23. MORE HYPOTHESIS TESTING

The Logic Behind Hypothesis Testing

For simplicity, consider testing $H_0: \mu = \mu_0$ against the two-sided alternative $H_A: \mu \neq \mu_0$.

Even if H_0 is true (so that the expectation of \overline{X} is μ_0), \overline{x} will probably not equal μ_0 exactly.

Instead, we need to decide if the observed difference between \overline{x} and μ_0 can plausibly be accounted for by chance (i.e., by the natural variability of \overline{X}) or should be attributed to a systematic difference between the true and hypothesized means, μ and μ_0.

If H_0 is true, then Z is approximately standard normal, and will very rarely lie outside the interval $(-z_{\alpha/2}, z_{\alpha/2})$.
But if \(\mu \neq \mu_0 \) then the distribution of \(Z \) will have a nonzero mean, with the same sign as \(\mu - \mu_0 \), and it would not be so unusual to find \(z \) in the rejection region.

So if for our given data we find that \(z \) is in the rejection region, there are only two possibilities:

- **EITHER** \(H_0 \) is true, in which case the observed value of \(z \) must be just a “fluke”, or rare event, due simply to the natural variability of \(\bar{X} \); (This “false alarm” scenario is not impossible, although it is somewhat implausible, especially if \(\alpha \) is small),

- **OR ELSE** \(H_0 \) must be false.
Here, a reasonable person would conclude that there is sufficient evidence to reject H_0.

The situation is analogous to having an alarm which almost never goes off falsely, but which is now ringing.

It is more plausible that the largeness of $|z|$ is caused by some systematic effect (i.e., that $\mu \neq \mu_0$), rather than by the natural variability of a standard normal. Thus, we reject H_0.
To improve your understanding of the discussion above, consider [R Demo: Power].

This gives graphs illustrating the power of the test. The power is the probability of rejecting the null hypothesis. It depends on the value of the population mean.

The R demo uses the situation in Example 1 of the previous handout (Quarter Pounders), which was a left-tailed test, with hypothesized mean $= 0.25$, $\sigma = 0.035$, $n=50$. The values of the population mean μ are 0.25, 0.24, 0.23, 0.22.
Statistical Significance And
The Meaning Of α

• If H_0 is rejected, we say that the results are **statistically significant** at level α.

In this case, we have proven that H_A is true, beyond a reasonable doubt (but not beyond all doubt).

Note that α *is not* the probability that H_0 is true, since there is nothing random about H_0.

Instead, α represents the false alarm rate (Type I error rate) of the test, i.e., the proportion of the time that a test *of this kind* would reject H_0 if H_0 were in fact true.
A finding of statistical significance does not provide absolute proof that H_0 is false.

We may be committing a Type I error (i.e., we may have a false alarm).

To make matters worse, we may never find out whether we made a mistake by rejecting H_0.

We do know, however, that if H_0 were true, then false alarms would be unlikely to occur: they would have probability α.

• If H_0 is not rejected, then we say that the results are not statistically significant at level α.
The terminology often used here is that H_0 is “accepted”, but this should be avoided, since our inability to find sufficient evidence to reject H_0 does not in any way demonstrate that H_0 is true. (By analogy, the acquittal of a defendant on murder charges obviously does not constitute proof of innocence.)
Tests For μ When σ Is Unknown

When σ is unknown, we estimate it by the sample standard deviation, s.

The test statistic to use in this case is $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$.

The t-statistic measures how far the sample mean is from the hypothesized population mean, in units of estimated standard errors.

If the population is normal and H_0 is true, then t has a Student’s t distribution with $n - 1$ degrees of freedom.
The criteria for a level α test are:

<table>
<thead>
<tr>
<th>H_A</th>
<th>Rejection Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu \neq \mu_0$</td>
<td>$</td>
</tr>
<tr>
<td>$\mu < \mu_0$</td>
<td>$t < -t_{\alpha}$</td>
</tr>
<tr>
<td>$\mu > \mu_0$</td>
<td>$t > t_{\alpha}$</td>
</tr>
</tbody>
</table>

This test is commonly referred to as the t-test.

Values of t_{α} can be found in Table 6, using df = $n - 1$.

As df gets larger, t_{α} becomes smaller.

For df ≥ 29, t_{α} and z_{α} are reasonably close. (We use the same cutoff for “large sample sizes” as we did in constructing confidence intervals. See the discussion given there.)
Before applying the t-test, it is wise to check a histogram of the data for approximate normality. Although it is safe to apply the t-test even if the data contain outliers, the actual level (false alarm rate) of the test will typically be somewhat smaller than α in this case.

A more serious problem is that the probability of a Type II error will typically be larger, so the test has a harder time detecting that H_A is true, than in the normal case.
Eg 1: A 2011 Volkswagen Jetta was tested for NO\textsubscript{x} (nitrogen oxide) emissions in two runs on an urban route in Los Angeles, CA. The Environmental Protection Agency limit for this pollutant is .04 g/km. The average emission was .989, with a sample standard deviation of .114. Is there evidence that this car violated the EPA limit, at the 1% level of significance? Assume that NO\textsubscript{x} emissions are normally distributed.

Sol: Let \(\mu \) represent the expected NO\textsubscript{x} emissions for this car and route. We want to test \(H_0: \mu = .04 \) versus \(H_A: \mu > .04 \). Thus, \(H_0 \) states that the VW Jetta did not violate the EPA limit, while \(H_A \) states that it did.
Eg 2: The manager of a credit card company claims that the mean time to settle disputed charges is 30 days. A regulator is worried that the manager’s claim is too optimistic. The regulator examines a random sample of 15 disputed charges, and finds a mean time to settlement of 35.9 days, with a sample standard deviation of 10.2 days. Is there evidence at the 5% level of significance to doubt the manager’s claim, assuming that the time to settle disputes is normally distributed?

Sol: Here, we test $H_0: \mu = 30$ versus $H_A: \mu > 30$, where μ is the population mean (that is, expected) time to settlement for all disputed charges.

Eg 3: The Lucky Coin Demo.