
316-466 Monetary Economics – Note 2

I now turn to multiperiod uncertainty and competitive equilibrium with a complete set of
securities. Uncertainty is modeled as a Markov chain with transition probabilities π (s0 | s)
and given initial distribution π0(s) on a discrete state space S with typical element s. That
is

π (s0 | s) ≡ Pr(st+1 = s0 | st = s)

π0(s) ≡ Pr(s0 = s)

The Markov chain induces unconditional probabilities via recursion. A finite history

st ≡ (s0, s1, · · · , st) = (st−1, st)

has conditional probabilities obtained by chaining together the transitions and unconditional
probabilities obtained by taking this chain all the way back

π(st | sτ) = π (st | st−1)× π (st−1 | st−2)× · · · × π (sτ+1 | sτ ) , t ≥ τ

π(st) = π (st | st−1)× π (st−1 | st−2)× · · · × π (s1 | s0)× π0(s0)

We will typically assume that the state is known in the initial period (s0 has been realized)
so that the relevant probability distributions are π(st | s0).
The market structure is Arrow-Debreu. There is a complete set of markets for claims

to consumption goods indexed by date and state. These claims are traded in a completely
frictionless environment at time t = 0. At later dates, these claims are executed as agreed
to at date t = 0. There are no enforcement problems.
An individual i has the endowment vector

yi =
©
yit(st)

ª∞
t=0

with endowment realizations depending on the state. This individual takes as given prices

q0 =
©
q0t (s

t)
ª∞
t=0

which may depend on the entire history. (Prices are endogenous variable; whether they
depend on the entire history or not is something that the model has to answer – it’s not
something that we can dictate a priori). The superscript nought is to indicate that these are
prices of consumption claims traded at date t = 0. The budget constraint of this individual
is then

∞X
t=0

X
st

q0t (s
t)[yit(st)− cit(s

t)] ≥ 0

Resource feasibility in this economy requires thatX
i

[yit(st)− cit(s
t)] ≥ 0

for each date and state.
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An individual i has a time- and state-separable expected utility function. Primarily for
expositional convenience, I will assume that everyone has the same preferences and thus
individuals differ only in their income streams. Specifically

U(ci) =
∞X
t=0

X
st

βtu[cit(s
t)]π(st | s0), 0 < β < 1

= E0

( ∞X
t=0

βtu(cit)

)
The Lagrangian of an individual i is, then,

Li =
∞X
t=0

X
st

βtu[cit(s
t)]π(st | s0) + λi

∞X
t=0

X
st

q0t (s
t)[yit(st)− cit(s

t)]

The first order conditions of a consumer are given by

∂Li

∂cit(s
t)
= 0 ⇐⇒ βtu0[cit(s

t)]π(st | s0) = λiq0t (s
t)

for any date and state.

Example 1. Risk sharing

The first order conditions imply that for any two consumers i and j,

u0[cit(s
t)]

u0[cjt(st)]
=

λi

λj

Hence at any date and state, the consumption of individual i is simply proportional to
that of individual j with the constant of proportionality depending only on their Lagrange
multipliers – i.e., on the value of their intertemporal wealth. Suppose that the period utility
function has the constant relative risk aversion form

u(c) =
1

1− σ
(c1−σ − 1), σ > 0

Then the ratio of marginal utilities satisfiesµ
cit(s

t)

cjt(s
t)

¶−σ
=

λi

λj

or

cit(s
t) = κijc

j
t(s

t), κij ≡
µ
λi

λj

¶−1/σ
The constant of proportionality κij does not depend on the date or the state. It depends
only on who these individuals are – and depends on who these individuals are only through
the value of their wealths.
With complete markets, the Arrow-Debreu model implies extensive risk sharing over time

and across states of nature.
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Example 2. No aggregate risk

Suppose that there is no aggregate risk in the economy. That is, supposeX
i

yit(st) = y

for any date and state. For illustrative purposes, suppose also that there are only two people;
i = 1, 2. Then

y1t (st) + y2t (st) = y

Thus whenever i = 1 is lucky and has a relatively high income, it must be the case that
i = 2 is correspondingly unlucky and has a relatively low income.
Guess that in this economy, each individual has constant consumption

ci0 = cit(s
t)

for any date and state. Then the first order conditions can be written

βt
u0(ci0)
λi

π(st | s0) = q0t (s
t)

Plug this into i’s intertemporal budget constraint to get

u0(ci0)
λi

∞X
t=0

X
st

βtπ(st | s0)[yit(st)− ci0] = 0

Which is easily solved for the constant level of consumption

ci0

∞X
t=0

βt
X
st

π(st | s0) =
∞X
t=0

X
st

βtπ(st | s0)yit(st)

or

ci0 = (1− β)
∞X
t=0

X
st

βtπ(st | s0)yit(st)

Summing up these endowments, we see that

c10 + c20 = (1− β)
∞X
t=0

X
st

βtπ(st | s0)[y1t (st) + y2t (st)]

= (1− β)
∞X
t=0

X
st

βtπ(st | s0)y
= y

So markets are indeed clearing with these allocations and the implied prices.
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Example 3. Pricing one-period returns

The date t = 0 Arrow-Debreu prices provide a powerful intellectual framework. In appli-
cations, however, it is common to work with various transformations of these prices. In
particular, denote by qkt (s

t) the price at date k state sk of one unit of consumption delivered
at date t ≥ k state st. This is just the ratio of two date zero prices

qkt (s
t) =

q0t (s
t)

q0k(s
k)

Hence, using the first order conditions,

qkt (s
t) =

q0t (s
t)

q0k(s
k)
=

βtu0[cit(s
t)]π(st | s0)

βku0[cik(sk)]π(sk | s0)
= βt−k

u0[cit(s
t)]

u0[cik(sk)]
π(st | sk)

In particular, the one-period-ahead price is

qtt+1(s
t+1) = β

u0[cit+1(s
t+1)]

u0[cit(st)]
π(st+1 | st)

Now consider an asset that has a random payoff in the next period, t+ 1, if st+1 is realized.
Denote this payoff xt+1(st+1). The price pxt (s

t) of this asset at date t state st is

pxt (s
t) =

X
st+1

qtt+1(s
t+1)xt+1(st+1)

Notice that the sum is taken over st+1. (Since st+1 ≡ (st, st+1), many people find it more
attractive to write an expression of this kind as

pxt (s
t) =

X
s0

qtt+1(s
t, s0)xt+1(s0)

where the dummy variable s0 indexes the possible histories that are continuations of st).
Using the formula for one-period-ahead contingent claims, this is just

pxt (s
t) =

X
st+1

β
u0[cit+1(s

t+1)]

u0[cit(st)]
π(st+1 | st)xt+1(st+1)

or

pxt = Et

½
β
u0(cit+1)
u0(cit)

xt+1

¾
The price of an asset with random payoff x is the conditional expectation of x times a
"stochastic discount factor" (i.e., the intertemporal marginal rate of substitution).
The one period gross return Rx

t+1 on an asset with non-zero price p
x
t and payoff xt+1 is

Rx
t+1 = xt+1/p

x
t . In this case, the asset pricing equation can be rewritten

1 = Et

½
β
u0(cit+1)
u0(cit)

Rx
t+1

¾
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And indeed, for two assets with payoffs xt+1 and yt+1, the gross returns Rx
t+1 and R

y
t+1 must

line up so that

1 = Et

½
β
u0(cit+1)
u0(cit)

Rx
t+1

¾
= Et

½
β
u0(cit+1)
u0(cit)

Ry
t+1

¾
or

0 = Et

½
β
u0(cit+1)
u0(cit)

[Rx
t+1 −Ry

t+1]

¾
A formula like this places strong testable restrictions on patterns of asset returns.

Example 4. Consumption-based asset pricing

In what follows, I will assume a representative agent and so drop the is from the marginal
rate of substitution formulas. In this model, assets are claims to consumption streams and
are priced according to the valuation that the consumer ascribes to such streams.
The random variable

mt+1(s
t+1) = β

u0[ct+1(st+1)]
u0[ct(st)]

gives the valuation the representative consumer ascribes to a unit of consumption goods in
st+1 if the state is st. This valuation is affected by both time preference (as measured by
β) and risk aversion (as measured by the curvature of the utility function u). Indeed, if
the consumer is risk neutral so that marginal utility is a constant, the stochastic discount
factor reduces to just β since a risk neutral consumer does not care about the volatility of
consumption when valuing assets that deliver claims to consumption streams.
Many asset pricing theories reduce to an expression of the form

pxt = Et{mt+1xt+1} or 1 = Et{mt+1R
x
t+1}

The particular formula mt+1 = βu0(ct+1)/u0(ct) for the stochastic discount factor (SDF) is
an artifact of the time- and state-separable expected utility function I assumed on behalf
of the representative consumer. More generally, the SDF may also depend on the utility of
leisure, consumption in other dates/states or indeed the returns on other assets.
Here are some examples of assets that we might want to price:

• A one-period riskless bond pays xt+1 = 1 for sure next period and has the price
p1t = Et{mt+1 · 1} = Et{mt+1}. The one-period risk-free return is then Rf

t = 1/p
1
t =

1/Et{mt+1}. We observe (something close to) the return on riskless bonds in the data.
This data puts strong restrictions on the admissible means of the stochastic discount
factor that theorists can propose.

• A j-period riskless bond pays xt+j = 1 for sure in j ≥ 1 periods time and has the
price pjt = Et{mt+1 ·mt+2 · · · ·mt+j · 1}. Combining the returns on bonds of different
maturities, we can construct theories of term premia.
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• Risky equity. A share in a long-lived asset entitles you to dividends dt+1 and the ability
to resell the asset. Thus xt+1 = dt+1 + peqt+1. The gross return is

Req
t+1 =

dt+1 + peqt+1
peqt

=
peqt+1
peqt

µ
1 +

dt+1
peqt+1

¶
The gross return is increasing in the capital gain peqt+1/p

eq
t and decreasing in next pe-

riod’s price/earnings ratio peqt+1/dt+1. We can solve for the price of equity by recursively
substituting out future prices in the stochastic difference equation

peqt = Et{mt+1(dt+1 + peqt+1)}

Using the formulas

mt+1 = β
u0(ct+1)
u0(ct)

mt+j = βj
u0(ct+j)
u0(ct)

and the fact that

mt+1 ×mt+2 × · · · ×mt+j = β
u0(ct+1)
u0(ct)

× β
u0(ct+2)
u0(ct+1)

× · · · × β
u0(ct+j)
u0(ct+j−1)

= βj
u0(ct+j)
u0(ct)

we get

peqt = lim
T−→∞

Et

(
TX
j=1

βj
u0(ct+j)
u0(ct)

dt+j

)
+ lim

T−→∞
Et

½
βT

u0(ct+T )
u0(ct)

peqt+T

¾
If we assume that the limiting capital gain term goes to zero as T −→∞ we have that

peqt = Et

( ∞X
j=1

βj
u0(ct+j)
u0(ct)

dt+j

)

The price of equity is the expected discounted value of the dividend payouts it provides
with the dividends weighted by the SDF.

• The consumption capital asset pricing model (C-CAPM). Consider two assets, a one-
period risk free asset with gross return Rf

t and a risky asset with gross return Rx
t+1.

These must satisfy

1 = Et{mt+1R
f
t } = Et{mt+1}Rf

t

1 = Et{mt+1R
x
t+1} = Et{mt+1}Et{Rx

t+1}+Covt{mt+1, R
x
t+1}
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But Et{mt+1} = 1/Rf
t , so

1 = Et

½
Rx
t+1

Rf
t

¾
+Covt{mt+1, R

x
t+1}

or

Et

½
Rx
t+1

Rf
t

− 1
¾
= −Covt{mt+1, R

x
t+1}

The term on the left hand side is the expected excess return on the asset x over the
risk free return (the risk premium). To see this, notice that Rx

t+1/R
f
t
∼= 1 + rxt+1 − rft

where the little rs denote net returns. Hence

Et

½
Rx
t+1

Rf
t

− 1
¾
∼= Et{rxt+1 − rft } = Et{rxt+1}− rft

The expected excess return is proportional to the covariance of the return of that asset
with the SDF. The intuition for this is easiest to see if we use our particular formula
for mt+1 to illustrate

Et

½
Rx
t+1

Rf
t

− 1
¾
= −Covt

½
β
u0(ct+1)
u0(ct)

, Rx
t+1

¾
Ahigh risk premium is demanded of an asset that is poor from an insurance perspective,
i.e., an asset that has a high return only when the marginal utility of consumption is
low (and consumption itself is relatively high) so that the covariance is a large negative
number. Put differently, an asset is more risky the more its return covaries negatively
with the SDF. Notice that in general the risk premium is time-varying.

Chris Edmond, 23 August 2003
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