Long-run Economic Growth

Part I: Production and Solow’s Growth Model

Chris Edmond
NYU Stern

Spring 2008

Agenda

- Two classes on ‘long-run economic growth’
 - the aggregate production function, a fundamental tool (today)
 - Robert Solow’s growth model
 - growth accounting (next class)
 - productivity and institutions
- To start with, what do we mean by ‘long-run’ growth?
 - trend versus business cycle
 - a key conceptual distinction in macroeconomics

Long-run growth: US trend

Short-run growth: US business cycle
Long-run economic growth

- Questions
 - why does a country's output per person grow over time?
 - why is there so much cross-country variation in output per person?

- Data
 - Penn World Tables, careful cross-country measurements

Cross-country GDP differences, 2004

<table>
<thead>
<tr>
<th>Country</th>
<th>real GDP per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>10,938</td>
</tr>
<tr>
<td>Brazil</td>
<td>7,204</td>
</tr>
<tr>
<td>China</td>
<td>5,332</td>
</tr>
<tr>
<td>Egypt</td>
<td>4,759</td>
</tr>
<tr>
<td>France</td>
<td>26,168</td>
</tr>
<tr>
<td>India</td>
<td>2,990</td>
</tr>
<tr>
<td>Ireland</td>
<td>28,956</td>
</tr>
<tr>
<td>Japan</td>
<td>24,661</td>
</tr>
<tr>
<td>Korea</td>
<td>18,423</td>
</tr>
<tr>
<td>Mexico</td>
<td>8,165</td>
</tr>
<tr>
<td>United States</td>
<td>36,098</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>2,438</td>
</tr>
</tbody>
</table>

Units: 2000 US dollars, PPP basis. Source: Penn World Tables, 6.2
Production functions

• Relate output, real GDP, to inputs, e.g., capital and labor

• Mathematical version
\[Y = AK^\alpha L^{1-\alpha}, \] ‘Cobb-Douglas’ function

• Definitions
\[Y = \text{quantity of output, real GDP} \]
\[K = \text{quantity of physical capital used (plant and equipment)} \]
\[L = \text{quantity of labor used} \]
\[A = \text{‘total factor productivity’ i.e., everything left out} \]
\[\alpha = 0.33 \text{ in US data} \]

Properties

• More inputs give more output: positive marginal products
\[\frac{\partial Y}{\partial K} > 0, \quad \frac{\partial Y}{\partial L} > 0 \]

• Output effect of additional inputs falls: diminishing returns
\[\frac{\partial^2 Y}{\partial K^2} < 0, \quad \frac{\partial^2 Y}{\partial L^2} < 0 \]

• Double all inputs, double output: constant returns to scale
\[\lambda Y = AF(\lambda K, \lambda L), \quad \lambda > 0 \]

Capital stock \(K \)

• Meaning: physical capital stock, plant and equipment

• Why does it change?
 – depreciation
 – destruction
 – new investment

• Mathematical version
\[K_{t+1} - K_t = I_t - \delta K_t \]
 – for simplicity, a constant rate of depreciation, \(\delta \)

• Adjustments for quality? embodied technology?
Capital stock per worker K/L

<table>
<thead>
<tr>
<th>Year</th>
<th>USA</th>
<th>FRA</th>
<th>CHN</th>
<th>IND</th>
<th>KOR</th>
<th>ARG</th>
<th>IRL</th>
<th>JPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

in 2000 dollars at ‘PPP’

Labor supply L

- Meaning: units of work effort
- Why does it change?
 - population growth
 - fraction of population employed, hours worked
- Adjustments for quality?
 - skills? education? other factors?
 - if call this H for human capital, then

$$Y = AK^\alpha (HL)^{1-\alpha}$$

$$= (AH^{1-\alpha})K^\alpha L^{1-\alpha}$$

- ‘augmented production function’

Human capital?

Employed as fraction of population

Average years schooling, 15+ population

13 15 14 16
Productivity

• Standard number
 – labor productivity (output per worker), \(Y/L \)

• Our preferred number
 – total factor productivity, \(A \)

• How do we measure it?
 – use the production function to solve for \(A \)
 \[A = \frac{Y}{K^{\alpha}L^{1-\alpha}} = \frac{Y}{L} \cdot \left(\frac{K}{L} \right)^{\alpha} \]

• US example
 \(\frac{Y}{L} = 67,865 \) and \(\frac{K}{L} = 177,007 \) and \(\alpha = \frac{1}{3} \) so \(A = 1,208 \)

Simple productivity calculations

<table>
<thead>
<tr>
<th>Country</th>
<th>(Y/\text{person})</th>
<th>(Y/L)</th>
<th>(K/L)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>10,170</td>
<td>24,284</td>
<td>57,858</td>
<td>627</td>
</tr>
<tr>
<td>Brazil</td>
<td>7,204</td>
<td>15,461</td>
<td>37,603</td>
<td>461</td>
</tr>
<tr>
<td>China</td>
<td>4,969</td>
<td>8,283</td>
<td>18,015</td>
<td>315</td>
</tr>
<tr>
<td>Egypt</td>
<td>4,759</td>
<td>12,051</td>
<td>9,593</td>
<td>567</td>
</tr>
<tr>
<td>France</td>
<td>25,663</td>
<td>56,908</td>
<td>166,636</td>
<td>1,034</td>
</tr>
<tr>
<td>India</td>
<td>2,990</td>
<td>6,724</td>
<td>7,891</td>
<td>337</td>
</tr>
<tr>
<td>Ireland</td>
<td>28,248</td>
<td>65,924</td>
<td>131,131</td>
<td>1,297</td>
</tr>
<tr>
<td>Japan</td>
<td>24,036</td>
<td>45,030</td>
<td>180,283</td>
<td>797</td>
</tr>
<tr>
<td>Korea</td>
<td>17,596</td>
<td>33,783</td>
<td>113,711</td>
<td>697</td>
</tr>
<tr>
<td>Mexico</td>
<td>7,938</td>
<td>18,627</td>
<td>47,089</td>
<td>515</td>
</tr>
<tr>
<td>United States</td>
<td>36,098</td>
<td>67,865</td>
<td>177,007</td>
<td>1,208</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>2,438</td>
<td>5,416</td>
<td>14,064</td>
<td>224</td>
</tr>
</tbody>
</table>

Units: 2000 US dollars, PPP basis. Source: Penn World Tables, 6.2

What have we learned so far?

• Production function links output to inputs and productivity
 \[Y = AK^{\alpha}L^{1-\alpha} \]

• Capital input, \(K \)
 – plant and equipment
 – a consequence of investment

• Labor input, \(L \)
 – population growth
 – participation and hours
 – skills etc

• TFP, \(A \), can be inferred from data on output and inputs

Rest of this class

• Robert Solow’s growth model
 – pieces of the model
 – dynamics
 – ‘steady state’
 – convergence hypothesis

• Main implication: total factor productivity is key
 – long-run growth due to productivity increases, not capital investment
 – cross-country variation in output per person due to variation in productivity levels
Solow's growth model

- Production function
 \[Y_t = AK_t^\alpha L^{1-\alpha}, \text{ constant } A, L \text{ for simplicity} \]
- National income accounting
 \[Y_t = C_t + I_t \]
- Constant savings rate \(s \)
 \[S_t = I_t = sY_t \]
- Capital accumulation: depreciation rate \(\delta \)
 \[K_{t+1} - K_t = I_t - \delta K_t \]

21

Capital accumulation dynamics

- Put it all together
 \[
 K_{t+1} - K_t = I_t - \delta K_t
 = S_t - \delta K_t
 = sY_t - \delta K_t
 = sAK_t^\alpha L^{1-\alpha} - \delta K_t
 \]
- Simplify notation: capital per worker
 \[k_t \equiv \frac{K_t}{L} \]
- Then
 \[k_{t+1} - k_t = sAk_t^\alpha - \delta k_t \]

22

Savings versus depreciation

- We have
 \[k_{t+1} - k_t = sAk_t^\alpha - \delta k_t \]
- Given parameters \(\alpha, A, \delta, s \) and initial capital per worker \(k_0 \)
- How does \(k_t \) change over time?
 - capital increasing if investment is bigger than depreciation
 - capital decreasing if investment is smaller than depreciation

23
Steady state

- If investment equals depreciation, capital per worker is constant

- Call the value of k that makes this happen *steady state* capital per worker \bar{k}

 $0 = sA\bar{k}^\alpha - \delta \bar{k}$

- Solving this we get

 $\bar{k} = \left(\frac{sA}{\delta} \right)^{\frac{1}{1-\alpha}}$

- Properties
 - higher when s, A higher
 - lower when δ higher
 - higher when α higher if $sA > \delta$

- Capital stock *gravitates* to this steady state value

Implications for output

- Capital per worker converges to steady state

 $\bar{k} = \left(\frac{sA}{\delta} \right)^{\frac{1}{1-\alpha}}$

- Therefore output per worker converges to steady state too

 $\bar{y} = A\bar{k}^\alpha = A^{\frac{1}{1-\alpha}} \left(\frac{s}{\delta} \right)^{\frac{\alpha}{1-\alpha}}$

Gravitation to steady state

![Graph showing the gravitation to steady state](image)

Convergence

![Graph showing convergence to steady state](image)
What about sustained, long-run growth?

- Capital investment alone cannot generate long-run growth
 - why? diminishing returns
- What can generate long-run growth in output per worker?
 - growth in total factor productivity A
- Suppose A grows at rate g
 \[
 A_{t+1} - A_t = gA_t \iff A_t = (1 + g)^t \bar{A}
 \]

Sustained growth

Convergence hypothesis

- Basic idea
 - poor countries should grow faster than rich
 - eventually, poor countries should catch-up to the rich
- Absolute: countries with same g and same \bar{A}, δ, s should have same output per worker in long run
- Conditional: countries with same g but different $\alpha, \bar{A}, \delta, s$ should grow at same rate but have different long run levels
 - countries with higher s will have higher output per worker
 - but will not grow faster in long run

Convergence across US states?

![Trends in absolute income](image1)
![Trends in relative income](image2)
Why does higher savings increase output?

Main implications restated

- Capital investment does not explain long run growth of output
 - but high savings associated with high level of output
- Productivity growth explains long run growth of output
- Short run boosts to growth are possible
 - but run into diminishing returns

Historical lessons

- Soviet economic growth very impressive in 1950s – early 1960s
 - 8-9% per year, roughly three times faster than US
 - concern about strategic implications of Soviet growth
- But ‘perspiration not inspiration’
 - too much reliance on physical capital accumulation
 - generates growth in short run only
 - cannot generate sustained long run growth
- Other examples
 - Japan in 80s? East Asian NIEs in 90s? China? India?

Level vs. growth effects
Levels of output

• Solow model predicts output per worker

\[\bar{y} = A^{\frac{1}{1-\alpha}} \left(s \delta \right)^{\frac{\alpha}{1-\alpha}} \]

- cross-country \(\bar{y} \) explained by four parameters \(\alpha, A, \delta, s \)
- we can measure \(\alpha, \delta, s \)
- do not vary enough to explain enormous variation in \(\bar{y} \)
- again leaves TFP as explanation

• What causes TFP to grow, to vary across countries?
 - guess what we will talk about next week

What have we learned today?

• Production
 - production function links output to inputs and productivity
 - ‘total factor productivity’ inferred from data on output and inputs

• Solow model
 - countries with high savings rates have high levels of output
 - but capital investment cannot generate long run growth in output
 - need productivity growth to generate long run growth in output
 - need cross-country variation in productivity levels to explain enormous disparities in data