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Limits of Arbitrage: Theory and Evidence from
the Mortgage-Backed Securities Market
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ABSTRACT

“Limits of Arbitrage” theories hypothesize that the marginal investor in a particular
asset market is a specialized arbitrageur rather than a diversified representative
investor. We examine the mortgage-backed securities (MBS) market in this light. We
show that the risk of homeowner prepayment, which is a wash in the aggregate, is
priced in the MBS market. The covariance of prepayment risk with aggregate wealth
implies the wrong sign to match the observed prices of prepayment risk. The price of
risk is better explained by a kernel based on MBS market-wide specific risk, consistent
with the specialized arbitrageur hypothesis.

A NUMBER OF RECENT “limits of arbitrage” theories predict that the distressed
liquidation of assets by hedge funds results in a large drop in asset prices (see,
for example, Shleifer and Vishny (1997), Kyle and Xiong (2001), Gromb and
Vayanos (2002), Geanakoplos (2003), or He and Krishnamurthy (2006)). These
theories are often referenced in explaining episodes of market illiquidity and
falling asset prices, such as the events during the fall of 1998.

In traditional asset pricing theory, the marginal investor in every asset mar-
ket is the same broadly diversified representative investor. Thus, a hedge fund
liquidating $200 billion of mortgage-backed securities finds a large pool of ready
buyers (comparable to the entire capital market), and the liquidation does not
affect expected returns because the representative investor acts quickly to elim-
inate excess returns. According to the limits of arbitrage theory, on the other
hand, the marginal investor in a particular asset market is an investor who
specializes in that market. In this case, liquidations can have large effects on
prices given that the relevant set of buyers is a smaller, specialized pool of
investors.
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We provide support for the existence of limits of arbitrage in the context of
the mortgage-backed securities (MBS) market. We present a simple model of
delegated fund management in which the marginal investor in the MBS market
is a risk-averse fund manager who has all of his wealth invested in this market.
The novelty of the theory lies in its implications for the pricing of risk specific
to the MBS market. In contrast to traditional asset pricing theory, we predict
that MBS market-specific risk will carry a positive risk premium. Moreover, we
predict that the market price of this risk will be high when the total riskiness of
the MBS market is also high. We argue that prepayment risk is a good example
of an MBS market-specific risk, and we present evidence consistent with our
theoretical predictions.

MBS securities rise and fall in value based on the exercise of homeowners’
prepayment options. When a homeowner prepays a mortgage, the MBS backed
by the mortgage is called back at par. Depending on the interest rate envi-
ronment, prepayment can either hurt or benefit the MBS investor. Thus, for an
investor who specializes in the MBS market, prepayment risk represents a risk
to the value of his portfolio. At the aggregate level, prepayments do not cause
changes to aggregate wealth or the aggregate endowment, since for every MBS
investor who is short a prepayment option, there is a homeowner who is long
the prepayment option. Any observed covariance between aggregates and pre-
payments is due to some common economic factors that drive both aggregates
and homeowner prepayments. In traditional asset pricing theory, the covari-
ance between prepayments and aggregate wealth or consumption explains the
price of prepayment risk.

We establish three principal empirical results in the paper. First, we show
that prepayment risk carries a positive risk premium. Second, we show that the
observed covariance between prepayment risk and either aggregate wealth or
consumption implies a sign that is opposite that required to match the observed
prices of prepayment risk under traditional asset pricing theory. This suggests
that the marginal investor in the MBS market is not the representative investor
hypothesized by the traditional CAPM or consumption-CAPM model. Finally,
we derive a proxy for the riskiness of the MBS market and show that the market
price of prepayment risk comoves with this proxy.

Taken together, these results support the existence of limits to arbitrage in
the MBS market. We argue that the marginal investor in the MBS market is
a hedge fund or mutual fund that trades exclusively in the MBS market. We
show that when the fund manager has a coefficient of relative risk aversion of
five, the model’s empirical predictions are consistent with what we find in the
data.

An important theme in the limits of arbitrage literature is that negative
shocks to the capital of hedge funds cause them to liquidate assets, which results
in higher expected returns on these assets. In the MBS market the events of
1993 and 1994 (collapse of the Askins Capital Management MBS fund) and
1998 and 1999 (LTCM crisis) in which MBS spreads widened substantially, are
usually taken to be a sign of a capital-related shock. Although we do not provide
direct evidence of capital-related movements in MBS prices, we do establish a
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necessary condition for a capital-related shock to effect a large move in MBS
prices. Specifically, the marginal investor must be an MBS specialist rather
than a broadly diversified representative investor.

The main difficulty we encounter in establishing our results arises from a
measurement problem. In order to draw a relation between prepayment risk
and the risk premium on an MBS, we need to measure the risk premium of
an MBS. We proxy for this risk premium using the security’s option-adjusted
spread (OAS). The OAS measures the yield on an MBS in excess of Treasuries,
after accounting for the value of the homeowner’s prepayment option. However,
accounting for the prepayment option depends on the specific pricing model
used to compute the OAS. Thus, the OAS is a model-dependent measure of the
risk premium of an MBS. To the extent that the pricing model is misspecified,
the OAS is a noisy measure of the true risk premium, potentially rendering the
interpretation of our results suspect (e.g., see Kupiec and Kah (1999)).

One way to bypass the misspecification issue is to use actual MBS returns,
a proxy for expected returns, as the dependent variable in our regressions. We
decide against this approach because of data limitations. Because actual bond
returns are a very noisy estimate of the expected return on the securities, we
need more data than we have to implement these regressions. Thus, while using
the OAS greatly reduces this measurement error problem, it does so at the cost
of raising the possibility of misspecification.

We address the possibility of misspecification in the OAS in three ways. First,
our theory predicts that securities with more prepayment risk will have differ-
entially higher risk premia at times when the market-wide price of prepayment
risk is higher. We provide support for the theory from panel data regressions
in which the independent variable is the interaction between constructed mea-
sures of security-specific prepayment risk and market-wide price of prepayment
risk. Since the theory is based on the interaction between a security measure
and a time measure, we are able to apply both time dummies and security
dummies as controls in our regressions. The profusion of dummy variables con-
trols for all possible linear time-specific and security-specific sources of OAS
misspecification. Indeed, our results are strengthened when these controls are
added.

Second, as we explain in the next sections, our theoretical measure of the
market-wide price of prepayment risk is partly based on the average coupon of
all traded MBS. While a misspecification explanation of the OAS may involve
the coupon of a specific MBS, it is unclear why it would involve the average
market-wide coupon on mortgages. We present regressions that isolate the av-
erage coupon measure and show that it has independent explanatory power for
the OAS. Such explanatory power is consistent with our theory of the determi-
nation of risk premia, but inconsistent with a pure misspecification explanation
of the OAS.

Lastly, we introduce controls in our regressions for specific alternative hy-
potheses for the determination of the OAS, and show that our results continue
to hold up. Two of the hypotheses we consider are, (1) prepayment models un-
derpredict prepayments relative to the true model, and (2) prepayment models
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undervalue the homeowner’s prepayment option. We show that these hypothe-
ses can explain positive OAS. However, introducing controls that proxy for the
underprediction of the prepayment or the undervaluation of the option does not
change our conclusions.

The theory we develop in this paper belongs to the limits of arbitrage lit-
erature in which the marginal investor is a specialized institution, and the
constraints faced by this institution affect asset prices. Papers in the literature
include Dow and Gorton (1994), Shleifer and Vishny (1997), Kyle and Xiong
(2001), Gromb and Vayanos (2002), Geanakoplos (1997, 2003), Gabaix et al.
(2003, 2006), and He and Krishnamurthy (2006). Gabaix et al. (2003, 2006)
relate spikes in returns and trading volume to the trades of large institutional
investors in illiquid markets. Allen and Gale (1994) study an environment in
which traders must specialize ex ante in a certain asset market, which implies
that ex post there is limited market participation and the specialized traders be-
come marginal in setting prices.1 Caballero and Krishnamurthy (2001, 2002)
present a model of emerging market crises in which crises are events where
the marginal investor switches from a broadly diversified world investor to
an investor within the emerging market. Our paper is most similar to He and
Krishnamurthy (2006) in that we explicitly model how financial intermediation
affects market participation and the preferences of the marginal investor.

Our empirical results are consistent with some existing papers in the MBS
literature. Brown (1999) presents evidence that the spreads of mortgage secu-
rities (relative to Treasuries) comove with the spreads on corporate bonds (rela-
tive to Treasuries). Brown argues that this evidence suggests time variation in
the market price of prepayment risk on MBSs. However, Brown acknowledges
that the latter evidence is also consistent with time variation in the liquidity
premium on Treasury securities (see Krishnamurthy and Vissing-Jorgensen
(2006) for evidence on this point). Our study differs from Brown in that Brown
analyzes only collaterals while we analyze collaterals and IOs, and he studies
a sample of MBSs that is different from ours. However, he arrives at a similar
conclusion regarding the existence of a positive market price of prepayment
risk.2

Boudoukh et al. (1997) study the pricing of GNMA securities under a bench-
mark multifactor interest rate model that they propose. They focus on a pricing
function that depends only on the yield curve, thus setting aside prepayment
information. One of their main findings is that a single (noninterest rate) factor
accounts for 80 to 90% of the common variation in the pricing errors. Our study
suggests that a candidate for the common factor is prepayment risk3 and the
average coupon outstanding in the market.

1 Merton (1987) presents a model in which segmentation arises endogenously, and he explores
the implications of market segmentation for asset prices.

2 Cohler, Feldman and Lancaster (1997) and Levin and Davidson (2005) present pricing method-
ologies in which the OAS is in large part a prepayment risk premium.

3 Boudoukh et al. do hint at this by looking at the prepayment of the different coupons. They
find that for lower coupons, which have a lot of relocation-based prepayment, prepayment variables
explain a significant fraction of the pricing errors.
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Similar common factor phenomena have been documented in other asset
markets. Collin-Dufresne, Goldstein, and Martin (2001) study the corporate
bond market. They find that a simple Merton (1974) model explains very little of
the variation in corporate bond prices. Even after including macro factors, such
as the stock market, they are only able to explain about 25% of price variation.
The tantalizing evidence they present is that the bulk of the remaining variation
is due to a single risk factor that is common across all corporate bonds.4,5 Unlike
us, they are unable to identify either the risk factor or the marginal investor
who is pricing the risk.

Froot and O’Connell (1999) demonstrate effects similar to ours in the mar-
ket for catastrophe insurance. They note that there are times during which the
price of catastrophe insurance seems to get unusually high. Froot and O’Connell
demonstrate that these are also times in which the capital of all catastrophe
insurers is low, and the quantity of insurance transacted is also low. Using an
argument similar to ours, they assert that the marginal investor in the catas-
trophe insurance market is a specialized institution (an insurer) rather than
the broadly diversified representative investor. Therefore, when the capital in
the insurance market is low, insurers are less willing to write catastrophe in-
surance. This drives prices up and quantities down as found empirically.

The academic work on MBS valuation is primarily concerned with prepay-
ment modeling. In one line of research, prepayment stems from rational choice
by homeowners. This “rational” prepayment approach was pioneered by Dunn
and McConnell (1981) and is investigated more recently by Stanton (1995) and
Longstaff (2004).6 In the other main line of research (and in the practitioner ap-
proach), prepayment behavior is modeled statistically. The justification for this
approach is that, given the complexity of the constraints faced by consumers,
prepayment behavior of a pool of consumer mortgages is better captured sta-
tistically than by modeling these complex constraints. Examples of the latter
approach include Schwartz and Torous (1989), Richard and Roll (1989), and
Patruno (1994).

Our research suggests that it is also necessary to model the uncertainty sur-
rounding prepayment behavior, which arises naturally once we recognize that
homeowners’ refinancing costs, for example, are subject to innovations. In our
approach, we directly model this prepayment uncertainty as an error around a
mean prepayment forecast. However, there are many other ways to introduce
this prepayment uncertainty, in both the rational as well as the statistical ap-
proach. The important point we make is that this uncertainty is priced and that
the market price of this uncertainty varies in a systematic way with market
conditions.

4 Berndt et al. (2004) present similar evidence based on data from credit default swaps. They
find large swings in the risk premia incorporated in default swaps.

5 Bates (2003) and Bollen and Whaley (2004) find related effects in the options market. Garleanu,
Pedersen, and Poteshman (2005) provide further evidence for options and a model also based on
the limited diversification of the marginal options investor.

6 See Kau and Keenan (1995) for a survey of this line of research.
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Section I formally presents the theoretical model that motivates our empirical
tests. The theory links the risk premium on an MBS to the prepayment risk
on the MBS and the market-wide price of prepayment risk. Section II presents
evidence in support of this theory, using the OAS as a proxy for the security’s
risk premium. Section III discusses in detail our empirical strategies to deal
with the OAS measurement problem, and provides robustness checks of our
main results. Finally, Section IV concludes.

I. The Model

Mortgage-backed securities are financial securities that are backed by a pool
of underlying mortgages. As of June 2002, there were about $3.9 trillion worth
of securitized mortgages.

Mirroring the underlying mortgage, the MBS is a debt security with an amor-
tizing principal value. However, the fact that consumers have the option to
prepay their mortgages, makes valuing (and hedging) an MBS very difficult.
Consumer prepayments are not just a function of interest rates, but empirically
seem driven by a host of other factors including local macroeconomic variables,
demographics, and real estate prices. Our study focuses on prepayment risk
and its pricing.

The securities we study in this paper are known as collateralized mortgage
obligations (CMO). A typical CMO has several tiers, known as “tranches,” each
with a different degree of prepayment risk. All tranches receive interest pay-
ments, but principal payments go first to bonds in the top tier until they are
entirely repaid, and then to the next tier, and so on. Thus, prepayment risk
is carved up differently among the tranches. The upper tranches have shorter
and more certain maturities, and therefore lower prepayment risk. The natu-
ral buyers of these tranches are pension funds, insurance companies, and other
large institutional investors requiring relative safety. The lower tranches have
longer maturities and therefore assume greater prepayment risk. These lower
tranches (“toxic waste”) are especially volatile and hard to price. The natural
buyers of these tranches are sophisticated investors such as hedge funds or
investment banks that have some expertise in assessing prepayment risk. The
success of a securitization of mortgages often hinges on finding sophisticated
investors willing to hold toxic waste.

A single CMO tranche typically passes both interest and principal payments
of the underlying pool of loans, in some pre-specified manner, to the investor.
Often a security is created which passes only the principal repayments (PO)
or only the interest payments (IO) to the investor. Such a security may be a
separate tranche or a derivative stripped from a mortgage.

Valuing an MBS involves two steps. First, one assumes prepayment behavior
as a deterministic function of interest rate paths, housing prices, and so on
(Richard and Roll (1989), Schwartz and Torous (1989)). Second, one simulates
several interest rate paths, discounting and averaging the cash flows based on
a term structure model calibrated to current market risk-free rates.
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The model-implied prices under this methodology typically differ from quoted
market prices. This difference is termed an option-adjusted spread (OAS).
Specifically, the OAS is a spread added to the riskless term structure such
that the present value of a security’s expected cash flows, forecast using the
prepayment model and discounted under the term structure model, plus the
spread, equals the price of the security (equation (7) below). To the extent that
the term structure model is correct, the OAS constitutes the noninterest rate
risk premium on the security.

In this section we describe a very simple environment for studying the pricing
of MBSs and the determination of OAS. We then develop a general equilibrium
model, where the marginal investor is one who is wholly invested in the MBS
market, and present our main hypotheses regarding the pricing of MBSs.

A. Mortgage-Backed Securities with No Prepayment Risk

Consider a world with a constant interest rate r and a mortgage pool with
constant prepayment rate φ and coupon c (and no credit risk). At any date t,
the amount outstanding of this mortgage-pool is a(t), where

da(t)
dt

= −φa(t),

given some a(0). We normalize a(0) = 1.
Suppose that there is a single class of MBS issued against this pool. The

IO is defined as the claim on all of the coupons (interest payments) from this
mortgage pool. Thus, the value of one unit face of the IO is simply

VIO =
∫ ∞

0
e−rta(t)c dt = c

∫ ∞

0
e−(r+φ)t dt = c

r + φ
. (1)

The PO is defined as the claim on the principal repayment on this mortgage-
pool:

VPO =
∫ ∞

0
(−da(t))e−rt dt = a(0) − r

∫ ∞

0
e−(r+φ)t dt = 1 − r

r + φ
. (2)

Finally, the mortgage pass through itself—the collateral—is defined as the
claim on all cash flows from the mortgage pool, that is, the coupons (interest
payments) and the principal repayment. Thus, its value is the value of the IO
plus the value of the PO:

VC = VIO + VPO = 1 + c − r
r + φ

. (3)

B. Prepayment Risk

Our aim is to develop an equilibrium model along the lines of a static CAPM
to illustrate how prepayment risk is priced.
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There are two periods, t = 0, 1. We assume that the discount rate between
periods 0 and 1 is constant and normalize it to be one. We assume there are K
mortgage pools. In each pool, the mortgage has coupon ck and quantity θk. We
assume that mortgages’ “payoff ” at date 1 is a function of ck, r and φk. We next
describe the payoff function.

We assume that the only uncertainty is in the prepayment rate, φk, of mort-
gage k. The mean forecast of φk is φ̄k . Pricing the IO, for example, based on this
mean forecast would yield a value of

EV k
IO = ck

r + φ̄k
.

However, there is model risk as the actual φk may differ from φ̄k . Let �φk =
φk − φ̄k be this variation.7 We assume that �φk has mean zero and covariance
matrix of �.

For simplicity, we linearize the above valuation expressions and assume that
the date 1 value (terminal payoff in our two-period world) of the k-th IO is

V k
IO = ck

r + φ̄k
(1 − ηk�φk), (4)

where ηk = 1/(r + φ̄k) and −ηk ck

r + φ̄k is the derivative of the IO value with respect
to the prepayment rate.

Similarly, the date 1 value of the kth PO is

V k
PO = 1 − r

r + φ̄k
(1 − ηk�φk). (5)

Finally, the date 1 value of the kth collateral is

V k
C = 1 + ck − r

r + φ̄k
(1 − ηk�φk). (6)

C. OAS

Let Pk
IO and Pk

PO be the date 0 prices of one dollar of face value of IO and
PO, respectively. The OAS is defined as the premium over the riskless rate r
required to set the present value of the securities’ cash flows, expected under
the mean prepayment forecast, equal to the market prices of the securities. For
example, in the case of the IO, the OAS is the solution to

7 Unlike our abstraction, in practice interest rates are uncertain. The logical extension of our
model to the uncertain interest rate case is to write φ̄k(r̃). Then, the innovation of �φk is the
uncertainty in prepayments that is orthogonal to changes in interest rates. This is the definition
we use in the empirical section of this paper.
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Pk
IO = ck

r + φ̄k + OASk
IO

, (7)

where the mean prepayment forecast is φ̄k . Evaluated at this forecast, the value
of the IO would be ck

r + φ̄k . So, the OAS is the premium over r required to recover
the actual market price.

There are two ways to interpret the OAS. First, it may simply reflect a mis-
specified model of the prepayment option. Perhaps informed market partici-
pants have a true model of prepayments that is actually φ̂k . A naive market
participant (and the econometrician) who uses φ̄k would have to introduce the
additional discount rate of φ̂k − φ̄k in order to recover the true market prices.8

A second way to look at the OAS is as a risk premium. Any time that prices
differ from expected values, the OAS will be nonzero. However, under this in-
terpretation it may be either an interest rate risk premium or a prepayment
risk premium.

In our empirical tests we will try to rule out the alternative hypotheses that
the OAS is due to a misspecified model of the prepayment option or an interest
rate risk premium.

Using the same logic as for the IO, the OAS for the collateral is the solution
to

Pk
C = 1 + ck − r − OASk

C

r + φ̄k + OASk
C

(8)

(i.e., it is the previous valuation expression with an adjustment to r).
From (4) and (6) we see that the date 1 payoff on the collateral is equal, state-

by-state, to the payoff on a one dollar face value bond plus the payoff on ck − r
ck

of the IO. Thus, by no arbitrage,

Pk
C = 1 + ck − r

ck
Pk

IO.

Using this relation, along with (7) and (8), we arrive at

OASk
C = ck − r

ck + φ̄k + OASk
IO

OASk
IO. (9)

The relation between the OAS on the IO and the collateral depends on the
coupon on the mortgage relative to market interest rates. In a low interest rate
environment (r < ck), the OAS on the IO and the collateral have the same sign.

8 It is also possible that the OAS is due to a Jensen’s inequality term. However, we think that
this Jensen’s inequality effect is unlikely to be very important. Indeed, since PIO = E[c/(r + φ̃)] >

c/(r + E[φ̃]), this interpretation predicts a negative OAS for the IO. In our sample, the OAS of
IOs are almost always positive, which means that this effect is probably small. Also, the Jensen’s
inequality effect predicts that the OAS depends only on the security-specific factors, not on market-
wide factors as we find in our empirical work.
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Intuitively this is because shocks that lower the value of the IO, that is, faster
prepayments, also lower the value of the collateral. In the high interest rate
environment (r >ck), the converse is true, and the OAS of the collateral has the
opposite sign of the IO.

Note that these relations are derived only from arbitrage considerations. We
have not made any statements about the equilibrium, or about how risks are
priced.9

D. The Marginal Investor

The critical assumption that we make—and for which we provide tests—
is that a representative and specialized MBS fund manager is the marginal
investor in this market.

For internal consistency, we motivate this assumption using a model of agency
and delegated fund management. As will become clear, we do not provide any
explicit tests of agency. Thus, the agency model should only be viewed as an
organizing principle.

Formally, we assume that at date 0 there is a set of risk-neutral investors
(“investors”) with large endowments, as well as a set of MBS fund managers
(“fund managers”) with endowments of wm. The risk-neutral investors find
it unprofitable to invest in the MBS market directly. Their lack of expertise
renders them vulnerable to exploitation by MBS specialists, who may be able
to sell them securities with a value significantly less than their price. As a
result, they give their funds to the specialized MBS fund manager who invests
on their behalf.

Investors require that the fund manager contribute a fraction of his own
endowment for every dollar that the investor provides. We think of this as a
capital requirement that ensures that the fund manager invests prudently. Let
us define αwf as the capital requirement on a fund manager for a fund of size
wf .10 Thus, for each dollar of his wealth, the fund manager runs a fund of size
1
α
.
The problem is that the fund manager is risk averse. He has utility over date

1 wealth of

9 The OAS for the PO is defined by

Pk
PO = 1 − r + OASk

PO

r + φ̄k + OASk
PO

.

Repeating the arbitrage argument in the text (the payoff on the PO is equal to the payoff on a one
dollar face of bond minus the payoff on r

ck of the IO), we find that

OASk
PO = − r

φ̄k + OASk
IO

OASk
IO. (19)

The OAS on the PO and IO have opposite signs. An increase in prepayment hurts the IO but
benefits the PO. Thus, the IO and PO have opposite sensitivities to prepayment risk.

10 See Holmstrom and Tirole (1997) and He and Krishnamurthy (2006) for models of capital
constraints in intermediation.
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U (w1) = E[w1] − ρ

2
Var[w1], (10)

that is, he is a mean-variance maximizer.

E. Equilibrium

At date 0, fund managers raise a total of wf − wm from investors. This gives
fund managers total capital of wm

α
. With this sum the fund managers purchase

a portfolio of mortgage-backed securities. Let xk
IO and xk

PO be the amount of the
kth IO and PO held in a portfolio. Then,

w f ,1 = wm

α
+

∑
k

xk
IO

(
V k

IO − Pk
IO

) +
∑

k

xk
PO

(
V k

PO − Pk
PO

)
(11)

is the date 1 value of the portfolio. Since the fund manager’s wealth, w1, in-
creases linearly with wf ,1 (at slope of α), his problem is to maximize (10) given
(11) and subject to the budget constraint

wm

α
≥

∑
k

xk
IO Pk

IO +
∑

k

xk
PO Pk

PO.

In our derivation, we assume that the fund manager has sufficient wealth, or
that α is sufficiently low, so that the fund manager is not capital-constrained
in purchasing his desired portfolio of MBSs.

This formulation is a variant of the traditional static CAPM. Deriving the
first-order condition for the fund manager’s portfolio choice problem and then
substituting in the market clearing condition of xk

IO = xk
PO = θk yields the fol-

lowing expression for the price of the IO:

ck

r + φ̄k
− Pk

IO = −ρα cov
(

ck

r + φ̄k
ηk�φk , RM

)
, (12)

where the market is defined as

RM =
∑

j

θ j(
r + φ̄ j

)2
�φ j (r − c j ). (13)

The term on the right-hand side of (12) is a risk premium for holding prepay-
ment risk. Note the dependence of the risk premium on α. When α = 0, the
MBS fund manager is a “veil,” and the marginal investor is the risk-neutral
investor. When α = 1, the MBS fund manager is the only investor in the MBS
market.

F. Covariance Structure

We make the following simplifying assumption on the covariance structure:

�φk = βk	 + εk , (14)
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where 	 is a common shock affecting prepayment across all securities, βk is the
loading of security k on the common shock, and εk is an idiosyncratic prepay-
ment shock. We normalize the variance of 	 to be 1.

Under this assumption,11

OASk
IO ≈ ρβkα

(∑ β j

(r + φ̄ j )2
θ j (c j − r)

)
.

The sum term is difficult to observe empirically. It is a weighted sum of
the coupons of all mortgages in the market, where the weights depend on the
amounts outstanding and the loading on systematic prepayment risk. To com-
pute the sum requires that one have data on the entire mortgage market—
which we do not have. Instead, it is common for mortgage traders to follow
whether the market as a whole is at a premium or a discount. As a proxy for
the sum term, we use a weighted average coupon across all the agency-issued
mortgage-backed securities in the market (FNMA, FHLMC, GNMA), where the
weights are the amounts outstanding of each mortgage security. The relation
we use in our tests is,12

OASk
IO =

Systematic risk︷︸︸︷
βk × ραa (c̄ − r)︸ ︷︷ ︸

Market price of risk

, (15)

where c̄ is the weighted average coupon and ρα is the effective risk aversion
of the MBS fund manager (a is a constant of proportionality). The approxima-
tion of using the simple weighted average for the coupon is valid when r is in
the neighborhood of φ̄ j . Alternatively, note that the difference of cj − r is the
dominant factor governing changes in the sum for r near cj.

Loosely speaking, the first term in (15) captures the systematic risk of the
mortgage, and the term involving the average market coupon captures the
market price of risk (recall that ρ is the risk tolerance preference parameter
for the MBS fund manager).

In equilibrium, the market price of risk is proportional to c̄ − r. Intuitively,
when the MBS market as a whole is at a premium—that is, coupons exceed
r—faster prepayments are costly to the representative fund manager. Thus,
securities whose value decreases because of faster prepayments command a

11 The exact expression is,

OASk
IO

r + φ̄k

r + φ̄k + OASk
IO

= ρβkα

(∑ β j

(r + φ̄ j )2
θ j (c j − r)

)
.

This expression can be derived from combining (12) with (7), and noting that ηk = 1/(r + φ̄k).
12 We also develop a continuous time model to express the relation between the OAS and pre-

payment risk. The resulting expressions are very similar to those we have derived in the text.
For details, see the Technical Appendix to this paper at http://econ–www.mit.edu/faculty/xgabaix/
papers.htm.
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positive risk premium. This is the reason that the OAS on the IO is positively
related to c̄ − r. In fact, securities whose values increase because of faster pre-
payments will carry a negative risk premium in this environment. An example
of such a security is the PO. With some algebraic manipulation, the OAS for
the PO is equal to

OASk
PO = −βk × ραa (c̄ − r) × r

φ̄k + OASk
IO

.

Another example of a security whose value increases with faster prepayment is
a discount collateral. Collateral with a coupon below the market interest rate
increases in value if the mortgage prepays faster than expected. Given relations
(15) and (9), we can write the OAS on the collateral as

OASk
C = βk × ραa (c̄ − r) (ck − r) × 1

ck + φ̄k + OASk
IO

. (16)

Thus the OAS on the collateral depends on both whether the MBS market as a
whole is at a premium as well as whether a particular security is at a premium.
This leads to a quadratic dependence on r. We test this relation in our empirical
work.

Finally, all of these relations are reversed when the MBS market as a whole is
at a discount. In this case, faster prepayments increase the value of the market.
Hence, the IO has a negative risk premium while the PO commands a positive
risk premium.

The dependence of the price of prepayment risk on (c̄ − r) is principally a
general equilibrium implication. It seems plausible that the relation between
βk and the OAS could be spurious, or due to model misspecification, but we
think that the fact that it depends on the interaction between βk and (c̄ − r)
stems uniquely from equilibrium considerations. Most of our empirical tests
are built around this interaction term.

G. Testable Empirical Predictions

The main predictions of the model are contained in equation (15), which we
can decompose as

OASkt
IO = βkλt (17)

λt = ραa (c̄t − rt) , (18)

where ρα is a constant proportional to the risk aversion of the fund managers.
Further implications are as follows:

� In the cross section, the loading of IO-k on the common component of pre-
payment uncertainty explains the OAS on the IOs.

� In the time series, the difference between the average market coupon, c̄t ,
and the market interest rate, rt, explains the evolution of the market price
of prepayment risk, λt.
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� In the cross section, the residual prepayment risk of security k (i.e., σ (εk))
is not priced.

� Equation (16) predicts that the OAS on the collateral is quadratic in the
market interest rate, rt, and is a function of both ck as well as the average
market coupon, c̄t .

H. Discussion of Assumptions

The model we present above is simplified along many dimensions. We com-
ment on some of these simplifications in this subsection.

At a broad level, the main result of our simplifications is that OASIO is propor-
tional to βk × (c̄ − r). This relation is likely to be robust to more sophisticated
models, although not necessarily in the simple linear form we derived.

On the other hand, the simplification in the derivation means that there are
probably other factors that affect the OAS. It is likely the case that in prac-
tice the OAS is affected by the optionality of the securities and the history
dependence of mortgage prepayment. For example, Brown (1999) documents
a positive relation between OAS and implied volatilities on Treasury bond op-
tions, which suggests that there is a misspecification in Wall Street prepayment
models used to derived the OAS. These issues suggest that the OAS is a noisy
measure of a security’s risk premium and our empirical tests may need to con-
trol for these other factors. The controls are discussed in far greater depth in
the robustness section.

Next, we omit capital constraints from the model, which are significant in the
limits of arbitrage literature. Mainly, this omission follows from the fact that
we do not provide any direct empirical tests of capital effects. Informally, we
can think of capital constraints as raising the effective risk aversion (ρ) of the
fund managers. For example, if one half of the fund managers lose all of their
capital so that they are no longer active in the MBS market, the rest of the fund
managers will, in equilibrium, bear twice the amount of risk and will therefore
demand a higher risk premium. In the next section, we provide some evidence
that early on in our sample period the risk premia are higher. The early period
also corresponds to the Askins Capital Management hedge fund crisis.

Additionally, in our model, the fund manager is risk averse and receives a
linear share of profits. In part, we make this assumption because we are inter-
ested in exploring the limits of arbitrage. As in Shleifer and Vishny (1997), the
effective risk aversion of the manager limits his ability to exploit high returns.
In practice, however, monetary compensation contracts are convex, which can
lead to risk-taking behavior in regions in which the fund manager is near the
kink in his payoff, and risk-averse behavior in other regions. Whether risk-
taking behavior is the rule rather than the exception is ultimately an empirical
question. Our results suggest that it is the exception, but it would be interest-
ing to empirically explore nonmonotonicities in the behavior of fund managers
in the MBS market.

Finally, we derive our results in a static CAPM framework. In a dynamic
model the current wealth of the fund managers will be an important state
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Table I
Description of the IO/POs

IO/PO Pool Number

249 240 252 272 264 237 270 267 268

Coupona 7.08 7.49 7.95 8.07 8.49 8.48 9.01 8.91 9.64
Ageb 58 60 63 27 50 70 80 47 110
Sizec 1,375 3,450 1,975 1,055 1,050 1,725 898 1,155 567

aWeighted average coupon (WAC) in % on underlying mortgage pool (±5 bps over sample).
bSeasoning of underlying pool in months as of July 1998.
cSize of underlying pool at original issue date, in millions.

variable. To the extent that the aggregate value of the mortgage market is a
sufficient statistic for the marginal utility of the representative fund manager,
our cross-sectional pricing equations will be unaffected by the omission of dy-
namics. Generally, in a dynamic model, the marginal utility will also depend
on changes in the investment opportunity set. If preferences are close to unit-
elastic, the latter effect will be small and our analysis will remain valid.

II. Data and Estimation

We rely on two data sets. Our first data set comprises the OAS for nine
IOs and POs (see Table I) furnished by Salomon Smith Barney. These data
are daily and cover a period beginning (for some securities) in August 1993
and ending in March 1998. We also have data on the historical prepayment
rates (monthly frequency) of the underlying collateral. The nine strips chosen
are liquid securities and are fairly representative in age and coupon of the
active secondary market. The collateral are all FNMA 30-year conventional
loans, uniformly drawn from a mix of loans from across the country. The largest
representation is from California, New York, Texas, Florida, and Illinois.

The bulk of our analysis is conducted using the IO data. We check our results
using the PO data and the results are consistent with the IO evidence, albeit a
little less strong. The results are not reported but are available upon request.

Our second data set comprises quarterly observations on the OAS for six
generic (TBA) FNMA 30-year collateral covering the period from October 1987
to July 1994. The coupons on these securities range from 7.5% to 11% and the
data are provided by Smith Breeden. We do not have prepayment information
for these pools. We test our model using these data because they cover a period
with significant variation in the average coupon. We discuss these tests in
further detail in Section F.

We construct time series of monthly OAS data for the IOs by forming simple
averages of the daily figures. This reduces microstructure effects. The data
are an unbalanced panel, with common last observations but varying initial
observations.
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A. Estimation of βk and c̄ − r

There are two steps in testing (17) and (18). We need an estimate of βk, and
we need an estimate of c̄ − r.

Our estimate of c̄ comes from UBS. For the last several years, UBS has tracked
the weighted average coupon across all outstanding mortgage pools of FNMA,
FHLMC, and GNMA. This variable is computed as the average of the underlying
coupons on individual mortgage pools, weighted by the amount outstanding of
the pools. We obtain monthly data starting from 1988 to form our estimate
of c̄t . We use the 10-year constant maturity Treasury yield from the Federal
Reserve’s Board of Governors web site to form rt.

The estimate of βk is more complex. We first develop a bare-bones statistical
prepayment model. For each IO, we have the historical paydown of its collateral,
month by month, expressed as a series skt (single monthly mortality, or monthly
prepayment rate). The prepayment model we estimate is

skt = α0k + α1k
ck

rt−1
+ α2k

ck

rt−1
(rt − rt−1) + α3kaget + εkt,

where aget is the age of the mortgage. The term ck

rt−1
captures some of the non-

linearity of the homeowner’s prepayment option. Richard and Roll (1989) use
a similar term in their prepayment model. For most of the mortgage pools we
study, ck is above rt throughout our sample, so that the option is near-the-money
or in-the-money. The dependence on past interest rates is a feature of most pre-
payment models. Longstaff (2004) shows that this feature arises naturally in a
setting with transaction costs of refinancing. The term involving aget captures
seasoning effects in mortgage pools. We assume that the error follows an AR(1)
process, that is,

εkt = γ εkt−1 + ukt.

This procedure results in a time series of ûkt’s for each security. Note that by
construction the ûkt’s are orthogonal to 10-year interest rates.

We use two proxies for βk. In the first line of Table II we present the sample
standard deviations of the residuals, ûkt. In many of our tests we use these
standard deviations as βk.

We also peform a principal components analysis of the errors and use security-
k’s loading on the common factor as βk. We focus only on the overlapping obser-
vations (22 months) for this analysis.13 The first eigenvector accounts for 84%
of the variance, which suggests that equation (14) is a good representation of
the data. The second and third components account for 8.5% and 3%, respec-
tively. Table II (second line) presents the loading on the first eigenvector for
each security as well as the standard deviation of the residual (third line).

13 We have also conducted the principal component analysis dropping the security with the
shortest time series. This results in 32 months of overlapping observations. The results are close
to what we find for the 22 months.
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Table II
Measures of Prepayment Risk

For each of the nine securities, we present βk (st. dev.), the measure of prepayment risk based on
the standard deviation of prepayment error for security k; βk (PCA), the loading of the prepayment
error for security k on the first eigenvector of prepayment errors in a principal component analysis;
idiosynck (PCA), the standard deviation of the residual from the principal component analysis; and
βk (mtge. model), the standard deviation of the residual from a Wall Street mortgage model.

IO/PO Pool Number

249 240 252 272 264 237 270 267 268

βk (st. dev.) 0.083 0.120 0.181 0.449 0.492 0.549 0.471 0.460 0.383
βk (PCA) 0.062 0.121 0.198 0.417 0.594 0.503 0.465 0.518 0.334
idiosynck (PCA) 0.088 0.074 0.080 0.167 0.263 0.178 0.240 0.178 0.203
βk (mtge. model) 0.095 0.174 0.357 0.603 1.071 0.821 0.890 1.369 0.935

As we have noted before, the idiosyncratic component of the prepayment risk
should not be priced. We do not have the prepayment rates for the entire mort-
gage market. However, on the assumption that our sample is representative,
we use the standard deviation of the residual as our measure of idiosyncratic
risk. Unfortunately, the two vectors are very similar (the correlation coefficient
is 0.88), and as we will see, the test of the explanatory power of idiosynratic
risk is not informative.

Our measure of βk captures how prepayment uncertainty varies across pools.
In practice, pools differ in the terms of their underlying mortgages—for exam-
ple, ages, coupons, and geography. These factors lead to different prepayment
uncertainty across pools.

To measure βk, we use a simple prepayment model that captures some of
the main features of prepayment behavior—dependence on interest rates rel-
ative to mortgage coupon, dependence on lagged interest rates, and seasoning
of a mortgage pool. Our aim is to come up with a ranking, across pools, of pre-
payment uncertainty rather than present a fine-tuned prepayment model. We
know that the best predictor of skt given the history of past interest rates is
nonlinear (prepayment functions are typically complex nonlinear functions of
the entire path of interest rates); however, our simple approach avoids the dif-
ficult task of calibrating such a complex model. We have experimented with
other prepayment models (for example, adding more lags of interest rates, or
adding interest rates of other maturities) and while the prepayment estimates
change, our rankings of prepayment variability remain relatively unaffected.
As a check, we also have prepayment forecasts from a Wall Street firm and use
these residuals to form βs. The βs look similar, suggesting that our model is
reasonable. See the last line of Table II.

B. Interest Rates, Average Market Coupon, and OAS

Figure 1 shows the time series of the CMT 10-year rt and the outstanding
average coupon c̄t . It is worth noting that the adjustments of the outstanding
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Figure 1. CMT 10-year and average coupon. The yield on the 10-year constant maturity
Treasury note (r) and the weighted average coupon on all outstanding mortgages in the MBS
market (cbar) are plotted over time.

average coupon are slow compared to the large movements of market inter-
est rates. Prior to 1993, prevailing mortgage rates were around 10% to 11%.
There was a large prepayment wave as rates fell from 1991 through 1993. As a
consequence, the outstanding average coupon c̄t adjusted from values of 9% to
10% down to 7% to 8%. We follow the evolution of the OAS of the IOs and POs
from 1993 to 1998. At the start of this period, interest rates were rising as the
U.S. economy was exiting a recession. The Federal Reserve raised their target
rate in February of 1994 and followed this move with several others. Interest
rates rose dramatically during this period. In 1995, there was another impor-
tant market rally, as rates fell 200 basis points (“bps”) from January 1995 to
January 1996. Rates fell continuously from March 1997 to July 1998 by slightly
more than 100 bps to reach levels as low as those of November 1993. By the
end of our sample period, the outstanding coupon had adjusted down to 7.5%.

Figure 2 shows the variation of the OAS of the IOs in our data over the period
Autumn 1993 to Spring 1998. One readily observes the large swings of the OAS
of the IOs, from values above 500 bps in the beginning of the period to values
close to zero in 1994 and 1996 when interest rates were very high. The OAS
of POs give a somewhat symmetric image, although at smaller magnitudes (as
predicted by equation (19)). One should also note that the interest rate alone is
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Figure 2. OAS of the IOs. The option-adjusted spreads on a panel of interest-only strips is
plotted over time. Each monthly data point is formed by taking a daily average of the spreads for
that month. The data are from Salomon Smith Barney.

not enough to understand the relative magnitude of the OAS of the IO between
1993 and 1998 when rates were at the same level: OASs are much higher in 1993
than in 1998. This is not a puzzle in light of our derivations, since equations
(17) and (18) tell us that the OAS of the IO is proportional to c̄ − r and not r
alone. Indeed, when looking at c̄ − r, we find that it is 35% higher in 1993 than
in 1998.

C. Cross-sectional Estimates of the Market Price of Risk

We run one cross-sectional regression for each month, where we estimate λt
based on

OASkt
IO = αt + βkλt + εt .

The OAS is measured in basis points. Note that βk, given in Table II, is measured
in units of percentage-prepayment rates per month. These estimates exploit
only the slope of the OAS. The variation in the level is picked up in αt. The αt
term may pick up any common variation due to misspecification problems in
the OAS. Alternatively, it may pick a time varying interest rate risk premium
or a time-varying premium due to shortages of arbitrageur capital.

Figure 3 graphs the estimate of λt using β-st. dev. as well as the one-standard
deviation envelopes around the estimate.14 The estimation errors of λt are

14 The graph of the estimate of λt using the β-PCA is very similar to Figure 3.
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Figure 3. λt estimates. The measure of the monthly market price of prepayment risk (λ), obtained
from estimating equation (17), is plotted. We use β-st. dev. as the measure of security-specific
prepayment risk. To compare this empirical measure to our theoretical prediction of equation (18),
we plot c̄t − rt , where c̄t is the average coupon outstanding in the MBS market and rt is the 10-
year constant maturity Treasury (CMT) interest rate. The empirical and theoretical value of the
market price of risk move together. This is confirmed by empirical tests reported in the rest of the
paper.

uniformly tight, and λt is significantly different from zero for each month. We
interpret these results as supportive of the theory because they suggest that
prepayment risk is related to the OAS, and that our measure of βk is indeed
picking up the cross-sectional prepayment risk of the IOs.

The average value of the estimated λt is 469. As βk varies from 0.08 to 0.55
across the securities, this coefficient implies a difference between these securi-
ties of 220 basis points in the OAS.

Also pictured in the figure is the difference between c̄t and rt. At a broad
level, λt and c̄t − rt follow each other. Early in the sample the fit is quite close.
Later in the sample, while the ups and downs in the two series seem to track
each other, the λ estimates seem like a muted version of c̄t − rt .

We conjecture that the more muted relationship later in the period may result
from a falling ρ over the sample period. It is well documented that in the 1993
to 1994 period a number of mortgage hedge funds suffered losses, and many
went out of business. We conjecture that this led to a loss of capital in the
mortgage market and lower capacity for risk taking, causing a higher effective
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Table III
Explaining the OAS, Baseline Specification

Regressions based on the OAS of the IOs:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk(c̄t − rt ) + εkt,

where, dt is a time dummy, dk is a security dummy, c̄t is the average coupon outstanding, and rt
is the 10-year interest rate. We also consider idiosynck(c̄t − rt ) as an explanatory variable. Results
by subsample are reported in (2) (first-half) and (3) (second-half). The break point is June 1996.

βk-st. dev. βk-PCA

(1) (2) (3) (4) (5) (6) (7) (8) (9)

βk(c̄t − rt ) 462.1 547.4 324.1 373.9 441.9 275.7 441.2 282 254.2
(4.89) (6.72) (5.59) (5.99) (7.24) (4.52) (3.19) (1.01) (3.64)

idiosynck (c̄t − rt ) 478
(0.48)

Security effects Yes Yes Yes No Yes No Yes Yes No
Time effects Yes Yes Yes Yes No No Yes Yes No

R2 0.94 0.95 0.92 0.93 0.68 0.20 0.93 0.93 0.18
N 383 194 189 383 383 383 383 383 383

Estimates reported with t-statistics based on clustered (by security) standard errors in parentheses.

ρ. As time passed, capital flowed back into these funds and the effective ρ fell.
Froot (2001) finds this effect in the catastrophe insurance market.

D. Tests Using the Entire Panel

We now report the results of testing our model using the entire panel.
Table III reports regressions based on the following model:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk(c̄t − rt) + εkt,

where the c̄t and rt are measured in percentage units, and the OAS is mea-
sured in basis points. The regression includes both time and security dummies
(dt and dk), thereby controlling for any alternative hypothesis that involves
either security-specific effects or time-specific effects. We discuss alternative
hypotheses in greater depth in the next section.

Both the OAS series and the (c̄t − rt) series are persistent, so there is serial
correlation in the regression residuals (εkt). We correct for this in two ways.
First, most of the regressions report t-statistics that are corrected for serial
correlation in the residuals at the security level (we cluster the residuals at
the security level). Second, we run regressions using first-differenced data and
report the results in Table III. Another potential problem is correlation in the
regression residuals across securities at a single point in time. However, this
problem is less severe in our specification because the regressions include a
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time dummy that absorbs all common innovations in the OAS. We have also
conducted a robustness check using a standard panel data adjustment whereby
we assume that εkt is AR(1) at the security level and correlated across securities.
We find that our results remain highly significant.

The results in columns (1) to (8) of Table III verify that our model fits the
data. The specification in column (1) uses β-st. dev., while the specification in
column (7) uses β-PCA. Columns (2) and (3) give the results from two subsam-
ples, formed using June 1996 as the dividing point between the two (there are
fewer observations in the early subsample). The coefficient estimate using β-st.
dev. is 462, while it is 441 using β-PCA. In the cross section, our measure of
βk-st. dev. varies from 0.08 to 0.55. In the time series, c̄ − r varies from a low of
−0.1 to a high of 3.06 with an average value of 1.30. If we consider a security
with a βk of 0.50, then the coefficient estimate of 462 implies time-series vari-
ation in the OAS from −22 bps to a high of 706 bps as c̄ − r varies from −0.1
to 3.06. If we consider the average level of c̄ − r of 1.30, then the coefficient
estimate of 462 implies a cross-sectional variation in the OAS of 285 bps, as
βk-st. dev. varies from 0.08 to 0.55

The time and security effects inflate the R2s in the regressions, leading to
somewhat misleading R2s in the baseline regressions. Dropping both the time
and security effects, the variables from our theory explain 20% of the variation
in the OAS of the securities (column 6). If we drop the variable from our theory
but keep both time and security effects, the R2 remains high at 89% (not re-
ported). Columns (4), (5), and (9) present other combinations from the results
of regressions without the time and/or security effects.

Note the lower (but still highly significant) coefficient in specification (3)
compared to (2). This result agrees with our conjecture that there is more risk-
bearing capacity (i.e., lower ρ) in the latter half of the sample.

Column (8) contains the result of the following regression:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk(c̄t − rt) + B × idiosynck(c̄t − rt) + εkt.

Our theory predicts that the idiosyncratic risk should not be priced. Unfor-
tunately, as we mention earlier, there is not enough independent variation in
idiosynck and βk to fashion a meaningful test of this prediction. The two se-
ries have a correlation coefficient of 0.88 and their near collinearity causes the
standard error on the coefficients to blow up, so neither is significant.

The persistence in the data series may raise concerns that the correlation
we find is spurious. Table IV reports the result of a regression run using first-
differenced data:

�OASkt
IO =

∑
t

αtdt + A × �βk(c̄t − rt) + εkt.

The coefficients estimates are lower than those obtained in the other regres-
sions, but the results remain highly significant. As before, the coefficient es-
timate for the second half of the sample is lower than that of the first half
(specification (2) vs (3)).
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Table IV
Explaining the OAS, First Differences

Regressions based on the OAS of the IOs:

�OASkt
IO =

∑
t

αtdt + A × �βk(c̄t − rt ) + εkt,

where, βk is the β-st. dev., dt is a time dummy, c̄t is the average coupon outstanding, and rt is
the 10-year interest rate. Results for the full sample are reported in (1). Results by subsample are
reported in (2) (first-half) and (3) (second-half). The break point is June 1996.

(1) (2) (3)

�βk(c̄t − rt ) 173.9 (3.05) 216.9 (2.67) 82.5 (2.40)
R2 0.71 0.68 0.81
N 374 186 180

Estimates reported with t-statistics based on robust standard errors in parentheses.
Time dummies are not reported.

A comforting aspect of the results in Table IV is that monthly changes in
OAS spreads correspond more closely to changes in the underlying market
prices of the IOs. If interest rates do not change from one month to the next,
but the IO price does change, then it must be the case that the OAS changes.
In fact, interest rates do change somewhat, but since the OAS is a spread over
Treasuries, part of the interest rate change is accounted for. Therefore, our
results will be less sensitive to the particular OAS prepayment model when we
run regressions using first-differenced data.

E. Corporate Bond Spreads

Brown (1999) presents evidence that the spreads of mortgage securities co-
move with the spreads on corporate bonds (both relative to Treasuries). Al-
though Brown argues that the evidence suggests time variation in the market
price of prepayment risk on MBS, he acknowledges that the evidence is also
consistent with time variation in the liquidity premium on Treasury securities.
Since both mortgage and corporate bond spreads are measured relative to Trea-
suries, a common time-varying liquidity demand for Treasuries will drive both
spreads (see Krishnamurthy and Vissing-Jorgensen (2006) for evidence on this
point).

Table V presents our baseline regressions, altered by replacing the time
dummies with the AAA-Treasury bond spread. Although the time dummies
subsume any variation in the corporate bond spread, the more parsimonious
specification offers some insight into the sources of variation in the OAS. The
AAA-Treasury spread data are from Lehman Brothers and are measured in
percentage units.

Consistent with Brown (1999), we find that the corporate bond spread co-
moves with the OAS. Over our sample the corporate bond spread varies from
0.37% to 1.05%. Using the coefficient estimate of 674.1 in column (1), the
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Table V
Explaining the OAS, Role of the Corporate Bond Spread

Regressions based on the OAS of the IOs:

OASkt
IO =

∑
k

γkdk + A × βk(c̄t − rt ) + B × (AAA − Treasury) + εkt,

where the results are reported for βk-st. dev. in (1) and βk-PCA in (2), dk is a security dummy,
c̄t is the average coupon outstanding, and rt is the 10-year interest rate. AAA − Treasury is the
high-grade corporate bond spread, from Lehman Brothers.

(1) (2)

βk(c̄t − rt ) 318.4 (8.66) 307.5 (6.01)
AAA − Treasury 674.1 (6.90) 682.2 (6.75)

R2 0.76 0.76
N 383 383

Estimates reported with t-statistics based on clustered (by security) standard errors in parentheses.

corporate bond spread variation implies variation in the OAS of 458 bps. The
coefficient estimate on our model is 318.4 in column (1). For a βk of 0.5, variation
in c̄ − r from −0.1 to 3.06 implies variation in the OAS of 503 bps. Thus, both
the corporate bond spread and our theoretically motivated price of prepayment
risk explain similar magnitudes of OAS variation.

F. Average Market Coupon

There is one further result that is unique to our equilibrium theory. We pre-
dict that the market price of risk should vary with the average market coupon.
Plausibly, alternative hypotheses will only link security-specific attributes (e.g.,
the coupon of the specific security being studied) and the market interest rate
to the OAS, but not the average market coupon. Although the bulk of the vari-
ation in c̄t − rt is driven by variation in rt, from Figure 1 we note that there is
some variation in the average coupon outstanding over the period from 1991 to
1998. We exploit this variation in the average coupon to verify that the c̄t has
independent explanatory power for the OAS. We begin this section by reporting
results from the IO sample. Unfortunately, there is only slight variation in c̄t
over the IO sample. We present our main results from the pass-through data
from Smith Breeden, which cover a period with more variation in c̄t .

Over the period from September 1993 to April 1998 the average coupon out-
standing falls from 8.45% to 7.52% (see Figure 1). This fall occurs in two phases:
early in the sample, and again late in the sample. We estimate the following
regression for the IOs:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A1 × βkc̄t + A2 × βkrt + εkt.

The coefficient estimates are A1 = 1474 (8.61) and A2 = − 162 (4.25) (R2 =
94% for N = 383). The coefficients are significant and of the right sign, but of
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(substantially) different magnitudes, contrary to the theory. It seems likely that
the large coefficient on βkc̄t is due to overfitting, driven by the fact that c̄t moves
only a little over this sample period.

The largest variation in the average coupon occurs over the period from mid-
1991 to early 1994. We have OAS data for pass-throughs over this period from
Smith Breeden, which we also use to test for the explanatory power of the
average coupon. The data are for the OAS on FNMA 30-year generic collateral
for eight bonds with coupons ranging from 7.5% to 11%. Our data span a period
from October 1987 to July 1994. From our theory (see equation (16)), the pass-
through takes a quadratic form in interest rates. We estimate the following
regression:

OASkt
C =

∑
k

γkdk + (A1c̄t + A2rt + A3) × (ck − rt) + εkt,

where the c̄t and rt are measured in percentage units, and the OAS is measured
in basis points. Our theory predicts that A1 is positive, A2 is negative, and
A1 + A2 = 0; A3 should not have any explanatory power.

The results are reported in Table VI. We run the first set of regressions
separately by bond. The last regression combines all of the data in a panel, and
implicitly sets the βk loadings for each security equal to each other.

The coefficients on c̄t are uniformly positive and significant, as predicted.
In terms of magnitudes, if we consider the 9% coupon bond, along with typical
values in our sample of an r of 7.5% and c̄ − r of 2%, our theoretically motivated
variable predicts an OAS of 35 bps. The average OAS over our sample for the

Table VI
Explaining the OAS, Average Market Coupon

Regressions based on the OAS of the collateral:

OASkt
C =

∑
k

γk dk + (A1c̄t + A2rt + A3) × (ck − rt ) + εkt,

where, dk is a security dummy, c̄t is the average coupon outstanding, rt is the 10-year interest rate,
and ck is the coupon on collateral-k. The last column reports the p-value from testing A1 + A2 = 0.

Bond Coupon A1 A2 A3 R2 N p-Value

7.5 19.4 (2.11) −10.1 (−2.18) −104.1 (−1.85) 0.27 26 0.13
8 24.4 (5.26) −14.0 (−4.41) −120.0 (−3.22) 0.45 28 0.03
8.5 18.6 (4.32) −13.1 (−3.83) −78.6 (−2.24) 0.45 28 0.21
9 9.6 (4.46) −9.2 (−4.67) −29.9 (−1.54) 0.47 28 0.88
9.5 11.0 (6.65) −8.2 (−3.81) −47.2 (−2.84) 0.51 28 0.30
10 11.1 (5.85) −7.3 (−2.65) −53.0 (−2.85) 0.48 28 0.23
10.5 14.0 (6.8) −6.3 (−2.37) −85.9 (−5.29) 0.53 28 0.01
11 9.4 (3.57) −6.0 (−1.61) −42.9 (−1.82) 0.35 28 0.44

ALL BONDS 11.6 (10.45) −11.7 (−3.18) −33.3 (−1.36) 0.86 222 0.99

The ALL BONDS regression uses the entire panel, with security fixed effects.
Estimates reported with t-statistics based on robust standard errors in parentheses.
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9% coupon bond is 75 bps.15 It is also encouraging that A1 and A2 have opposite
signs and similar magnitudes. However, in contrast to our theory, A3 is negative
and often significant.

A possible explanation for this discrepancy is that a true measure of the
model’s c̄ would include expected values of future coupons. That is, while in our
one-period model the OAS is proportional to our current measure of the market
price of risk (i.e., c̄ − r today), in a richer model, the OAS would reflect all of
the future expected market prices of risk, that is, the expected future values of
c̄ − r. As in the 1980s and 1990s, nominal rates were largely declining, a nega-
tive A3 captures the market’s expectation that the average coupon will decrease
in the future. Alternatively, this discrepancy could be due to a misspecification
of the option value in the underlying prepayment model from which the OAS
is generated, or a misspecification of the interest rate in our simple empirical
implementation.

G. Representative Household Model

Our theory and tests lend support to the view that a specialized mortgage in-
vestor sets prices in the MBS market. Thus, the delegation of fund management
has important effects on asset prices. This view contrasts with traditional asset
pricing theory, which sees institutions as a “veil.” In this section, we provide
further support for our view by showing that the correlation between prepay-
ment risk and wealth or aggregate consumption has, given the observed values
of the OAS, a sign opposite to that which traditional asset pricing theory pre-
dicts. The reason for this phenomenon seems to be that, controlling for interest
rates, households are more likely to prepay mortgages in good states than in
bad states.

15 We can do a rough calculation to see whether the coefficient estimates from the collateral
regressions are consistent with the coefficient estimates from the IO regressions that we report
earlier. For the IOs we predict that

OASk
IO = Aβk(c̄ − r)

and estimate that A is around 460. For the collateral, we predict that

OASk
C = Aβk(c̄ − r)(ck − r)

1

ck + φ̄k + OASk
IO

.

In our collateral regressions, we estimate Â, where

OASk
C = Â(c̄ − r)(ck − r).

We can relate Â to A using these expressions. Also, keeping track of the unit conversions from bps
to %, we find that

Â = Aβk 1

ck + φ̄k + OASk
IO

1
100

.

Substituting in typical numbers from our sample of ck = 0.09, φ̄k = 0.11, OASk
IO = 0.04, and βk =

0.4, we find that Â = A × 0.016. Thus, for an estimate of A of 460, we should expect that Â is around
7.5. The values are in the neighborhood of the coefficient estimates for the collateral.
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We form a time series of prepayment risk innovations from our estimates of
ûkt. For each t, we compute

Ut = 1
K

∑
k=1...K

ûkt

βk
,

where the βk’s are the loading on the first eigenvector from the principal com-
ponent analysis. This procedure results in a monthly series of prepayment in-
novations.

We first measure the correlation between prepayment innovations and mea-
sures of a representative household’s wealth. We note that mortgage backed
securities are zero net supply assets. A homeowner exercising her prepayment
option does not change aggregate wealth as doing so merely transfers wealth
between the holder of the MBS and the homeowner. Thus, in measuring aggre-
gate wealth one should not include the aggregate value of MBS. We check the
correlations between prepayment innovations and the stock market and real
estate prices.

We form a time series of monthly excess returns (over the short-term rate)
on the S&P500 (SPt) (a proxy for aggregate wealth). The excess return series
has a correlation coefficient of 0.032 with the prepayment innovation series.
We run a regression of:

Ut = A + B × SPt .

The coefficient estimate for B is 0.873 and the t-statistic is 0.23 (N = 53, R2 =
0.001). We conclude that the portion of prepayment risk that is orthogonal to
interest rates is unrelated to the stock market.

The other major part of aggregate wealth is real estate. Empirically, there is
extensive evidence that prepayment rates fall when real estate falls in value,
holding interest rates constant (see for example, Caplin, Freeman, and Tracy
(1997), Bennett, Peach, and Peristiani (2000), Mattey and Wallace (2001), or
Downing, Stanton, and Wallace (2005)). Caplin et al. argue that this phe-
nomenon is due to collateral constraints: The homeowner is unable to refinance
a mortgage when the equity value in the home is small. Hurst and Stafford
(2004) present evidence that households refinance their mortgages and borrow
against the equity value in their homes to boost consumption when real estate
prices rise. Stein (1995) argues that down-payment effects lead to more hous-
ing turnover when real estate prices rise. This activity naturally creates higher
rates of prepayment.

Table VII presents the correlation of the Ut series with measures of (real)
house price appreciation in different regions of the U.S. The data is from
FHLMC’s index of home prices. Our evidence is not as strong as other evidence
presented in the literature (cited above). However, in line with other empirical
studies, the correlations are for the most part positive.

We note that the IO falls in value with faster prepayment shocks and rises
with slower prepayment shocks. Since the IO rises in value when prepayment
rates fall, the former acts as a hedge against real estate and should command a



584 The Journal of Finance

Table VII
Correlations between Shocks to Prepayment and Shocks to Real

Estate Values
Correlations between prepayment shocks (Ut) and measures of real estate price appreciation for
both regional indices and a national index. corr(0) is the contemporaneous correlation. corr(−1) is
the correlation between the one-quarter lagged real estate appreciation and Ut.

New Mid South E.So W.So W.No E.No United
Eng. Atl. Atl. Cent. Cent. Cent. Cent. Mount. Pac. States

corr(0) 0.01 0.15 0.03 0.06 0.19 0.18 −0.03 0.09 0.04 0.08
corr(−1) −0.12 −0.11 −0.07 0.11 0.12 −0.03 −0.17 0.15 −0.21 −0.11
corr(−2) 0.04 0.21 0.21 0.26 0.18 0.12 0.03 0.40 0.08 0.18

negative risk premium if the representative household model is correct (i.e., it
is a hedge against falling real estate prices). On the other hand, the traditional
theory predicts a positive premium for the PO. However, in the data, the spreads
on IOs are positive, while those on POs are negative.

We also check the implications of the consumption-based CAPM for the pric-
ing of MBS. We aggregate the monthly series of prepayment innovations up to
a quarterly level for comparison to aggregate consumption data (data from Q4
1993 to Q1 1998). The consumption data are from the NIPA accounts, and are
in real terms. The contemporaneous correlation between the quarterly growth
in consumption and the prepayment shocks series is 0.03. The correlation be-
tween one-quarter lagged consumption growth and prepayment shocks is 0.36.
Table VIII presents these results in the form of standard ordinary least squares
regressions. The correlations are uniformly positive (but only statistically dif-
ferent from zero for services).

The positive correlation between consumption and prepayment innovations
means that (as with the case of real estate prices), under the traditional theory,

Table VIII
Prepayment Shocks and Aggregate Consumption

We regress:

Ut = A + B × Consumption-Growth,

where, Ut are prepayment shocks. Ct is measured household consumption. Results are presented
for aggregate (nondurables plus services), services, and housing.

Consumption Series Ct
Ct−1

− 1 Ct−1
Ct−2

− 1 R2

Aggregate 32.5 (0.19) 278.5 (1.49) 0.13
Services 320.4 (2.06) 0.21
Housing 150.7 (0.94) 0.05

OLS estimates reported with t-statistics in parentheses. N = 18.
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the IO should command a negative risk premium while the PO should command
a positive risk premium. Neither is true in practice.

We should note that the positive correlation between consumption and pre-
payment innovations derives from a simplified prepayment model, and obtains
over a small sample of a boom period during the 1990s. Unlike the link we
demonstrate between real estate prices and prepayment innovations, we are not
aware of prior work that documents this correlation. However, the result seems
believable on a priori grounds. As noted above, prepayments are positively cor-
related with real estate prices. As consumption is also positively correlated
with real estate prices (see Case, Quigley, and Shiller (2005)), prepayments are
thereby likely to be correlated with consumption. A second possible explanation
is that homeowners are only able to take advantage of lower interest rates and
refinance if they qualify for a new mortgage (see Longstaff (2004)). Thus, when
income and consumption grow, the credit quality of the average homeowner
improves, thereby allowing more homeowners to take advantage of refinancing
options and increasing prepayment rates.

H. Preferences of the Marginal Investor

The coefficient estimates on our model range from 82 to 547, depending on
the specification and subsample. These numbers are not readily interpretable
as corresponding to preferences. In this subsection, we provide a “back-of-the-
envelope” calibration to assess these numbers. We show that our findings are
in the range of what one would expect if the marginal investor is a leveraged
mortgage fund manager.

Above, we find that for a mean-variance investor with risk tolerance of ρ, the
OAS is

OASk
IO ≈ αρβk

(∑ β j

(r + φ̄ j )2
θ j (c j − r)

)
.

We translate this into preferences for an agent with CRRA preferences with
parameter ρ̂ and wealth of w, that is,

U (w) = w1−ρ̂ − 1
1 − ρ̂

.

Taking a Taylor expansion around a point w0 and retaining the first two terms
gives us

U (w) − U (w0) ≈ u′(w)
(

�w − 1
2

ρ̂

w
(�w)2

)
.

Hence, locally, this agent is a mean-variance investor with risk tolerance of
ρ̂/w, where w is the fund manager’s wealth. Substituting this into the OAS
expression gives
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OASk
IO ≈ αρ̂

w
βk

(∑ β j

(r + φ̄ j )2
θ j (c j − r)

)
.

We have assumed that the capital requirement for fund managers is the
fraction α of fund size, so that a fund manager who starts a fund by contributing
wm of his own wealth has fund capital of wm

α
. Now, mortgage funds typically also

leverage up this capital via the repo market. Suppose that the typical mortgage
fund manager has leverage of L. Then, market clearing (i.e., the fund managers,
via leverage, hold the entire mortgage market) requires

L
wm

α
=

∑
P j

C θ j ,

where Pj
C is the price of the jth collateral. We can use this expression to solve

for wm, which is the amount of wealth that fund managers have at stake in the
mortgage market.

For a typical hedge fund, it is plausible that the largest share of the manager’s
wealth is tied up in the fund. More generally, let us suppose that the represen-
tative fund manager has a portfolio of κw (κ > 0) in the mortgage market and
(1 − κ)w in a riskless bank account. Then w = wm

κ
, and we can substitute for w

into the OAS expression to find

OASk
IO ≈ Lκρ̂βk

(∑ β j

(r + φ̄ j )2
θ j (c j − r)

)
∑

P j
C θ j

.

We see that leverage increases the effective risk aversion of the fund manager
by a factor of L. The reason is that leverage implies that a fund manager with
little wealth is taking a large position in the market. In order to compensate the
fund manager for bearing this risk, the risk premium must be correspondingly
large.

We also see that a lower κ decreases the effective risk aversion of the manager.
This is because a fund manager whose wealth is more diversified is less risk
averse with respect to shocks in the mortgage market.16

We now calibrate this expression based on data from the mortgage market.
Over our sample, the average 10-year CMT rate is 6.5%. The average annual
prepayment rate (across all of the mortgage pools) is 11.8%. The average βk is
0.38. If we approximate the OAS formula as

OASk
IO ≈ Lκρ̂βk

(
β̄

(r̄ + φ̄)2

∑
θ j (c j − r)

)
∑

P j
C θ j

,

and further take Pj
C = 1 (i.e., no discount or premium on the underlying collat-

eral in the market), then,

16 Note that α drops out because it has two offsetting effects. On the one hand, low α means
that fund managers will run bigger funds and be exposed to more risk. On the other hand, a low α

means that the fund manager’s exposure to this risk is smaller. The model only requires that α be
positive.
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OASk
IO ≈ Lκρ̂βk β̄

(r̄ + φ̄)2
(c̄ − r) = L × κ × ρ̂ × 11 × βk(c̄ − r).

For the leverage number, we conduct an informal poll of MBS traders and
find that typical leverage ranges from 5 to 20 for funds that trade IOs and POs.
For the κ number, if we use one (i.e., 100% of wealth tied up in the MBS market),
then for a coefficient estimate on the model of 462 and a leverage of 10, this
implies a risk aversion parameter, ρ̂, of about 5. Thus, our estimates of ρ̂ range
from 0.7 to 5 for an L of 10 and κ of one. If κ is one half, the corresponding risk
aversion parameter ranges from 1.4 to 10.

These preference parameters make sense under a limits of arbitrage view ac-
cording to which the marginal investor is a specialized institution. The special-
ized mortgage fund manager bears disproportionate amounts of mortgage risk.
Leverage magnifies this effect, enabling us to match the data with reasonable
risk aversion parameters. We should also note that other institutional features
of delegation, such as capital constraints, open-ending, minimum benchmarks,
etc., may also affect risk aversion. For example, Grossman and Zhou (1996) have
shown how institutional demand for portfolio insurance can end up having im-
portant effects on aggregate risk aversion and prices. It would be interesting to
study further the effects of capital constraints, for example.

Finally, MBS are zero net supply securities. However, if we ignore this fact
and suppose that the relevant measure of aggregate household wealth included
the securitized value of MBS, then the corresponding risk aversion parameters
will be too high. As the MBS market is about 10% of aggregate wealth, the
risk aversion parameters will be 10L times bigger—that is, 100 times as high,
resulting in numbers in the range of 70 to 500. Reconciling this with consumer
preferences would be very problematic. We conclude that to make sense of the
prepayment risk premia in MBS, one needs a “limits of arbitrage” view.

III. Model Misspecification and Robustness Checks

As mentioned above, observed OAS behavior might be explained by a misspec-
ification in the Wall Street mortgage model from which the OAS are derived. We
have shown that our results hold using OAS from both Salomon Smith Barney
as well as Smith Breeden. Thus, our results are not driven solely by peculiari-
ties of one firm’s prepayment model. We provide a number of other robustness
checks in this section to address the misspecification possibility.

We should note at the outset that one way to sidestep the misspecification
issue is to use actual bond returns as the dependent variable in our regres-
sions. The primary reason we do not follow this procedure is that actual bond
returns are a very noisy estimate of the expected return on the securities.17

Thus, we need more data than we have to implement these regressions. Using

17 We can reduce the noise in bond returns if we take a stand on the mortgage prepayment model
and calculate interest rate hedge ratios. Then we can strip out the interest rate component of actual
bond returns. However, this seems no better than using the OAS from the prepayment model of a
dealer, as we have done.
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the OAS greatly reduces this measurement error problem. Breeden (1994) pro-
vides support for our approach. He studies a large panel of GNMA securities
and finds that the OAS has strong predictive power for the subsequent returns.
The results are reported in Exhibits 72, 73, and 74 of Breeden (1994). We draw
attention to Exhibit 74 in particular, which demonstrates that the strongest
relation is between the OAS for IOs and subsequent returns.18

A. Is the OAS Due to a Misspecified Model of the Prepayments?

If the Wall Street pricing model uses an incorrect model of homeowner pre-
payment, then the OAS will be biased.

Let us revisit equation (7), which we rewrite as

Pk
IO = ck

r + φ̄k + OASk
IO

.

Suppose that informed market participants have a true model of prepayments
that is actually φ̂k . If the average market participant quotes the OAS based on
an incorrect assessment of prepayment and uses φ̄k , then an additional discount
rate of φ̂k − φ̄k is required in order to recover the true market prices. In this
case, the OAS is equal to φ̂k − φ̄k , which is nonzero even if prepayment risk is
not priced.

Note that the OAS on the IOs in our sample are for the most part positive,
while those on the PO are negative. Thus, under the misspecified model hy-
pothesis, the OAS must be based on a model that consistently underpredicts
prepayments.

There is a plausible hypothesis as to why underprediction may be the norm
in our sample. Banks typically calibrate their prepayment functions to histor-
ical experience. While consumers have in the past been slow to exercise their
refinancing option, during the 1990s, increased competition and the explosion
of internet-based lending greatly reduced the costs of refinancing and as a re-
sult, consumers were quicker to take advantage of refinancing possibilities and
prepayments increased.

Suppose that in our sample, smart investors forecast this decrease in refi-
nancing costs. Then, a smart investor would have also forecast a higher level of
prepayments. However, if the OAS were based on a model calibrated to histor-
ical experience, then the OAS would be based on a model that “underpredicts”
prepayments.

18 For each MBS security, Breeden (1994) calculates optimal interest rate hedges based on a
prepayment model and then uses these hedge ratios to construct hedged returns on the MBS
security. He regresses the realized hedged returns on the OAS of these securities and shows that
the regression coefficients are positive. The regression coefficient of the hedged returns on the OAS
is: 1.1 (s.e. 0.34), 1.35 (s.e. 0.33), and 0.87 (s.e. 0.58), for collaterals, IOs, and POs, respectively. The
result holds true for collaterals, IOs, and POs, and is supportive of our working hypothesis that
the OAS is not solely driven by model misspecification.
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To the extent that underprediction is a phenomenon that only affects the
general level of prepayments, then the time effects in our regression specifica-
tion should handle the misspecification. For example, an increase in the general
level of prepayments may occur if a reduction in refinancing costs leads to more
trading-up or relocation based prepayments across all mortgage pools. Thus,
our regression specification controls for an underprediction that can be written
as,

φ̂k − φ̄k = γt ,

where the γ t is a common misspecification in the rate of prepayment across all
mortgages.

Alternatively, suppose that some types of mortgage pools, say for geographic
reasons, realize a higher level of underprediction. Then the security effects
in our specification should handle the misspecification. Thus, our regression
specification controls for all underprediction that can be written as

φ̂k − φ̄k = αk + γt ,

and the only case that poses a problem for our results is if the underprediction
is a nonlinear function of both security and time.

Suppose that the underprediction at time t is proportional to φ̄k
t , the current

level of prepayments on mortgage k. That is, suppose that φ̂k
t is equal to φ̄k

t
times a constant. This situation may arise, for example, if φ̄k

t proxies for the
refinancing desires of the average household in a particular pool, so that the
lower costs of refinancing speed up prepayments in that pool in particular.
Such an underprediction implies an OAS whose sign patterns match those in
the data. We run the following regression to account for this possibility:

OASkt
IO =

∑
t

αt dt +
∑

k

γk dk + A × βk(c̄t − rt) + B × skt + εkt,

where skt is the actual single-month mortality (SMM) for month t. We also run
the same specification using an average of skt, where the average is for 7 months
centered around month t.

The results are reported in the first two columns of Table IX. The skt variables
are not significant (and are negative), while the coefficient on our model remains
large and significant. The coefficient on our model does drop in the second
specification, while the R2 rises. This may be due in part to different sample
sizes. However, there also seems to be an interaction with the fixed effects,
as the coefficients (not reported) on some of the bonds change in the second
specification.

Another possible time and security effect interaction arises if the underpre-
diction is related to the difference between the coupon on a particular mortgage
pool (ck) and the market interest rate. This situation may occur if the lower costs
of refinancing lead consumers to exercise their refinancing option more opti-
mally in reaction to falling interest rates. This alternative may predominantly
affect high coupon mortgages in low interest rate environments. Note that if
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Table IX
Explaining the OAS, Robustness Checks

Regressions based on the OAS of the IOs:

OASkt
IO =

∑
t

αtdt +
∑

k

γkdk + A × βk(c̄t − rt ) + xkt + εkt,

where, βk is the β-st. dev., and additional explanatory variables xkt are: skt, the SMM for security
k, month t; s̄kt, half-year moving average of skt, centered at t; and ck × rt, the coupon of security k
interacted with rt.

(1) (2) (3)

βk(c̄t − rt ) 547.4 (5.18) 273.5 (4.35) 254.6 (4.73)
skt −30.1 (−0.73)
s̄kt −11.4 (−0.32)
ck × rt 16.0 (6.82)

R2 0.94 0.96 0.96
N 374 337 383

All regressions have security and time fixed effects (not reported).
Estimates reported with t-statistics based on clustered (by security) standard errors in parentheses.

the bias is simply proportional to ck − rt then the security/time fixed effects
specification will control for this possibility. Thus, the only possibility that we
need to address is if the bias depends on both ck and rt. The results of Table IX
control for this possibility by including a term such that ck is interacted with rt.
While the interaction term is significant, the coefficient on our model continues
to be large and significant.

B. Is the OAS Due to a Misspecified Interest Rate Model?

Market practice is to use a term structure model that is calibrated to cur-
rent market risk-free rates and then discount the cash flows under the risk-
neutral measure implied by the term structure model. By construction, there-
fore, the OAS should not reflect interest rate risk. However, any miscalibration
or misspecification in the interest rate model will pollute the OAS. In prac-
tice, state-of-the-art term structure models produce relatively small pricing er-
rors for bonds. However, when pricing interest rate derivatives, model-implied
prices can deviate significantly from market prices. Longstaff, Santa-Clara, and
Schwartz (2001) report deviations of 2% to 4% when pricing swaptions using a
four-factor string market model. These deviations increased substantially dur-
ing the fall of 1998 crisis period. Since the MBS is a combination of a bond
and interest rate option, the OAS will partly reflect the sort of deviations that
Longstaff et al. report.

C. Agnostic Interest Rate Misspecification Controls

On a priori grounds, it is not obvious what specific alternative hypothesis to
control for. While there is likely to be a bias in the OAS, neither the direction of
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the bias, nor how the bias affects inference in our regressions, is clear. In this
subsection we present “agnostic” controls, where the controls are guided by the
literature and the tests we perform.

If the bias varies across time and equally affects all of the IOs we study, then
the time fixed effects in our regressions will serve as a control. For example,
time dummies may control for spikes in the pricing deviations similar to those
reported by Longstaff et al. during the fall of 1998.

Andersen and Andreasen (2000) report a skew in pricing deviations for caps
and floors. Lower strike options have larger deviations than higher strike op-
tions. The strike in an MBS is related to the underlying coupon. Our regressions
include security fixed effects that can proxy for the strike and thereby control
for this sort of cross-sectional pricing bias.

The type of bias our security/time fixed effects do not control for is a bias
that varies over time but affects different strikes differentially. Recall that we
test our theory by interacting the prepayment risk of the security and a term
involving the level of interest rates (c̄t − rt). Thus, a candidate for the bias that
seems pertinent for our inference is one that depends on the interaction between
the moneyness of the option and the level of interest rates.

We can control for this possibility by introducing a regressor that depends on
(ck − rt) × rt, where ck is the coupon on the MBS. This control is subsumed by
introducing a regressor that is quadratic in ck and rt:

A(ck)2 + Bckrt + Cck + Drt + Er2
t .

As our basic regression already has time and security fixed effects, the terms
involving only ck or only rt are already controlled for. Thus, we only need to
include an interaction term between ck and rt to control for this hypothesis.
The results reported in the last column of Table IX confirm that our results are
robust to this type of misspecification possibility.

D. Option Undervaluation Hypothesis

Brown (1999) documents a positive relation between the OAS and implied
volatilities on Treasury bond options, which suggests that pricing models may
be using an incorrect interest rate volatility. The OAS on IOs are usually posi-
tive, while those for POs are usually negative. If the model interest rate volatil-
ities are too low, the prepayment option will be undervalued in the pricing
models, giving rise to a positive OAS for the IOs (and a negative one for the
POs).

We investigate the option undervaluation hypothesis in Table X. If models
are undervaluing the interest rate option, then a simple way to control for this
effect is to introduce a regressor that is equal to the value of the interest rate
option minus intrinsic value.

We take the following approach. For each security we compute,

OVkt = E[max(ck − r̃, 0)] − max(ck − rt , 0), r̃ ∼ N (rt , σ 2τ ),
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Table X
Explaining the OAS, the Option Undervaluation Hypothesis

Regressions based on the OAS of the IOs:

OASkt
IO =

∑
t

αt dt +
∑

k

γk dk + A × βk(c̄t − rt ) + B × OVkt,

where OVkt is the option value, minus intrinsic value, of a European floor on the 10-year CMT,
struck at ck. We also use βk × OVkt as an independent variable. Results are reported for 5- and
10-year maturities for the option valuation.

5 Year 10 Year

(1) (2) (3) (4)

βk(c̄t − rt ) 495.3 (6.50) 570 (5.32) 477.6 (5.83) 590 (8.68)
OVkt −3.8 (−2.50) −2.0 (−1.18)
βk × OVkt 17.7 (2.82) 15.3 (6.23)
R2 0.94 0.95 0.94 0.95
N 383 383 383 383

Estimates reported with t-statistics based on clustered (by security) standard errors in parentheses.
All regressions have security and time fixed effects (not reported).

where rt is the 10-year CMT at time t and ck is the coupon underlying mortgage
k. Thus, the computation is of the value of a European “floor” on the 10-year
CMT, minus the intrinsic value of the option. Our distributional assumption is
that the 10-year CMT is distributed normally around the current value of the
10-year CMT. Finally the “time to maturity” is τ . We use two different values
of τ , 5 years and 10 years. The σ is the sample standard deviation of changes
in the 10-year CMT (81 bps). Finally, we scale this option value by 100 for ease
of comparison.

The above is obviously a crude representation of the value of the option.
However, to the extent that we are assuming that none of this option value is
accounted for in the trader’s model, we are being conservative.

The results are in Table X. The coefficient on our model remains significant
and of the same order of magnitude as in other specifications. Specifications (2)
and (4) interact the option value with βk, based on the idea that perhaps βk is
picking up the number of options embedded in the mortgage.

IV. Conclusion

We provide theory and evidence that the marginal investor in the mortgage-
backed securities market is a fund manager who is principally invested in the
mortgage market, as opposed to a well-diversified household. The theory pre-
dicts that prepayment risk is priced and that the pricing of this risk depends on
the riskiness of the entire mortgage market. Our empirical findings support the
notion of limits to arbitrage in the MBS market, a large market in the United
States.
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The MBS market is a highly specialized market that requires a great deal
of expertise on the part of the active investor. We conjecture that the limits of
arbitrage effects are most pronounced in markets that require a great deal of
expertise. For example, recent evidence from the corporate bond market (Collin-
Dufresne et al. (2001)) and the credit default swap market (Berndt et al. (2004))
suggests that market-specific risk factors have important effects on risk premia
in these markets. We believe that this evidence also supports limits of arbitrage
theories. In line with the theory we present in this paper, we predict that when
the standard deviation of returns of the corporate bond market increases, the
price of noninterest risk in the bond market will increase. Similarly, when credit
risk becomes large, the price of credit risk itself will increase. More work needs
to be done to evaluate these conjectures.

There are several avenues along which to extend our research. First, the
evidence we present is from a data sample that is small, especially in relation
to the MBS market. Including more securities in our cross-sectional analysis
and extending our sample beyond 1998 are important steps to take in order
to verify the generality of our results. Additionally, while we try to rule out
the alternative explanation that our results are driven by a misspecification in
the model from which the OAS is derived, this remains a potential alternative.
Collecting sufficient data on MBS prices so that we can directly estimate MBS
returns instead of relying on the OAS is an important step to take in this line
of research.

On the theoretical side, the result that a limited amount of capital sets prices
in the MBS market has bearing for models of capital constraints. Liquidations
induced by low capital can be expected to have large price effects in such a mar-
ket, as a small set of investors have to absorb the sales. We have investigated an
extension of the model in this paper in which some fund managers face capital
constraints in the form of a value-at-risk requirement. Our investigations so
far confirm that, under natural assumptions, the MBS risk effect we identify in
this paper and the capital constraint effect proposed by others should reinforce
each other. Capital scarcity affects MBS prices by first affecting the price of
prepayment risk according to the factor structure we identify. This theoretical
result suggests an interesting avenue for empirically identifying capital effects:
Capital constraints should raise the spreads between high and low prepayment
risk securities, in addition to raising the level of all spreads to Treasury secu-
rities. We intend to pursue this extension in future work.
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