect characterizing this industry — perfor-
mance evaluation relative to a benchmark, which in turn leads to risk management practices that
account for benchmarking. A rigorous understanding of this aspect is in its infancy in the academic
literature, not the least reason for which is the analytical difficulty of the problem. We approach
the issue in the most natural way, mirroring risk management with benchmarking by combining a
tracking error constraint and a utility maximizing behavior. This turns out to be a fruitful com-
bination, as not only does it provide a rich set of theoretical results, but it also paves the way for
investors, as well as regulators, to control gain/loss characteristics of money managers. Moreover,
on top of offering guidance as to when risk managers can over- or underperform the stock market,
while accounting for the risk return tradeoff, we can also indicate when this can be achieved under
higher Sharpe ratios than those of the stock market or of non-risk managers. Although we explore
several extensions of our setting, it still remains of interest to perform an equilibrium analysis in

the presence of benchmarking.

We maintain the view that resolution of uncertainty, price changes, and the resulting trading
activity are occuring in practice more frequently (continuously in our model) than the (ex-post)
evaluation of performance. The evaluation can be over consecutive periods (as we implicitly as-
sume by focusing on one representative period), or over overlapping periods. However, as long
as it is performed periodically (as opposed to continuously), and only a prespecified shortfall is
tolerated before penalties are imposed, then the fundamental insights of our model are still ap-
plicable, and risk managers will follow optimal policies along the lines suggested in our analysis.
Methodologically, this imposes a different structure on the problem than is typically assumed in the
literature with continuously imposed portfolio constraints (Cvitani¢ and Karatzas (1992), Detem-
ple and Murthy (1997)), and our framework can be thus of use to analyze other challenging issues.
In particular, benchmarking is of relevance beyond the scope of professional money managers, and
there is room to study its implications in other institutional settings, such as that of a pension
fund manager who is interested to limit a shortfall relative to future liabilities, which are affected

by uncertain retirement patterns.
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Appendix: Proofs

Proof of Proposition 1. Sece proof of Proposition 2 for a = 0. ]

Proof of Proposition 2. When the constraint is binding, the optimality of the solutions in (4)-(9)
for each of the economies (a)-(e) is most conveniently proved case by case, for the associated ranges
of the benchmark and normal sensitivities. The logic of the proof in each economy, for an agent
benchmarking the stock market, is to adapt the convex-duality approach (see Karatzas and Shreve
(1998)) to a non-concave problem, and to show sufficiency for optimality of the stated solution.
Lemmas 1 and 2 below deal with the state dependency of the problem introduced by the stochastic
stock market benchmark. Since economy (b) is a case with an optimal policy of four distinct regions
and two discontinuities across the state space, it represents, to the best of our knowledge, a notably
different case compared to any known analysis in the literature, and hence we first focus on the
proof in this economy. We then show how the proof proceeds for the other economies in a similar

manner. To save notation, we suppress below the superscript B on the Lagrange multiplier .

Lemma 1. For 1 < o/k < 1/v, and &, & satisfying g(€) = g(&*) and £ < & < &, we have
9(€) < g(€) for E <€ <€ or& <& and g(§) > g(€) for & <& < €.

Proof: Note that g(§) = 0, and since y —1 < 0 and 1 — o/ < 0, we obtain lim¢_. g(§) = 0.

8%_(55) = 79/ f(€), where
f(&) = _y(v—l)/’vg(ff/h'r—l/’v) + (0/,{)141—757(0/%—1/7) + yA(l — o /K).

We also have f(£) = 0, and because 0/x —1/y < 0, we obtain lime_ .o f(§) = yA(1 —0/k) < 0.
It is thus left to show 3! > & such that f(§) > 0 for £ < £ < ¢, and f(&) < 0 for £ <€, as
this will establish the desired properties of g over (£, 00). To that end, it is immediate to verify
that %g) > 0 if, and only if, £ < &, where £ = ((1/7)/(0//{))1/((1’7)(1/7"7/")@ > &, with the
latter inequality holding because § multiplies £ by a constant greater than unity raised to a positive
power. The continuity of f, while decreasing over (f, 00) towards its negative limit for & — oo,
guarantees the uniqueness of 5 , as required. ]

Lemma 2. For 1 < o/k < 1/, let W(§) = (y5)71/71{5<§7 or E<e<ert T Agfa/“1{§§5<a or &<}

x=g(&), and h(W,&) = u(W) — ysW + tliwsae-osny. Then, V€ >0, W () = argmaxy h(W,§).
Proof: For a given £ > 0, h(W, ) is not concave in W. However, its local maxima are attained
at I(y€) = (y&)~Y7 or at AE=9/%. To find the global maximizer, we compare the value of h at

these two candidate points. When § < §, then (y&)~ Y7 > A€=°/% and hence h((y&)~1/7,¢€) >
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h(AE=7/% €), so that (y€)~Y/7 is the global maximizer. When £ <&, then (y&) =YY < Ag=9/% and
from the definitions of g(-), h(-) and x we get

h((y€)M7,€) — h(AE/%,€) = g(€) — = .

From Lemma 1, g(§) < x for { < ¢ < € or & < ¢, and the global maximizer in these regions

is A£=/%. On the other hand, for € < € < €%, g(€) > z, and (y€)~'/7 is the global maximizer. m

The benchmark horizon level in (2) satisfies
XT — WO@ETST/SO — W06(5+M70-2/2)T+0"w'1“ _ Ag;o'/li 7 (Al)

where the second and third equalities follow from the terminal values of S7 and &7, respectively,
as implied by their geometric Brownian motion dynamics. Next, let WJB be as in (5), and let Wy
be any candidate optimal solution for economy (b), satisfying the tracking error constraint and the

static budget constraint in (3). We then have

E[u(WF)] — E[u(Wr)]
= Eu(WP)] —yWo+2(1 — a) — (E[u(Wr)] — yWo + 2(1 — a))
> Eu(Wg)] — ElyssWE] + Elxlyyssx,y] — (Blu(Wr)] = ElyseWr] + Elvliw>x1]) 2 0,

where the first inequality follows from the budget constraint and the tracking error constraint
holding with equality for Wqﬂg , and holding with equality or inequality for Wr. The second inequality
follows from Lemma 2, after substituting (A1) in (5), with y = y®. This establishes the optimality
of WZ in (5) for economy (b).

From Lemma 1, it is evident that in economy (b) there are unique values of £ and &£* satisfy-
ing P(£ < & < €*) = a. For any other values &, and & with g(£,) = g(&), given the established
properties of g in economy (b), we have either £ < E<E <& <, or £< Eo<E<E <€, and
consequently P(€, < & < &) # a. Lemma 1 further implies that as a — 0 in economy (b), we

have £ — £*, and we obtain the solution in Proposition 1(a).

For the remaining economies, the proof follows similar steps, where Lemma 1 is modified to establish
that in economy (a) g(€) > g(€) for £ < & < & () (&) > g(¢*) for £ < & < & (d) g(&) > g(€)
for £ <& <& <& (e) g(§) > g(&¥) for £ < &% () g(&) > g(&) for £ < & Lemma 2 then proceeds to
verify for a given economy which one of the two candidate solutions is the global maximizer within
each region of the state space.

Finally, we note that the state contingent relative cost (see footnote 11) is A{lf‘f/”' — yB_l/vél’l/V,

1—1/y ) 1/(1/v—0o/K)
l-o/k

in (d), but in (a) and (f) the relative cost is largest for high &7, while in (¢) and (e) for low 7. For

and is highest in economy (b) at f = ( §. Similarly, an interior solution is obtained
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the special, zero measure case of o/k = 1/y =1, g(£) is constant, and so if ¢ < 0, WE = I(yP&r);
if e =0, WP = Xp; and if ¢ > 0, WE = {I(yP&r) or X}, with P(I(yP¢ér) < Xr) = a. In the
latter case, either candidate solution can be used, with the state contingent relative costs being

B—1/v T, N—1/7

constant, A —y > 0, where the inequality is because A = ey , e >0, and also y? > ¢y

for the static budget constraint to hold with equality. |

Proof of Proposition 3. (i) Using the dynamics of the state price density process and agent’s

wealth, Itd’s Lemma implies that &W,P is a martingale:
WE = B|aWf A ja . (A2)

When 7 and & are constant, conditional on 7, In &7 is normally distributed with variance (T — t)
and mean In& — (r + %)(T —t). For each economy, substituting the expression for W:¥ in Propo-
sition 2 into (A2), and evaluating the expectation over the relevant regions of {7 yields (10).

(ii) For each economy, applying Itd’s Lemma to (10), results in an expression for o, the diffusion
term of W/2. The expression for 7 follows from the fact that, from the agent’s wealth process, o7
must equal 0,0 W;P. Normalizing 8P by the well-known quantity #V yields ¢f.

(iii) For completeness, we present here the solution for the H risk manager, obtained in economy (a)

for € = 0o and (b) for £ = &*, when ¢ < 0:

WH = N, ) Z() &) + 1= N(d(r/0,€))| Z(x/o)Ag ",
af' = 1+ [1-N(r/0,9)] (vo/n— 1) Z(/o) A& 7" /W
+ (. ) ZM &) 7 = pld(r/0,0) 2 (k) 0) A ") 7 (WH VT =) .

and, in economy (c) for £€* = 0, and in economy (d) for £ = £*, when ¢ < 0:

Wi = 1= N 9)| Z0) @) + N(d(n/0,€)Z (/o) Ag, 7"
' = 1+N< (/0,€)) (vo /i = 1) Z(rfo) A& " /W
+ (—(d(1. ) Z() (&)™ + p(d(r/, ) Z(k)0) A&, ") A/ (W kT =1) .

In all cases, y*! is as in Proposition 1. ]
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Derivation of Expected Returns and Variances (Section 4.1). The expected return for

the B risk manager is given by:

EIRY] = [Laedsy + N1 apy = N AL apafy
FN (AL EN e — N (A1) L eay| In(yP80) ™7 + (r + K2/2)T /) /T
[ by = N (AL, ) Lasy + N (AL, D) Lanapy
—N (AL, EN ey + N1 O eay| (AL ™) + (r + ¥2/2)To /) /T
+ [0(d(1, €)1 {apy — £(d(1L,O) L apay
Ho(d(1, €N peay — AL ey | (/7 = o) /VT = n Wy /T, (A3)

where the notation is as in Proposition 3.

To derive (A3), note from the definition of RYY, that E[RY] = (E[ln W] — InW,)/T. Also note
that In(yB&r) 17 = In(y®)~V/7 — (1/4) In &7, and In Af;g/ﬁ =InA— (0/k)In&p, where at time 0,
In &7 is distributed normally with mean and standard deviation In&y — (r 4+ x2/2)T and kV/T,
respectively. Therefore, for each economy, using the fact that if 2 ~ Normal(a,b), E[rli,p] =
aN ((k —a)/b)—=bp ((k —a)/b), and E[rlyspy] = a[l = N ((k — a)/b)]+bp ((k — a)/b), evaluating

the conditional expectations over the relevant regions of {7 yields (A3).

In economies (e) and (f), the expected return can be written as:
E[RY] = (1 - a)(BIRY] +¢) + o(E[RT] — (In(y" /y™))/(4T)) (A4)

where E[R7] and E[RY] denote the expected return of the benchmark and the expected return of

the non-risk manager, respectively. Specifically, from the definition of expected return, we have:

E[RY] = Eln(yNer) 'M)/T —Wy/T = (In(yV&o) 7 + (r + #%/2)T/)/T = In Wy /T
E[RY] = EMmALG"/T —nXo/T = (In A" + (r + K2/2)To/k)/T — ¢ — In Wy /T.

The result for economies (e) and (f) in (A4) then follows directly from (A3), using the fact that
N(di(1,£%)) = a in economy (e) and 1 — N(di(1,€)) = « in economy (f).

Given the definition of R:,W , the variance is calculated as follows:

Var[RY] E[(InWE)?/1? — E*[In WE]/T?

= Bl WE)/T? — (B[RY] T +In Wy)?/T7. (A5)
Let = = In(yB&r)~1/7, then z is distributed normally with mean and standard deviation i, =

In(y?&o) ™7 + %(7 + 12/2)T and s, = (k/7) VT, respectively. Similarly, let z = In Af;a/'{', then z
is distributed normally with mean and standard deviation p, = In A&, om 4 Z(r + 2/2)T and
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s, = o\/T, respectively. To evaluate the term E[(InW:£)?] in (A5), we evaluate the truncated

expectation of 22 and 22. For & truncated from above we have:

E['TQ 1{5T<a}} = SE:E {((T - Nm)/sm)Q 1{£T<a}} + 2p, Bl 1{5T<a}} - M%E[l{f’fﬁz}] (A6)
E[ZQ 1{ET<(I}} = SEE {((Z - Mz)/SZ)Q 1{5T<a}} + ZMZE[Z 1{5T<a}} - ”EE[1{5T<<1}]' (A7)
The second and third terms on the right-hand side of (A6) and (A7) can be evaluated straightfor-
wardly. The first term on the right-hand side in each case involves the truncated expectation of a

chi-squared variable with 1 degree of freedom (as both (v — p)/s, and (z — p)/s. are standard

normal). For these terms, substituting in p,, S;, i, and s., we have:
2

E|((v = m2)/52) Ligpea)] = E [((—lnsT/go — (r+#?/2)T)/sVT) 1{5T<a,}} = B[Vl i)
2

E|((z = 1:)/5.)’ LYegeas] = E [((—m&/&] — (r+#*/2)T)/sVT) 1{5T<a,}} = E[Vlfs_ma)

where V' = (v — m)?/s? is distributed chi-squared with 1 degree of freedom, and v = —Iné&p,
m = —In& + (r + x?/2)T and s = xkV/T. Letting K = (—Ina — m)?/s%, we have after a series of

algebraic manipulations:

1 1 K1/2e—K/2 .
5+ 5CD 2(K)——— if —lna<m
E[V 1{v>71na}} = ? ? X K1/2821TK/2 . (AS)

Employing a similar approach for £7 truncated from below yields:

E[$2 1{5T>a}] = 52E {V 1{v<71na}} =+ QﬂmE[l 1{ET>a}] [1{ET>a}}
E[ZQ 1{€T>a}] = QE {V 1{v< lna}} +2u.Elz 1{5 >a}] [1{£T>(1}}
where k)2
BV L _ ) 37 3ODF o (K) + £—f——if —Ina<m A0
[ {v<71na}} 1 1 K1/20-K/2 . ( )
5+ §CDFX§(K) BV it —lna>m.

Proof of Proposition 4. The proof is analogous to the proof of Proposition 2, with the ap-

propriate counterparts of Lemmas 1 and 2, and is therefore omitted. ]
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