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Introduction We examine the relationship between the Cobb-Douglas production func-
tion that is frequently used in information technology (IT) productivity studies and the
income accounting identity. In doing so we evaluate the impact of this relationship on
the question about aggregation from firm-level data to industry-level data when estimating
IT productivity, that is, whether industry-level estimates are meaningful. In addition we
examine whether the income accounting identity can help explain elements of total factor
productivity (TFP) – information that is not contained in the output elasticities of the inputs
after estimating a production function.

Aggregation The issue of aggregation has been studied for more than a half century in
economics, and it has focused on whether macro-level production functions such as those
at the economy or sector-level represent the aggregation of micro-level decisions such as
those made by a manager or entrepreneur. The initial goal was to specify conditions under
which aggregation was internally consistent – that is, whether mathematical forms of pro-
duction functions at the firm or product-level could be aggregated into a parsimonious and
interpretable production function such as a Cobb-Douglas at the economy or sector-level.

There are two levels of aggregation problems. The first is at the level of inputs and
whether we can aggregate different kinds of inputs into a single input measure – for example,
aggregating lathes and extrusion machines together into a common capital input. Leontief
(1947a, 1947b) dealt with aggregation of variables into homogenous groups and showed that
if the marginal rate of substitution (MRS) of the individual inputs in the aggregated group
of inputs is independent of inputs that are not in that group, then it is possible to aggregate
that group of inputs. For example, different kinds of capital can be aggregated into a single
input if the MRS of the different kinds of capital is independent of labor. This condition
is strong and implies pairwise independence of the substitution possibilities of all groups of
inputs. However, if the underlying production function for a firm has a Cobb-Douglas form,
then because the Cobb-Douglas satisfies these independence conditions between all pairs of
IT capital, non-IT capital, and labor, then we can aggregate within input groups.

The second is whether a sector or economy-level production function can be aggregated
from a set of firms, each having potentially different production functions. Nataf (1948)
proved that such an aggregation is valid if the individual firm production functions are
additively separable in inputs. This condition holds for the log-linear Cobb-Douglas form.
Nonetheless, some argue additive separability is a highly restrictive condition unlikely to
be true across the economy. Fisher (1971) conducted simulation studies of aggregation
of firm level data, and estimated aggregate production functions. He concluded that the
requirements “. . . under which the production possibilities of a technically diverse economy
can be represented by an aggregate production function are far too stringent to be believable
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Even though the aggregation conditions limit the choice of production functions to those
that are related to the Cobb-Douglas, there is evidence that the Cobb-Douglas form is
empirically robust. Gurbaxani, Melville and Kraemer (2000) found that a Cobb-Douglas
used to predict IT spending as a function of personnel and hardware was independent of scale
and time, meaning that a similar form with similar input proportions holds for different size
firms across time. This homotheticity of IT spending supports the aggregation of hardware
and of personnel each into single measures. Van Garderen, Lee and Pesaran (2003) found that
least squares estimates of some aggregated of log-linear models like the Cobb-Douglas can
yield consistent estimates of the output elasticities with some restrictions on the distribution
of aggregate shocks. Indeed, they suggest that the Cobb-Douglas provides a very reasonable
representation of output movements, regardless of level. This is consistent with other research
that suggests that the basic requirements for sensible aggregation may be met for firms in
the same industry or for narrow sectors of the economy (Walters, 1963).

TFP As TFP represents the (unspecified) ways that inputs combine to produce output
outside of the mathematical representation of the inputs in the production function, the
result of aggregation of these effects from, say, firm-level to industry-level make it hard to
interpret what level of effects are contained in TFP. Isolating the role of IT in TFP is even
more challenging.

Several studies have used variants of the Cobb-Douglas to explain the influence of IT on
TFP. Hitt and Tambe (2006) examined within-industry productivity spillovers of IT from
an industry knowledge pool. They used firm-level data from 1987-1993, where the spillovers
modeled an element of TFP. They found significant within-industry IT spillovers, although
lower than those previously estimated. Using industry-level data from 1987-1999, Cheng
and Nault (2007) studied between-industry productivity spillovers of IT that occur from
a mis-measurement of the value of intermediate inputs. Specifying a Cobb-Douglas that
included the mis-measurement of intermediate inputs modeled as an element of TFP, they
found significant IT spillovers from IT-induced quality improvements in intermediate inputs.

Brynjolffson and Hitt (2003) hypothesized the existence of unmeasured inputs such as
organizational capital in making up TFP, and related this to growth in computer capital.
Using firm-level data from 1987-1994 and Cobb-Douglas related forms, they found that
the long-run contribution of computerization is significantly higher than short-run (annual)
returns to computer capital, and thus computer capital together with unmeasured inputs
in the long run contribute to TFP. Mittal and Nault (2009) modeled labor and non-IT
capital as an exponential function of IT capital to capture indirect effects of IT on the
productive efficiency of the other inputs. The exponential function allowed the indirect
effects to be captured as an additional term in the Cobb-Douglas, hence directly explaining
part of TFP. Using industry-level data from 1953-2000 they found that indirect effects of IT
on the productive efficiency of labor and non-IT capital were significant across manufacturing
in the U.S., and were more significant in IT-intensive industries.

Our Results We show that with a mild condition that is likely to hold in the medium term
the income accounting identity can be expressed as a variant of the Cobb-Douglas production
function. The income accounting identity is a true ex post relationship that holds at all
levels of aggregation, which means that the Cobb-Douglas has an income accounting basis
regardless of the level of aggregation. In addition, we find that the variant of the Cobb-
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Douglas that is derived from the income accounting identity, which we call the AI-based
Cobb-Douglas, has additional terms – terms that relate to average returns to each of the
inputs. This means that TFP is in part explained by average returns to the inputs.

We then estimate the Cobb-Douglas and the AI-based Cobb-Douglas on a limited set
of industry-level data. The set of data is limited because of the additional terms requiring
average returns, and the U.S. data sources only maintain data required to compute these
returns for a small set of industries. In the estimation we find that the Cobb-Douglas and
the AI-based Cobb-Douglas fit the data very well, and the AI-based Cobb-Douglas estimates
are closer to historical estimates for output elasticities of the inputs. More importantly, the
estimates from the AI-based Cobb-Douglas are internally consistent and significant beyond
the Cobb-Douglas, meaning that in our estimation the additional terms relating to average
returns to the inputs explains part of TFP. Finally, we find that our estimates using capital
stocks are more internally consistent than those using capital inputs (flows), indicating that
error is introduced in the derivation of capital inputs from capital stocks.

Estimation Forms In our analysis we estimate both two-input and three-input versions
of the Cobb-Douglas and AI-based Cobb-Douglas. The two-input versions combine non-IT
capital and IT capital into a single capital. The Cobb-Douglas estimation form is

yt = a+ αlt + βkt + γzt + εcdt , (1)

where yt, lt, kt and zt are the natural log of value added, labor, non-IT capital, and IT
capital, respectively. a is TFP and εcdt is a random disturbance. The AI-based Cobb-Douglas
estimation form is

yt = λ+ a1ln(ωt) + b1ln(ut) + c1ln(vt) + a2lt + b2kt + c2zt + εai
t , (2)

where ωt, ut and vt are the wage rate, the rate of return on non-IT capital, and the rate
of return on IT capital, respectively. εai

t is a random disturbance. We expect that the
coefficients of the inputs are equal to their rates of return: a1 = a2, b1 = b2 and c1 = c2.

Data and Econometric Adjustments As a basis for our calculations, we use times-series
data from 1995-2006 for 14 three-digit NAICS manufacturing industries. Our industries differ
in what they produce and in size, and are subjected to common economy level shocks and
smoothing procedures. Using the Wooldridge test for autocorrelation in panel data, we
found that AR1 is present in our data. Consequently, we control for panel-specific AR1 in
our estimations, which in effect acts as an industry-level control. In addition, as we expect
heteroskedasticity, we also control for it at the industry-level.

Results from the Cobb-Douglas Our estimates of output elasticities from the Cobb-
Douglas form in (1) are in Table 1 (two inputs) and Table 2 (three inputs). In each table
we provide results using a stock measure of capital and a flow measure of capital: average
real productive capital stock and real capital input, respectively. In addition, we provide
results over our complete period 1995-2006, and for two sub-periods centered on 2000, 1995-
2000 and 2000-2006, noting that 2000 is the base year. Examining the odd-numbered (CD)
rows in Table 1 we find roughly a 60-40 split between labor and capital across our measures
of capital and across our different time periods, and all the elasticities are significant at
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Elasticity/coefficient estimates for
Labor Wage Capital Return to Sum of
hours rate Capital O.E.

l ln(ω) c ln(r)

Capital as Avg.
Real Productive
Capital Stock

1995-2006 1. CD 0.596* - 0.436* - 1.032
Obs: 168 2. AI 0.722* 0.718* 0.299* 0.305*

1995-2000 3. CD 0.689* - 0.415* - 1.004
Obs: 84 4. AI 0.761* 0.744* 0.271* 0.283*

2000-2006 5. CD 0.558* - 0.408* - 0.996
Obs: 98 6. AI 0.656* 0.732* 0.326* 0.348*

Capital as
Real Capital
Input

1995-2006 7. CD 0.611* - 0.422* - 1.033
Obs: 168 8. AI 0.712* 0.730* 0.297* 0.305*

1995-2000 9. CD 0.715* - 0.397* - 1.012
Obs: 84 10. AI 0.749* 0.744* 0.274* 0.283*

2000-2006 11. CD 0.588* - 0.410* - 0.998
Obs: 98 12. AI 0.657* 0.735* 0.325* 0.348*

Table 1: Estimation results for 2 Input Factors

p < .01. These estimates reflect both the output elasticities of labor and capital, and their
input shares as their sum is close to 1.0 – also implying constant returns to scale.

Table 2 shows our results from separating IT capital from non-IT capital. Again, the
odd numbered rows report the Cobb-Douglas results, and all but two of the elasticities are
significant at p < .01. The output elasticity of labor is consistent at between .623-.661
across the six Cobb-Douglas regressions. The output elasticity of IT capital is substantially
higher than in prior studies, and is twice as large in the 2000-2006 period as in the 1995-
2000 period. In contrast, the output elasticity of non-IT capital is smaller than in most of
the prior studies, and is not significantly different from zero in the 2000-2006 period. The
results are fairly consistent across our different measures of capital, suggesting that whether
we measure capital as a stock or as a flow is not critical to the results. The sum of the
output elasticities is close to 1.0, again implying constant returns to scale.

Results from the AI-Based Cobb-Douglas Our estimates of output elasticities and
rate of return coefficients from the AI-based Cobb-Douglas form in (2) are also in Tables 1
and 2. As with the Cobb-Douglas we described above, we provide results for two different
measures of capital – a stock and a flow, and for three different time periods – 1995-2000
and two sub-periods.

To begin, because the Cobb-Douglas in (1) is nested in the AI-based Cobb-Douglas in (2),
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Elasticity/coefficient estimates for
Labor Wage Non-IT Return IT Return Sum of
hours rate capital Non-IT Capital IT O.E

Capital Capital
l ln(ω) k ln(u) z ln(v)

Capital as Avg.
Real Productive
Capital Stock

1995-2006 1. CD 0.660* - 0.167* - 0.205* - 1.032
Obs: 168 2. AI 0.726* 0.713* 0.272* 0.243* 0.034* 0.073*

1995-2000 3. CD 0.630* - 0.219* - 0.156* - 1.005
Obs: 84 4. AI 0.780* 0.731* 0.243* 0.229* 0.029* 0.055*

2000-2006 5. CD 0.656* - 0.020 - 0.335* - 1.011
Obs: 98 6. AI 0.663* 0.671* 0.272* 0.287* 0.070* 0.057*

Capital as
Real Capital
Input

1995-2006 7. CD 0.639* - 0.253* - 0.137* - 1.029
Obs: 168 8. AI 0.726* 0.709* 0.272* 0.238* 0.034* 0.082*

1995-2000 9. CD 0.623* - 0.274* - 0.108* - 1.054
Obs: 84 10. AI 0.753* 0.743* 0.245* 0.205* 0.032* 0.107*

2000-2006 11. CD 0.661* - 0.014 - 0.342* - 1.017
Obs: 98 12. AI 0.665* 0.668* 0.270* 0.288* 0.073* 0.055*

Table 2: Estimation results for 3 Input Factors

we ran Wald tests with the null hypothesis that a1, b1, c1 = 0. This hypothesis tests whether
the additional terms in the AI-based Cobb-Douglas add significant explanatory power. In
all twelve cases (two versus three inputs, two measures of capital, three time periods) the
hypothesis is rejected at p < .0001, so that in each case the additional terms add significant
explanatory power.

Next, with the two-input AI-based Cobb-Douglas in Table 1 we find that the output elas-
ticities of labor increase as compared to the Cobb-Douglas, and those of capital decrease.
These results are consistent across measures of capital and time periods. More importantly,
the coefficients of the wage rate are close to the output elasticity of labor, as are the coef-
ficients on returns to capital to the output elasticities of capital, consistent with what the
accounting identity predicts. The inclusion of the rates of return on labor (wage rate) and
on capital appear to calibrate the output elasticities.

Examining Table 2 that contains our results for the three-input AI-based Cobb-Douglas,
we find that again the labor output elasticity increases slightly as compared with the Cobb-
Douglas, and is very close to the coefficient of the wage rate. More striking is the effect of the
inclusion of the rates of return coefficients on the output elasticities of non-IT capital and of
IT capital. Across both measures of capital and across the different time periods, the output
elasticities of non-IT capital and IT capital are much closer to their levels in prior studies.
Moreover, their magnitudes are very close to those of their rate of return coefficients, again
consistent with the accounting identity.
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The results reported above can be summarized as follows. First, the Wald tests show
the additional explanatory power of the AI-based Cobb-Douglas. Second, the consistency in
the estimates of output elasticities and rates of return demonstrate the empirical regularity
of the accounting identity. Third, especially in the case of non-IT capital and IT capital,
the inclusion of the rates of return in the specification calibrates the estimates of the output
elasticities and explains contributions from TFP. Finally, the calibration appears to be su-
perior when using productive capital stock rather than capital input, suggesting errors are
introduced when deriving capital flows from capital stocks.
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