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This article analyzes a dynamic general equilibrium under a generalization of Merton’s
(1987) investor recognition hypothesis. A class of informationally constrained investors
is assumed to implement only a particular trading strategy. The model implies that, all
else being equal, a risk premium on a less visible stock need not be higher than that on
a more visible stock with a lower volatility—contrary to results derived in a static mean-
variance setting. A consumption-based capital asset pricing model (CAPM) augmented
by the generalized investor recognition hypothesis emerges as a viable contender for
explaining the cross-sectional variation in unconditional expected equity returns.

A fundamental question in financial economics is how frictions affect equi-
librium in capital markets. The real-world frictions that motivate our analysis
are information costs. In a world of costly information, some investors will
have incomplete information. Therefore we ask, first, how equity portfolios
of informationally constrained investors can be characterized, and second,
how the presence of these investors affects equilibrium. We formulate the
answer to the first question as a hypothesis; our premise is that the aggregate
portfolio of informationally constrained investors combines a direct invest-
ment in visible stocks with funds whose management is entrusted to others
(who may possess more information). The main objective of this article is
to develop a model that can accommodate our premise, thereby offering a
detailed answer to the second question. The joint validity of the premise and
the model is then evaluated empirically.

Merton (1987), using a static mean-variance model, advanced the investor
recognition hypothesis (IRH) to describe the portfolio formation of informa-
tionally constrained investors. In its pure static version, the IRH states that
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investors buy and hold only those securities about which they have enough
information, and the revealed portfolio formation under the IRH is observa-
tionally equivalent to that under exogenous portfolio constraints.1 Increasing
empirical support for IRH-consistent behavior [such as in Falkenstein (1996)
and Huberman (2001)] warrants further theoretical analysis of what this
hypothesis implies when examined outside the static mean-variance world.

This article adds a dynamic dimension to the IRH. Specifically, because
of information costs, a class of investors is assumed to have incomplete
information, which suffices to implement only a particular trading strategy.
We refer to this formulation of the IRH as the generalized IRH (G-IRH).
Under the G-IRH, portfolio rebalancing is treated as if it were subject to
constraints that may evolve stochastically over time (and, as a special case,
may exclude a nonvisible stock from a portfolio). To better understand the
impact of such constraints on equilibrium, we work in a familiar and well-
understood framework. We present a continuous-time general equilibrium
model of a Lucas (1978)-type pure-exchange economy, which is populated
by heterogeneous agents. Only a subset of the population faces portfolio
constraints. Under the G-IRH, we analyze implications for the risk-return
trade-off, the risk-free spot interest rate, and the optimal consumption policy
of each class of agents. The case of pure IRH (P-IRH), where informationally
constrained investors trade only a subset of stocks, is then studied in detail.

The intertemporal feature of our model is cast in a continuous-time frame-
work for tractability. The portfolio choice of informationally constrained
investors can then be analyzed using recently developed duality techniques
[He and Pearson (1991), Cvitanić and Karatzas (1992)], which augment the
martingale-representation approach of Karatzas et al. (1987) and Cox and
Huang (1989). Agents in our economy have time-additive state-independent
utility functions, and we assume that informationally constrained investors
have logarithmic preferences. We characterize equilibrium using construc-
tion of a representative agent with time-additive but state-dependent utility.2

The main results are as follows. First, under the G-IRH, we provide a new
characterization of risk premia in a two-beta consumption-based capital asset

1 Neither in Merton (1987) nor in this article do issues of asymmetric information arise; trade always occurs
between equally informed investors, and the pure IRH coincides with an assumption of segmented capital mar-
kets. International segmentation has been analyzed in a two-date mean-variance setting [e.g., Subrahmanyam
(1975) and Errunza and Losq (1985)], and in continuous-time production economies [e.g., Sellin and Werner
(1993) and Devereux and Saito (1997)]. These models are equally applicable in a domestic context under
an appropriate variant of the IRH. Indeed, Errunza and Losq (1985) and Merton (1987) are close method-
ologically and share similar implications. Levy (1978) also studies a static mean-variance model of domestic
segmentation.

2 Analysis of frictionless markets commonly assumes that a subset of agents has logarithmic utility in order
to derive explicit solutions [e.g., Dumas (1989) and Wang (1996)]. With constraints, this assumption is made
almost without exception by the recent continuous-time literature [e.g., Detemple and Murthy (1997) and
Basak and Cuoco (1998)]. The representative agent’s utility is state-dependent whenever each class of agents
uses a different system of state prices to value future consumption [Cuoco and He (1994)].
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pricing model (CCAPM). The first beta is with respect to changes in aggre-
gate consumption, as in the CCAPM of Breeden (1979). However, our formu-
lation of the IRH reduces the dimensionality of the investment opportunity set
for a subset of agents; informationally constrained investors effectively trade
a single portfolio, referred to as the IRH index. This incompleteness also
affects unconstrained agents who are forced to clear the market. Therefore
risk premia depend on an additional term that reflects the spanning properties
of the IRH index, and this term varies across assets depending on the beta
of each asset with respect to changes in the IRH index.

Second, the dynamics of the interest rate are modified to depend on the
volatility of the IRH index. Overall, two sources of volatility drive the inter-
est rate: the exogenous volatility of dividends and the endogenous volatility
of returns. For example, under the P-IRH, where the IRH index represents
unrestricted assets, the interest rate depends on the volatility of aggregate
dividends, as in the unconstrained benchmark case. However, the interest
rate also depends on the endogenously determined correlation between unre-
stricted assets and aggregate dividends. This dependence stems from the
nature of market incompleteness under the P-IRH for which the interest rate
and the risk premia must compensate so that all markets clear.3

Third, focusing on the P-IRH, it becomes evident that the conclusions of
static mean-variance models, as to the effect of constraints on risk premia in
the cross section, do not hold in our setting. For example, our model suggests
that a risk premium on a less visible stock need not be higher than that on
a more visible stock with a lower volatility, all else being equal. The reason
for this result is that an asset whose risks cannot be shared may still offer
considerable benefit as a hedge against shifts in investment opportunities.
This result is important for the growing empirical literature that examines
the effects of listing stocks on a more visible exchange [e.g., Kadlec and
McConnell (1994) and Foerster and Karolyi (1999)].4

Methodologically, our model builds on and complements the work of
Basak and Cuoco (1998), who study restricted stock market participation
with a single risky asset. Our analysis incorporates several risky assets and
what we believe is more realistic investment behavior. With multiple risky
assets, we derive cross-sectional implications. With more flexible constraints,
we accommodate a variety of departures from the benchmark model and

3 An endogenously determined interest rate under a different set of constraints is derived by Sellin and Werner
(1993) and Devereux and Saito (1997). They fix exogenously constant volatilities for linear production tech-
nologies, and by construction cannot allow any endogenous role to stock market volatility.

4 In a static model with constant absolute risk aversion preferences but with consumption in the initial and
final periods, Basak (1996) demonstrates the nonrobustness of many results in the extant mean-variance
literature without intertemporal consumption. Still, his model agrees with the cross-sectional implications
of that literature. Cuoco (1997) provides a general characterization of risk premia under constraints in a
continuous-time economy (he analyzes a partial equilibrium and has no implications for the interest rate).
Nevertheless, the mapping of the constraints that we examine into an explicit two-beta CCAPM is a new
result.
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derive new results. We also illustrate how restricted participation presents a
special case in our model.

To explore some of the empirical content of the G-IRH, we examine the
joint implication of our premise and our model for the variation in the cross
section of unconditional expected returns. This central theme of empirical
finance is a subject of numerous studies. To facilitate comparison with prior
research, while keeping the empirical analysis focused, we subject the model
to portfolios designed by Fama and French (1992) and subsequently analyzed
by Jagannathan and Wang (1996; hereafter JW), among others. Surprisingly,
this broad cross section of portfolios has not been examined outside the so-
called CAPM debate.

Consistent with our premise, the return on the IRH index is measured
by a return on a combination of two proxies. The first proxy, in adherence
with Merton’s (1987) arguments, represents large firms. The second proxy
intends to capture the return on the portion of wealth invested in pension
funds, which account for an increasing fraction of U.S. equities—more than
25% at the end of our sample period [Lakonishok, Shleifer, and Vishny
(1992)]. Consequently, we identify the second proxy with a portfolio that is
biased toward stocks with good past return performance—consistent with a
characterization of the pension fund industry by Lakonishok, Shleifer, and
Vishny (1997).

The main econometric approach we use is the two-pass cross-sectional
regression. We corroborate results using both ordinary and generalized least
squares procedures with an empirical design that draws from Shanken (1992)
and JW. In addition, we test our econometric specification using the Hansen
and Jagannathan (1997) distance, and also use finite-sample likelihood-ratio
tests to examine the implications of our framework for the composition of
the unconditionally tangent portfolio. Within the context of our econometric
specification, the findings indicate that the CCAPM augmented by the IRH
performs better than other models. In particular, over the period covered
by the Fama and French (1992)/JW sample, the data fail to reject the joint
validity of our premise and our model, and we are able to explain more than
55% of the cross-sectional variation in average real monthly and quarterly
returns.

The remainder of the article is organized as follows. Section 1 describes
the economy. Section 2 maps the G-IRH into portfolio constraints and solves
the individual’s optimization problem. Section 3 characterizes the equilibrium
and provides our main asset pricing results. Section 4 lays out the empirical
design and reports the findings. Section 5 concludes. The appendixes contain
the proofs.

1. The Economy

We consider a finite-horizon (�0� T �) economy. Aside from incorporating con-
straints, the setting is standard, and given our focus is on characterization,
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we do not state the required regularity conditions [which can be found, e.g.,
in Karatzas and Shreve (1998)]. Uncertainty is represented by a filtered prob-
ability space ���� �F� P�, on which is defined a two-dimensional Brownian
motion w�t�= �w1�t��w2�t��

�. A state of the world is described by � ∈�.
The filtration F = ��t is the augmentation under P of the filtration gener-
ated by w (� = �T ). All random processes are assumed progressively mea-
surable with respect to F. All equalities and inequalities involving random
variables are understood to hold P -almost surely. There is a single perish-
able consumption good (the numeraire) and � denotes the set of nonnegative
consumption-rate processes c.

Investment opportunities are represented by three securities. The “bond”
is in zero net supply and earns instantaneous interest r over �0� T �. The bond
price process B satisfies

dB�t�= B�t�r�t�dt� (1)

We normalize the initial bond value to unity, without loss of generality. The
“stocks” are each in a constant supply of one unit. A stock is a claim to an
exogenous dividend paid at a strictly positive rate. Denote by Sj , j = 1�2,
the ex-dividend stock price process. Let �j denote the dividend rate process
corresponding to Sj . The aggregate dividend rate process � is given by

d��t�= d�1�t�+d�2�t�= ���t�dt+���t�
�dw�t�� (2)

where �� = ��1
+��2

and �� = ��1
+��2

are set exogenously. We assume
that, in equilibrium, Sj follows an Itô process:

dSj�t�= �Sj�t��j�t�−�j�t��dt+Sj�t��j�t�dw�t�� (3)

The interest rate process r , the drift coefficients � ≡ ��1��2�
�, and the

volatility (diffusion) matrix � ≡ ��jk� j = 1�2� k= 1�2 may be path depen-
dent, and are to be determined endogenously in equilibrium. The � matrix
is assumed to have full rank.

The economy is populated by two types of agents. Let �i�t� denote the
amount that agent i, (i = 1�2) invests at time t in the bond. Let �i�t� ≡
��i1�t�� �i2�t��

� be the amount invested in stocks. Agent 1 does not face
constraints on �1, whereas agent 2 is restricted in his choice of �2 (as speci-
fied in Section 2.1). Preferences of agent i are represented by a time-additive
von Neumann–Morgenstern instantaneous utility function ui�c�, yielding the
expected utility functional Ui�c�= E�

∫ T

0 e−!tui�c�t��dt�, where ! > 0 is the
rate of subjective time preferences. We assume that u2�c� = log c, u1 is
three times continuously differentiable, and u′

1 has a continuous and strictly
decreasing inverse f1 that maps �0��� onto itself. Agent 2 is endowed only
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with b > 0 units of the bond.5 Agent 1 initially owns both stocks and −b
units of the bond.

A trading strategy ��i� �i� is said to (strictly) finance a consumption plan
ci ∈ � if the corresponding wealth process, Wi ≡ �i + ��

i 1̄, satisfies the
dynamic budget constraint

dWi�t� =
[
Wi�t�r�t�+�i�t�

����t�− r�t�1̄�− ci�t�
]
dt

+�i�t�
���t�dw�t�� (4)

where 1̄ ≡ �1�1��. An arbitrage opportunity is a nonzero c ∈ � that can be
financed with zero initial wealth. A trading strategy is admissible if Wi�t�≥ 0
(a sufficient condition to rule out arbitrage opportunities). The set of admis-
sible trading strategies is denoted by &.

2. The Individual Optimization Problem Under the IRH

We depart from the standard setting by acknowledging that, when choosing
trading strategies, agent 2 may be affected by real-world frictions not cap-
tured in the above description of the economy. Rather than model these fric-
tions explicitly, we treat them in a reduced form using portfolio constraints.

2.1 The IRH and portfolio constraints
Consider the following family of stochastic constraints imposed on agent 2:

��t��� = ���2�t���� �2�t���� ' �21�t���= q1�t����22�t����

�t��� ∈ �0� T �×��

where q1�t� is a stochastic process that can depend on the dynamics of asset
prices. � reflects our premise that frictions exogenous to the model cause
agent 2 to resort to a trading strategy that is suboptimal. Information costs
are assumed to be the primary cause for a behavior that deviates from one
based solely on the fundamentals of Section 1. This family of constraints
allows us to model a variety of trading rules. Special cases of interest are as
follows:

(a) q1�t� = q̄, for a constant q̄. (q̄ = � is understood as unconstrained
investment in stock 1 and zero investment in stock 2.) We will elab-
orate in the sequel on the case of q̄ = 0; it models incomplete infor-
mation about stock 1, as discussed by Merton (1987). In particular,

5 This simplified endowment structure ensures that at t = 0 the stock investment of agent 2 complies with any
constraint that belongs to the family described in Section 2.1. For a given member of that family, we can
specify a more general endowment structure at the cost of introducing additional notation and, except for the
P-IRH case, at the cost of a further restriction on the endogenously determined values of S1�0� and S2�0� (a
restriction that may interfere with the existence of equilibrium). A different endowment, provided it admits
an equilibrium, will affect the equilibrium path, but will not affect our equilibrium characterization results in
the sequel.
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it applies to an economy with multiple stock exchanges, where some
investors will not trade a stock unless it is listed on a visible exchange
such as the NYSE [Kadlec and McConnell (1994)]. Similarly, inves-
tors may not hold shares in small firms that lack extensive media
coverage [Falkenstein (1996)]. 0 < q̄ < 1 indicates a less extreme
preference toward stock 2. This applies in cases where agents invest
(or short) more in familiar stocks [Huberman (2001)] or in stocks
with longer listing histories [Barry and Brown (1984)], or exhibit
home-biased patterns in an international or a domestic context [Coval
and Moskowitz (1999)].

(b) q1�t� = S1�t�

S2�t�
means that agent 2 holds an equal number of shares in

each asset. Since the supply of each stock is normalized to one, agents
trade a fraction of the market portfolio. Hence one-fund separation
holds. If q1�t� = q̄1��∈Et�

, agent 2 includes stock 1 in his portfolio
only if he learns about the stock through some �t-measurable event,
Et (e.g., if the rate of return on stock 1 during �t−*t� t� exceeds
some benchmark). Our empirical analysis focuses on (a combination
of) the strategies in (a) and (b).

(c) Consider an exogenous process V whose dynamics are

dV �t�= �V �t�dt+v1�t�dw1�t�+v2�t�dw2�t�� (5)

where v2
1 +v2

2 �= 0. The process may represent a macroeconomic indi-
cator or an index that summarizes information such as analysts’ fore-
casts. Suppose that agent 2 uses the innovations in V to form a trading
strategy. It is easy to verify that

q1�t�=−�21�t�v2�t�−�22�t�v1�t�

�11�t�v2�t�−�12�t�v1�t�
(6)

allows the agent to choose a portfolio so that the corresponding
wealth process is perfectly, instantaneously correlated with V . On
the other hand,

q1�t�=−�21�t�v1�t�+�22�t�v2�t�

�11�t�v1�t�+�12�t�v2�t�
(7)

allows the agent to choose a portfolio that is instantaneously uncorre-
lated with V . A particular example of V is a process that maintains a
prespecified correlation with � �!V� = !̄�.6 Anticipating future results,
when V indeed coincides with aggregate dividends (!̄ = 1) then, in
equilibrium, the economy is equivalent to an unconstrained economy
if Equation (6) holds, and is equivalent to a restricted participation

6 We abuse notation slightly by using ! without subscripts to denote the agents’ impatience for consumption,
and ! with subscripts to denote instantaneous correlation conditional on �t .
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economy (defined by �2 ≡ 0) if Equation (7) holds. (In Appendix A.2,
we present another example in the context of which we also verify
the existence of equilibrium.)

Agent 2 may implement a strategy on his own. Equivalently, he may invest
in stocks via a “managed fund.” Consistent with �, when q1�t� �= −1, a
unit of wealth invested in the fund is split by the fund manager into q1�t�

q1�t�+1

and 1
q1�t�+1 , which are reinvested in stock 1 and stock 2, respectively. It is

convenient to introduce a fund price process whose dynamics are given by

dF �t�= F �t��F �t�dt+F �t��F �t�dw�t�� (8)

where

�F �t�= q�t����t�/q�t��1̄� �F �t�= q�t����t�/q�t��1̄�

and q�t�= �q1�t��1��. Note that rank(�F �t��= 1 because ��t� has full rank.
Also, without loss of generality, set F �0�= 1. The wealth-evolution equation
[Equation (4)] for agent 2, subject to the constraint that ��2� �2� ∈�, can be
restated using Equation (8) as

dW2�t�= �2�t�
dB�t�

B�t�
+ �W2�t�−�2�t��

dF �t�

F �t�
− c2�t�dt�

which illustrates that the constrained agent allocates wealth between the bond
and the fund, and effectively faces an incomplete market. F summarizes the
investment opportunities of agent 2 in risky assets. We call F the “IRH
index” because agent 2 must “recognize” (i.e., have information about) the
dynamics of F . As long as he recognizes F , he does not have to recognize
(be informed about) the dynamics of individual stocks. For brevity, we refer
to the constrained position of agent 2 in equities as a position in the IRH
index. The amount invested in the IRH index will be determined based on
maximizing expected utility.7

7 The process in Equation (8) is introduced for expositional purposes. Although we study the microbehavior of
agents, the IRH index can be viewed, along the lines of Merton (1992, chaps. 14 and 16), as a fund offered
to investors by an intermediary. The class of investors who face relatively high information costs will prefer
to invest (at least part of) their funds through intermediaries. The fund’s management style, q, will not be
optimal for each investor within the class, but the economy of information achieved by this investment vehicle
presumably compensates investors relative to the costs of investing directly [Grossman (1995)]. Results are
derived using projections constructed from q�� , and all goes through with q1 = −1. Then F is interpreted
as a zero-investment position (with �F and �F redefined not to include the q�1̄ denominator), and instead of
being long (short) the IRH index, agent 2 takes a positive (negative) exposure to it in the absolute amount of
�21 = �22. A key point to emphasize is that although �F is constructed from � , the model (via constraints)
mirrors a world in which learning about � is “too costly” for agent 2, leading him to learn only about �F —
from observing F (through the quadratic covariation of F with w1 and w2), or from exogenous sources (not
explicit elements of our model, such as intermediaries) that have cheap access to the primary information
(�). Although actual costs are not incorporated directly into the model, it is monitoring the vector �F ,
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2.2 Consumption and portfolio choice
We characterize the optimal consumption of agent 2, using the duality app-
roach of Cvitanić and Karatzas (1992), as if the agent faces a unique state-
price density process of a fictitious, unconstrained economy. Equipped with
this state-price density, which accounts for the constraints faced by the agent,
we can proceed to derive other quantities, analogous to the complete-markets
case.

Proposition 1. The optimal consumption policy of agent 2 with ��2� �2�∈�
satisfies

c∗2�t�= e−!t/�/202�t��� (9)

where /2 = �1− e−!T �/!b is the Lagrange multiplier associated with the
static budget constraint of the agent, E�

∫ T

0 02�s�c
∗
2�s�ds�= b. The state-price

density process faced by the agent is

02�t�= B�t�−1 exp
(
−
∫ t

0
22�s�

�dw�s�− 1
2

∫ t

0
�22�s��2ds

)
(10)

with the relative risk process expressed by

22�t�= 3F �t�2�t�� (11)

where2�t�=��t�−1���t�−r�t�1̄�and3F �t�=�F �t�
���F �t��F �t�

��−1�F �t�
are the relative risk process faced by agent 1, and the projection matrix on
Span��F �, respectively.

When agent 2 follows the optimal policy, we interpret 02�t��� in Equa-
tion (10) as his Arrow–Debreu price (per unit of probability P ) of one unit
of consumption good at state � and time t. Equation (9) is the usual result
that e−!tu′

i�c
∗
i �t�� = /i0i�t�, which holds for i = 1�2. At the optimum, the

marginal benefit from an additional unit of consumption at state � and time
t is proportional to the cost of that unit. The cost structure faced by agent 2
accounts for the nature of the allowed trading strategy as specified in (11).
The relative risk process used for 02�t� is a projection of the relative risk
process faced by the unconstrained agent (21�t�≡ 2�t�) on a restricted invest-
ment opportunity set summarized by �F �t�.

rather than the matrix � , that renders the investment/consumption problem of agent 2 a relatively “low-cost”
task; indeed, as shown in the sequel, it is �F (and not �) which is used to construct the optimal policies
of agent 2. Moreover, our model is easily generalized to N sources of uncertainty, with K < N strategies
(“funds”/“investment styles”), and then the informational burden on agent 2 (in terms of monitored processes)
is only of O�K×N� instead of O�N 2�. The model does not prevent agent 2 from learning about � , but
requiring him to learn only about �F is aimed to capture realistic scenarios where, due to informational
frictions, agent 2 indeed learns only about �F , but not � . Obviously, if F is driven by some subset of w’s
components, agent 2 need recognize only that subset.
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Note that 02�t� can indeed be viewed as the unique state-price density
process in a fictitious unconstrained economy, where the drift of risky assets
is given by �+6. The “shadow” process 6 is set to

6�t�=−��t�7F �t�2�t�� (12)

where
7F �t�= I −3F �t�

is the projection-matrix process on the space orthogonal to Span��F �, and I
is the identity matrix. Optimal policies of an agent with �U2� b� in the ficti-
tious unconstrained economy, with price coefficients �r��+6���, coincide
with optimal policies of our constrained agent.8 Standard arguments, along
with Equation (12), then imply that the stock investment, W2 −�∗

2, is

1̄��∗
2�t� = 1̄����t���t���−1���t�+6�t�− r�t�1̄�W2�t�

= �F �t�− r�t�

��F �t��2
W2�t�� (13)

where W2�t�= E�
∫ T

t

02�s�

02�t�
c∗2�s�ds  �t�= 1−e−!�T−t�

!
c∗2�t�.

3. Characterization of Equilibrium Under the IRH

This section provides our main results, which include characterization of risk
premia, interest rates, and consumption policies. Under the IRH, the economy
is denoted � and is identified by its primitives: � ≡ ����� �F� P�� b��1� �2,
u1�·�� log�·���. We focus first on the economy in its general formulation
(which corresponds to the G-IRH). Then we elaborate on the case where
q1�t�≡ 0 (the P-IRH), allowing us to contrast the model with the static liter-
ature. Results are compared to a benchmark, complete-markets unconstrained
economy: �U ≡ ����� �F� P�� b��1� �2� u1�·�� log�·�.
Definition 1. A competitive rational expectations equilibrium is a price sys-
tem �r����� and a set �c∗i � ��

∗
i � �

∗
i �

2
i=1, such that

(a) c∗i = argmaxc∈�i
Ui�c�� i = 1�2, where

�1 ≡ �c ∈ � ' c is financed by ��1� �1� ∈&, with �1�0�+�1�0�
�1̄ =

S1�0�+S2�0�−b,
�2 ≡ �c ∈� ' c is financed by ��2� �2� ∈&, with �2�0�+�2�0�

�1̄ = b
and ��2�t�� �2�t�� ∈ ��t�.

8 In the fictitious economy, the presence of the constraints in � is mapped into a modified drift, but does not
affect the interest rate because no restrictions are imposed on �2.
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(b) The consumption-good market and the securities markets clear:
c∗1�t�+ c∗2�t�= ��t�� �∗

1�t�+�∗
2�t�= 0�

�∗
1j �t�+�∗

2j �t�= Sj�t�� j = 1�2.

It is convenient to characterize equilibrium quantities using a construction
of a representative agent. Let u�c�<�≡maxc1+c2=c u1�c1�+<u2�c2�, for some
< > 0. In �U , a representative agent’s utility, u���t��<�0��, is a linear com-
bination of individual utilities [see, e.g., Duffie and Zame (1989), Karatzas,
Lehoczky, and Shreve (1990)]. In �, because agents use different state-price
density processes to price consumption, the representative agent is character-
ized by a state-dependent utility, u���t��<�t��, with a stochastic weighting
process [as in, e.g., Cuoco and He (1994), Basak and Cuoco (1998)]. The
absolute risk aversion and absolute prudence [as in Kimball (1990)] of agent
i and of the representative agent are denoted by Ai�t��Pi�t��A�t�, and P�t�,
respectively:

Ai�t�=−u′′
i �c

∗
i �t��

u′
i�c

∗
i �t��

� Pi�t�=−u′′′
i �c

∗
i �t��

u′′
i �c

∗
i �t��

�

A�t�=−ucc���t��<�t��

uc���t��<�t��
� P�t�=−uccc���t��<�t��

ucc���t��<�t��
�

3.1 The generalized investor recognition hypothesis
We assume that an equilibrium exists and provide its characterization.

Theorem 1. In equilibrium, the weighting process, <�t� = u′
1�c

∗
1�t��c

∗
2�t�,

is a strictly positive solution to the stochastic differential equation:

d<�t�=−<�t�A1�t����t�
�7F �t�dw�t�� (14)

and <�0� is the unique strictly positive solution to

b = �1− e−!T �!−1<�0�uc���0��<�0��
−1� (15)

The interest rate and risk premia are

r�t� = !+A�t����t�−
1
2
A�t�P�t�����t��2

− 1
2
A�t��P1�t�−P�t���7F �t����t��2� (16)

��t�− r�t�1̄ = A�t���t����t�+ �A1�t�−A�t����t�7F �t����t�� (17)

Optimal consumption policies are c∗1�t� = f1�uc���t��<�t���, c∗2�t� = <�t�/
uc���t��<�t�� with

dc∗i �t�= �c∗i �t� dt+�c∗i �t�
�dw�t�� i = 1�2� (18)
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where

�c∗1 �t� =
A�t�

A1�t�
���t�+

(
1− A�t�

A1�t�

)
7F �t����t��

�c∗1 �t� =
A�t�

A1�t�
���t�+

1
2
A�t�2

A1�t�

[
P1�t�

A1�t�
− P�t�

A�t�

]
����t��2

− 1
2
A�t�2

A1�t�

{
P1�t�−P�t�

A�t�
+ P1�t�

A1�t�

(
1− A1�t�

2

A�t�2

)}
�7F �t����t��2�

�c∗2 �t� =
A�t�

A2�t�
���t�−

A�t�

A2�t�
7F �t����t��

�c∗2 �t� =
A�t�

A2�t�
���t�+

1
2
A�t�2

A2�t�

[
P2�t�

A2�t�
− P�t�

A�t�

]
����t��2

−1
2
A�t�2

A2�t�

{
P1�t�−P�t�

A�t�
+ P2�t�

A2�t�

}
�7F �t����t��2�

The relative risk processes the agents face are

21�t� = A�t����t�+ �A1�t�−A�t��7F �t����t��

22�t� = A�t����t�−A�t�7F �t����t�� (19)

The results in Equations (14)–(19) are better understood in light of the
following corollary:

Corollary 1. (a) When the portfolio of agent 2 is perfectly correlated with
��t� and b ≤ ��0��1− e−!T �/!, then <�t� = <�0�, and there exists a
unique equilibrium for �, which coincides with that in �U , with all equi-
librium quantities obtained by substituting 7F �t����t�= 0 in Theorem 1.
In particular, ��t�− r�t�1̄ = A�t���t����t�.

(b) When the portfolio of agent 2 is uncorrelated with ��t�, b ≤ ��0��1−
e−!T �/!, and there exists a unique, strictly positive solution <�t� to the
stochastic differential equation d<�t� = −<�t�A1�t����t�

�dw�t�, then
there exists a unique equilibrium for �, which coincides with that in a
restricted-participation economy ��∗

2�t�= 0�, with all equilibrium quan-
tities obtained by substituting 7F �t����t�= ���t� in Theorem 1. In par-
ticular, ��t�− r�t�1̄ = A1�t���t����t�.

(c) In equilibrium, the risk premium of stock j is given by

�j�t�− r�t� = a1�t�cov
(
dSj�t�

Sj�t�
�
d��t�

��t�

)
+a2�t�cov

(
dSj�t�

Sj�t�
�
dF �t�

F �t�

)
� j = 1�2� (20)
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where

a1�t�= A1�t���t�� a2�t�=−A�t�
A1�t�

A2�t�
!F��t�

����t��
��F �t��

�

(d) The risk premium of the IRH index is given by �F �t�− r�t� = A�t�×
�F �t����t�, and the risk premium of �∗ is given by ��∗�t�− r�t� =
A�t���∗�t����t��1+ �1−!F��t�

2�A1�t�/A2�t��, where �∗ is a stock-only
portfolio perfectly correlated with �. The risk premium in
Equation (20) is equivalently given by �j�t�− r�t� = bj�∗�t����∗�t�−
r�t��+bjF �t���F �t�− r�t��, where bj�∗ and bjF are the multiple-regre-
ssion coefficients.

Corollary 1(a) shows how the familiar characterization results for the uncon-
strained, benchmark economy �U are obtained in our setting. Corollary 1(b)
asserts that the economy analyzed by Basak and Cuoco (1998) can also arise
as a special case in our model, and although their model is formulated with
a single stock, we see that their characterization results are readily extended
to the case of multiple risky assets.

In �, as in �U , agents adjust their marginal rate of substitution for con-
sumption at different states and in different times to equal the relative prices
of consumption (as in Section 2.2). Since agents face different (nonnegatively
correlated) state-price density processes, the marginal rate of substitution of
agent 1 between any two points in �× �0� T � is different from the marginal
rate of substitution of agent 2. The two agents will not choose consumption
in the same fashion. Hence, unlike in �U , the optimal consumption policies
in Equation (18) are not perfectly correlated with aggregate consumption, but
rather maintain a nonnegative correlation.

The interest rate has a new fourth term in Equation (16) compared to
its expression in �U . To understand this term, suppose that agent 1 has a
decreasing absolute risk aversion (so that P1 > 0) and is the more prudent
agent (so that P1 > P ). Then, compared to �U , agent 1 must be further
deterred from investing in the bond (and encouraged to borrow) to fulfill
his dominant role in clearing the stock market. Therefore, the new term
acts to reduce the interest rate, so that in equilibrium it will counteract the
precautionary savings motive of agent 1. The spanning characteristics of F
determine the role of agent 1 in clearing the stock market, and hence the
extent to which his prudence affects r via the new term.

The additional state variable in �, compared to �U , is <�t� and this is
translated into a “two-beta” CCAPM in Equation (17). At any instant, the
excess expected return on assets is a linear function of their covariance with
the two state variables (��<). In turn, the instantaneous covariance of <�t�
with ��t� is −<�t�A1�t��7F �t����t��2. Hence <�t� tends to increase dur-
ing times of recession and to decrease during times of expansion. Although
<�t�, in general, cannot be observed by an econometrician, the cross-sectional
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implications of Equation (17) are formulated using quantities with acceptable
empirical counterparts. Corollary 1(c) clarifies the risk-return trade-off under
the IRH by rewriting the risk premia in Equation (17) using a conventional
notation of instantaneous conditional covariances. The model predicts that
the cross section of instantaneous expected returns, conditional on � , is pro-
portional to instantaneous conditional covariances between the rate of return
on asset j and two economic variables. The first variable is consumption
growth, as in the CCAPM of Breeden (1979). The second variable is the
rate of return on the IRH index. For our formulation of the IRH (i.e., when
q�t� is set to mirror our hypothesis about the impact of information costs)
the discrete-time analog of the latter return can be constructed using data on
asset returns in the economy.

To understand the intuition for the cross-sectional differences between
securities, consider an example in which !F� ≥ 0, where stocks have equal
consumption betas but �1�F > �2�F > 0. First, when !F� = 1, agent 2
behaves as he would have optimally behaved in �U , and hence � coincides
with the benchmark case [in particular, Equation (20) reduces to A�j��, as in
Corollary 1(a)]. Second, when agent 1 holds the entire stock supply (!F� = 0),
only the first term in Equation (20) remains, as is the case in Corollary 1(b),
because agent 1 does not share stock market risks with agent 2. Third, when
0 < !F� < 1, if agent 2 becomes very risk averse (A2 →�) due to shrinking
wealth, the first term again dominates (with A→A1), and there are no cross-
sectional differences; agent 1 effectively becomes the representative agent in
a complete market, because agent 2 is a negligible participant in the econ-
omy (agent 2 is an insignificant player in the stock market due to high risk
aversion, and low W2 implies he is also insignificant in the money market).
Finally, a different picture arises when A2 is finite. As noted, the first term
in Equation (20), A1�j��, is the correct premium when agent 1 alone bears
the stock market risks. Since A1 = A+AA1

A2
(see appendix), the loading is

increased relative to the aggregate risk aversion, A (i.e., that of a represen-
tative agent), to describe the premium had agent 2 not held stocks and had
no incentives to share stockmarket risks. This premium must be adjusted
because agent 2 is present to share risks with (A2 <�), and there are indeed
risks to share (!F� > 0). The magnitude of the adjustment depends on AA1

A2
,

which captures the ability of agent 2 to share risks, while !F� captures the
incentives agent 2 has to share risks. ����/��F � acts as a scale factor to
normalize the asset-specific correction �j�F . To see the direction of the cor-
rection, in the context of this example, note from (18) and !F� > 0 that c∗2 is
positively (in fact, perfectly) correlated with the IRH index, and agent 2 must
then be long in the IRH index to finance his consumption policy. Agent 1
effectively holds the entire stock supply and takes a short position in the IRH
index. Favorable realizations of � tend to coincide with favorable realizations
of F , which is undesirable for agent 1. It is stock 1 that offers him better
insurance against an unfavorable realization of the short position. Because
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of its hedging value, stock 1 becomes more desirable than stock 2 and is
required to offer a relatively lower risk premium.

Corollary 1(d) provides the risk premium for two portfolios (�∗� F ) and
uses these to express risk premia of individual stocks. The special structure
of the two portfolios yields somewhat simplified formulations for their risk
premia. The premium of the IRH index agrees with its expression in �U

because this portfolio is (the only one) accessible to both agents and hence
is priced through the risk aversion of the representative agent alone. This
will not hold for any other portfolio. For example, when �F �� = ��∗�� > 0,
�∗ commands a higher risk premium than F because, unlike with F , agent 1
cannot share with agent 2 the risks associated with �∗.

3.2 The pure investor recognition hypothesis
The P-IRH, in its static form, has attracted considerable interest in the liter-
ature. To gain more insight about the P-IRH in a dynamic world, let stock 2
represent the visible asset and stock 1 represent the asset not recognized by
agent 2.

Proposition 2. In equilibrium, with q1�t�≡ 0:

(a) The interest rate and risk premia are given by

r�t�=!+A�t����t�−
1
2
A�t�P�t�����t��2

− 1
2
A�t��P1�t�−P�t���1−!2��t�

2�����t��2�

�2�t�− r�t�=A�t��2�t����t��

�1�t�− r�t�=A�t��1�t����t�+>�t�
S1�t�

W�t�

(
1−!12�t�

2
)
var
(
dS1�t�

S1�t�

)
+>�t� cov

(
dS1�t�

S1�t�
−!12�t�

��1�t��
��2�t��

dS2�t�

S2�t�
�

d��t�

��t�
− dW�t�

W�t�

)
� (21)

where W�t� = W1�t�+W2�t�, and >�t� = R�t� 1
R2�t�

c∗2 �t�
c∗1 �t�

� R2�t� =
A2�t�c

∗
2�t�� R�t�= A�t���t�.

(b) When u1�·� = log�·�, and the aggregate endowment follows a geo-
metric Brownian motion d��t�= ��t���dt+��t���

� dw�t�, where ��

and �� = ����1����2�
� are constant, then:

(i) The relative risk processes are 21�t�=��+<�t�72�t���, and
22�t� = �� −72�t���. Agent 1 (agent 2) faces state prices
with higher (lower) volatility than in �U .
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(ii) The optimal consumption policies are
c∗i �t�= ��t�Wi�t�/W�t�� i = 1�2, where

�c∗1 �t� = ���+ �1+<�t��<�t��1−!2��t�
2�����2�c∗1�t��

�c∗1 �t� = ���+<�t�72�t����c
∗
1�t��

�c∗2 �t� = ���− �1+<�t���1−!2��t�
2�����2�c∗2�t��

�c∗2 �t� = ���−72�t����c
∗
2�t��

The expected consumption growth rate of agent 1 and the
volatility of his consumption growth rate are higher than in
�U , while those of agent 2 are lower.

(iii) The welfare of agent 1, U1�c
∗
1�, is higher than in �U , while

U2�c
∗
2� is lower.

(iv) The interest rate is r�t�= !+��−����2 − W2�t�

W1�t�
�1−!2��t�

2�

����2, and is lower than in �U . For a given distribution of
wealth, r�t� increases with !2��t�

2.
(v) The risk premia are �1�t�− r�t� = �1�t��� + W2�t�

W1�t�

S1�t�

W�t�
�1−

!12�t�
2���1�t��2��2�t�− r�t� = �2�t���. For a given �1�t�,

the risk premium of stock 1 is higher than in �U .

Proposition 2(a) states that when P1�t� > P�t�� r�t� has a parabolic depen-
dence on !2��t� with the minimum at !2��t�= 0. Clearly, under the P-IRH,
fluctuations in r�t� are explicitly related to fluctuations in �2�t�, all else
being equal. This link between the volatility of the visible portion of the
market and the interest rate is a novelty of our model.

The risk premia differ across securities depending on their visibility (e.g.,
exchange listing status). The second and third terms on the right-hand side of
Equation (21) modify the risk premium of stock 1 for two reasons compared
to its expression in �U . First, there is a change in diversification opportunities,
because portfolios adjust to the constraint. Second, there is a change in the
ability of agent 1 to hedge against shifts in the investment opportunities.
Because the second term in Equation (21) compensates agent 1 for bearing
all the risk of stock 1, it is positive and is similar to the compensation
for lost risk-sharing opportunities predicted by static models [Errunza and
Losq (1985), Merton (1987), Basak (1996)]. Contrary to Merton’s measure of
investor base, our model identifies the proportionality factor > with the ratio
of consumption streams, normalized by relative risk aversions. The third term
in Equation (21) arises because, when smoothing consumption, agent 1 owns
the entire supply of stock 1. If stock 1 and stock 2 are very close substitutes
(!12 → 1), the second and third terms are insignificant. If the dynamics of
aggregate wealth coincide with the dynamics of aggregate consumption (e.g.,
if both agents are myopic and do not hedge intertemporally), then the third
term vanishes. In general, however, the sum of the second and third terms in
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Equation (21) need not be positive, because full ownership of stock 1 may
be a desirable strategy if the value of stock 1 as an intertemporal hedging
instrument outweighs the cost of owning its entire supply. It is easy to verify
that if, for example, �1�� = �2�� > 0, then �1 < �2 holds if and only if
��1�!12 > ��2�. Therefore, contrary to mean-variance results, a less visible
stock with a higher volatility may nevertheless be required to offer a lower
expected return, all else being equal.

Under the G-IRH, the event of listing stock 1 on a more visible exchange,
at time tL, corresponds to q1 being zero up to tL, and then, over �tL� T �,
as required by the benchmark model. Clearly, if consumption betas remain
stable during the listing event, then, for some stocks, one may detect a
higher expected return after listing. Consequently, when averaging abnor-
mal returns across securities in event time, the impact of listing can take
many forms. This may potentially account for the somewhat inconclusive
results in exchange-listing studies [see, e.g., Kadlec and McConnell (1994,
pp. 614–615)].

In Proposition 2(b), to clarify differences between the economy under
the P-IRH and �U , we impose further structure on u1 and on the dynam-
ics of ��t�. The weighting process then coincides with the wealth distribu-
tion: <�t� = W2�t�/W1�t� and 1+<�t� = W�t�/W1�t�. Also note that �� =
�W�t�/W�t�. Unambiguous, direct comparisons (∀ �t��� ∈ �0� T � × �)
between � and �U are provided in items (i)–(iv): Agent 1 bears more risk
and has more volatile consumption compared to agent 2 and compared to
the benchmark. Under the P-IRH, the interest rate is lower, which induces
agent 1 to hold stock 1, and the lower borrowing costs increase his welfare.

Risk premia in (v) deserve two comments. First, both agents are myopic,
and the extra term in the risk premium of stock 1 is positive. However, in
an intertemporal model, this per se does not imply a higher risk premium
compared to the benchmark [as illustrated by Basak (1996)]. The risk pre-
mium on stock 2 is also ambiguously related to its benchmark value. Sec-
ond, < = W2/W1 measures the relative investor base for stock 1, and from
Equation (14) it is negatively correlated with �. Intuitively, given a positive
outlook for future dividends, W1�t� tends to increase relative to W2�t� because
agent 1 benefits from full ownership of stock 1. Therefore our model, even in
its myopic version, has a new implication for the P-IRH; all else being equal,
the cross-sectional differences between securities with different visibility are
countercyclical.

4. Empirical Evidence

Our premise is that the costs of gathering and processing data lead some
investors to focus on stocks with high visibility and also to entrust a por-
tion of their wealth to money managers employed by pension plans. Hence,
the return on the portfolio of informationally constrained investors (ICIs) is
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characterized as a combination of two proxies: a proxy for the return on
the investment in visible stocks, and a proxy for the return on the indirect
investment via pension plans. Given these proxies, we test the implications
of our premise for the cross section of unconditional expected returns.

4.1 Econometric specification
The pricing equation [Equation (17)] and its two-beta reformulation in Equa-
tion (20) are readily generalized to N assets, as shown in Appendix A.1.
Let rj� t+1 = �Sj�t+1�+∫ t+1

t
�j�s�ds − Sj�t��/Sj�t�� gt+1 = ���t+1�−��t��/

��t�, and ht+1 = �F �t+ 1�− F �t��/F �t�, where j = 1� C C C �N ; one unit of
time corresponds to a month or a quarter, t takes discrete values, gt+1 is the
growth rate of aggregate consumption, and the IRH is characterized by q�t�=
�q1�t�� C C C � qN−1�t��1�, fixed between t and t+1, so that the rate of change
in the IRH index is ht+1 =

∑N
j=1 q̄jtrj� t+1, where q̄jt = qj�t�/

∑N
j=1 qj�t�. Using

the stochastic Euler approximation to Equations (1)–(3) and (8), we can
restate Equation (20) as

E�rj�t+1�t� = a0t +a1tcov�rj�t+1� gt+1�t�

+a2tcov�rj�t+1� ht+1�t�� j = 1� C C C �N � (22)

where a1t and a2t are as given in Equation (20), and a0t captures interest-
rate fluctuations and approximation errors (assumed to be homoscedastic).
Equation (22) is the starting point of our empirical analysis. We examine
whether the conditional formulation in Equation (22) is consistent with the
crosssection of unconditional expected returns. Using Equation (22), with
additional assumptions stated in Appendix B.1, we get the following result:

Theorem 2. Assume that Djg = cov�rjt� gt�/var�gt��Djh = cov�rjt� ht�/
var�ht� exist and are linearly independent. If q̄t is known ∀ t, then there
exist some constants �a0� a1� a2� such that

E�rjt�= a0 +a1Djg +a2Djh� (23)

If q̄t is unknown, assume the IRH index to be a combination of two portfo-
lios; ht+1 = wth1� t+1 + �1−wt�h2� t+1, where wt is unknown but the weights
within h1� t+1� h2� t+1 are known. Let Djhp

= cov�rjt� hpt�/var�hpt�� p = 1�2.
Then there exist some constants �a0� a1� a2� a3� such that

E�rjt�= a0 +a1Djg +a2Djh1
+a3Djh2

� (24)

The specification in Equation (24) agrees with our premise, and we will refer
to it as the G-IRH model (denoted MG-IRH). It is testable given the empirical
counterparts of �g�h1� h2�.

9

9 The unconditional specification does not explicitly incorporate the particular structure of the coefficients in
Equation (22). A test based on Theorem 2 lacks power against a model that has covariance structure as in
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To examine the prediction of Theorem 2, we adopt a two-pass cross-
sectional regression (CSR) approach. In the first pass, each univariate beta
is estimated using ordinary least squares (OLS). The second pass is a sin-
gle CSR of average returns on betas, also conventionally estimated using
OLS. The advantages of estimating the CSR with generalized least squares
(GLS) are improved asymptotic efficiency [Shanken (1992)] and robustness
to proxy misspecification [Kandel and Stambaugh (1995)]. For GLS, how-
ever, we need the inverse of the unknown covariance matrix of returns. Nei-
ther estimation approach is decisively superior. Using monthly consumption
data is desirable to increase the number of time observations and get more
precise estimates. Quarterly intervals are likely to yield a more accurate
measurement of consumption growth [Breeden, Gibbons, and Litzenberger
(1989)]. Overall, as detailed in Appendix B.2, we report monthly and quar-
terly CSR results estimated with OLS and GLS (at the second pass, where
standard errors are corrected for a bias induced by OLS sampling errors in
the first-pass univariate betas). Since expected returns vary cross-sectionally,
if the model is valid we must have at least one nonzero slope coefficient.
We check this using the Wald test statistic. Under the CSR approach to test-
ing asset pricing models, if the Wald test, based on both OLS and GLS
estimates, rejects the null hypothesis of zero slopes, this is interpreted as a
failure to reject the model. Then the Hausman (1978) specification (HS) test
can assess whether the OLS and GLS estimates are as close as a correctly
specified model would imply.10

Another way to evaluate Equation (24) is to restate it as

E��1+ rjt��b0 +b1gt +b2h1t +b3h2t��= 1� (25)

where �b0� b1� b2� b3� are some constants. The term yt ≡ b0 +b1gt +b2h1t +
b3h2t is the stochastic discount factor implied by Equation (24). The empirical
proxies for �gt� h1t� h2t� may not coincide with their theoretical counterparts,
leading to the use of a misspecified proxy for the true discount factor. If no
proxy can correctly price the N assets, then for a set of discount factor prox-
ies that correspond to different models (e.g., CAPM, CCAPM, or MG-IRH),
it is of interest to quantify how misspecified one proxy is compared to the

Equation (24) with different loadings, but to the best of our knowledge no other model in the literature offers
theoretical justification to combine consumption growth with the proxies for the visible and retirement-oriented
portfolios to explain expected returns. Clearly, one can transform Equation (24) into an alternative cross-
sectional formulation with multivariate betas, which are the slopes in a time-series regression of excess returns
on the portfolio unconditionally most highly correlated with consumption growth (MCP), h1, and h2. Since
constructing the MCP introduces another source of estimation error, we choose to focus on the implications
in Equations (23) and (24). (We return to the unconditional mean-variance implications of the model later.)
Also note that our econometric specification relies on assumptions that one would ideally like to translate to
assumptions on the model’s primitives. Unfortunately, the complexity of the model renders such a mapping
infeasible.

10 HS = �âOLS − âGLS�
��var�âOLS�−var�âGLS��

−1�âOLS − âGLS�, where hats denote estimates, and â excludes
the intercept. HS (as the Wald statistic) has an asymptotic chi-square distribution with dim(â) degrees of
freedom. HS is reported only when both OLS and GLS Wald statistics reject the null hypothesis, H0 ' a= 0.
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others. Therefore, we estimate the magnitude of misspecification using the
Hansen and Jagannathan (1997) distance (HJ-d). For a correctly specified
discount factor, the HJ-d is zero. Hence we test the model (i.e., the null
hypothesis of a correctly specified discount factor) by testing whether the
estimated HJ-d is insignificantly different from zero.11

4.2 Identification of the IRH index
We now identify the empirical counterparts for (h1� h2). For the h1 com-
ponent, our premise is that agent 2 considers only the stocks visible to
him—those about which he has sufficient information to implement opti-
mal portfolio rebalancing. Information about the larger firms is likely to be
available at a lower cost, and we identify visibility with large capitalization.
The claim that large firms are more widely known is consistent with the evi-
dence that large firms have more shareholders [Merton (1987)]. Moreover,
large firms usually have longer listing histories. Falkenstein (1996) reports
that both the size and age of a firm are positively correlated with the number
of news stories in major newspapers about that firm. We further assume that
a single index can capture well the investment of agent 2 in visible stocks.
The natural proxy to use then for h1 is the Standard & Poor’s 500 index
(S&P 500). Agent 2 is not required to have detailed information about the
500 large-capitalization firms in the index, although he must know enough to
optimally rebalance wealth between the S&P 500 portfolio and other invest-
ments. In fact, since the S&P 500 is a good market proxy, only market-wide
information may suffice.

For h2, our premise states that agent 2 entrusts a portion of his wealth to
money managers who have better access to information. For this element, we
focus on pension funds. Agent 2 receives all necessary reporting from the
sponsor to be able to optimally allocate wealth between the money market,
the S&P 500, and his pension fund. For data-availability reasons, we rely
on evidence provided by Lakonishok, Shleifer, and Vishny (1997) (LSV) to
construct h2.12 LSV characterize the aggregate portfolio (a “superfund”) of a
large collection of tax-exempt pension funds. Their sample covers about 20%

11 Let yt�b� be the examined proxy that depends on b. The HJ-d is the minimum least-squares distance, in
L2 space, between yt�b� and an mt that correctly prices the N assets. In our case, the HJ-d is given by
d = ��E�Rtyt�b��− 1̄���E�RtR

�
t ��

−1�E�Rtyt�b��− 1̄��1/2. To compute it we use consistent estimates of the
moments (with the b that minimizes d). The HJ-d has an appealing interpretation; it is the maximum pricing
error when using yt to price positions in the N assets, where position payoffs are standardized to have a unit
norm in L2. Under the null, an estimator of the HJ-d has an asymptotic distribution equal to a mixture of chi-
square distributions. We report the associated p-value (computed as suggested by JW). Under the alternative
of a misspecified proxy, the estimator is asymptotically normal, and we report its standard error [accounting
for serial correlation as in Newey and West (1987) with lag 12 for monthly data and lag 4 for quarterly data].

12 We do not consider explicitly the mutual fund sector. This will not bias the results if the investment of ICI
in mutual funds is spanned by our proxies for h1 and h2. Moreover, investments in mutual funds are made
directly by individuals, while investments in pension funds are guided by the fund sponsor. Note that h1
captures investment by ICI in large firms, whether owned directly or indirectly through equity and index
funds. The key idea is that the “investment style” of h1 is chosen directly by ICI based on the visibility
argument; this is not so for the investment style of h2, which is merely reported to them, and is taken into
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of the total actively managed equity holdings of pension funds. LSV find that,
relative to the S&P 500, the superfund has a high proportion of stocks with
good long-term past return performance. For example, on average, 65.2% of
the S&P portfolio is invested at any given time in stocks that over the past
three years performed better than the stock in the S&P 500 with a median
performance. The comparable figure for the superfund is 83.9%. LSV call
this overexposure to well-performing stocks — a glamour bias. We assume
that the fund component of agent 2 mirrors the LSV superfund. Hence we
construct h2 as follows: At the beginning of each period t, we compare the
past three-years’ return of each of the N assets in our sample with the return
on the S&P 500. Only assets that outperformed the S&P 500 are selected.
Their equally weighted return over period t defines the value of h2t . This
procedure, however crude, mimics the LSV characterization of the superfund.

A test of MG-IRH nests several tests: When a1 = a3 = 0, we test the CAPM
with the S&P 500 as the market proxy (henceforth, MCAPM). When a2 =
a3 = 0, we test the CCAPM (denoted MCCAPM). Setting a2 = 0 identifies the
IRH index with a glamour-biased portfolio; the tested specification, denoted
MGLAM, assumes that agent 2 invests in stocks only via its professionally
managed retirement funds. Finally, we set a3 = 0 to test the premise of
the P-IRH that agent 2 invests only in visible stocks (henceforth, MP−IRH).
MP−IRH is of particular interest because it implies that consumption beta
and market beta jointly determine the cross-sectional variation in expected
returns. Mankiw and Shapiro (1986) examine which beta is more related
to returns using 464 NYSE stocks, with the S&P 500 as the market proxy.13

They conclude that, unlike the market beta, the consumption beta is unrelated
to expected returns. However, their sample suffers from a survivorship bias.
Epstein and Zin (1991) and Bakshi and Chen (1996) analyze models with the
consumption beta and the market beta in the pricing equation.14 They do not
focus on comparative beta performance and use a small number of assets in
their empirical investigations. Campbell (1996) builds upon the Epstein and
Zin (1991) model and concludes that the covariance with the market appears
to capture most of the cross-sectional variation in expected returns across the

account in their asset allocation. The different decision process in arriving to h2 adds an extra layer of potential
distortions in investments and hence justifies our separate treatment of retirement assets. To the extent that h2
is designed to capture professional/institutional investment style, our construction of h2 in this section is also
in line with the Cai, Kaul, and Zheng (2001) findings of positive-feedback institutional stock trading.

13 The literature that empirically examines either the CAPM or the CCAPM, but not both, is too vast to survey
here. See Campbell, Lo, and MacKinlay (1997) for more details. Apart from MCAPM, we examine specifica-
tions that include the consumption beta in order to focus on dynamic models (with some agents being non
myopic) that are generated by the investor recognition paradigm.

14 In the Epstein and Zin (1991) model, the representative agent has recursive preferences, and the aggregate
wealth (“market”) enters the pricing equation because it proxies for the subsequent period’s utility index. In
the model of Bakshi and Chen (1996), wealth enters the pricing equation because the representative agent
cares about wealth-induced status. In our model preferences are standard. Wealth enters our pricing equation
to account for pressure imposed on the unconstrained agents by those who choose to trade only the market
(or its proxy).
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25 portfolios that he examines. We provide new evidence on the performance
of the consumption beta versus the market beta using a large cross section
of portfolios.

4.3 Data and main results
As our N assets, we choose a set of portfolios that has generated consid-
erable interest since its introduction by Fama and French (1992). JW use
this set to demonstrate that the conditional CAPM fits the data much bet-
ter than the static CAPM examined by Fama and French (1992). To facil-
itate comparisons with that research, we test the model with the N = 100
NYSE/AMEX size-beta portfolios used by JW.15 The data consist of monthly
returns from July 1963 through December 1990, and these returns are used
to construct the glamour-biased return. The return of the S&P 500 is taken
from the Center for Research in Security Prices (CRSP). Consumption data
are from CITIBASE. We use per capita personal consumption expenditures
on nondurables and services. Consumption and returns are converted into
real terms by the implicit price deflator. Monthly growth rates are com-
puted using monthly data. As suggested by Mankiw and Shapiro (1986) and
Breeden, Gibbons, and Litzenberger (1989), quarterly growth rates are com-
puted using monthly data as of the end of each quarter.

Reported results are representative of those obtained with similar specifi-
cations of �g�h1� h2�, such as using consumption of nondurables only or of
services only, using the top size decile or a broader index for h1, and using
a shorter return history when constructing h2. To avoid redundancy, we do
not report the estimates of b in Equation (25). In general, when an estimate
of aj in Equation (24) is statistically significantly different from zero, so is
the estimate of the corresponding bj . The few exceptions to this do not affect
our conclusions.

Table 1 presents estimates for MCAPM, MCCAPM, MP-IRH, and MGLAM. These
results are of interest for two reasons. First, excluding the CAPM, these
models have not been estimated in previous studies using so large a cross
section of portfolios. Second, the results provide perspective for the subse-
quent investigation of MG-IRH, which is the focus of our analysis. It is clear
that neither the CAPM nor the CCAPM is supported by the data. The P-IRH
is rejected as well [which is also evidence against the models of Epstein
and Zin (1991) and Bakshi and Chen (1996)]; ICI do not limit themselves
to index investing. Results for MGLAM indicate somewhat improved perfor-
mance. The Wald statistics and the HS test are consistent with a correctly
specified model, but more than 80% of the cross-sectional variation cannot
be accounted for, and the HJ-d indicates that pricing errors are significantly

15 I thank Ravi Jagannathan and Zhenyu Wang for making their data available to the public; see JW for the
description of portfolio formation and for summary statistics. I also thank Robert Stambaugh for the SMB
and HML data below (provided to him by Kenneth French).
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Table 1
Evaluation of models nested by MG-IRH

a0 g SP500 GLAM R2 J2 HS d

Panel A: Monthly Returns, July 1963–December 1990 (330 months)
MCAPM

OLS 0�87 −0�17 3�48 0�22 0�6560
t-value 3�60 −0�46 �64�22� �0�74�
GLS 0�83 −0�36 1�60 �0�0650�
t-value 5�46 −1�27 �20�57�

MCCAPM
OLS 0�75 −0�16 1�66 0�21 0�6452
t-value 3�89 −0�46 �64�62� �2�50�
GLS 0�72 −0�23 6�60 �0�0666�
t-value 5�45 −2�57 �1�02�

MP−IRH
OLS 0�87 −0�02 −0�16 3�50 0�22 0�6434
t-value 3�60 −0�14 −0�45 �89�66� �2�92�
GLS 0�78 −0�22 −0�22 7�15 �0�0668�
t-value 4�98 −2�36 −0�75 �2�80�

MGLAM
OLS 0�61 −0�38 0�24 6�63 8�01 2�31 0�6447
t-value 2�48 −2�80 0�59 �1�82� �31�44� �2�08�
GLS 0�68 −0�24 0�18 6�91 �0�0669�
t-value 4�53 −2�63 0�54 �3�16�

Panel B: Quarterly Returns, Q3 1963–Q4 1990 (110 quarters)
MCAPM

OLS 1�70 0�43 2�48 0�10 1�0582
t-value 1�79 0�32 �74�67� �0�26�
GLS 1�68 −0�15 0�03 �0�1006�
t-value 3�66 −0�17 �86�48�

MCCAPM
OLS 1�72 0�10 6�27 0�25 1�0329
t-value 2�61 0�50 �61�68� �3�26�
GLS 1�79 −0�18 5�75 �0�0934�
t-value 4�30 −2�40 �1�64�

MP−IRH
OLS 2�34 0�25 −1�16 9�29 1�47 1�0325
t-value 2�76 1�15 −0�86 �47�96� �2�60�
GLS 1�66 −0�19 0�56 6�02 �0�0929�
t-value 3�51 −2�44 0�56 �4�92�

MGLAM
OLS 0�99 −0�28 2�52 18�83 8�12 1�10 1�0231
t-value 1�08 −2�73 1�71 �1�73� �57�62� �4�78�
GLS 1�51 −0�22 1�89 8�00 �0�0924�
t-value 3�33 −2�74 1�60 �1�83�

The table reports estimates of four models (MCAPM�MCCAPM�MP−IRH�MGLAM) that are nested by the cross-sectional regres-
sion model MG-IRH in Equation (24),

E�rjt �= a0 +a1Djg +a2Djh1
+a3Djh2

�

In panel A, rjt is the real monthly return on a Fama and French (1992)/Jagannathan and Wang (1996) (FF(92)/JW(96)) size-
beta portfolio j�j = 1�2� C C C �100� in month t (July 1963–December 1990), and the GLS estimation uses Equation (B13). In
panel B, rjt is the real quarterly return in quarter t (Q3 1963–Q4 1990), and the GLS estimation uses Equation (B14). The Ds
are the slope coefficients in the OLS regression of rjt on a constant and a variable specified in the column heading: g, the
growth rate of consumption expenditures on nondurables and services; h1 = SP500, the rate of change in the S&P 500 index;
h2 = GLAM, the rate of return on a glamour-biased portfolio. The t-values are corrected based on Equation (B18) for the
sampling error in betas. The OLS R2 and the p-values are reported in percentage points. J2 is the Wald statistic for zero
slopes excluding the intercept (p-value is in parentheses). HS (reported if both OLS-based and GLS-based Wald tests reject
zero slopes) is the Hausman (1978) specification test statistic (p-value is in parentheses). The Hansen and Jagannathan (1997)
distance for the proxy implied by Equation (24) is denoted by d (the p-value is reported in parentheses, and is computed under
the null hypothesis of a correctly specified model) [the standard error of d under the alternative is reported in brackets].

119



The Review of Financial Studies / v 15 n 1 2002

different from zero.16 Still, the overall conclusion from Table 1 is that the
nested formulations of our premise must be missing important aspects of
reality.

Table 2 reports results for MG-IRH. The main result is that, by all criteria,
this model explains the cross-sectional variation quite well. The R2 of 56.55%
and the HJ-d of 0.6264, for monthly data, are comparable to those reported by
JW for the conditional CAPM. This result is corroborated with quarterly data.
The consumption beta enters significantly into the pricing equation despite
the presence of the market beta, contrary to the findings of Mankiw and
Shapiro (1986). We remark that estimates of b in Equation (25) confirm
that g, h1, and h2 are statistically significant components of the stochastic
discount factor. Furthermore, after allowing for sampling errors, we cannot
reject at the conventional rate of 5% the null hypothesis of a zero HJ-d for
the discount factor implied by MG-IRH (while being able to reject the CCAPM
and other nested models). Under the alternative of misspecified proxies, the
HJ-d has a low power to distinguish between MG-IRH and the models it nests.
MG-IRH has the lowest pricing error, however, suggesting that this model
incorporates a better descriptive realism.

The findings indicate that asset prices are consistent with our theoretical
model and with our specification of both the direct and the delegated compo-
nents of equity investment under incomplete information. This implies that
although index funds appeared in the United States only after 1970, it is
likely that implicit index linking (e.g., via S&P 500-like investing in visible,
large firms) was implemented by a significant group of investors (the ICI)
during the 1963–1990 period that we study. As a side result, we provide
indirect confirmation that the LSV sample characterizes well the pension
fund industry. The behavior of stock market prices is consistent with the
joint hypothesis that the entire tax-exempt money management industry held
a glamour-biased portfolio, and that a nonnegligible fraction of these retire-
ment assets was owned by a subset of U.S. workers that otherwise owned
only visible stocks.

4.4 Additional investigations
If MG-IRH is the correct specification, adding regressors to Equation (24)
should not add significant explanatory ability. To explore this, we begin by
considering three specification tests, where each test adds one explanatory
variable to MG-IRH. First, we let agent 2 invest in a third portfolio that
has a nonglamour bias (constructed each t using those assets that under-
performed the S&P 500 over the past three years). The intention is to proxy

16 The estimated a1 in MGLAM is negative while the estimated a3 is positive. Setting h = h2 in Equation
(22) yields a1t > 0, and a3t < 0 if the glamour-biased portfolio has positive conditional correlation with g.
Theorem 2 states that such sign reversal for unconditional vs. conditional coefficients is plausible in a well-
specified model, and statistical significance of the betas, as a group, is the only sought-after implication of
Equation (22). Similarly, no sign restrictions are imposed by JW in their test of the conditional CAPM.
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Table 2
Evaluation of MG-IRH and models that nest MG-IRH

g SP500 GLAM a4 R2 J2 HS d

Panel A: Monthly Returns, July 1963–December 1990 (330 months)
MG-IRH

OLS −0�21 −1�81 1�69 56�55 9�00 2�28 0�6264
t-value −1�74 −2�31 1�95 �2�93� �51�69� �6�38�
GLS −0�23 −1�73 1�89 12�87 �0�0723�
t-value −2�42 −2�54 2�46 �0�49�

Mnongl
OLS −0�23 −1�37 3�09 −1�91 58�09 10�29 1�06 0�6223
t-value −1�92 −1�61 2�32 −1�31 �3�58� �90�10� �8�56�
GLS −0�24 −1�30 2�89 −1�59 13�88 �0�0723�
t-value −2�51 −1�75 2�58 −1�30 �0�77�

Mlabor
OLS −0�21 −1�80 1�69 0�00 56�56 9�00 0�6239
t-value −1�73 −2�30 1�95 0�07 �6�11� �8�12�
GLS −0�24 −1�65 1�80 0�04 13�49 �0�0729�
t-value −2�48 −2�39 2�32 0�99 �0�91�

Msize
OLS −0�19 −0�76 0�55 −0�07 58�17
t-value −1�60 −0�67 0�46 −1�38
GLS −0�22 −0�84 0�93 −0�06
t-value −2�38 −0�98 0�98 −1�73

Panel B: Quarterly Returns, Q3 1963–Q4 1990 (110 quarters)
MG-IRH

OLS −0�21 −6�24 7�40 59�49 9�90 2�51 1�004
t-value −2�23 −2�11 2�23 �1�94� �47�37� �9�88�
GLS −0�21 −3�77 5�78 10�36 �0�0964�
t-value −2�62 −1�72 2�19 �1�58�

Mnongl
OLS −0�16 −4�70 10�45 −5�08 60�67 10�11 2�00 1�001
t-value −1�64 −1�55 2�36 −1�08 �3�86� �73�62� �9�88�
GLS −0�20 −2�76 7�72 −3�51 11�22 �0�0965�
t-value −2�43 −1�13 2�25 −0�89 �2�42�

Mlabor
OLS −0�18 −6�13 7�10 −0�11 60�02 9�52 2�46 1�002
t-value −1�83 −2�05 2�14 −0�74 �4�93� �65�21� �8�94�
GLS −0�20 −3�84 5�76 −0�06 10�33 �0�0964�
t-value −2�32 −1�72 2�17 −0�51 �3�53�

Msize
OLS −0�18 −1�82 2�40 −0�31 63�21
t-value −1�93 −0�59 0�68 −2�37
GLS −0�19 −0�99 2�38 −0�23
t-value −2�39 −0�43 0�85 −2�63

The table reports estimates of �a1� a2� a3� for the cross-sectional regression model MG-IRH in Equation (24),

E�rjt �= a0 +a1Djg +a2Djh1
+a3Djh2

�

and estimates of �a1� a2� a3� a4� for the cross-sectional regression models Mnongl�Mlabor �Msize defined by

E�rjt �= a0 +a1Djg +a2Djh1
+a3Djh2

+a4Kj �

In Mnongl , Kj = Djh3
, and h3 is the return on a nonglamour portfolio formed from underperformers (relative to the S&P 500).

In Mlabor , Kj = Djh3
, and h3 is the growth rate in per capita labor income. In Msize, Kj = log�MEj �, and MEj is the equally

weighted average of the real market value (in millions of constant dollars) of the stocks in portfolio j . In panel A, rjt is the real
monthly return on a FF(92)/JW(96) portfolio j �j = 1�2� C C C �100� in month t (July 1963–December 1990). In panel B, rjt is
the real quarterly return in quarter t (Q3 1963–Q4 1990). The remaining Ds, the estimation methods, and the reported statistics
are as described in Table 1.
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for a “value,” or “contrarian,” investing. We refer to this specification as
the nonglamour model (Mnongl). Second, following Mayers (1972), we let
the IRH index include wealth due to human capital. As in JW, the return
on human capital is measured by the growth rate in labor income. Labor
income is defined as the difference between total personal income and div-
idend income, and although it is based on aggregates, it is assumed to be
valid for agent 2. We denote this specification by Mlabor. Third, in the size-
based specification (Msize), we add a size regressor to control for the size
characteristic. Berk (1995) argues that one should expect (the log of) market
size to be correlated with expected returns in the cross section. The ques-
tion is whether the size regressor can explain that portion of cross-sectional
variation that is not explained by our model.

Results are given in Table 2. Neither Mnongl nor Mlabor dramatically out-
performs MG-IRH. The t-value that corresponds to each of the new regres-
sors is never statistically significant. The R2 and HJ-d indicate only minor
improvements over MG-IRH.17 Results for Msize are mixed.18 The latter finding
suggests that there is a need for further work to more accurately characterize
the direct and the delegated components within the portfolio of ICI. Nev-
ertheless, adding the size regressor can explain virtually no cross-sectional
variation beyond what is already explained by our model. Figure 1 confirms
this conclusion and illustrates visually that our results are not driven simply
by a few outliers. We can safely state that the CCAPM augmented by the
IRH is a more realistic model than, for example, the CCAPM or the CAPM
for explaining the variation in the cross section of average returns.

To examine subperiods, we divide our sample of 330 months into three
subsamples of 110 months. The subperiods correspond roughly to the calen-
dar periods of the 1960s, 1970s, and 1980s (and keeping the same number
of observations as in the full-sample quarterly analysis facilitates comparison
across tables). Table 3 presents the results for MCCAPM, MG−IRH, and Msize.
The evidence in favor of MG-IRH is less decisive than with the full sample.19

However, it is interesting to note that MG-IRH performs best in the middle
subperiod, which to a large extent coincides with the period in which ICI
gained easy access to baskets of large firms via index funds.

17 If growth of aggregate income is a poor proxy for the growth of the income of ICI, then failure of Mlabor may
indicate our failure to identify the fraction of labor income representing ICI.

18 With monthly data, the size regressor is not significant; however, it is significant using quarterly data. The
presence of the size regressor has only a marginal impact on the estimate of a1 compared to its value and
statistical significance in MG-IRH. There is also no impact on the signs of estimated a2 and a3, but their
magnitude and statistical significance are reduced.

19 According to the OLS R2 and the HJ-d, MG-IRH performs better in panel B of Table 3 than in panels A and C,
or in panel B of Table 2. The HJ-d test rejects the model in the first and last subperiods at the 5% confidence
level. The other models examined in this section are rejected as well in these two subperiods (to save space
Table 3 summarizes results of three models only). The asymptotic inferences in Table 3 are less reliable than
in Tables 1 and 2, because in Table 3 we use monthly consumption growth coupled with a small number of
observations relative to the number of examined assets.
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Figure 1
Fitted expected real monthly returns versus realized average real monthly returns
Each scatter point represents a portfolio. The CCAPM graph describes fitted values from the regression
model: E�rjt �= a0 +a1Djg � The CCAPM with Size graph describes fitted values from the regression model:
E�rjt � = a0 + a1Djg + a4 log�MEj �� The G-IRH CCAPM graph describes fitted values from the regression
model: E�rjt � = a0 +a1Djg +a2Djh1

+a3Djh2
� Finally, the G-IRH CCAPM with Size graph describes fitted

values from the regression model: E�rjt �= a0 +a1Djg +a2Djh1
+a3Djh2

+a4 log�MEj �� All the variables are
as described in Tables 1 and 2. The models are estimated by OLS.

The fact that a three-beta specification performs well in explaining the
variation in average returns is not surprising. Our contribution is to illustrate
that a consumption-based model is empirically viable, if we account for trad-
ing patterns of ICI. To learn more about the spanning power of (g�h1� h2),
we combine them with variables suggested by an alternative model. Like JW,
we examine the incremental explanatory power of the betas with respect to
the size (SMB) and book-to-market-value (HML) factors of Fama and French
(1993) (we denote their model by MFF�93�). In Table 4, using monthly returns,
the SMB and HML betas do not perform well when combined with MG-IRH.
The GLS results still favor the MG-IRH specification, thereby offering further
support for our formulation of the IRH. Quarterly analysis leads to similar
conclusions (results not reported).
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Table 3
Subperiod evaluation of MG-IRH and related models

OLS GLS

g SP500 GLAM a4 R2 g SP500 GLAM a4 d

Panel A: July 1963–August 1972 (110 months)
MCCAPM 0�21 21�19 −0�04 1�1308
t-value 1�14 −0�84 �0�45�
MG-IRH −0�09 −1�58 2�48 69�40 −0�07 −0�89 1�87 1�1147
t-value −1�28 −1�50 1�83 −1�26 −1�05 1�66 �1�21�
Msize −0�09 −0�99 1�73 −0�05 70�18 −0�07 −0�17 0�85 −0�07
t-value −1�25 −0�82 1�09 −0�93 −1�37 −0�19 0�70 −1�96

Panel B: September 1972–October 1981 (110 months)

MCCAPM 0�18 23�92 −0�07 0�9954
t-value 1�07 −1�33 �2�40�
MG-IRH −0�02 −2�28 3�39 65�70 −0�09 −2�26 3�32 0�9666
t-value −0�21 −2�05 2�00 −1�54 −1�89 2�25 �8�42�
Msize 0�00 −1�71 1�98 −0�09 66�50 −0�08 −1�86 2�84 −0�03
t-value 0�02 −1�10 1�07 −1�04 −1�43 −1�35 1�68 −0�54

Panel C: November 1981–December 1990 (110 months)

MCCAPM −0�44 2�43 −0�08 0�9979
t-value −1�17 −0�37 �0�38�
MG-IRH 0�05 1�38 −2�43 46�99 −0�03 −0�91 0�23 0�9884
t-value 0�19 0�67 −1�20 −0�15 −0�57 0�15 �0�68�
Msize 0�09 −4�31 2�93 0�20 53�29 −0�02 −3�61 2�67 0�11
t-value 0�32 −1�57 1�14 2�61 −0�09 −1�63 1�28 2�12

The table reports estimates of the cross-sectional regression models MCCAPM (as in Table 1), MG-IRH, and Msize (as in Table 2)
over three subperiods: panel A: July 1963–August 1972, panel B: September 1972–October 1981, panel C: November 1981–
December 1990, using real monthly returns of the 100 FF(92)/JW(96) size-beta portfolios. The estimation methods and the
reported statistics are as described in Table 1. GLS estimation and GLS and OLS t-values are based on Equation (B14). The
Hansen and Jagannathan (1997) distance for the proxy implied by Equation (24) is denoted by d (the p-value under the null of
a correctly specified model is in parentheses).

The inferences in Tables 1–4 are asymptotic. To obtain finite-sample res-
ults, recall that Equation (24) implies that some combination of the portfolio
unconditionally most highly correlated with consumption growth (MCP), the
S&P 500 portfolio, and the glamour-biased portfolio is mean-variance effi-
cient. Gibbons, Ross, and Shanken (1989) (GRS) derive the finite-sample
distribution of a likelihood-ratio test statistic, which is widely used to test
the efficiency of a combination of portfolios. GRS test a given linear pric-
ing model (the null hypothesis, H0) against a general alternative hypothesis.
Kandel and Stambaugh (1989) show, in the presence of a riskless asset, that
the GRS test can also be used to test the model against a specific alternative
hypothesis (HA), where HA states that the tangent portfolio is a combination
of portfolios that include the portfolios under H0 as a proper subset. We test
MG-IRH against both a general and a specific alternative.

Testing MG-IRH against HA requires information only about the excess
returns of the portfolios specified by HA. A test against a general alternative
requires specifying the universe of assets with respect to which the tangency
is defined. The power of the GRS test is very sensitive to the number of assets
used, so we follow the suggestion of Campbell, Lo, and MacKinlay (1997,
chap. 5) and keep the number of assets small. The 100 size-beta portfolios
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Table 4
The impact of the Fama and French (1993) Factors on MG-IRHs

g SP500 GLAM SMB HML R2 J2 HS d

OLS −0�21 −2�18 2�28 −0�13 56�62 9�77 2�98 0�6250
t -value −1�83 −1�34 0�96 −0�23 �4�45� �56�18� �6�68�
GLS −0�23 −2�60 3�21 −0�35 12�81 �0�0721�
t -value −2�45 −1�95 1�69 −0�78 �1�22�
OLS −0�21 −1�33 1�41 0�19 56�92 9�27 0�6264
t -value −1�78 −1�37 1�50 0�70 �5�48� �6�48�
GLS −0�23 −1�68 1�86 0�02 12�89 �0�0723�
t -value −2�42 −2�07 2�29 0�10 �1�18�
OLS −0�21 −1�43 1�56 −0�03 0�18 56�92 10�01 0�6249
t -value −1�83 −0�75 0�61 −0�05 0�66 �7�48� �6�34�
GLS −0�23 −2�70 3�31 −0�37 −0�03 12�77 �0�0722�
t-value −2�44 −1�73 1�61 −0�78 −0�12 �2�56�

The table reports estimates of �a1� a2� a3� a4� a5� for the cross-sectional regression model

E�rjt �= a0 +a1Djg +a2Djh1
+a3Djh2

+a4DjSMB +a5DjHML�

which adds to the MG-IRH specification the betas from the model of Fama and French (1993). Here rjt is the real monthly (July
1963–December 1990) return on a FF(92)/JW(96) portfolio j �j = 1�2� C C C �100�. The Ds are the slope coefficients in the OLS
regression of rjt on a constant and a variable specified in the column heading: g, the growth rate of consumption expenditures
on nondurables and services; h1 = SP500; h2 = GLAM. In MFF�93� , SMB and HML are factors designed to capture the risks
related to firm size and book-to-market-equity, respectively. The estimation methods and the reported statistics are as described
in Table 1.

are used to construct a smaller universe of 15 portfolios. These include the
three portfolios implied by MG-IRH and an additional 12 primary assets. The
primary assets are 10 size-based value-weighted portfolios; the nonglamour-
biased portfolio used in Table 2; and an equally weighted market portfolio
(EWMKT). The power of the GRS test increases with the number of observa-
tions, so we work with monthly returns (in excess of a Treasury-bill return,
taken from CRSP). As in Table 1, we are interested in examining several
models nested by MG-IRH. One way to compare the models is to keep the
primary assets fixed and to vary the portfolios under H0. Alternatively, one
can fix the universe of assets and examine each model with respect to that
universe. To be able to implement both methods, the MCP is constructed from
the primary assets, where, to avoid collinearity, two equally weighted portfo-
lios replace the EWMKT: one constructed from the 50 small-size portfolios,
and the second constructed from the remaining 50. This MCP is denoted
MCP∗. A second construction, MCP∗∗, uses the 100 original assets.20

20 To use the GRS finite-sample results, we must assume that (i) the weights of the MCP are estimated without
error, (ii) an unconditionally real-riskless asset exists, and its rate is known, (iii) excess returns are normally
distributed. Using a small number of assets to construct the MCP∗ increases the precision of the estimated
weights, but the sample correlation of the MCP∗ with g is only 0.17. For MCP∗∗ the correlation with g
increases to 0.61. The annualized Sharpe ratios of the MCP∗ and the MCP∗∗ are 0.11 and 0.53, respectively.
It is apparent that an extra source of noise is introduced by transforming Equation (24), which uses a univariate
beta with respect to g, into a linear pricing in terms of multivariate betas with respect to portfolios. This is
the reason we implemented the CSRs using univariate betas. Although we do not defend the assumptions
in (i)–(iii) above, and although one can attempt to relax some or all of them, we nevertheless perform the
GRS test to provide additional evidence regarding our model, and to offer another dimension along which
our results can be compared with results of others. However, we view the likelihood-ratio tests only as an
auxiliary tool of investigation.
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Table 5
Evaluation of MG-IRH using likelihood ratio tests

Panel A: Tests against a general alternative
Fixed primary assets Fixed universe of assets

H0 n1� n2 F ∗ F ∗∗ n1� n2 F ∗ F ∗∗

MCAPM 12,317 2�102 2�102 14,315 1�828 2�480
�1�65� �1�65� �3�38� �0�24�

MCCAPM 12,317 2�217 2�318 14,315 1�957 2�064
�1�09� �0�75� �2�06� �1�35�

MP-IRH 12,316 2�102 2�083 13,315 1�963 1�954
�1�66� �1�78� �2�33� �2�41�

MGLAM 12,316 1�831 1�805 13,315 1�726 1�715
�4�26� �4�64� �5�46� �5�66�

MG-IRH 12,315 1�770 1�766 12,315 1�770 1�766
�5�21� �5�28� �5�21� �5�28�

Panel B: Tests against a specific alternative
CRSP VW as a market proxy S&P 500 as a market proxy

H0 n1� n2 F ∗ F ∗∗ n1� n2 F ∗ F ∗∗

MG-IRH 3,324 6�920 6�704 2,325 6�767 6�423
�0�02� �0�02� �0�13� �0�18�

MFF�93� 3,324 2�906 5�679 2,325 0�506 4�557
�3�48� �0�08� �60�31� �1�12�

MG-IRH +SMB 2,324 9�819 9�666 1,325 12�434 12�081
�0�01� �0�01� �0�05� �0�06�

MG-IRH +HML 2,324 3�493 3�555 1,325 0�010 0�080
�3�15� �2�97� �92�03� �77�70�

The table reports likelihood ratio tests of MG-IRH and related models using real excess monthly returns (July 1963–December
1990). Under the null hypothesis (H0), the tangent portfolio is a combination of K1 portfolios as implied by the model stated
in the first column. Panel A reports tests of H0 against a general alternative. In columns 2–4 tangency is defined with respect
to K1 + 12 assets (the K1 components of the tangent plus 12 primary assets, where K1 varies across models). The fixed 12
primary assets are the 10 value-weighted (VW) size-based portfolios, the EWMKT portfolio, and the nonglamour-biased portfolio
created from the 100 original assets (the FF(92)/JW(96) size-beta portfolios) used in Tables 1–4. In columns 5–7 tangency is
defined with respect to a fixed universe of 15 assets (the 12 primary assets plus the K1 = 3 portfolios implied by MG-IRH—the
MCP, the S&P 500, and the glamour-biased portfolio). Panel B reports tests of H0 against a specific alternative (HA). Under
HA , a K2-beta model describes unconditional expected returns, where K2 >K1. MFF�93� specifies the K1 = 3 portfolios to be
the market proxy, the SMB, and the HML portfolios. In the last two rows one portfolio from MFF�93� is added to augment
MGIRH (so that K1 = 4). Two market proxies are examined in panel B: In columns 2–4 the CRSP VW portfolio is used, and HA
combines the three portfolios specified by MG-IRH with the three portfolios specified by MFF�93� (so that under the alternative
K2 = 6). In columns 5–7 the S&P 500 proxies for the market portfolio. In this case MG-IRH and MFF�93� agree on one of the
three components of the tangent portfolio and hence HA states that MG-IRH +SMB+HML is the true model (K2 = 5). F ∗ is
the GRS statistic when the MCP is constructed from the primary assets (as described in Section 4.4). F ∗∗ is the GRS statistic
when the MCP is constructed from the 100 original assets. The p-values (in parentheses) are in percentage points. n1 and n2
are the numerator and the denominator degrees of freedom, respectively, of the F -distribution of the GRS statistic under H0.

Results are reported in Table 5. In panel A, when keeping the primary
assets fixed, we cannot reject MG-IRH at the 5% significance level, while the
nested models are rejected. However, when keeping the universe of assets
fixed, both MG-IRH and MGLAM cannot be rejected—the universe of assets is
not rich enough to allow the GRS test to distinguish between the two. The
OLS results in Table 4 indicate that although the univariate SMB and HML
betas do not add explanatory power to MG-IRH, they do affect the signifi-
cance of Djh1

and Djh2
. Panel B investigates the impact of SMB and HML

further. The likelihood ratio test indicates that MG-IRH is rejected in favor
of the combined six-beta model (MG-IRH plus MFF�93�). MFF�93� is rejected as
well in favor of the combined model (unless we use the MCP∗ and redefine

126



The Investor Recognition Hypothesis in a Dynamic General Equilibrium

MFF�93� to use the S&P 500 as the market proxy). According to the first two
rows of panel B, each model seems to miss important features captured by
the other model. The last two rows reveal that the information MG-IRH misses
may, to some extent, be captured by the HML portfolio [which Fama and
French (1993) interpret as related to relative earnings distress]. It may be
worthwhile to attempt to refine our premise and consider accounting for how
individual investors (or the intermediaries to whom the investment decision
is delegated) treat firms in financial distress. The overall evidence in Table 5,
notwithstanding problems in implementing the likelihood ratio tests, rein-
forces the conclusion from Tables 1–4. The model has its shortcomings, but
its theoretical implications seem to have enough empirical support in order
to justify moving farther along the IRH track.

5. Conclusion

The CCAPM has advanced our understanding of the most fundamental ques-
tion in finance—the trade-off between risk and return. Some argue that it may
be necessary to take a step beyond the rational expectations revolution to bet-
ter understand the workings of the capital markets [Shiller (1989)]. Others
disagree. Merton (1987), for example, adapts the rational framework of the
static CAPM to account for incomplete information. We undertake a related
task in the dynamic world of the CCAPM and complement the theory with
empirical evidence. We include in the traditional general equilibrium frame-
work a class of agents who can implement only a particular trading strategy.
We provide full equilibrium characterization and illustrate that considerable
differences arise relative to the CCAPM (due to agent heterogeneity) and
relative to Merton’s (1987) model (due to intertemporal considerations). Our
model can be extended to include several informationally constrained agents,
each following one or several trading strategies. The intuition behind the
basic model prevails, with the results modified to account for correlation
patterns between various strategies.

Our empirical analysis is driven by the premise that a trading strategy
shaped by real-world information costs should incorporate an investment
in well-known, visible stocks, and an investment delegated to professional
money managers, in particular via pension plans. We argue that we have at
hand reasonable proxies for both components. Our argument must be put to
the test, and this could not have been done without the model. Nevertheless,
the model treats visibility as well as institutional investments as exogenous.
Clearly, endogenizing these variables is a challenge of considerable interest
for future work.

We test the joint hypothesis that both the model and the chosen proxies
are well specified. The test examines the ability of our premise to explain the
cross-sectional variation in average equity returns. The model performs quite
well, but much is still left unexplained. These findings should encourage
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further research that will lead to detailed characterization of portfolios and
trading strategies of identifiable market participants. Knowing what agents
trade may help us understand the nature and impact of the underlying fric-
tions.

Caveats are in order. Empirical results are specific to the examined dataset
and time period. Additional tests that focus on implications that are not
tested here (such as the link between stock volatility and short-term interest
rates) and examine other markets (domestic as well as international) may
prove informative. Furthermore, at the cost of imposing more structure on
the econometric specification, relaxing some of the assumptions underlying
our unconditional formulation may lead to more powerful tests of the model.

Appendix A

A.1 Proofs
Proof of Proposition 1. We have cast the model with N = 2 for expositional purposes. The
proof is given for an economy where F is generated by an N -dimensional Brownian motion
w = �w1� C C C �wN �

� and where there are N risky assets. Hence, suppressing the dependence on
�t���, let q = �q1� C C C � qN−1�1�� and redefine � accordingly,

�= ���2� �2� ∈�N+1 ' �2j = qj�2N � j = 1� C C C �N −1� (A1)

Treatment of the N -dimensional case lays the foundation for the empirical analysis that uses
N assets. Agent 2 maximizes U2 over consumption plans that can be financed by ��2� �2� ∈&,
subject to the budget constraint �2�0�+ �2�0�

�1̄ = b, provided that ��2� �2� ∈ �. Cvitanić and
Karatzas (1992) show that one can solve this problem via an appropriately defined minimization
problem — the dual problem associated with the constraint �. Let 6 = �61� C C C � 6N � and 6−N =
�61� C C C � 6N−1�. For �60� 6� ∈�N+1 the support function of −� is

L�60�6�≡ sup
��2��2�∈�

−��260+��
2 6�= sup

��2��2N �∈�2
−
(
�260+�2N

(N−1∑
j=1

qj6j+6N

))
�

The effective domain of L�60� 6� is

�̃≡{�60�6�∈�N+1 'L�60�6�<�}={�60�6�∈�N+1 '60 =0�6N =−
N−1∑
j=1

qj6j

}
�

where absence of constraints on �2 requires 60 = 0 (hence in the fictitious unconstrained econ-
omy only the drift must be modified to equal �+ 6), and the structure of � imposes the
above restriction on 6. Also, L = 0 on �̃. We obtain 6 by solving the dual problem. Let
� �t��� = �6 ∈ �N ' 6N = −∑N−1

j=1 qj�t���6j. For an agent with logarithmic utility, the dual
problem

min
�/2�6�∈�+×�

E
(
−
∫ T

0
e−!T �1+!t+ log�/206�t���dt+/2b

)
�

where

06�t� = B�t�−1 exp
(
−
∫ t

0
���s�−1���s�+6�s�− r�s�1̄���dw�s�

− 1
2

∫ t

0
���s�−1���s�+6�s�− r�s�1̄��2ds

)
�
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yields /2 = �1−e−!T �/!b, and further reduces to a pointwise minimization of a simple quadratic
form:

min
6∈� �t���

���t���−1���t���+6− r�t���1̄��2� (A2)

Each 6 in � can be represented as 6�t� =M�t�6−N �t�, where M�t� = �IN−1 −q−N �t��
� is an

N ×�N −1� matrix, IN−1 is an identity matrix of rank N −1, and q−N �t� contains the first N −1
elements of q�t�. Substituting into Equation (A2) we obtain a convex program in 6−N . It follows
that the unique global minimizer is given by (suppressing the dependence on �)

6�t�=−M�t�
(
���t�−1M�t�����t�−1M�t�

)−1
���t�−1M�t���2�t�� (A3)

where 2�t� is as in Equation (11). Once we obtain the solution to the dual problem, Equations (9)
and (10) follow, for example, using Proposition 1 in Cuoco (1997) with

22�t�= ��t�−1���t�+6�t�− r�t�1̄�� (A4)

To obtain 22�t� as in Equation (11), first substitute Equation (A3) into Equation (A4) to get

22�t� =
(
I −��t�−1M�t�����t�−1M�t���

×��t�−1M�t��−1���t�−1M�t���
)
2�t�� (A5)

Also note that the wealth evolution equation of agent 2 under � in Equation (A1) can be
rewritten, analogous to Equation (8), using the bond and a fund F with �F �t� proportional
to q�t����t�. Next, let X�t� = Span�Col ���t�−1M�t���� Y �t� = Span��F �t�� be two vector
subspaces of �N , for a given t. Assuming that rank���t��= N everywhere, it is easy to verify
that dim�X�t�� = N −1, and dim�Y �t�� = 1. Since we also have that �F �t���t�−1M�t� = 0, it
is straightforward to show that X⊥ = Y , where X⊥ is the subspace of �N orthogonal to X. The
projection matrix on X⊥ is given by the term in the large parentheses in Equation (A5). It must
then equal the projection matrix on Y , given by 3F �t�= �F �t�

���F �t��F �t�
��−1�F �t�. Hence,

22�t� is as stated in Equation (11). �

Lemma 1. In equilibrium, the state-price density processes of the two agents are

01�t�= e−!tuc���t��<�t��/uc���0��<�0��� 02�t�= 01�t�<�0�/<�t�� (A6)

where <�t�= u′
1�c

∗
1�t��c

∗
2�t�, and its initial value satisfies Equation (15). The equilibrium con-

sumption allocations and the spot-riskless interest rate (where ��·� is the drift operator) are

c∗1�t� = f1�uc���t��<�t���� c∗2�t�= <�t�/uc���t��<�t��� (A7)

r�t� = −�
(
e−!tuc���t��<�t��

)
/e−!tuc���t��<�t��� (A8)

Proof of Lemma 1. First-order conditions from the portfolio optimization of agent 1 and
agent 2 (see Section 2.2), combined with clearing of the consumption good market, yield:
c∗1�t�+ c∗2�t� = f1�/101�t�e

!t�+ �/202�t�e
!t�−1 = ��t�. Then, from Karatzas, Lehoczky, and

Shreve (1990), we know that /101�t�e
!t = uc���t��<�t��, where <�t�= /101�t�

/202�t�
= u′1�c∗1 �t��

u′2�c∗2 �t��
. Using

01�0� = 02�0� = 1 establishes Equation (A6). Then Equation (A7) is a restatement of agents’
first-order conditions using Equation (A6), and Equation (15) follows, restating b = W2�0�,
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with c∗2�0�=<�0�/uc���0��<�0��. Absence of arbitrage and dynamic market completeness imply
that agent 1 faces the unique state-price density process

01�t�= B�t�−1 exp
(
−
∫ t

0
2�s��dw�s�− 1

2

∫ t

0
�2�s��2ds

)
� (A9)

We apply Itô’s lemma to 01�t� in Equation (A9) and in Equation (A6). Equating the drift terms
yields r�t� in Equation (A8). Equating the diffusion terms yields

ucc���t��<�t�����t�+uc<���t��<�t���<�t�+uc���t��<�t��2�t�= 0� (A10)

�

Remark 1 (stock prices). To get the “present value” expression for stock prices, note that

d�e−!tuc���t��<�t��Sj �t��+ e−!tuc���t��<�t���j �t�dt

= e−!t�uc���t��<�t���Sj �t��j�t�−�j�t��− r�t�uc���t��<�t��Sj �t�

+Sj�t��j�t��ucc���t��<�t�����t�+uc<���t��<�t���<�t��

+uc���t��<�t���j �t��dt

+e−!t�uc���t��<�t��Sj �t��j�t�+Sj�t��ucc���t��<�t�����t�

+uc<���t��<�t���<�t��
��dw�t�

= e−!tuc���t��<�t��Sj �t���j�t�−2�t���dw�t��

where the first equality follows from Itô’s lemma and Equation (A8), and the second from Equa-
tion (A10) and �j�t�2�t�= �j�t�− r�t�.When

∫ t

0 e
−!s uc���s�, <�s��Sj �s���j�s�−2�s���dw�s�

is in fact a martingale, so is e−!tuc���t��<�t�� Sj �t�+
∫ t

0 e
−!suc���s��<�s���j �s�ds. Impos-

ing Sj�T �= 0, yields

Sj�t�= E
(∫ T

t

e−!�s−t� uc���s��<�s��

uc���t��<�t��
�j �s�ds

∣∣∣∣�t

)
� j = 1� C C C �N �

Proof of Theorem 1. From consumption good market clearing and Equation (A7)

f1�uc���t��<�t���+<�t�/uc���t��<�t��= ��t�� (A11)

Differentiate Equation (A11) with respect to �, for a given ��� t�, and use f ′
1�x�= 1/u′′

1�f1�x��

to get

u′′
1�f1�uc���t��<�t����=

uc���t��<�t��
2ucc���t��<�t��

uc���t��<�t��
2 +<�t�ucc���t��<�t��

� (A12)

Differentiate Equation (A11) with respect to <, and use Equation (A12) to get

uc<���t��<�t��= A�t�� (A13)

Rearranging Equation (A12), using Equation (A7), yields

A�t�−1 = A1�t�
−1 +A2�t�

−1� (A14)

and differentiating Equation (A12) with respect to �, and rearranging using Equation (A7), yields
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P�t�= P1�t��A�t�/A1�t��
2 +P2�t��A�t�/A2�t��

2� (A15)

where

A2�t�= uc���t��<�t��/<�t�� (A16)

and P2�t�= 2A2�t�. From Equation (A6), the stochastic weighting process is <�t�= <�0�01�t�/

02�t�. Applying Itô’s lemma to <�t� with 01�t� as in Equation (A9) and 02�t� as in Equa-
tion (10) yields

�<�t� = <�t��22�t�−2�t���22�t� (A17)

�<�t� = <�t��22�t�−2�t��� (A18)

Substitute Equations (A4) and (A18) into Equation (A10), and use Equations (A13) and (A16)
to get a restriction on 6:

6�t�= A2�t���t����t�− �A2�t�/A�t�����t�− r�t�1̄�� (A19)

Equating Equation (A19) with the solution of the dual problem in Equation (12), and using
Equation (A14), yields[

A1�t�
−1I +A2�t�

−13F �t�
]
��t�−1���t�− r�t�1̄�= ���t�� (A20)

Note that �A�t�I + �A1�t�−A�t��7F �t�� �A1�t�
−1I +A2�t�

−1 3F �t�� = A�t�A1�t�
−1I + �1 −

A�t�A1�t�
−1� �I−3F �t��+A�t�A2�t�

−13F �t�= I , where the first equality uses 7F �t�3F �t�= 0
and the second uses Equation (A14). Premultiply both sides of Equation (A20) by �A�t�I +
�A1�t�−A�t��7F �t����t� to obtain Equation (17). Given Equation (17), Equation (19) follows
immediately. Substituting Equation (19) into Equations (A17) and (A18), we get �<�t�= 0, and
�<�t� = −<�t�A1�t�7F �t� ���t�� This establishes Equation (14). Note that <�0�, if it exists, is
unique and positive because the right-hand side of Equation (15) is a strictly increasing positive
function of <�0� bounded by ��0��1− e−!T �/!. For <�0� to exist, we must have

b ≤ ��0��1− e−!T �/!� (A21)

Itô’s lemma, using Equations (A8), (A10), and (19), implies

d�uc���t��<�t��� = uc���t��<�t���!− r�t��dt

−uc���t��<�t�����t�
��A�t�I + �A1�t�−A�t��7F �t��dw�t�� (A22)

Using Equations (A14), (A22), and the identities f ′
1�c

∗
1�t�� = 1/u′′

1�f1�c
∗
1�t��� = −uc���t�,

<�t��−1 A1�t�
−1, f ′′

1 �c
∗
1�t�� = −u′′′

1 �f1�c
∗
1�t���u

′′
1�f1�c

∗
1�t���

−3 = P1�t�uc���t��<�t��
−2A1�t�

−2,
and applying Itô’s lemma to c∗1 in Equation (A7) yields

d�c∗1�t�� =
(
r�t�−!

A1�t�
+ 1

2
P1�t�

A�t�2

A1�t�
2
����t��2

+ 1
2
P1�t�

(
1− A�t�2

A1�t�
2

)
�7F �t����t��2

)
dt

+
(

A�t�

A1�t�
���t�+

(
1− A�t�

A1�t�

)
7F �t����t�

)�
dw�t��
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Similarly, applying Itô’s lemma to c∗2 in Equation (A7), using Equations (A8), (A14), (A22),
and (14) yields

d�c∗2�t�� =
(
r�t�−!

A2�t�
+ 1

2
P2�t�

A�t�2

A2�t�
2
����t��2

− 1
2
P2�t�

A�t�2

A2�t�
2
�7F �t����t��2

)
dt

+
(

A�t�

A2�t�
���t�−

A�t�

A2�t�
7F �t����t�

)�
dw�t��

Use the drift terms and the market clearing condition, ��c∗1�t��+��c∗2�t�� =����t��, to get

r�t�−!

A1�t�
+ 1

2
P1�t�

A�t�2

A1�t�
2
����t��2 + 1

2
P1�t�

(
1− A�t�2

A1�t�
2

)
�7F �t����t��2

+ r�t�−!

A2�t�
+ 1

2
P2�t�

A�t�2

A2�t�
2
����t��2 − 1

2
P2�t�

A�t�2

A2�t�
2
�7F �t����t��2 = ���t��

Rearranging, using Equations (A14) and (A15), establishes Equation (16). Substitute r�t� back
into the drifts and rearrange to complete the proof. (Note that given Sj in Remark 1, �∗

2 in
Equation (13), and 22 in Equation (19), the portfolio holdings of agent 1 are set so as to clear
the securities markets.) �

Lemma 2. When the portfolio choice of agent 2 is perfectly correlated with the exogenous pro-
cess V �t� in (5), then 7F �t�= I −�V �t�

���V �t��V �t�
��−1 �V �t�, where �V �t�= �v1�t�� v2�t��

is the diffusion vector of V �t�.

Proof of Lemma 2. When N = 2, the trading strategy of agent 2 is characterized by q1�t� as
in Equation (6). Substituting in Equation (8) yields

�F �t�=
�11�t��22�t�−�12�t��21�t�

v1�t���22�t�−�12�t��+v2�t���11�t�−�21�t��
�V �t��

Hence 7F �t�= I −�F �t�
���F �t��F �t�

��−1 �F �t�= I −�V �t�
���V �t��V �t�

��−1�V �t�. �

Proof of Corollary 1. For simplicity, (a) and (b) below are proved for N = 2. However,
Theorem 1 and hence (c) and (d) below hold for an arbitrary N .

(a) Given Lemma 2, the unconstrained results follow from Theorem 1 using the fact that
7F �t����t�= �I−���t�����t�

����t��
−1���t�

�����t�= 0. In particular, d<�t�= 0, so
that ∀ t, <�t� = <�0�, where Equation (A21) guarantees the existence of a unique,
strictly positive solution to Equation (15). To get the portfolio choice in �U , sub-
stitute 22�t� = 2�t� = A�t����t� = ��t�−1���t�− r�t�1̄� into Equation (13): �∗

2�t� =
�����−1��+6− r 1̄�W2 = ����−122W2 = ���t���t���−1���t�− r�t�1̄�W2�t�.

(b) The trading strategy of agent 2 is characterized by q1�t� as in Equation (7). Then it
is easy to verify that 3F �t����t� = 0, and therefore 7F �t����t� = ���t�, which we
substitute in Equations (14)–(19). To get the portfolio choice, note that 22�t�= 0, and
using Equation (13): �∗

2�t�= ���t���−122�t�W2�t�= 0.
(c) From Equation (17), using the definition of 7F ' A�t��j�t����t�+ �A1�t�−A�t���j�t�

7F �t����t� = A1�t��j�t����t�− �A1�t�−A�t�� �j�t�3F �t����t�, where �j�t�3F �t�

���t� = ��j�t��F �t�
����F �t� ���t��/��F �t��2 = !F ��t�

����t��
��F �t���j�t��F �t�

�, and using

Equation (A14): A1�t�−A�t�= A1�t�− A1�t�A2�t�
A1�t�+A2�t�

= A1�t�A2�t�
A1�t�+A2�t�

A1�t�
A2�t�

= A�t�
A1�t�
A2�t�

.
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(d) To get �F �t�−r�t�, use �F �t�7F �t�= 0 in Equation (17). The weights of �∗ are given
by p�t�= ���t�−1�����t�

���t�
���t�−11̄

, so that ��∗ �t�= p�t����t� = ���t�
�

���t�
���t�−11̄

(and �∗ is perfectly

correlated with � in the sense that !2
�∗� = 1). Then, from Equation (17),

��∗ �t�− r�t� = A�t���∗ �t����t�+
�A1�t�−A�t�����t�

�7F �t����t�

���t�
���t�−11̄

= A�t�����t��2

���t�
���t�−11̄

(
1+ A1�t�

A2�t�

�7F �t����t��2

����t��2

)
�

where

�7F �t����t��2 = ���t�
�7F �t����t�= ����t��2 − ��F �t����t��

2

��F �t��2

= �1−!F��t�
2�����t��2� (A23)

Next, write Equation (20) once for �∗ and once for F , and solve for a1�t� and
a2�t� in terms of the covariances and ��∗ �t�− r�t� and �F �t�− r�t�. Substitute the
resulting expressions back into Equation (20), and collect terms to get bj�∗ �t� =
��j �t���!j�∗ �t�−!jF �t�!F �∗ �t��

���∗ �t���1−!F�∗ �t�2�
� bjF �t�= ��j �t���!jF �t�−!j�∗ �t�!F �∗ �t��

��F �t���1−!F�∗ �t�2�
, which are the ordinary coef-

ficients from a multiple regression (in the population-conditional distribution) of the
rate of return of asset j on the rate of returns of �∗ and the IRH index. �

Remark 2 (existence of equilibrium). Proving the existence of equilibrium in the benchmark
case amounts to an application of a fixed-point argument to <�0�, and equilibrium in �U exists
when Equation (A21) holds. To prove existence in a restricted-participation economy, we need to
prove the existence of a solution to a univariate stochastic differential equation (SDE) for <�t�

[see Basak and Cuoco (1998) for a proof with logarithmic preferences and geometric Brownian
endowment]. This is still the case with versions of the IRH that are covered by Lemma 2 (see the
example in Appendix A.2). In the general case of Theorem 1, we are faced with a multivariate
system which includes <�t� and a transformation of ��t� in the SDE [Equation (14)], plus
the stock equations from Remark 1, where, under appropriate regularity conditions, �j�t� is the
function implied by the martingale representation theorem applied to stock j . An existence proof
in such a system may potentially be based on the theory of forward-backward SDEs [see, e.g.,
Antonelli (1993)], but the currently available tools in that relatively new field are not applicable
to our setting. Restrictions on primitives (including q) may need to be placed (in particular, so
that Equations (1) and (3) hold).

Proof of Proposition 2. (a) is obtained by setting q1 = 0 in Equation (8), so that in
Theorem 1, 7F �t�=72�t�≡ I−�2�t�

���2�t��2�t�
��−1�2�t�. The interest rate is restated using

Equation (A23). The second and third terms in Equation (21) are obtained by decompos-
ing �A1�t�−A�t���1�t�72�t����t� into

A�t���t�c∗2 �t�

R2�t�c
∗
1 �t�

���1�t�− �1�t��2�t�
�

��2�t��2 �2�t��
�W �t�

W�t�
+�1�t�72�t�

�
���t�

��t�
− �W �t�

W�t�
��, where ��1�t�− �1�t��2�t�

�
��2�t��2 �2�t��

�W �t�

W�t�
= (�1− �1�

�
2

��2�2 �2

) �S1�1+S2�2�
�

W
= ���1�t��2 −

��1�t��2�t�
��2

��2�t��2 �
S1�t�
W�t�

� Then Equation (21) follows immediately.

(b) When u1�·�= u2�·�= log�·�: u���t��<�t��= log ��t�

1+<�t�
+<�t� log <�t���t�

1+<�t�
,

A�t�= ��t�−1� P�t�= 2��t�−1� W�t�= 1−e−!�T−t�

!
��t��

A1�t�= �1+<�t��/��t�� P1�t�= 2�1+<�t��/��t�� c∗1 = ��t�/�1+<�t���

A2�t�= �1+<�t��/�<�t���t��� P2�t�= 2�1+<�t��/�<�t���t��� c∗2 = <�t���t�/�1+<�t���

Substituting in Equations (16)–(19) yields the results for 2i�t�, r�t�, �j�t�−r�t�, and c∗i �t�. The
notion of “volatility” of state prices and of consumption growth rate is understood here as the
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quadratic variation of d0i�t�/0i�t�, and dc∗i �t�/c
∗
i �t�. The diffusion term of the former process

is −2i�t�. Then, in �U : �22�t��2 = �21�t��2 = ����2, in �: �22�t��2 = �32�t����2 ≤ ����2 ≤
����2 +<�t��2+<�t���72�t����2 = �21�t��2. This confirms the statement in (i), and because
in �U �c∗i �t�/c

∗
i �t� = �� and �c∗i �t�/c

∗
i �t� = ��, analogous comparisons confirm the statement

in (ii). The proof of (iii) is identical to the proof of Corollary 4 in Basak and Cuoco (1998) and
is omitted. In �U 'r�t�= !+�� −����2, and the statement in (iv) follows from (a). Finally, (v)
follows using Equation (21). For completeness, we note that �1�t� and �2�t� in this example will
not be geometric Brownian motions. But we can set �1�t�= x�t���t� and �2�t�= �1−x�t����t�,
where x�t� is any process satisfying x�t� ∈ �0�1�. �

A.2 An example: characterization and existence of equilibrium
Consider an economy with u1�·�= log�·� and geometric Brownian endowment, and let agent 2
invest in stocks only via a fund manager. Agent 2 fares better in �U and wishes to invest in a
fund that perfectly tracks ��t�. Suppose that the fund manager he invests with, actually tracks
��t� only imperfectly. The process that she tracks is given by

dV �t�= ��t��� dt+��t�T1�t�dw1�t�+��t�T2�t�dw2�t�� (A24)

where V �0� = ��0�, dTk�t� = a����k − Tk�t��dt+ bdwk�t�, with Tk�0� = ���k, k = 1�2 [the
Ornstein–Uhlenbeck process T�t�= �T1�t�� T2�t��

� is an unbiased estimator of the true constant
vector ��]. The constants a and b indicate how well the fund fits the objective of agent 2.
Finally, assume that ���2 = 0. The comparison between � and �U is summarized below.
Suppose the portfolio of agent 2 maintains perfect instantaneous correlation with V �t� in Equa-
tion (A24). Then there exists a unique equilibrium, where all the results of Proposition 2(b) in
(i)–(iv) hold when replacing !2� with !V�, and 72�t� with I−T�t��T�t�T�t���−1T�t��. The risk
premia are �j�t�− r�t�= �j1�t����1 + W2�t�

W1�t�
�j �t��U�t�, where �U�t�= ���1T2�t��T�t��−2�T2�t�,

−T1�t��
�, and j = 1�2. The dynamics of the interest rate are given by dr�t� = �r�t�dt+

�r�t�
�dw�t�, where its stochastic drift and volatility are

�r�t� = �T�t��−2

(
2T1�t����1

(
a− W�t�

W1�t�
b

)
+
(

1− T1�t�
2

T2�t�
2

)
b2

)
W2�t�

W1�t�
��U�t��2�

�r �t� = �T�t��−2

(
W�t�

W1�t�
T2�t�

2� 2
��1 +T1�t�b

)
W2�t�

W1�t�
���1�U�t��

T1�t� = ���1 +b
∫ t

0
e−a�t−s�dw1�s�� T2�t�= b

∫ t

0
e−a�t−s�dw2�s��

Proof. The characterization results follow from Theorem 1 and Lemma 2, analogous to
Proposition 2(b).21 The dynamics of the interest rate are then obtained by applying Itô’s lemma
to r�t� = !+ �� − ����2 − <�t���I − T�t��T�t�T�t���−1T�t������2. Note that this example
belongs to a particular class of economies for which the projection matrix 7F is expressed
using exogenous quantities (i.e., the process T�t�). The dynamics of the weighting process <�t�

21 The classic CCAPM does not price the diffusion coefficient �j2�t� because the first state variable, ��t�,
is independent of w2�t�. However, the second state variable <�t� (whose diffusion vector is proportional to
�U�t�) has, in general, a nondegenerate covariation with w2�t�. Consequently, the entire diffusion vector �j �t�
is priced by the modified CCAPM. The constant a represents the speed of convergence toward the desirable
target. It may indicate the fund manager’s effort or ability to perform her task, and b may represents the
noisy environment that interferes with her efforts. When she is very apt (a→�) or lucky not to face noise
(b→ 0), then Tk�t�→ ���k and V �t�→ ��t�. Hence perfect tracking ability (in the sense that b= 0 or a=�)
leads to an increased interest rate, and to eliminating the impact of the second state variable on risk premia.
Note that as in Proposition 2(b), < = W2/W1, and it is a supermartingale (<�t� ≥ E�<�s��t �, ∀ t ≤ s ≤ T ),
suggesting that agent 1 is expected to accumulate more wealth relative to agent 2 in an economy with an
imperfect tracking ability.
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in Equation (14) are therefore specified completely by a univariate SDE. Existence of a solu-
tion to the SDE, and hence existence of an equilibrium, can be verified using standard results.
First, restate the SDE as follows: d<�t� = −<�t��1+<�t���U�t�dw�t� = <�t��1+<�t��dL�t�,
where L�t� can be verified to be a local martingale. Since <�1+<� has a continuous (but not
bounded) derivative, it is locally Lipschitz. It also satisfies the linear growth condition (it is
bounded by 2�1+<2�). The search for equilibrium is reduced to finding a solution to the above
SDE. By Theorem V.38 in Protter (1990), there exists a unique (strong) solution to the SDE
up to an explosion time. Then it follows from Karatzas and Shreve (1988), Remark 5.19, that
for this zero-drift univariate SDE, the linear growth condition is sufficient for the solution not
to explode, for a given <�0� [which exists when Equation (A21) holds]. Stock prices are well
defined, since by absence of arbitrage (guaranteed by nonnegative wealth) and using the value
of W�t�: 0 < Sj�t� < S1�t�+S2�t�=W�t�= 1−e−!�T−t�

!
��t�.

Appendix B

B.1 Proof of theorem 2
Additional assumptions that are required for Theorem 2 are stated in Equations (B4)–(B6) (and
all the used moments are assumed to exist). For j = 1�2� C C C �N , t = 1�2� C C C � T −1 (where T

now denotes the last date of the sample period, as opposed to the horizon of the economy),
define

Kjg� t = cov�rj� t+1� gt+1�t �� Kjh� t = cov�rj� t+1� ht+1�t �� (B1)

Vjg�t = Kjg� t −E�Kjg�t �� Vjh� t = Kjh� t −E�Kjh� t �� (B2)

ej� t+1 = rj� t+1 −E�rj� t+1�t �� (B3)

For some constants �k1g� k2g� k1h� k2h� ∈�4, assume that22

E�Vjg� t a1t �= k1� E�Vjh� t a2t �= k2� (B4)

E�Vjg� t a1t gt+1�= k1g� E�Vjh� t a2t gt+1�= k2g� (B5)

E�Vjg� t a1t ht+1�= k1h� E�Vjh� t a2t ht+1�= k2h� (B6)

First, substitute Equations (B1) and (B2) in Equation (22) and take unconditional expectations
to get, using Equation (B4),

E�rj�t+1�= E�a0t �+k1 +k2 +E�a1t �E�Kjg� t �+E�a2t �E�Kjh� t �� (B7)

Next, restate Equation (22) using Equations (B1)–(B3) as

rj� t+1 = a0t +a1tE�Kjg�t �+a2tE�Kjh� t �+a1tVjg� t +a2tVjh� t + ej� t+1� (B8)

Equation (B8) along with Equations (B4)–(B6) yields

22 In Equation (B4) we assume homoskedastic fluctuations of the covariances relative to a1t and a2t . In Equations
(B5) and (B6) we assume that time-varying components of the conditional covariances, Vjg�t or Vjh�t , incor-
porate homoskedastic information beyond that in a1t or a2t , respectively, about the predictable component
of �gt+1� ht+1�. The homoskedasticity assumptions are for simplicity. The proof goes through under het-
eroskedasticity in Equations (B4)–(B6), specified by linear dependence on E�Kjg�t � and E�Kjh�t �. The resulting
expressions for a0� a1� a2 will be modified accordingly.
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cov�rj� t+1� gt+1� = kg + �cov�a1t � gt+1�+1�E�Kjg�t �

+ cov�a2t � gt+1�E�Kjh� t � (B9)

cov�rj� t+1� ht+1� = kh + cov�a1t � ht+1�E�Kjg� t �

+ �cov�a2t � ht+1�+1�E�Kjh� t �� (B10)

where kg = k1g +k2g − �k1 +k2�E�gt+1�+ cov�a0t � gt+1�, and kh = k1h +k2h − �k1 +k2�E�ht+1�+
cov�a0t � ht+1�. It is clear from Equations (B9)–(B10) that because cov�rj� t+1� gt+1� and cov�rj� t+1�

ht+1� vary with j , and because �cov�rj� t+1� gt+1�
N
j=1 and �cov�rj� t+1� ht+1�

N
j=1 are assumed to be

linearly independent, the constant matrix(
cov�a1t � gt+1�+1 cov�a2t � gt+1�

cov�a1t � ht+1� cov�a2t � ht+1�+1

)
must be nonsingular. Therefore we solve the linear system of Equations (B9)–(B10) for the two
unknowns �E�Kjg� t ��E�Kjh� t �� in terms of cov�rj� t+1� gt+1� and cov�rj� t+1� ht+1�. Substituting the
solution into Equation (B7) and rearranging establishes Equation (23), where

a0 = E�a0t �+k1 +k2 +E�a1t ��cov�a2t � gt+1�kh − �cov�a2t � ht+1�+1�kg�/*

+E�a2t ��cov�a1t � ht+1�kg − �cov�a1t � gt+1�+1�kh�/*

a1 = �E�a1t ��cov�a2t � ht+1�+1�−E�a2t �cov�a1t � ht+1��var�gt+1�/*

a2 = �E�a2t ��cov�a1t � gt+1�+1�−E�a1t �cov�a2t � gt+1��var�ht+1�/*

* = �cov�a1t � gt+1�+1��cov�a2t � ht+1�+1�− cov�a2t � gt+1�cov�a1t � ht+1��

Note that a1t is positive, while the sign of a1 is unrestricted. The proof of Equation (24) is
similar and is therefore omitted. �

B.2 The cross-sectional regressions
We follow closely Appendix B in JW and adapt it to GLS.23 We assume that all time series are
covariance stationary, returns on the N assets are (unconditionally) distributed i.i.d. over time,
and all the limits below exist. Equations (23) and (24) are a special case of the following model:

E�rjt �=
L∑

l=1

c0lzjl +
K∑

k=1

ckDjk j = 1� C C C �N � t = 1� C C C � T (B11)

where zjl are observable characteristics of asset j (in our case, when L = 1, then zj1 = 1,
when L = 2, we take zj2 to be the log of market equity), Djk = cov�rjt� ykt�/var�ykt� with ykt
representing economic variables [e.g., in Equation (23) K = 2� y1t = gt� y2t = ht]. Rewrite Equa-
tion (B11) as

�= XK� (B12)

where � = E�rt�� rt = �r1t � C C C � rNt�
��X = �Z B�, Z is a N ×L matrix of characteristics, B

is a N ×K matrix of the univariate betas, and K = �c01� C C C � c0L� c
���, c = �c1� C C C � cK�

�.
Define Vt = rt −�� V̄= 1

T

∑T
t=1 Vt� r̄ = 1

T

∑T
t=1 rt . Then, V̄= r̄−�, and restate Equation (B12) as

rt =X K+Vt . Therefore the estimated system is r̄ =XK+ V̄ where var�rt�=G, a constant N ×N

23 Shanken (1992) lays the foundations for the analysis, correcting the bias in the Black, Jensen, and Scholes
(1972) and Fama and MacBeth (1973) procedures, but his focus is on CSRs with multivariate betas.
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matrix, and hence var�V̄�= 1
T
G. To obtain a feasible GLS estimator of K (and correct standard

errors for the OLS and GLS estimators), we use two alternative estimators of G:

Ĝ1 = 1
T −1

T∑
t=1

�rt − r̄ ��rt − r̄ ��� (B13)

Ĝ2 = ŵ1I + ŵ2Ĝ1� (B14)

where I is an N ×N identity matrix and �ŵ1� ŵ2� are weights of the optimal linear-shrinkage
estimator constructed by Ledoit (1994). Under an asymptotic theory where N is allowed to
grow with T (provided that N/T is bounded), neither Ĝ1 nor Ĝ2 is a consistent estimator
of G. However, Ĝ2 has the lowest mean square error among the linear-shrinkage estima-
tors of the form w1I +w2Ĝ1. Shrinkage estimators are desirable whenever matrix inversion is
required, as is the case with GLS. The reason is that in Equation (B14) we reduce the proximity
to singularity by keeping the eigenvalues of Ĝ2 away from zero while allowing N to be close
to (or larger than) T . The weight ŵ1 increases in N/T .

We use Ĝ1 with monthly data, and Ĝ2 with quarterly data and with monthly data over
subperiods. In our quarterly and subperiod analyses (N = 100, T = 110) we rely on Ĝ2 for
asymptotic inferences as an alternative to finite sample adjustments. We note, however, that
finite sample performance of this estimator versus conventional adjustments (when N < T ) is
not yet established. Nevertheless, in our sample it provides more conservative standard errors.

We next address the error-in-variables problem of the two-step procedure. We keep N fixed
while T can grow to infinity. In this case, Ĝ2 converges to Ĝ1, and both are (T -)consistent
estimators of G: plimT→�Ĝ1 = plimT→�Ĝ2 =G� Using OLS estimates, D̂jk, for univariate betas,
we obtain an estimate B̂ of B. Let X̂ = �Z B̂�. The feasible GLS estimator of K is

K̂m =
(
X̂�

[
1
T
Ĝm

]−1

X̂

)−1

X̂�
[

1
T
Ĝm

]−1

r̄ � (B15)

where m= 1 or m= 2, depending on the method used to estimate G. To derive the asymptotic
distribution of K̂m in Equation (B15), restate r̄ as

r̄ = X̂K+ �V̄− �X̂−X�K�= X̂K+ �V̄− �B̂−B�c�� (B16)

Since plimT→� r̄ = E�rt� and plimT→�B̂ = B, it is clear from Equations (B16) and (B15) that K̂m

is a consistent estimator of K, for m= 1�2.
Let M̂m = �X̂�Ĝ−1

m X̂�−1X̂�Ĝ−1
m , and let M = plimM̂m. From (B15) and (B16) we get

K̂m −K = M̂mV̄− M̂m�B̂−B�c�

Define Ỹ and Z̃ as the limits in distribution of
√
T V̄ and

√
T �B̂−B�, respectively. Then

√
T �K̂m −K�

d→M �Ỹ− Z̃c�� (B17)

To be able to account explicitly for the two sources of sampling error identified in Equa-
tion (B17) we need to introduce further assumptions and notation.24 Let

24 Suppose we ignore the sampling error in K̂m from replacing true betas by their estimates (i.e., ignore Z̃).
From Equation (B17), the asymptotic variance of

√
T K̂m becomes Mvar�Ỹ�M�. We estimate var�Ỹ� by Ĝm.

Then for m= 1�2, the asymptotic variance reduces to the familiar �X�G−1X�−1.
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ejkt = �rjt −E�rjt ��−Djk�ykt −E�ykt��� ejk = �ejk1� C C C � ejkT �
��

ȳk =
1
T

T∑
t=1

ykt� Yk = �yk1 − ȳk� C C C � ykT − ȳk�
��

Let Q be an N ×K matrix whose �j� k�-th element is 1
T
Y �
k ejk. Let Ŝ = vec�Q�, where vec(·) is

an operator that stacks the columns of Q to create a column vector of dimension NK. Assume

(i) plimT→�
1
T
Y �
k Yk = bk > 0,

(ii) E�ejkt Yk�= 0�E�ejkteiks Yk�= \jik, where \jik = 0 if t �= s,

(iii) plimT→�Ŝ = 0,
√
T Ŝ

d→ N�0�]�, where

]=


]11 · · · ]1K

�
�
�

� � �
�
�
�

]K1 · · · ]KK


is an NK×NK matrix, and ]kl is an N ×N matrix for k = 1� C C C �K, l = 1� C C C �K.

It is easy to verify that an element �i� j� of ]kl, denoted ^ijkl, is given by the asymptotic
covariance of 1

T
Y �
k eik with 1

T
Y �
l ejl, that is, ^ijkl = E��ykt − ȳk��ylt − ȳl�eiktejlt �� Under (i)–(iii),

one can show [following the same steps as in Jagannathan and Wang (1998)] that Equation (B17)

becomes
√
T �K̂m −K�

d→ N�0� V �� where

V =M

(
Var�Ỹ�+

K∑
k=1

K∑
l=1

ckcl
bkbl

]kl

)
M�� (B18)

To compute the standard errors we use consistent estimators of all the unknown parameters
in Equation (B18). For OLS CSR, simply use the OLS estimate of c and replace M̂m by
�X̂�X̂�−1X̂�.
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