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1 Introduction

[This is half rough draft, half authors’ notes to each other, with lots of worked examples to
see how things work. It’s probably hard to read on its own, but you’re welcome to give it
a try.]

We study the term structures of a diverse set of assets: dollar bonds, foreign-currency
bonds, inflation-protected bonds, and equity indexes and dividends. These assets are claims
to different cash flows, which gives their term structures different levels and shapes. The
question is where these levels and shapes come from.

Bonds are a useful benchmark. Their cash flows are fixed, so bond prices, yields, forward
rates, and returns are functions of the pricing kernel alone. Since the pricing kernel is
not directly observed, estimated bond pricing models are essentially reverse engineering
exercises, in which properties of the pricing kernel are inferred from bond prices. A central
feature of the pricing kernel is its dispersion, which we measure with entropy. We show
how the average slopes of yield and forward rate curves are mirrored by the behavior of
entropy over different time horizons. In some cases, the long forward rate converges at long
maturities to a constant, a feature that has a number of observable consequences for bond
prices.

Other assets also have maturity dimensions, which we see in a broad range of forward,
futures, and swap contracts. We approach them in a similar way. The term structures in
this case are functions of a transformed pricing kernel, the product of the original pricing
kernel and the growth rate of the cash flow to which the assets are claims: the spot price
of foreign currency, the consumer price index, or an equity dividend. In terms of the
original pricing kernel, entropy here is connected to the dispersion of the pricing kernel, the
dispersion of cash flow growth, and the relation between the two. We measure dispersion,
as before, with entropy, and define a new concept — coentropy — to measure dependence.
The cash flows are typically observed, which allows us to estimate their properties, but
their coentropy with the pricing kernel is a critical unseen feature that affects their term
structures. We show how various elements of models affect the term structures of a number
of assets.

Mention debt to Alvarez and Jermann (2005), Hansen and Scheinkman (2008), Martin
(2013).

2 Evidence

Our focus is the properties of observed term structures of prices and returns, so it’s helpful
to begin with data. Consider returns. We measure excess returns with differences in the
logarithms of gross monthly returns; you’ll see why shortly.



We report summary statistics for some examples in Table 1. A broad-based equity index,
for example, has an average excess return of about 0.4 percent monthly or 4.8 percent
annually. Some of the Fama-French portfolios have mean excess returns in the neighborhood
of 1 percent monthly. We’ll use this 1 percent number as an informal lower bound on the
maximum mean excess return.

Nominal bonds with maturities greater than a month also have positive average excess
returns, but they’re significantly smaller. We see in the table mean values of 0.11 percent
monthly for 2-year US Treasuries and 0.15 for 5-year Treasuries.

[Currencies? TIPS?]

The US dollar term structure. The US dollar term structure starts low, on average, reflecting
low average returns on short-term default-free dollar bonds. Mean yields, forward rates,
and returns increase with maturity. The mean spread between one-month and 120-month
yields and forward rates have been about 2 percent annually. See Figure 1.

Other term structures. Assets with cash flows also have term structures, although there’s
not often as much market depth at long maturities as there is with bonds. They differ,
in general, in both the starting point (the one-period return on a spot contract) and in
how they vary with maturity. The former is covered in Table 1. In Figure 2 we plot the
differences between mean yields on a number of other assets and US Treasury yields. We see
that some assets have steeper yield curves, some flatter, and some have completely different
shapes.

References to related work (more to come): Binsbergen, Brandt, and Koijen (2012), Bins-
bergen, Hueskes, Koijen, and Vrugt (2012), Binsbergen and Koijen (2015), Boguth, Carlson,
Fisher, and Simutin (2013), Boudoukh, Richardson, and Whitelaw (2015), Dahlquist and
Hasseltoft (2013, 2014), Dai and Singleton (2003), Hasler and Marfe (2015), Lettau and
Wachter (2007), many more ...

3 Entropy, coentropy, and returns

We define entropy and coentropy and connect them to expected excess returns. We’ll see
in the next section that these concepts generalize easily to time horizons of any length.

3.1 Entropy and coentropy

We start with definitions of entropy, a measure of dispersion, and coentropy, a measure of
dependence. The entropy of a positive random variable x is

L(x) = logE(x)− E(log x). (1)

Entropy L(x) is nonnegative and positive unless x is constant (Jensen’s inequality applied
to the log function). It’s also invariant to scale: L(ax) = L(x) for any positive constant a.
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If we choose a = 1/E(x), then ax is a ratio of probability measures (or Radon-Nikodym
derivative) and L(ax) = L(x) is its relative entropy. See Alvarez and Jermann (2005,
Section 3), Backus, Chernov, and Martin (2011, Section I.C), Backus, Chernov and Zin
(2014, Section I.C), and Cover and Thomas (2006, Chapter 2).

We find it instructive to express entropy in terms of the cumulants and cumulant generating
function (cgf) log x. The cgf of log x, if it exists, is the log of its moment generating function,

k(s) = logE(es log x).

The function k is convex in s; see, for example, Figure 3. Given sufficient regularity, it has
the Taylor series expansion

k(s) =
∞∑
j=1

κjs
j/j!,

where the jth cumulant κj is the jth derivative of k(s) at s = 0. More concretely, κ1 is
the mean, κ2 is the variance, κ3/(κ2)3/2 is skewness, κ4/(κ2)2 is excess kurtosis, and so on.
Entropy is therefore

L(x) = k(1)− E(log x) = κ2/2! + κ3/3! + κ4/4! + · · · =
∞∑
j=2

κj/j!. (2)

If E(log x) = 0, entropy is simply k(1). See Backus, Chernov, and Martin (2011, Section
I.C) and Martin (2013, Sections 1 and 3).

Two examples show how this might work:

Example 1 (normal). Let log x ∼ N (µ, σ2). The cgf is k(s) = µs + (σs)2/2 and entropy is
L(x) = (µ + σ2/2) − µ = σ2/2. If we compare this to the cumulant expansion (2), we see
that normality gives us the variance term κ2/2, but all the higher-order terms are zero (κj
for j ≥ 3).

Example 2 (Poisson). Let log x = jθ where j is Poisson with intensity parameter ω > 0: j
takes on nonnegative integer values with probabilities e−ωωj/j!. The cgf of log x is k(s) =
ω(eθs − 1). The mean is ωθ, the variance is ωθ2, and entropy is ω(eθ − 1)− ωθ. Expanding
the exponential, we can express entropy in terms of the cumulants of log x:

L(x) = ω(θ2/2! + θ3/3! + θ4/4! + · · ·).

The first term is half the variance — what we might think of as the normal term. The other
terms represent higher-order cumulants. Numerical examples suggest that we can make
their overall impact as large or as small as we like. For example, entropy can be smaller
than half the variance (try θ = −1) or greater (θ = 1). Or it can be much greater: If
ω = 1.5 and θ = 5, half the variance is 18.75 and entropy is 213.62.
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We plot both cgf’s in Figure 3. The random variables log x have been standardized, so
that they have mean zero and variance one, but they are otherwise the examples described
above. In the normal case, the cgf is the parabola k(s) = s2/2 and is symmetric around
zero. In the Poisson case, the cgf’s asymmetry reflects the positive skewness of a Poisson
random variable with positive scale parameter θ. The positive contribution of high-order
cumulants in this case drives entropy — the valaue of the cgf k at s = 1 — above its normal
value of half the variance.

We turn next to the relation between two random variables — what is commonly referred to
as dependence. If entropy is an analog of variance, then coentropy is an analog of covariance.
We define the coentropy of two positive random variables x1 and x2 as the difference between
the entropy of their product and the sum of their entropies:

C(x1, x2) = L(x1x2)− L(x1)− L(x2). (3)

This definition is new. If x1 and x2 are independent, then L(x1x2) = L(x1) + L(x2) and
C(x1, x2) = 0. If x1 = ax2 for a > 0, then coentropy is positive. If x1 = a/x2, then
L(x1x2) = L(a) = 0 and coentropy is negative. Coentropy is also invariant to noise.
Consider a positive random variable y, independent of x1 and x2 — noise, in other words.
Then C(x1y, x2) = C(x1, x2y) = C(x1, x2).

As with entropy, we can express coentropy in terms of cgf’s. The cgf of log x = (log x1, log x2)
is k(s1, s2) = logE(es1 log x1+s2 log x2). The cgf’s of the components are k(s1, 0) and k(0, s2).
Coentropy is therefore

C(x1, x2) = k(1, 1)− k(1, 0)− k(0, 1). (4)

The cgf has the Taylor series representation

k(s1, s2) =
∞∑

i,j=0

κijs
i
1s
j
2/i!j!,

where κij is the (i, j)th joint cumulant, the (i, j)th cross derivative of k at s = 0. Here κi0
is the ith cumulant of log x1, κ0j is the jth cumulant of log x2, and κij is a joint cumulant
— κ11, for example, is the covariance. The details are mind-numbing, but the idea is that
coentropy includes contributions from both the covariance and high-order cumulants.

Two examples highlight the differences between covariance and coentropy:

Example 3 (bivariate lognormal). Let log x = (log x1, log x2) ∼ N (µ,Σ), where µ is a 2-
vector and Σ is a 2 by 2 matrix. The cgf is k(s) = s>µ + s>Σs/2 where s> = (s1, s2).
Entropies are L(xi) = σii/2 for i = 1, 2 and L(x1x2) = (σ11 + σ22 + 2σ12)/2. Coentropy is
the covariance: C(x1, x2) = σ12 = Cov(log x1, log x2).

Example 4 (bivariate Poisson mixture). Jumps j are Poisson with intensity ω. Conditional
on j jumps, log x ∼ N (jθ, j∆) where the matrix ∆ has elements δij . The cgf is k(s) =
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ω(es
>θ+s>∆s/2 − 1). Entropies are

L(xi) = ω(eθi+δii/2 − 1)− ωθi
L(x1x2) = ω

(
e(θ1+θ2)+(δ11+δ22+2δ12)/2 − 1

)
− ω(θ1 + θ2).

Coentropy is therefore

C(x1, x2) = ω
(
e(θ1+θ2)+(δ11+δ22+2δ12)/2 − eθ1+δ11/2 − eθ2+δ22/2 + 1

)
.

The covariance is Cov(log x1, log x2) = ω(θ1θ2 + δ12), so coentropy is clearly different. A
numerical example makes the point. Let ω = θ1 = 1 and ∆ = 0 (a 2 by 2 matrix of zeros).
If θ2 = 1, C(x1, x1) > Cov(x1, x2), but if θ2 = −1, the inequality goes the other way as the
odd high-order cumulants flip sign. For similar reasons, it’s not hard to construct examples
in which the covariance and coentropy have opposite signs.

Another numerical example shows how different they can be. Let θ1 = θ2 = −0.5 and

∆ = δ

[
1 ρ
ρ 1

]
.

We set ρ = 0 and δ = 1/ω. We then vary ω to see what happens to the covariance and
coentropy. We see in Figure 4 that the two can be very different.

3.2 Returns and risk premiums

Our interest in these concepts lies in their application to asset pricing, specifically the
returns documented in Table 1. Consider an ergodic Markovian environment with state
variable x. In such an environment we distinguish between the probability distribution
conditional on the state at a specific date and the unconditional or stationary distribution.
Entropy and coentropy can be computed with either one. We define conditional entropy
and coentropy in terms of the conditional distribution. Entropy and coentropy are their
(unconditional) means.

We denote by rt,t+1 the (gross) return on an arbitrary asset between dates t and t + 1.
The subscripts are shorthand for dependence on the state at dates t and t + 1 — that is,
r(xt, xt+1). We define the risk premium as the expected excess return in logs: Et(log rt,t+1−
log r1

t,t+1) where Et is the expectation conditional on the state at date t and r1
t,t+1 is the one-

period riskfree rate. If E is the expectation computed from the unconditional or equilibrium
distribution, the mean risk premium is E(log rt,t+1 − log r1

t,t+1).

Returns and risk premiums follow from the no-arbitrage theorem: There exists a positive
pricing kernel m that satisfies

Et(mt,t+1rt,t+1) = 1 (5)
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for all returns r. An asset pricing model is then a stochastic process for m. We’ll come
back later to what asset prices tell us about this stochastic process.

Risk premiums reflect the coentropy of the pricing kernel m with the return r. Jensen’s
inequality applied to the log of (5) implies

Et(log rt,t+1) ≤ −Et(logmt,t+1).

Given a pricing kernel m, the price of a one-period riskfree bond is q1
t = Et(mt,t+1) and the

riskfree rate is r1
t,t+1 = 1/q1

t = 1/Et(mt,t+1). The risk premium is therefore bounded above
by the entropy of m computed from its conditional distribution:

Et(log rt,t+1 − log r1
t,t+1) ≤ logEt(mt,t+1)− Et(logmt,t+1) = Lt(mt,t+1).

The inequality characterizes the maximum risk premium that can be generated by this
pricing kernel. The high-return asset — the one that attains the bound — has return
log rt,t+1 = − logmt,t+1. Taking expectations of both sides gives us

E(log rt,t+1 − log r1
t,t+1) ≤ E[Lt(mt,t+1)]. (6)

We refer to the right side as entropy and (6) as the entropy bound . See Alvarez and
Jermann (2005, Proposition 2), Backus, Chernov, and Martin (2011, Section I.C), and
Backus, Chernov, and Zin (2014, Sections I.C and I.D).

The entropy bound gives us the risk premium on an asset whose return has a perfect
loglinear relation to the pricing kernel. More generally, risk premiums are governed by
the dependence of the return and the pricing kernel, which we measure with coentropy.
The pricing relation (5) implies logEt(mt,t+1rt,t+1) = 0. If we substitute the definition of
coentropy and rearrange terms, we have

Et(log rt,t+1 − log r1
t,t+1) = Lt(mt,t+1)− Lt(mt,t+1rt,t+1)

= −Lt(rt,t+1)− Ct(mt,t+1, rt,t+1). (7)

In general, conditional entropy Lt and coentropy Ct depend on the current state. Uncondi-
tionally we have

E(log rt,t+1 − log r1
t,t+1) = E[Lt(mt,t+1)]− E[Lt(mt,t+1rt,t+1)]

= −E[Lt(rt,t+1)]− E[Ct(mt,t+1, rt,t+1)]. (8)

We refer to the two terms on the right as the entropy of the return and the coentropy of the
return and the pricing kernel. If we defined the risk premium as logEt(rt,t+1) − log r1

t,t+1,
as some suggest, then the entropy term drops out and we are left with coentropy.

Equation (8) gives us a framework for thinking about the excess returns summarized in
Table 1. The table gives us estimates of the left side of equation (8); the right side gives
us an interpretation of it. We estimate that the upper bound is at least 1 percent monthly.
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Whether expected excess returns on other assets are close to the bound or well below it
depends on their entropy and their coentropy. The maximum risk premium comes, as we’ve
seen, when rt,t+1 = 1/mt,t+1. Then coentropy is

E[Ct(mt,t+1, rt,t+1)] = −E[Lt(mt,t+1)]− E[Lt(rt,t+1 = 1/mt,t+1)] < 0.

Equation (8) then reproduces the entropy bound (6). What about the minimum? We
can make the risk premium as small as we like by adding random noise to the return,
independent of the pricing kernel. That increases the entropy of the return and drives down
the risk premium. We can also drive down the coentropy term. If the return is independent
of the pricing kernel, coentropy is zero and the risk premium is −E[Lt(rt,t+1)], as we just
saw. And if we hold the entropy of the return constant, we can make coentropy positive
and reduce the risk premium further.

The role of coentropy mirrors that of the covariance in traditional approaches to asset
pricing in which risk premiums are defined in terms of levels of returns: Et(rt,t+1 − r1

t,t+1).
A risk premium defined this way is connected, via (5), to the covariance of the pricing kernel
and the return:

Et(rt,t+1 − r1
t,t+1) = −Covt(mt,t+1, rt,t+1 − r1

t,t+1)/Et(mt,t+1)

= −Covt(mt,t+1, rt,t+1)/Et(mt,t+1).

The high return asset is then defined as the one with the highest Sharpe ratio. Given
a pricing kernel, the maximum Sharpe ratio is given by the Hansen-Jagannathan (1991)
bound:

Et(rt,t+1 − r1
t,t+1)/Vart(rt,t+1 − r1

t,t+1)1/2 ≤ Vart(mt,t+1)1/2/Et(mt,t+1).

The expression on the right can be expressed compactly with the cumulant generating
function kt(s) = logEt(e

s logmt,t+1):

Vart(mt,t+1)1/2/Et(mt,t+1) =
(
ekt(2)−2kt(1) − 1

)1/2
. (9)

The return that attains the bound is linear, rather than loglinear, in the pricing kernel:

rt,t+1 =
1 + Vart(mt,t+1)1/2

Et(mt,t+1)
− mt,t+1 − Et(mt,t+1)

Vart(mt,t+1)1/2
.

We can do the same with unconditional moments, but there’s no simple relation between
the conditional and unconditional versions of the bound.

Example 5 (Markov pricing kernels). Let

logmt,t+1 = log β + a>xt + b>xt+1 (10)

xt+1 = Axt +Bwt+1, (11)

7



where {wt} is a sequence of independent random vectors with mean zero, variance one, and
(multivariate) cgf k(s). The pricing kernel for this model is often written

logmt,t+1 = log β + (a> + b>A)xt + b>Bwt+1 = log β + δ>xt + λ>wt+1. (12)

Entropy is E[Lt(mt,t+1)] = Lt(mt,t+1) = k(B>b) = k(λ). If the innovations are multivariate
normal, then k(s) = s>s/2 and entropy is E[Lt(mt,t+1)] = Lt(mt,t+1) = b>BB>b/2 =
λ>λ/2.

Example 6 (Vasicek model). A popular univariate model is

logmt,t+1 = log β + xt + λwt+1 (13)

xt+1 = ϕxt + σwt, (14)

where ϕ is between zero and one and {wt} is an iid sequence with mean zero, variance one,
and cgf k(s). Entropy is

E[Lt(mt,t+1)] = Lt(mt,t+1) = logEt(mt,t+1)− Et(logmt,t+1) = k(λ),

an upper bound on expected excess log returns. This maximum risk premium is determined
by the coefficient λ on the risk wt+1 and by the distribution of the risk, represented by the
cgf k.

Example 7 (moving average pricing kernel). Let the log pricing kernel have moving average
form:

logmt,t+1 = log β +
∞∑
j=0

ajwt+1−j (15)

with
∑
j a

2
j <∞. The Vasicek model is a special case with a0 = λ, a1 = σ, and aj+1 = ϕaj

for j ≥ 1. Consider, in the general model, the risk premium on an asset with arbitrary
loglinear return

log rt,t+1 = log γ +
∞∑
j=0

cjwt+1−j .

The pricing relation (5) implies the restrictions log β+log γ+k(a0 +c0) = 0 and aj +cj = 0
for j ≥ 1. The expected excess return is therefore

Et(log rt,t+1 − log r1
t,t+1) = −k(a0 + c0) + k(a0).

Since k is convex and k′(0) = 0 (w has mean zero), the asset with the largest risk premium
has c0 = −a0 and attains the entropy bound. With the substitutions E[Ct(mt,t+1, rt,t+1)] =
Ct(mt,t+1, rt,t+1) = k(a0 + c0) − k(a0) − k(c0) and E[Lt(rt,t+1)] = Lt(rt,t+1) = k(c0), we
reproduce equation (8). The dependence of m and r is captured by k(a0 + c0), which
depends on the distribution of w through its cgf k.
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Example 8 (state-dependent price of risk). The examples so far have had constant condi-
tional entropy. Duffee (2002) developed an alternative that’s been widely used in studies of
bond prices. The univariate version is

logmt,t+1 = log β − (λ0 + λ1xt)
2/2 + xt + (λ0 + λ1xt)wt+1 (16)

with transition equation (14) for x and {wt} iid standard normal. The critical ingredient is
the coefficient λ0 + λ1xt of wt, a linear function of the state. Conditional entropy,

Lt(mt,t+1) = (λ0 + λ1xt)
2/2,

is the maximum risk premium in state xt. Entropy is its mean: E[Lt(mt,t+1)] = [λ2
0 +

λ2
1/(1− ϕ)2]/2.

4 Term structures of prices and returns

We’re now ready to attack term structures of asset prices and returns. We do this by
highlighting the connection to entropy over different time horizons. If that seems like a
detour, we would argue it gives us a useful framework for interpreting the evidence we
reviewed in Section 2.

4.1 The term structure of zero-coupon bonds

We start with definitions. Let pnt be the price at date t of an n-period zero-coupon bond,
a claim to a cash flow of one at t + n. By convention p0

t = 1 (the price of one now is
one). Continuously-compounded yields are ynt = −n−1 log pnt . One-period forward rates are
fnt = − log(pn+1

t /pnt ), which implies − log pnt =
∑n
j=1 f

j−1
t and ynt = n−1∑n

j=1 f
j−1
t . Yield

and forward rate curves, such as those described in Section 2, are the sequences (y1
t , y

2
t , . . .)

and (f0
t , f

1
t , f

2
t , . . .).

Returns depend on changes in bond prices from one period to another, but we think it’s
helpful to express these changes in terms of forward rates. The one-period return on an
n-period bond is rnt,t+1 = pn−1

t+1 /p
n
t . Since p0

t+n = 1, we have

pnt

n−1∏
j=0

rn+1−j
t+j,t+j+1 = 1.

The average log return over the life of the bond is therefore the yield or average forward
rate:

n−1
n−1∑
j=0

log rn−jt+j,t+j+1 = ynt = n−1
n−1∑
j=0

fn−1−j
t .
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The one-period return on an n-period bond is

log rnt,t+1 = −
n−1∑
j=1

f j−1
t+1 +

n∑
j=1

f j−1
t =

n−1∑
j=1

(f j−1
t − f j−1

t+1 ) + fn−1
t . (17)

In an ergodic environment, the mean return equals the analogous mean forward rate:
E(log rn) = E(fn−1). Similarly, mean excess returns E(log rn − log r1) equal mean for-
ward spreads E(fn−1 − f0). Thus the evidence in Section 2 on bond returns and forward
rates represent two approaches to the same thing.

In an arbitrage-free setting, bond prices inherit their properties from the pricing kernel.
Pricing has a simple recursive structure. Applying the pricing relation (5) to bond returns
gives us

pnt = Et(mt,t+1p
n−1
t+1 ) = Et(mt,t+n), (18)

where mt,t+n = mt,t+1mt+1,t+2 · · ·mt+n−1,t+n.

The right side of (18) suggests a link between the n-period bond price and the conditional
entropy of the n-period pricing kernel:

Lt(mt,t+n) = logEt(mt,t+n)− Et(logmt,t+n).

Taking expectations as before, we define entropy for horizon n by

Lm(n) ≡ E[Lt(mt,t+n)] = E[logEt(mt,t+n)]− E(logmt,t+n).

The first term on the right is the mean log bond price, which is easily expressed in terms
of mean yields or forward rates:

E[logEt(mt,t+n)] = −nE(yn) = −
n∑
j=1

E(f j−1).

By convention, mt,t = 1, so Lm(0) = 0. If n = 1, we’re back where we were in Section 3.1.

The dynamics of the pricing kernel are reflected in what we call horizon dependence, the
relation between entropy and the time horizon represented by the function Lm(n). The value
of this function in a term structure context is its relation to mean yields and forward rates.
If one-period pricing kernels {mt,t+1} are iid, entropy is proportional to n. Bond yields
and forward rates are then the same at all maturities and constant over time. Differences
from this proportional benchmark reflect dynamics in the pricing kernel. One version of
this difference is captured in what we call average horizon dependence:

H(n) = n−1Lm(n)− Lm(1).

The connection with bond yields then gives us H(n) = −E(yn − y1). In the iid case,
H(n) = 0 and the yield curve is flat. If the mean yield curve slopes upwards, then H(n) is
negative and slopes downward. Another version is marginal horizon dependence:

F (n) = [Lm(n+ 1)− Lm(n)]− Lm(1).
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This is connected to forward rates by F (n) = −E(fn − f0). Average and marginal horizon
dependence are connected in the same way yields and forwards rates are connected: H(n) =
n−1∑n

j=1 F (j − 1). The two concepts capture the same information.

Horizon dependence has a coentropy concept hidden inside it. This is clearest in the two-
period case:

Lm(2) = E[Lt(mt,t+2)] = 2E[Lt(mt,t+1)]− E[Ct(mt,t+1,mt+1,t+2)].

If the coentropy of successive one-period pricing kernels is zero, then average and marginal
horizon dependence are zero as well.

Two of our earlier examples illustrates how the dynamics of the pricing kernel reappear in
forward rates and horizon dependence:

Example 5 (Markov pricing kernel, continued). Bond prices follow from the pricing kernel
(12), the transition equation (11), and the pricing relation (5). They imply bond prices of
the form log qn(x) = an + b>n x with coefficients (an, bn) satisfying

an+1 = an + log β + k(λ+B>bn)

bn+1 = δ> + b>nA = δ>(I +A+ · · ·+An)

starting with an = bn = 0. Entropy is therefore

Lm(n) = E(log qn − n logm) = an − n log β =
n∑
j=1

k(λ+B>bj−1).

Example 7 (moving average pricing kernel, continued). With the moving average pricing
kernel (15), forward rates are

−fnt = log β + k(An) +
∞∑
j=0

an+1+jwt−j , (19)

where An =
∑n
j=0 aj . The mean forward spread is therefore E(fn − f0) = k(A0)− k(An).

Here we see the dynamics of the pricing kernel reflected in the partial sums An and the
distribution of innovations reflected in the cgf k. Similarly, entropy is

Lm(n) = E[Lt(mt,t+n)] =
n∑
j=1

k(Aj−1).

Therefore

H(n) = n−1
n∑
j=1

k(Aj−1)− k(A0), F (n) = k(An)− k(A0),
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and we have the suggested connection between horizon dependence and mean forward rate
spreads.

The iid case is a useful benchmark: aj = 0 for j ≥ 1, An = a0 for all n, the mean yield
and forward rate curves are flat, Lm(n) = nk(a0), and H(n) = F (n) = 0. Any departure
from proportionality in entropy Lm(n) is evidence against this case. The n-period Hansen-
Jagannathan upper bound (9) is then

Vart(mt,t+n)1/2/Et(mt,t+n) =
(
en[k(2a0)−2k(a0)] − 1

)1/2
.

The term in brackets is a positive constant. That gives us, even in this case, a nonlinear
relation between the maximum Sharpe ratio and maturity n.

We use the term long horizon to refer to the behavior of asset prices and entropy as the
time horizon approaches infinity. Hansen and Scheinkman (2008) echo the Perron-Frobenius
theorem and consider the problem of finding a positive dominant eigenvalue ν and associated
positive eigenfunction vt satisfying

Et(mt,t+1vt+1) = νvt. (20)

If such a pair exists, we can construct the Alvarez-Jermann (2005) decomposition mt,t+1 =
m1
t,t+1m

2
t,t+1 with

m1
t,t+1 = mt,t+1vt+1/(νvt)

m2
t,t+1 = νvt/vt+1.

By construction Et(m
1
t,t+1) = 1.

Given such an eigenvalue-eigenfunction pair, the long forward rate converges to a constant:
fnt → f∞ = − log ν. Since yields are averages of forward rates, the long yield converges to
the same value. The long bond return is not constant, but its expected value also converges:
r∞t,t+1 = limn→∞ r

n
t,t+1 = 1/m2

t,t+1 = vt+1/(νvt), so that E(log r∞) = − log ν. See Alvarez
and Jermann (2005, Section 3).

The special case m1
t,t+1 = 1 has gotten a lot of recent attention; see, for example, the

review in Borovicka, Hansen, and Scheinkman (2014). The pricing kernel becomes mt,t+1 =
m2
t,t+1. Since the long bond return is its inverse, the long bond is the high return asset. As

Alvarez and Jermann (2005) and Borovicka, Hansen, and Scheinkman (2014) note, this isn’t
remotely realistic, but it’s an interesting special case. In logs, the pricing kernel becomes

logmt,t+1 = log ν + log vt − log vt+1.

The log pricing kernel is the first difference of a stationary object, namely v, plus a constant.
In a sense, it’s been over differenced.

12



Example 5 (Markov pricing kernel, continued). We guess an eigenvector of the form log vt =
c>xt. If we substitute into (20) we find:

c> = (a> + b>A)(I −A)−1, log ν = log β + k
(
B>c

)
.

If b = −a, then c = a and m1
t,t+1 = 1.

Example 7 (moving average pricing kernels, continued). We consider the existence of the
Hansen-Scheinkman eigenvalue and eigenfunction in models with moving average pricing
kernels.

• Moving average. In the general moving average case (15) with partial sums An =
∑n
j=0 aj ,

suppose limn→∞An = A∞ exists. Then the Hansen-Scheinkman eigenvalue ν and eigen-
function v are

log ν = log β + k(A∞), log vt =
∞∑
j=0

(A∞ −Aj)wt−j , logm1
t,t+1 = −k(A∞) +A∞wt+1.

The long forward rate converges to − log ν. If, in addition, A∞ = 0, then m1
t,t+1 = 1.

A special case is the Vasicek model with log pricing kernel (13) and AR(1) state variable
x following (14). The moving average coefficients are then a0 = λ, a1 = σ, and aj+1 =
ϕaj = ϕja1 for j ≥ 1. The partial sums are An = λ+σ(1+ϕ+· · ·+ϕn−1), which converge
to A∞ = λ+ σ/(1−ϕ). Forward rates are given by (19). As we increase maturity n, the
mean converges to − log β − k(A∞). The variance,

Var(fnt ) =
∞∑
j=0

a2
n+1−j , = σ2ϕ2n/(1− ϕ2),

converges to zero.

• Long memory. Suppose (1 − B)δxt = σwt with 0 < δ < 1/2, where B is the lag or
backshift operator. This has a moving average representation with a0 = λ, a1 = σ, and
aj+1 = [(j+δ)/(j+1)]aj for j ≥ 1. It’s said to have long memory because the coefficients
approach zero slowly; specifically, the partial sum An doesn’t converge. See Granger and
Joyeux (1980). As a result, the pair (ν, v) doesn’t exist. Here the mean of the long
forward rate doesn’t converge, but its variance goes to zero.

Example 8 (state-dependent price of risk, continued). Recall the model consisting of pricing
kernel (16) and transition equation (14). (The Vasicek model of Example 6 is a special case
with λ1 = 0.) Bond prices satisfy log pn(x) = an + bnx with

an+1 = an + log β + (bnσ)2/2 + λ0bnσ

bn+1 = 1 + bn(ϕ+ λ1σ) = 1 + ϕ∗ + ϕ∗2 + · · ·+ ϕ∗(n−1),

where a0 = b0 = 0 and ϕ∗ = ϕ+ λ1σ. Forward rates are therefore

−fn(x) = log [pn+1(x)/pn(x)]

= (an+1 − an) + (bn+1 − bn)x = log β + (bnσ)2/2 + λ0bnσ + ϕ∗nx.

If |ϕ∗| < 1, this converges to a constant, independent of x.
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4.2 Term structures of other assets

Bonds are simple assets in the sense that their cash flows are known. All the action in
valuation comes from the pricing kernel. When we introduce uncertain cash flows, pricing
reflects the interaction of the pricing kernel and the cash flows. Nevertheless, we can think
about the term structures of these other assets in a similar way. The approach mirrors
Hansen and Scheinkman (2009, Sections 3.5 and 4.4).

Consider claims to an arbitrary positive cash flow d with one-period growth rate gt,t+1 =
dt+1/dt. Examples include the price of a foreign currency, the consumer price index, the
dividend on a stock market index, or the spot price of a commodity. If the price at date t
of a claim to the growth rate gt,t+n = dt+n/dt is p̂nt , we can define yields and forward rates

as before: ŷnt = − log p̂nt and f̂nt = − log(p̂n+1
t /p̂nt ). Every cash flow d has its own term

structure. In an international context, d might be the dollar price of one euro and g the
depreciation rate of the dollar with respect to the euro. The euro-denominated yield and
forward rates curves are (ŷ1

t , ŷ
2
t , ŷ

3
t , . . .) and (f̂0

t , f̂
1
t , f̂

2
t , . . .).

Term structures are connected by forward contracts. If qnt is the price of an n-period forward
contract, specifying at date t the exchange of qnt for gt,t+1 at date t+n, then arbitrage implies
pnt q

n
t = p̂nt . That leads to the so-called (covered) parity relations

n−1 log qnt = ynt − ŷnt
log(qn+1

t /qnt ) = fnt − f̂nt .

If we have forward prices, we can back out the interest differentials directly.

One-period returns are again connected to forward rates. The one-period return on a claim
to gt,t+n is r̂nt,t+1 = gt,t+1p̂

n−1
t+1 /p̂

n
t . Expressed in terms of forward rates, we have

log r̂nt,t+1 = log gt,t+1 −
n−1∑
j=1

f̂ j−1
t+1 +

n∑
j=1

f̂ j−1
t = log gt,t+1 +

n−1∑
j=1

(f̂ j−1
t − f̂ j−1

t+1 ) + f̂n−1
t .

The mean return is therefore E(log r̂n) = E(log g + f̂n−1). If gt,t+1 = 1 at all dates, we’re
back in the world of the Section 4.1.

We value these assets in the usual way. The pricing relation (5) gives us

p̂nt = Et(mt,t+1gt,t+1p̂
n−1
t+1 ) = Et(m̂t,t+1p̂

n−1
t+1 ) = Et(m̂t,t+n), (21)

with m̂t,t+1 = mt,t+1gt,t+1, m̂t,t+n = m̂t,t+1m̂t+1,t+2 · · · m̂t+n−1,t+n, and p̂0
t = 1. This has

the same form as the bond pricing equation (21), with m̂ replacing m.

Our focus is on the differences between the two term structures, specifically the differences
documented in Section 2 in mean excess returns and in slopes and shapes of mean yield and
forward rate curves. The spot market return,

r̂1
t,t+1 = gt,t+1/Et (mt,t+1gt,t+1) ,
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has mean excess return

E(log r̂1
t,t+1 − log r1

t,t+1) = E(log g + f̂0 − f0). (22)

As in equation (8), this reflects both the entropy of the return and its coentropy with the
pricing kernel.

The shapes of mean forward rate curves also reflect entropy and coentropy. Mean forward
spreads are tied to the entropy of m̂,

Lm̂(n) ≡ E[Lt(m̂t,t+n)].

Forward horizon dependence

F̂ (n) = Lm̂(n+ 1)− Lm̂(n)− Lm̂(1)

As before, this is connected to the mean forward spread: F̂ (n) = −E(f̂n − f̂0). In short,
the mean forward spread is tied to the dynamics of the transformed pricing kernel m̂.

The entropy of m̂ over a time horizon of n is connected to the dependence of the dollar
pricing kernel m and the growth rate of cash flows g. More concretely, its entropy from the
definition of coentropy, equation (3):

Lt(m̂t,t+n) = Lt(mt,t+ngt,t+n) = Ct(mt,t+n, gt,t+n) + Lt(mt,t+n) + Lt(gt,t+n).

Taking expectations of both sides gives us

Lm̂(n) = Lm(n) + E[Ct(mt,t+n, gt,t+n)] + E[Lt(gt,t+n)]

= Lm(n) + Cmg(n) + Lg(n), (23)

where the second line is simply new notation for the first. The difference between Lm̂(n)
and L(n), and therefore between mean forward spreads, thus stems from two things: the
entropy of the growth rate and the coentropy of the growth rate and the pricing kernel.
This is a natural extension to arbitrary time horizons of our earlier claim: that mean excess
returns reflect the entropy of the return and the coentropy of the return and the pricing
kernel. We’ll need more structure to make sense of this, but it’s a good place to start.

Example 5 (Markov pricing kernel, continued). We add a process for cash flow growth,

log gt,t+1 = log γ + δ>g xt + λ>g wt+1.

The transformed pricing kernel is then

log m̂t,t+1 = logmt,t+1 + log gt,t+1

= (log β + log γ) + (δ + δg)
>xt + (λ+ λg)

>wt+1

= log β̂ + δ̂>xt + λ̂>wt+1.
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The expressions for bond prices and entropy are the same as before, but with hats.

Long horizon properties have the same structure as before. Suppose m has the eigenvalue-
eigenfunction pair (ν, vt) described by (20). The analogous equation for m̂ has solution
(ν̂, v̂t):

Et(m̂t,t+1v̂t+1) = ν̂v̂t. (24)

There’s not, in general, a close relation between them, but there is in some special cases.
One special case is a stationary cash flow d. If (ν, v) is a solution to (20), then ν̂ = ν
and v̂t = vt/dt is a solution to the “hat” equation (24). There’s a similar result in Lustig,
Stathopoulos, and Verdelhan (2014) for the real exchange rate. Another special case is one
in which the “price-dividend” ratio p̂ is constant. See the unpublished version of Hansen,
Heaton, and Li (2008).

Example 5 (Markov pricing kernel, continued). We revert to the original Markov pricing
kernel, equation (10), and posit cash flow growth of

log gt,t+1 = log γ + a>g xt + b>g xt+1.

The transformed pricing kernel is therefore

log m̂t,t+1 = (log β + log γ) + (a+ ag)
>xt + (b+ bg)

>xt+1

= log β̂ + â>xt + b̂>xt+1,

which has the same form as (10).

Example 7 (moving average pricing kernel, continued). Suppose cash flow growth is

log gt,t+1 = log γ +
∞∑
j=0

cjwt+1−j .

The transformed pricing kernel is

log m̂t,t+1 = (log β + log γ) +
∞∑
j=0

(aj + cj)wt+1−j = log β̂ +
∞∑
j=0

âjwt+1−j .

Entropy is

Lm̂(n) =
n∑
j=1

k(Âj−1) =
n∑
j=1

k(Aj−1 + Cj−1),

where Cn =
∑n
j=0 cj .

5 Interpreting term structure evidence

We breathe some life into our theoretical framework and examples by linking them to data.
There is, of course, a long history of doing just that for bonds and a growing body of work
on other assets. We illustrate some basic features with examples and show how simple term
structure models might be extended to account for term structures of other assets.
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5.1 US dollar bonds

Consider the Vasicek model: Example 6 with normal innovations. We use properties of the
Gurkaynak, Sack, and Wright (2007) Treasury data over the period 1970-2015. Expressed
as an annual percentage (that is, multiplied by 1200), the short rate f0 has a standard
deviation of 3.476 and an autocorrelation of 0.980. The mean of the 120-month forward
spread f120 − f0 is 2.349. We reproduce each of these features by choosing the parameter
values a0 = λ = 0.088, a1 = −σ = −0.00070, ϕ = 0.980, and aj = ϕj−1a1 for j ≥ 1. The
level of the term structure can then be set however we want by adjusting log β.

It’s important to be clear about the roles of the various parameters. Here a1 = −σ and ϕ
control the variance and autocorrelation of the short rate and a0 = λ controls the slope of
the mean forward rate curve. The different signs of a0 and a1 produce the upward slope
in the mean yield curve. You can see the result in the top panel of Figure 5. The solid
line represents the model, the dots are sample means. The bottom panel illustrates the
consequences for entropy in the same example. It increases with the time horizon, but less
than proportionally. This departure from the iid benchmark is a mirror image of mean
forward rate spreads.

The moving average coefficients are plotted in Figure 6. The point is that the initial coef-
ficient a0 = λ is much larger than the later coefficients — roughly two orders of magnitude
greater. It implies (in the normal case) entropy of Lm(1) = k(a0) = (a0)2/2 ≈ 0.004, which
is less than the upper bound we suggested earlier (0.010). Presumably other risks would
appear in the pricing kernel in a more complete model.

5.2 Other term structures

The Vasicek model gives us a rough approximation to bond prices and returns, but it
does less well with other assets. Excess returns on equity, for example, have only a small
correlation (roughly 0.1) with bond returns, which we can’t replicate in a one-innovation
model.

Consider then a streamlined version of Koijen, Lustig, and Van Nieuwerburgh (2015, Ap-
pendix), which we refer to as the KLV model:

logmt,t+1 = log β + xt + λ1w1t+1 + λ2w2t+1

xt+1 = ϕxt + σw1t+1

log gt,t+1 = log γ + θxt + η1w1t+1 + η2w2t+1,

with (w1t, w2t) ∼ NID(0, I). The added disturbance w2 is white noise, so it has no impact
on bond prices, but potentially plays a role in the pricing of claims to cash flow growth g.
By varying the weights (η1, η2) we can alter the correlation of stock and bond returns.
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The transformed pricing kernel has a similar structure:

log m̂t,t+1 = logmt,t+1 + log gt,t+1

= (log β + log γ) + (1 + θ)xt + (λ1 + η2)w1t+1 + (λ2 + η2)w2t+1. (25)

Asset prices are easily computed by the same approach we used with Vasicek.

This model has a triangular structure, in which (σ, ϕ, λ1) control bonds prices, and (η1, η2, λ2)
control the return on the cash flow g and its relation to bond returns. That allows us to
keep the parameter values we used earlier for bonds and choose the others to mimic the
behavior of the cash flow of interest. We consider several in turn.

5.3 Foreign currency bonds

There is an extensive set of markets for bonds denominated in foreign currencies, and a
similarly extensive set of currency markets linking them. As we saw in Section 4.2, the
term structure in a foreign currency depends on the interaction of the dollar pricing kernel
and the growth rate of the cash flow, which here is the depreciation rate of the dollar relative
to a specific foreign currency.

We can approximate the depreciation rate g reasonably well in the KLV model with θ = 0,
which implies that (log) currency prices are random walks. For major currencies, the
standard deviation of monthly depreciation rates is about 3 percent, so we have

η2
1 + η2

2 = 0.032.

The question, then, is how to divide the variance between the two components.

We see the result in Figures 7 and 8. In the first figure, we compare mean forward rate
curves in dollars and “yen” (foreign-currency). In the former, we see that the yen curve can
be significantly different, even without changing the growth rate log γ of the currency price.
In the latter, we see that these changes also show up in the slope, with The differences here
reflect differences in the coentropy term. As we increase η1, we change the price of risk
λ1 + η1 on the innovation w1 that drives dollar bond prices. With η1 = 0, there is no such
effect, and the impact operates solely through the entropy of cash flow growth.

5.4 Equity

Forward contracts on an equity index give us another example of a term structure. Here
there’s a range of evidence suggesting a downward-sloping relative term structure. We
explore this possibility in the KLV model, this time focusing on the coefficient θ of long-run
risk x.

18



We choose parameters to match features of the data, specifically the variance of excess
returns on the asset of interest, the correlation of the excess return with that on bonds, and
the mean excess return. In the model, these features are

Var(log rt,t+1 − log r1
t,t+1) = 0.052 = η2

1 + η2
2

Corr(log rt,t+1 − log r1
t,t+1, log r60

t,t+1 − log r1
t,t+1) = 0.10 = sgn(σ)η1/(η

2
1 + η2

2)

E(log rt,t+1 − log r1
t,t+1) = 0.004 = −(η2

1 + η2
2)/2− (λ1η1 + λ2η2)

(We’ve approximated moments here with conditional moments, will fix up later.) The
solution is η1 = −0.005, η2 = −0.050, and λ2 = 0.097.

We see the results in Figures 9 and 10. In the former, we see the US dollar benchmark and
three other curves. The dashed blue line reflects the impact of entropy in the transformed
pricing kernel from the second innovation w2. Since it’s iid, this is constant across matu-
rities and simply shifts the curve down. The other two lines reflect changes in θ from its
benchmark value of zero. In one, we set θ = −0.25, which reduces the amount of long-run
risk in the transformed pricing kernel and flattens the mean forward rate curve. In the
other, we set θ = 0.25 and steepen the curve.

5.5 Inflation-protected bonds

Inflation is very persistent, we probably need another state variable to do it justice.

6 Last thoughts

We wish we had some.
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Table 1. Properties of excess dollar returns. Entries are sample moments of monthly
observations of (monthly) log excess returns: log r− log r1, where r is a (gross) return
and r1 is the (gross) return on a one-month bond. All of these returns are measured
in dollars. Sample periods: S&P 500, 1927-2008 (source: CRSP), Fama-French,
1927-2008 (source: Kenneth French’s website); nominal bonds, 1952-2008 (source:
Fama-Bliss dataset, CRSP); currencies, 1985-2008 (source: Datastream).

Standard Excess First
Asset Mean Deviation Skewness Kurtosis Autocorr

Equity
S&P 500 0.0040 0.0556 −0.40 7.90
Fama-French (small, high) 0.0090 0.0894 1.00 12.80
Currencies
AUD 0.0087 0.0567 −1.25 6.50
JPY 0.0001 0.0346 0.50 1.90
Nominal bonds
1 year 0.0008 0.0049 0.98 14.48
2 years 0.0011 0.0086 0.52 9.55
3 years 0.0013 0.0119 −0.01 6.77
4 years 0.0014 0.0155 0.11 4.78
5 years 0.0015 0.0190 0.10 4.87
Inflation-protected bonds (TIPS)
2 years
5 years
10 years
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Table 2. Properties of cash flow growth. Entries are sample moments of monthly
observations of log growth rates of various cash flows: foreign currencies, inflation-
protected bonds, and equity dividends. The sample periods are 1985-2015 for curren-
cies, with the exception of the euro which starts in 1999; 1985-2015 for the consumer
price index.

Standard Excess First
Variable Mean Deviation Skewness Kurtosis Autocorr

Foreign currencies
USD/CAD 0.0002 0.0212 –0.78 6.22 –0.07
USD/EUR –0.0002 0.0299 –0.20 0.94 0.05
USD/JPY 0.0021 0.0325 0.37 1.58 0.05
USD/GBP 0.0008 0.0294 –0.27 2.71 0.06
USD/CHF 0.0028 0.0339 0.02 0.77 –0.01
Other cash flows
Consumer price index (sa) 0.0022 0.0026 –1.49 11.34 0.44
Consumer price index (nsa) 0.0022 0.0033 –1.11 6.09 0.48
Equity
S&P 500 dividends 0.0029 0.0113 –1.40 13.00
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Figure 1. Average yield curve for US Treasuries. The lines represent mean zero-
coupon yields on US Treasury securities over the period 1970 to 2015. Yields are
continuously compounded and expressed as annual percentages. The data are an
updated version of Gurkaynak, Sack, and Wright (2007).
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Figure 2. Average forward rate curves. The lines represent differences of average
yield curves on several assets relative to US Treasuries.
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Figure 3. Two cumulant generating functions. The functions k(s) are properties
of the distributions of log x. In one, log x is normal, in the other Poisson. Both
are standardized: they have mean zero and variance one. The Poisson has intensity
parameter ω = 1 and scale parameter θ > 0. Since the mean is zero, the entropy of
x is the value of the cgf at s = 1, noted by the dotted line. In the normal example
entropy is 0.5 (half the variance). In the Poisson example, entropy is 0.72.
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Figure 4. Coentropy and covariance. The figure compares coentropy and covariance
for the Poisson mixture of bivariate normals described in Example 4. As we vary ω,
we adjust δ to hold the variance constant.
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Figure 5. Mean forward spreads and entropy in the Vasicek model. Both panels
refer to the numerical example examples of the Vasicek model described in Section
5.1. The top panel compares mean forward rate spreads (fn − f 0) in the model (the
line) to those in US data over the period 1970-2015 (the dots). The bottom panel
compares entropy Lm(n) over different horizons n with a benchmark in which the
pricing kernel mt,t+1 is iid and entropy is therefore proportional to the time horizon.
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Figure 6. Moving average coefficients in the Vasicek model.
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Figure 7. Dollar and “yen” forward rates. The figure shows numerical examples of
forward rate curves. The solid line, labeled USD, is the Vasicek model with parameter
values chosen to approximate the properties of US Treasury yields. The dashed lines
are the possible JPY curves for iid depreciation with positive, zero, and negative
coentropy with the dollar pricing kernel.

0 20 40 60 80 100 120

Maturity in Months

1

2

3

4

5

6

7

8

9

10

M
e
a
n
 F

o
rw

a
rd

 R
a
te

s

USD benchmark

zero coentropy

positive coentropy

negative coentropy

30



Figure 8. Dollar and “yen” forward spreads. The same forward rates as the previous
figure but expressed as spreads.
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Figure 9. Equity forward spreads.
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Figure 10. Equity forward differentials.
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