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Abstract. This paper revisits the literature on overlapping generations models
in the demographic context of a continuous age distribution and a general age
schedule of mortality. We show that most of the static results known for the
3 or N age-group models can be extended to the continuous model. Some re-
sults, previously established for economies without capital, are extended to
productive economies. We also make some progress on the existence of some
steady states as well as on the dynamic properties.
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1. Introduction

Samuelson (1958) used a simple demo-economic model to raise fundamental
questions such as whether a market economy could reach an optimal equilib-
rium. His rich analysis included both static and dynamic aspects. First, he
described different steady states consistent with certain economic constraints.
Second, he considered which of these steady states might or might not be
reached by a market economy.

Since then, many static (that is, comparative steady state) results have been
established for the two age group model (Diamond 1965; Gale 1972; Balasko
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et al. 1980; Balasko and Shell 1980, 1981a, b; Esteban et al. 1993). Some static
results have also been established for the discrete NV age-group case (Starrett
1972; Gale 1973; Kim and Willis 1982; Willis 1988; Augusztinovics 1992).

By contrast, there have been few studies of the dynamics of overlapping
generations models, which is a much more complex topic. Gale (1973) made
some progress with the two age-group pure exchange economy, and made
conjectures for the N age-group case. A number of results have been obtained
for the two age-group productive economy as well, as in Gale (1972), Tirole
(1985), Weil (1987), Galor and Ryder (1989, 1991), and Galor (1992).

All these works are based on very simplistic demographic assumptions,
with the population divided into a finite number of age groups, typically only
two, and with everybody dying at the end of the last age group. Results often
depend strongly on such assumptions. In Samuelson’s article, for example, the
three age-group model can support steady states which are impossible in the
two age-group model. Two age group models are not capable of representing
the most basic feature of the human economic life cycle: that it begins and
ends with periods of dependency, separated by a long intermediate period of
consuming less than is produced. Models in which all survive to the end of the
last age group cannot be used to investigate the consequences of mortality
change.

Blanchard (1985) introduced some variation and uncertainty concerning
the timing of death. However, his paper is based on the unrealistic assumption
that the probability of dying does not change over the life-cycle!. This a very
convenient assumption since it implies that all the individuals have the same
life expectancy, regardless of their ages, and therefore they all have the same
propensity to consume. As acknowledged by Blanchard, this approach is un-
able to capture the life-cycle aspect of life, which is the essence of overlapping
generation models.

Calvo and Obstfeld (1988) considered a dynamic continuous model with
realistic demographic assumptions. Their paper analyzed the properties of
optimal steady states associated with particular social welfare functions and
the existence of a time consistent fiscal policy allowing the economy to reach
these optimal steady-states.

Other researchers with particular interest in demographic issues have ex-
tensively studied the properties of Golden Rule steady-states (Arthur and
McNicoll 1978; Lee 1980, 1994a, b). These works explored important ques-
tions such as population aging and the consequences of mortality decline.
They also lend themselves more readily to empirical implementation (Lee
1994a, b and in press).

In this article we consider a continuous demographic model, with a general
mortality pattern, and study mainly the static but also some dynamic proper-
ties of a productive market economy. Most of the static results known for the
N age-group models are extended to the continuous model. Some results,
previously established for economies without capital, will be extended to pro-
ductive economies. We also make some progress on the dynamic properties.
Little has been known about the dynamics of models with more than two age-
groups, even for the simplest N age-group model. In the most general case of
our continuous model we are able to obtain some results conjectured by Gale
about the stability of steady-states.

Although we do not discuss empirical applications in this paper, this model
has been used as a framework for empirical studies in Bommier and Lee
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(2000), and we view this paper as helping to bridge the gap between theoreti-
cal Overlapping Generations models and the empirical analysis of the eco-
nomic effects of changing age distributions.

The remainder of the article is organized as follows. In Sect. 2 we discuss
the interest of adding some demographic complexity to the theory of over-
lapping generation models. Section 3 presents our theoretical accounting
framework. In Sect. 4 we set up our market economy model, and then study
its static and dynamic properties, respectively. Section 5 will examine more
general economies with intergenerational transfers or government taxes. The
main technical proofs are in an Appendix.

2. Does demography really matter?

As noted in the introduction, overlapping generations models have mainly
been developed with two, three or N age-group models. Most of the models
do not consider any uncertainty in the age at which death occurs. People are
assumed to live for 2, 3 or N periods and to die at the end of the last one. In
this article we develop a continuous model, which therefore includes an infi-
nite number of age-groups, with uncertainty in the time of death characterized
by a smooth survival function. Such a model would be expected to be more
complex to develop than the simple stylized two age-group model (although
use of an appropriate accounting framework will allow us to circumvent most
of the complexity). One might wonder, then, whether the added complexity is
worth the effort.

A minimum of two age groups is necessary to encompass the fact that a
population includes people with different ages, and therefore with different
planning horizons. Two age-group models have yielded very interesting in-
sights and raised important questions, such as problems of efficiency. How-
ever, the two age-group model is very restrictive since it does not allow for
periods of dependence in both youth and old-age. This is a major theoretical
restriction. Indeed, in a three (or more) age-group model it is possible to have
a Pay-As-You-Go transfer system which is actuarially neutral, while in a two
age group model this is impossible in a steady state, unless the rate of eco-
nomic growth equals the rate of interest (Samuelson 1958). Thus the three
age-group models support exchanges that are impossible in two age-group
models. The existence of actuarially neutral transfers is not only interesting for
theoretical research but is also a central element in more applied research. For
example, Becker and Murphy (1988) claim that, if transfers for education and
transfers towards the elderly are considered as a whole, the development of
the public transfer systems during these last decades approximately corre-
sponds to the introduction of such a neutral transfer system.

The extension of overlapping generation models from two age-groups to
three age-groups is fundamental as it supports new economic interpretations.
As we will see, in this paper the extension from 3 to N or an infinity of age
groups is not as innovative. In particular the reader should not expect to find
revolutionary results such as new market inefficiency following from the in-
troduction of a continuum of age-groups. We will show that most of the re-
sults known for two or three age-group models can simply be extended to this
more general framework. Small differences occur — for example, the necessary
conditions for the existence of steady state are weaker — but they are minor.
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There are nonetheless some advantages in using a continuous framework be-
cause with an appropriate accounting framework the continuous model ap-
pears to be easier to write and to solve. This esthetic improvement also implies
what one might call a better “traceability” of the results, by making more
transparent the logic underlying some of the analytic results. To take a con-
crete example, if one considers a three age-group model with ages 1, 2 and 3,
then the mean age in a stationary population is simply “2”2. Once lost in a
mathematical formula, it is sometimes difficult to realize that this “2”” stands
for a demographic variable and qroaej:s not result from a casual mathematical

calculation (such as 1 + 1 or %J e dx.). When we simplify too much, it
is possible to lose the meaning of some analytic results. This argument might
seem secondary, but it is not when it comes to interpreting the theoretical re-
sults or to evaluating the theoretical concepts from empirical data.

Yet, we believe that the most compelling reason for developing over-
lapping generation models with realistic demography is that they provide a
ready-to-use basis for empirical research. We argue that this is a fundamental
point since we believe that the gap between theoretical and empirical research
is at the origin of many false or very imprecise conclusions. A quick look at
a few well-known articles in the economic literature shows how surprisingly
easily people use misleading shortcuts to go from a simple theoretical model
to empirical estimates. For example, in the controversy about the role of be-
quests in capital accumulation, Kotlikoff and Summers (1981) and Modigliani
(1988) used wealth estimates computed from flows of bequests assuming
no dispersion of the age at death. This method was again used by Gale and
Scholz (1994) although their data actually included the age dispersion, so the
simplifying assumption was not necessarily. In a more recent article Gale
(1998), analyzing the effect of pensions on saving, estimated pension wealth,
which was the main explanatory variable, relying on similar assumptions.
Even numerical simulations often rely on such simplistic assumptions. For
example, in Auerbach and Kotlikoff (1987) or in Hviding and Mérette (1998)
there is no uncertainty in the age at death.

These simplifications can have important consequences. For example,
Bommier and Lee (2000) calculated the hypothetical effect on the steady state
capital stock of eliminating various public transfer programs. When age dis-
persion was not taken into account, the estimated effect of eliminating Social
Security was 14% greater than the result with age dispersion. For Medicare
the discrepancy was 12%; for Institutional Medicaid (nursing home care) there
was a sign reversal; and for K-12 public education the effect without aged
dispersion was 78% greater than it was with age dispersion. Bommier et al.
(1995) show that the standard mean age approximation for calculating be-
quest wealth understates it by 8% if the interest rate exceeds the rate of eco-
nomic growth by 1%, by 18% if the excess is 2%, and by 33% if the excess is
3%. Some of these distortions are quite substantial.

Most of the time, these rough approximations could be avoided at very
low cost, but the common reliance on simple theoretical models makes re-
searchers easily forget that reality is not that simple. Theoreticians are, of
course, not responsible for the inappropriate use of their simple illustrative
models (unless they themselves use them to derive empirical results!), but we
argue that if it is possible to support their thought with more realistic models,
this should be done. This is precisely the aim of this article which can be seen
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as a theoretical exercise which aims to add a demographic framework to the
existing literature on overlapping generations models. Bommier and Lee (2000)
contains applications showing how this demographically enriched framework
can be used for empirical research.

3. Accounting framework

As noted by Blanchard (1985), aggregation is a major difficulty that arises
when considering an economy with finitely lived agents. Individuals behave
according to life cycle (or longitudinal) constraints while the economy faces
cross-sectional constraints®. Except for very particular cases, such as the golden
rule steady state and the demographically unrealistic case study of Blanchard
(1985), these constraints have very different analytic expressions and aggrega-
tion is problematic. This question of aggregation cannot be avoided, however,
if we aim to make the link between individual behavior and aggregate variables,
as we would do, for example, to analyze the effect of a Pay-as-you-go pension
system on aggregate capital accumulation.

Cross sectional and longitudinal constraints, although they are of a dif-
ferent nature, are not completely independent and the object of this section is
to develop an accounting framework too see how cross sectional and longitu-
dinal accounts are dynamically linked.

Of course, demographic variables play a central role in this problem of
aggregation and we believe it is important to develop our accounting frame-
work without making restrictive demographic assumptions. We will thus
consider a population closed to migration, but not necessary stable in the de-
mographer’s sense, that is not necessarily in steady state. We will suppose that
the probability that an individual born x years ago (at time ¢ — x) is still alive
at time 7 is a function of age x and time ¢ that we denote p(x, ¢)*. We will also
assume, as most analyses do implicitly, that there exists a “maximum age” @
such that p(x,¢) = 0 for all x > w. The flow of births at time ¢ is denoted B(¢)
and the size of the population is P(#). Such assumptions are quite general since
they allow for changes in mortality and fertility.

We will now develop a notation and accounting framework for describing
at a very general level the age and time specific flows into and out of the av-
erage individual’s budget. Let g(x, ) be a function of age x and time ¢, which
we will call by the generic name “‘system of reallocation”. g(x, ) might be the
consumption by people of age x at time ¢, their labor income, their savings, or
any other flow or stock of resources. To make our discussion easier to follow,
we will often illustrate our accounting framework by taking g(x, ¢) to describe
net social security transfers, so that g(x,7) equals g*(x,t) — g (x, ), where
g7 (x, ) are the benefits received and g~ (x, 7) the taxes paid by people of age
x at time ¢. To see the redistribution over time for a cohort born at f,
(taking a longitudinal perspective) we can focus on the appropriate values of
g(x,t + x), for x = 0 to w. To see the reallocation across age in a given cal-
endar year #;, we can focus on g(x, #y), for all ages x.

The dashed lines in Fig. 1 plot the cross sectional distribution of taxes (g~)
and benefits (1) for 1995, and g, which is not shown, is simply the difference
of these two. Values of g referring to future time periods ¢ > 1999 are the av-
erage expectations of actors, conditional on their survival to that future year.
The continuous lines plots Social Security taxes and benefits from a longitu-
dinal perspective for the cohort that is age 62 in 1997.
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Fig. 1. The US Social Security System (OAI): Cross-sectional taxes and benefits in 1997 and
longitudinal taxes and benefits for the cohort born in 1935

3.1. Some relevant characteristics of reallocation functions

We begin by defining some concepts relative to any function g of the sort
discussed above. Viewing g from a life cycle or cohort or longitudinal per-
spective, we define the present value of expectation of net receipt at birth by:

PV(g,1) :J e 'r<">d”p(x,t+x)g(x,t+x) dx
0

where r(#) denotes the rate of interest at time z.
Viewing g from a cross-sectional perspective, at a given time ¢, we define
the population-weighted average flow by:

w

Pop(g,t) = %L B(t — x)p(x,t)g(x, t) dx

(note that the number of people of age x at time ¢ is B(f — x) p(x, t), and P(z),
the size of the population, is the integral of this over x.)

Definition 1. We will say that a system of reallocation, g, is:
— life cycle balanced if PV (g,t) = 0 for every t.
— population balanced if Pop(g,t) = 0 for every t.

Of course, whether the function is in life cycle balance or in population
balance will depend on the expected levels of mortality and of r as well as on g
itself.

A system g¢ is life cycle balanced if the present value of receipt at birth
through g is zero. If a system g is population balanced, then all the flows ag-
gregate to zero at any time. This would be true, for example, of any pure Pay-
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As-You-Go public transfer system, for which the specific tax revenues exactly
cover the expenditures, or for any familial transfers. In general, some systems
which are in life cycle balance are not in population balance (such as private
investment), while some systems in population balance are not in life cycle
balance (such as a Pay-As-You-Go pension system). Borrowing and lending
at market rates of interest, viewed as a system of reallocation, is in both life
cycle and population balance.

As an illustration, we use the values shown in Fig. 1 to compute
PV (g,1935) and Pop(g, 1997) when g are social security transfers, assuming a
discount rate of 4%. We found PV'(g,1935) = —$4700 which says that the
cost of participating in the social security transfer system, for the 1935 cohort,
has been equivalent to a lump-sum tax at birth of $4700. Pop(g, 1997) is found
to be —$100. In a pure Pay As You Go system this would be zero, but taxes
have been raised to permit the US system to accumulate a fund in anticipation
of the retirement of the Baby Boom generations in the early 21st Century.

3.2. Wealth associated with a system of reallocation

The concept of the average wealth associated with ¢ is fundamental to our
theoretical accounting framework. For individuals at some given age, their
wealth is the expected present value of future flows of g. For the population,
the average wealth is the population weighted average across all ages of these
expected present values. More formally, individual or cohort wealth is defined
by:

t+u—x

w t _ B §
() = | LD g e b O 1)

« plx)

Cohort or individual wealth at age 0, w,(0,7), equals PV (g) as defined
above.

Aggregate wealth per capita at time 7, W (g, t), equals Pop(w,) as defined
above; that is:

w

W(g,t) = Pop(wy) = PEZ)L B(t — x)p(x, t)wy(x, t) dx (2)

When g refers to some specific transfer system, then Pop(w,) corresponds to
the usual definition of transfer wealth held through that system. For example,
if g refers to the US Social Security system, then Pop(w,) is the average Social
Security wealth for the population, and P(¢) = Pop(w,) is the aggregate Social
Security wealth, around 11 trillion dollars in the US in 1995 (see Feldstein
1996). This amount depends sensitively on the interest rate used to discount the
future. Lee (1994a) provides estimates under certain assumptions of transfer
wealth held in various forms in the US as of 1987, expressed per household.
For example, Social Security wealth was $70,000; wealth through public health
care was $35,000; wealth through bequests was —$44,000; wealth through
public education was —$17,000; and wealth through AFDC (aid to poor fami-
lies) was $800. Negative wealth occurs in the foregoing when the average per-
son expects to pay more into a system in the future then they expect to receive
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from it, which happens when a particular kind of transfer typically occurs
earlier in life and the payment later, as with bequests or public education.

When g refers to ¢ — y;, consumption minus labor income, then wy(x, ?)
is what we will call “life cycle wealth”. It is the average wealth necessary
to achieve the life cycle consumption path defined by ¢, given the life cycle
earning path defined by y;. W, is then life cycle wealth per capita in the pop-
ulation. In the general case, life cycle wealth can be held either as capital or as
transfer wealth. Lee (2000) reports that per capita life cycle wealth in pre-
industrial economies, including both hunter/gatherers and agriculturalists, is
typically negative. In the US, and perhaps in other industrial economies, per
capita life cycle wealth is positive. The difference is stems both from their
population age distributions and from their age patterns of consuming and
earning. In pre-industrial economies, high fertility and high mortality together
give the populations a very young age distribution, with many children and
few elderly. This age distribution gives a heavier weight to children who are
recipients of downward transfers and holders of negative net wealth, than to
the elderly, who may have either positive or negative life cycle wealth de-
pending on the setting. Also, in pre-industrial settings, the elderly tend to re-
main economically active, and so receive relatively smaller transfers or in
some settings may even continue to make transfers to their children. In the
United States, by contrast, low fertility and mortality generate an older pop-
ulation age distribution. Retirement age is relatively young, having declined
considerably during the 20th century, while the growing cost of health care
has raised consumption of the elderly relative to earlier ages.

This notion of life cycle wealth, which follows Lee’s definition (1994a, b),
is an expectation, therefore forward looking. It contrasts with the notions of
assets used by Gale (1973), Kotlikoff and Summers (1981) and Willis (1988)
which look backward at prior accumulation®. If there are transfers present,
then forward looking and backward looking definitions of wealth give differ-
ent results. When considering the behavioral implications of transfers, it is the
forward looking definition of wealth that is pertinent, since individuals make
plans according to the constraints they will have to face in the future, but not
according to their past.

We can now give an important accounting identity for the evolution of
wealth over time, linking this to the properties of life cycle balance and pop-
ulation balance of an economy.

Proposition 1. The wealth held through the system of reallocation g satisfies the
equation:

% (9, 1) = (r(t) = n(2))W(g, 1) + b(1)PV (g, 1) — Pop(g, 1)
where n(t) = I;((Zt)) is the rate of population growth and b(t) = % is the flow of

births per capita.

This equation encompasses the links between demographic variables, and
longitudinal and cross sectional accounts. It says that the wealth per capita
increases because it earns a return at rate r(¢), decreases through dilution due
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to population growth, and increases (or decreases) because new entrants to the
population, that is births, may arrive with a positive (or negative) wealth®,
and decreases (or increases) as a consequence of the aggregate net flow of
wealth. The mathematical proof is written in Appendix A.

3.3. First example: The steady states

In steady states the dependence on ¢ disappears and the definitions of P} and
Pop may be simply written:

PV(g) = jo e p(x)g(x) dx (3)

w

Pop(g) = ”Jo ¢ p(x)g(x) dx ()

where b is the crude birth rate, that is the flow of births per capita, and # is the
population growth rate. By inspection of (4) and comparison to (3) we can see
that in any system in population balance (Pop(g) = 0), the rate of population
growth is always a solution for the implicit rate of return earned through
participation in the system g, and in particular # is the implicit rate of return
for any intergenerational transfer system. This is well-known for Social
Security, but it is equally true for rearing children, making bequests, or any
other perpetually recurring pattern of transfers’.

Proposition 1 implies that in a steady-state the wealth held through a sys-
tem of allocation g must satisfy the equation:

(r—n)W(g) +bPV(g) — Pop(g) =0

This equation shows the simple relationships among the concepts of wealth,
life cycle balance, and population balance in this particular case.

Splitting g into g = g* — g, with ¢ and g~ being non negative, and using
the limit (r — n) — 0 of this latter equation it is easy to obtain results known
for the Golden Rule case (Lee 1994a, b):

W(g) = Pop(g")Ay+ — Pop(g~) Ay

where A,+ and A, are the average ages of in-flows and out-flows of g. In
particular, life cycle wealth in golden rule is given by y(A4. — 4,,) where y is
per capita income.

3.4. Second example: Auerbach, Gokhale and Kotlikoff generational
accounting

Call g the system of government taxes, transfers and services®. Instead of the
per-capita accounting equation of Proposition (1) we use the aggregate version
of it:
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d
7 LW (g, 1) = r()P()W (g, 1) + B(1) PV (g, 1) — P(1)Pop(g, 1)
Following Auerbach et al. (1991), assume that r will be constant in the future
(t=0).

Integrating this equation leads to:

JO “ % (P(t)W (g, t)e” ™) dt

:irxgmpw%oen—J e P(t)Pop(g, 1) dt ®)
o 0

Auerbach, Gokhale and Kotlikoff assume that the government debt must
remain bounded, and therefore that lim,_., P(¢#)W (t)e™" = 0. Then Eq. (5)
leads to the following budget constraint:

+00 +00

B(H)PV (g, t)e " dt — J P(t)e " Pop(g, 1) dt (6)

W(e.0)PO) = |
0

0

The left hand term is the negative of the wealth held by the population cur-
rently alive. The term J“0+ * B(t)PV (g, t)e™" dt gives what is to be paid by the
future generations. P(#)Pop(g, t) is the government net expenditure on trans-
fers at time ¢, so f(;r * e~ P(t)Pop(g, t) dt must equal the present value of the
future government consumption, minus its wealth at present.

Auerbach, Gokhale and Kotlikoff want to compare the present value
of taxes to be paid by the generation just born, PV (g,07), to what should
be paid by the next generation to be born, PV (g,0"), if in the future the av-
erage lifetime net tax payment were to rise at the economy’s rate of produc-
tivity growth, A. In other words they assume that for ¢ >0, PV (g,t) =
PV (g,0")e?. The budget constraint Eq. (6) then leads to:

1
PV(g,0") = (Future Gvt. consumption

7 B(t)e -2t dy

— Gvt. wealth — P(0) W (g,0))

Not surprisingly, we have come to the same accounting equation as in Auer-
bach, Gokhale and Kotlikoff generational accounting. Note that our frame-
work allows us to extend this equation to the case where r or 1 are no longer

. 1
constant. In this case the factor —— - should be replaced by
| o B(ne=r=tds
- - in the formula above, and of course the estimate of
JODC B(t)e | (rl@)~(a)) da di

life cycle wealth, and government consumption recomputed with the new
values of r(¢) and A(¢). Empirically speaking, there is probably not much to
gain from this generalization, since the evolution of r(z) and A(z) are quite
difficult to predict.
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4. A closed market economy with capital

From now on we will assume that the population, but not necessarily the
economy, is in a steady state, that is that p(x, ), n(¢) and b(¢) do not depend
on f. We also assume that we are in a productive world (not pure exchange)
where there is no technical progress and where production is an homogeneous
function of Capital and Labor. Because the population is stable Labor is pro-
portional to population size, and the production function can be written as:

F(1) = P(1)f (k(1))
K(1)

where k(f) = W is capital per capita at time ¢. f'is assumed to satisfy the

usual conditions, f > 0, f’ > 0 and f” < 0 plus the Inada conditions:

. ’ . /

zlcl_%f (k) =+ and kl—l}-l&-loof (k)=0
We will assume that agents are selfish and that their satisfaction exclusively
derives from their consumption. There are therefore no altruistic transfers in
our model. More precisely we assume that for any length of life 7 and any
consumption pattern c¢y(x) , x = 0 to T, agents have a utility U(cr). At this
point we only assume that U is continuous and is an increasing function in the
sense that U(Acr) > U(cr) for any 4 > 1. Some additional assumptions will
be needed to derive the existence of a steady state equilibrium, in which r and
k are endogenously determined, but these assumptions will be given later on,
when necessary.

We will say that an economy is a closed market economy if the four fol-
lowing conditions are fulfilled:

¢ All that is produced is consumed or invested.

e Labor is paid its marginal product.

¢ The rate of interest equals the marginal product of capital.

e Agents behave rationally, maximizing their expected utility (the length of
life being uncertain) under the constraint PV (c) < PV (y;).

This latter condition coincides with Case C of Yaari (1965, p. 141). It im-
plicitly assumes that there exist free and actuarially fair life insurance and
annuities. Mortality risk can then be perfectly shared and agents can choose
their consumption profile under the constraint that the expected present value
of consumption at birth does not exceed their expected income.

With our notation the first condition may be written as:

dk

J k() = (1) + nk(1) + Pop(e, 1) ()

which is the basic dynamic equation of Solow’s growth model.

Since we do not want to make additional assumptions about how Labor
earnings vary with age, we will use the second condition only at the aggregate
level:

Pop(yi, 1) = f(k(1)) — r()k(t) (8)
with (1) = 1" (k(1)).
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In the absence of nonmarket transfers, rational behavior implies:
PV(yi,1) = PV(c,1) ©)
the following we note:

é(xv t) = C(x’ [) - y;(x, t)

We know from Eq. (9) that &(x, ¢) is life cycle balanced in the sense we defined
in Sect. 3. W(&, ) corresponds to the usual notion of life cycle wealth as noted
earlier.

Public and private transfers, which are ruled out in this section, will be in-
troduced in Sect. 5. Even without them, however, these assumptions are more
general than those in numerous articles such as in Galor and Ryder (1989)
and Galor (1992). Following Samuelson (1958), Diamond (1965), Gale (1972,
1973), Balasko et al. (1980), Tirole (1985), Weil (1987) and Lee (1994a, b),
among others, we allow the aggregate wealth held by individuals to differ from
the amount of capital, through the presence of “asset bubbles” (see Tirole,
1985)°. By ‘“balance” we will mean the difference between the aggregate
wealth per capita and the capital per capita, which is W (&, 1) — k(z). This
concept of balance, which corresponds to Tirole’s notion of asset bubble, will
play a crucial role throughout our analysis.

The following result will be useful in subsequent analysis.

Proposition 2. In a closed market economy we have:

& WD) k(D) = (1)~ m(W(E.0) — k(2) (10)
Proof. Combining Egs. (7) and (8) we find:

Pop(&,t) = Pop(c,t) — Pop(y;, t) = —%(l) + (r(t) — n)k(2) (11)

Also as a consequence of Proposition 1 we have:

Pop(&,1) =

~EE )+ () = ) WD) + B PV (1)

Since PV (&,t) =0 by hypothesis (Eq. (9)), the subtraction of these two
equations give the desired result.

4.1. The steady-states

In a steady state Eq. (10) becomes simply:
(r=n)(W(&)—k)=0

Therefore, using Gale’s classification:
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Theorem 1. A steady state of a closed market economy is always either “bal-
anced” (no bubble) (W (&) = k) or “Golden-rule” (r = n).

This result is well-known for the case of finite discrete age groups'®.

Although we have described some properties that must be satisfied by any
steady-state, we have not yet shown that any such steady states exist. Here we
will establish existence under an additional assumption:

Assumption Al. The utility and the production functions are such that in the
hypothetical limit £ — 0 (and r — +o0), the aggregate wealth implied by ra-
tional behavior of the individuals would exceed the value of capital.

Assumption 41 links together the properties of the individual’s preferences
and the properties of the production function. As k goes to zero the rate of
interest goes to +oo and therefore we expect people to postpone their con-
sumption, so that the wealth would be greater than the capital. However, at
the same time that k tends to zero labor income decreases. It may happen, in
some particular cases, that preferences for present consumption increase as
income decreases in such a way as to offset the first effect. Assumption A1 is
made in most articles on productive two age-group models (as in Diamond
1965; Tirole 1985; Weil 1987; etc.). Konishi and Perera-Tallo (1997) estab-
lished a sufficient condition for 41 to hold. Their condition merely says that
marginal rate of substitution between present and future consumption must
remain bounded as consumption goes to zero and that as k goes to zero the
labor share of production does not go to zero.

In the continuous case, this sufficient condition may be replaced by the
following one:

Proposition 3. If preferences are additive and homothetic and if for any ¢ > 0
there exists kg such that:

S (k) — kf'(k) S oK)
k

for k < ko, then assumption Al is always satisfied.

Note that this condition is less restrictive for the production function than
the one assumed by Konishi and Perera-Tallo. Indeed, instead of assuming
that the labor share of production does not vanish when k goes to zero, we
only need to assume here that this share does not vanish too quickly. The
proof is in Appendix B.

The following theorem extends Gale’s result (1973):

Theorem 2. If assumption Al is fulfilled, there always exist both a balanced
steady-state and a Golden Rule steady state.

Moreover, if in the Golden-Rule W (&) >k (resp: W(E) < k), then there
exists a balanced equilibrium with r < n (resp: r > n)tL.

The proof is in Appendix C. Gale (1973) used the term “Samuelson” for
the case where W (&) > k in the Golden Rule steady-state, and “Classical” for
the case where W (¢) < k in the Golden Rule steady-state. Golden Rule steady
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states of the former kind may be supported by the existence of money (with
positive value) or by transfers from younger to older members of the popula-
tion (which are ruled out by assumption in this section, however). A Golden-
Rule steady-state of the latter kind would require some other institutional
support allowing the society to keep a surplus of capital, since money of neg-
ative value contradicts its free disposal.

There are several results concerning the welfare of agents. The following
theorem, proved in Appendix D, extends the first result of Starrett (1972):

Theorem 3. A Golden Rule steady state is optimal.

This result is comparative static. It says that the best steady-state is
the Golden-Rule steady-state. Such a result was also obtained by Calvo and
Obstfeld (1988) for a model similar to ours.

It may happen coincidentally that the Golden-Rule steady state is also a
balanced steady state. This case corresponds to the “Goldenest Golden Rule”
of Samuelson (1975). Indeed, more generally, we claim that:

Theorem 4. If we denote by U (n) the lifetime utility of individuals in the Golden-
Rule steady state with rate of population growth n, and if U(n) is continuously
differentiable, then the first derivative of U always has the sign of the balance
W (&) — k of this Golden-Rule steady state.

In other words we have:

du
(W(éqr) - kg )% >0
where the subscripts gr indicate reference to the Golden-Rule steady state.
Following Lee (1994a), this may also be written as:

(Pop(e)(Ac — A) ~ )T 2 0

where A, and 4,, are the average ages of consumption and labor income.
. . . du L
In particular if the Golden Rule is balanced then = 0, which is the first

order derivative condition that should be satisfied for an optimal population
growth!?. More precisely we may say that if the society is in a Classical
Golden Rule or, equivalently, if the average age of labor income is greater
than the average age of consumption, the welfare of individuals could be im-
proved, in the long term, by a slower population growth. The reverse result
holds if the economy is in a Samuelson Golden Rule steady state or if average
age of consumption exceeds the average age of labor income. This result has
been proved by Arthur and McNicoll (1978) for the case of an additive and
atemporal utility function and is proved in a more general context in Appen-
dix E'3.

Coming back to the situation where the rate of population growth is exo-
genously fixed at a value n, we have the following properties which generalize
Starrett’s second result (1972):

Theorem 5. A balanced steady state is efficient if r > n and inefficient if r < n.
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We know from Theorem 3 that the optimal steady-state is Golden-Rule.
Thus a balanced steady-state with r # n leads to a lower welfare level than
does the Golden-Rule steady state. However, the transition from such a
steady-state towards the Golden-Rule steady state may be costly for some
generations whose welfare may fall below what they would have experienced
in the balanced equilibrium. This theorem, proved in Appendix F, shows
precisely that if the economy is initially in a balanced steady-state with r > n,
then a transition from the balanced steady state to the optimal one would
necessarily be costly for some individuals.

These static properties do not imply that a market economy will converge
to the optimal equilibrium, or even to an efficient one. Samuelson’s numerical
example (1958), in a pure exchange economy with three age-groups, gives a
situation where from almost every initial condition the economy will converge
to an inefficient balanced equilibrium. Such a result shows the interest of
studying the dynamic properties of overlapping generations market economies
in general, as we begin to do in the following section.

4.2. Dynamics

Our framework allows us to gain some insight into the dynamics of closed
market economies of this sort, retaining the assumption of steady state popu-
lation.

Let us begin with the result of Proposition 2 which says that in market
economies we have:

& W& 0 — k(1) = ()~ (W&, 1) — k(2)

This can be solved to yield:

t

W(E 1) — k(1) = (W(E.0) — k(0)) exp(j

0

(r(a) —n) da> (12)

Therefore we see that the evolution of the balance W (&, f) — k() depends ex-
clusively on the nature of the generalized integral:

[0 = mya

0

This integral depends on the evolution of the rate of interest and thus in-
directly on the agents’ behavior. Nonetheless, we can obtain some fairly gen-
eral results.

Theorem 6.
1) If a program is balanced at some time then it remains balanced for ever.
2) The sign of the balance W (&, t) — k(t) of a program is constant.
3) A balanced equilibrium with r > n is not stable.

All these results are well known for the two age-group model. The first
point of this theorem is a generalization of the impossibility theorem of



150 A. Bommier, R.D. Lee

Samuelson (1958). It is also in Gale (1973) for a N age group model in a pure
exchange economy. It states that a market economy cannot support the tran-
sition from a balanced state to an unbalanced one.

The second point generalizes the first. Together with the third point they
give a partial answer to Gale’s conjecture'*. Indeed, if we are in what Gale
calls the classical case (that is with (&) < k in the Golden-Rule steady-state)
we know that there exists at least one balanced steady state with r > n. The
theorem says that in this case the economy will tend to move away (at least
locally) from this balanced steady state. Moreover, if the initial conditions are
such that W (&,0) > k(0) then the balance will remain non positive (from point
2 of the proposition) and the economy will not converge towards the Golden-
Rule steady states which would be characterized by a negative balance.

In the third point, by “not stable” we mean that for at least some initial
conditions infinitely close to the steady-state the economic path will move
away from the steady-state.

Proof of Theorem 6. Points 1 and 2 come directly from Eq. (12). To prove
point 3 we have to show that for some initial conditions infinitely close to the
steady-state the economic path will move away from the steady-state. Now
suppose that there exists a balanced steady state with a rate of interest »* > n.
Let us choose some initial conditions where the balance is close, but not equal,
to zero, and where the rate of interest is close to r* (so that r —n > 0). From
Eq. (12) we know that an evolution where r remains close to r* and the bal-
ance tends to zero is impossible. Thus we see that in this case, the economy
which starts from initial conditions arbitrarily close to the balanced steady-
state will move away from this steady-state.

These dynamic results are quite incomplete. In particular results on con-
vergence to particular steady states known for the two age-group model could
not be extended. We have nonetheless made progress since the results that we
derived on instability of some steady-states were only available for the two age
group model.

5. General economies

Although the study of market economies has been the main preoccupation for
economists, all real world economies in fact include many kinds of transfers,
such as child rearing, Pay-As-You-Go pension systems, familial intergenera-
tional transfers and government taxes and transfers. Indeed, such non-market
transfers comprise by far the most important source of, or institutional sup-
port for, unbalanced economies (see Lee 1994a for a quantification).

The aim of this section is to show how our previous analysis can be easily
extended to these general economies. In particular, we will describe the possible
steady states and show how their characteristics are linked to the properties of
the transfer systems.

Let us call 7 the sum of all the non-market systems of reallocation, familial
and governmental. Purely for expositional convenience, we may think of
as operationalized by some abstract (or real) unproductive institution, which
gives 71 (x, t) to any individual of age x at time ¢ and collects 7~ (x, t), the net
transfers being t(x,7) = v+ (x,7) — 77 (x, 7). In a closed economy, it is the na-
ture of transfers that the amount given by some individuals must be received
by others, so that z(x, f) must satisfy population balance, that is Pop(z,t) = 0.
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However, we may also think of different situations, such as an open economy
where 7(x,7) may include some government taxes used to pay some foreign
economies. For example, this would be the case for a country which has to
pay interest on its external debt as in Diamond (1965). In this case v does not
need to satisfy population balance, and to avoid any loss of generality we will
not make any assumption here on the value of Pop(z,1).

Let us define here:

e(xv t) = f(xv l) - T(X, t) = c(x, t) - y/(xa [) - ‘L'(X, [)
In the absence of capital depreciation we have:

% (k) + nk(t) = rk(t) — Pop(0,1)
The new life cycle budget constraint is PV (¢) < PV (y;) + PV (z), so rational
behavior implies that PV (6, t) = 0. Thus using proposition 1 we get:

d

W (0.0) = k(1)) = (r(1) = m)(W(0, 1) — k(1)) (13)

In a steady-state all the dependence in ¢ disappears and this equation simply
becomes (r — n)(W(0) — k) = 0. Therefore:

Theorem 7. A steady-state must be either:

— Golden-Rule

— Non-Golden Rule, with balance equaling the transfer wealth associated
with T, W(t):

W) —k=Ww()= (bPV(7) — Pop(7)) (14)

n—r

Theorem 7 is obviously the generalization of Theorem 1. Most of the pre-
vious results can be extended in the same way. Indeed we see at a glance that
Eqgs. (10) and (13) are identical. In the case of a general economy with in-
tergenerational transfers, the important variable is no longer the balance
W(&,t) — k, but W(0) — k, which is also W(&) + W(r) — k, the difference
between the aggregate wealth and the sum of the capital per capita and the
(institutional) transfer wealth. We will call this difference the “residual bal-
ance’” which includes money, bonds or other asset bubbles. Theorems 3, 5 and
Theorem 6 become then:

Theorem 8. In a general economy with fixed (and unchangeable) institutional
transfers and taxes.

(i) A Golden-Rule steady-state is optimal.

(ii) A4 steady state with no residual balance is efficient if r > n and inefficient
if r <n.

(i) If a program has no residual balance at some time then it has none forever.

(iv) The sign of the residual balance is constant.

(v) A steady-state with no residual balance and with r > n is not stable.

Proof. The proof of (i) is exactly the same as the proof of Theorem 3. For the
proof of (ii) we can literally follow the proof of Theorem 5 replacing ¢(x, ¢)
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and ¢y(x) by ¢(x, ) — (x) and ¢o(x) — 7(x), respectively. Substituting ¢ for 6
in the proof of Theorem 6 proves (iii), (iv) and (v).

6. Conclusion

The extensive literature on overlapping generation models is rich and pro-
ductive, yet it suffers from its reliance on simplistic demographic assumptions
which are largely unnecessary. The past literature has mainly assumed only
two age groups and perfect survival until the end of the second of these. The-
oretical results for two age groups sometimes do not generalize, and without
mortality one cannot study the implications of its change. Such a crude model
cannot even simultaneously accommodate dependent childhood, productive
mid years, and retirement. Any kind of empirical implementation of these
models is virtually impossible.

This paper aimed to revisit the literature on overlapping generations
models in the demographic context of a continuous age distribution and a
general age schedule of mortality. The core economic model was standard.

The proofs of our results make use of an accounting framework that handles
the aggregation problem relatively simply. Once this accounting framework is
developed, our proofs are mostly no longer than those for the two age-group
model. The accounting framework is of interest in itself, and we showed it
could be used to derive the fundamental equation of generational accounting.
We also provided some illustrative empirical estimates of various quantities in
the accounting framework for the US.

We showed that most static results known for the two or N age group
model could be extended to this more realistic demographic setting. Only a
slight difference appeared, when considering the existence of a balanced steady
state equilibrium. The sufficient condition obtain by Konishi and Perera-Tallo
(1997) was replaced by a weaker condition. Dynamic results could be extended
to a lesser extent, with results on instability being much easier to prove than
convergence results. In a final section we showed that our results could be easily
extended to a general economy with non-market transfers. This extension does
not introduce any technical innovation, nor complication, and should be of
interest for future empirical applications.

Economists should not be put off by the apparent complexity of realistic
demographic models, models which in principle should permit a much greater
degree of generality and relevance to real world phenomena and policy prob-
lems. We have shown that such models remain tractable, and that compara-
tive static, dynamic and welfare theoretic results can be obtained.

Endnotes

! Demographic studies show that this assumption is not realistic, and that, after age 30, the
probability of dying increases more or less exponentially with age, doubling every 9 years or so.

2 This typically corresponds to the framework of most three age-group models where all the
periods and age groups are assumed to have the same length.

3 The most common longitudinal constraint is the life cycle budget constraint which says that in
a market economy an individual cannot consume more than he earns. A typical cross sectional
constraint is that “all that is produced is consumed or invested” (in a closed economy) or for
transfers, that ““all that is given is received”.
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We therefore assume that the population is homogeneous in the sense that all individuals of the
same cohort have the same expectations, although most results hold for heterogeneous pop-
ulations as well. Indeed all our results, except Proposition 3 and Theorems 2, 3, 4 and 5, hold
for heterogeneous populations if we assume that demographic and economic heterogeneity are
independent. All the results, without exception, hold if we also assume that the utility function
is homothetic.

In particular the notion of life cycle wealth of Kotlikoff and Summers (1981), defined as ac-
cumulated earnings minus accumulated consumption, differs from ours. These notions will
only coincide when all individuals spend as much as they earn during their life. This is the case
only if there are no intergenerational transfers or if transfers are life-cycle balanced, in the
sense defined above.

Non zero wealth arises, for example, when people have to participate in a Pay as You Go
pension system. The rate of return for such systems is n (if productivity growth is zero) and
therefore social security wealth at birth, discounted at rate r, PV (g), is negative whenever the
rate of interest is larger than the rate of economic growth.

More generally, if transfers are rising at a constant rate A, then the implicit rate of return of any
transfer system in steady state is 7 + A.

g could be limited to taxes and transfers, as was done in the original versions of generational
accounting, or a more expansive definition of government services could be adopted.

Tirole defines a “bubble” as the difference between the market price of an asset and its market
fundamental (i.e. the expected present discounted value of its dividends) (Tirole 1985:1071).
Assets with bubbles include money, bonds, rights for intergenerational transfers, etc. For Tirole,
bubbles cannot be negative, since he assumes that agents can freely dispose of them. However it’s
clear that bubbles such as intergenerational transfers can also have a negative value.

See Gale (1972) for the two age-group model and Kim and Willis (1982) for the N age-group
model.

If assumption A1 does not hold then there may not exist a (non trivial) balanced steady-state
when W (&) < k in the Golden-Rule (see Galor and Ryder 1989). U
Samuelson (1975) intuitively interpreted this necessary condition, o

dition for the existence of an optimal population growth rate. But Deardoff (1976), with
Samuelson’s acknowledgment (1976), showed that this rate of growth may also correspond to a
welfare minimum. In general it is not obvious that there exists a finite rate of population
growth which is optimal. The existence of such a rate has been proved, under certain con-
ditions, by Kim and Willis (1982) in the three age-group case.

In fact Arthur and McNicoll expressed their result in terms of the difference in mean ages of
consumption and labor income and Willis (1988) was the first to connect this difference to the
balance measure, W — k, and therefore to the notion of Classical and Samuleson golden rule
steady-states.

Gale (1973) conjectured, for an economy with no durable good, that in the Classical case the
balanced steady-state is unstable, the economy converging toward the Golden-Rule only if the
initial balance is negative. He conjectured also that in the Samuelson case the economy always
converges toward the balanced steady-state.

In fact we could have shown that (17) is true for any ¢; smaller than the difference between the
maximum age at death and the minimum age of non-zero productivity. We would obtain a
weaker sufficient condition supposing only that (18) has to be true for some ¢ smaller than this

age gap.
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Appendix

A. Proof of Proposition 1

From Eq. (1) we compute the variation of individual wealth along the life-cycle:

(G )t = (=am0) #0022 P (0] 19
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At the aggregate level, or in other words, multiplying both sides of this equa-
tions by B(f — x) p(x, t) and integrating between 0 and w we get:

Jw B(t — x) (% + %) (P(x, )wy(x, 1)) dx

0
= —P()Pop(g,1) + r(t) P() W (g,1) (16)

On the other hand let us note f(¢) the aggregate wealth of the population:

f(t)y=P()W(g,1) = J: B(t — x)p(x, t)wy(x, 1) dx

A simple derivation shows that:

w

ro-|

. <B’(t —x)p(x, )wy(x, 1) dx + B(t — x) % (p(x, )wy(x, t))> dx

Integrating by parts the first term of the integral yields:

6]

fm=3mmammmn+j

d d
. B(t — x) (dt + dx) (p(x, )wy(x, 1)) dx
The first term on the right hand side of this equation is precisely B(¢)PV (g, ).
Using Eq. (16) we obtain:

d

S0 =2 (PO)W(g. 1) = r()P()W (g, 1) = P(1)Pop(g, 1) + B()PV (g, 1)

which is the aggregate version of the accounting equation of Theorem 2.2.
.od dP(t) dW(g,t . .

Indeed, writing 7 (P()yW (g,1)) = # + # and dividing the equation

by P(¢) gives the per capita accounting equation announced in Theorem 2.2.

B. Proof of Proposition 3

As remarked by Kessler and Masson (1988) any additive homothetic inter-
temporal utility function leading to time consistent individual choices may be
written as:

c . . .
where u(c) = A simple calculation shows that the consumption pattern

that follows from utility maximization satisfies ¢(x) = ¢(0)e~**/7. The value
of ¢(0) is determined by the constraint PV (c¢) = PV (y;) and we have:
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1 Ow e " p(x)el X7 dx
—POp(C): O “Dx
b Jo e p(x)er=Ax/7 dx

PV (y1)

It follows that for any age a such that p(a) # 0 there exists ry such that
1 : . .
EPop(c) > M4 PY (y;) for r>ry. In particular, since the income profile

(given by the labor productivity) is supposed to be fixed, we know that there
exists ¢ > 0 such that for r large enough Pop(c) > e Pop(y).

Assumption /2 says that W(&) should be greater than k in the hypotheti-
cal limit kK — 0. We know from Theorem 1 that (r — n) W (&) = Pop(&) so
assumption A2 is also equivalent to: “In the hypothetical limit » — +o00 we
should have Pop(c) — Pop(y;) > (r —n)k.”

We have seen that for some positive ¢ we have in the limit r — +o0:

Pop(c) = Pop(y1) > (e — 1)Pop(y;) = ™" Pop(yr) = e/ W (f (k) kf"(k))
(17)

Thus, assuming that preferences are additive and homothetic, the condition
which says that for any ¢ > 0 we must have:

(k) = kf'(k)
e (k) (18)

for k small enough is enough to ensure assumption /2.13

C. Proof of Theorem 2

Assuming that agents behave rationally, for any hypothetical steady state,
characterized by a value of capital per capita k and a rate of interest r = f’(k),
there corresponds an income profile y;(x) determined by the marginal pro-
ductivity of Labor and a consumption profile ¢(x) which maximize U(c(x))
under the constraint PV (c) = PV (y;). We will note &(x) = ¢(x) — y;(x) where
—¢(x) is in some sense the “rational” investment of individuals of age x from
their labor income. An hypothetical steady state will actually be a feasible
steady state if the desired investment, —Pop(¢), is equal to the investment
needed to maintain the capital per capita at his level. This means that a
steady-state is feasible if and only if:

—Pop(&) = (n—r)k

Let us call z(r) = —Pop(&) — (n — r)k which is the difference between the ra-
tional investment and the necessary investment to support a steady state. We
will show that z(r) has always at least two roots when r varies in [0, 4+00], and
therefore that there are always two possible steady-states.

The root r = n corresponding to the Golden-Rule steady state is obvious.
Indeed when r = n the application PV and Pop are proportional and:

Pop(&) = Pop(c) — Pop(y1) = bPV(c) — bPV(y)) =0
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since PV (c) = PV (y;) is the constraint of the individual maximization pro-
gram.

It remains to see that there is at least one other root. The consumption
being non negative we have —Pop(&) < Pop(y;) = f(k) —rk. Thus we see
that z(r) < f(k) — nk and since f’(k) — 0 when k — 400 we have:

1i_r>13 z(r) = —o0 (19)

From Theorem 1 we know that in a steady state we have Pop(&) =
(r—n)W (&) (since PV (&) = 0 from the individual budget constraint). There-
fore:

2(r) = (n=r)(W(&) — k) (20)

and hypothesis 42 implies that z(r) < 0 when r — +o0.

The function z(r) is continuous, non positive when r — 400 and when
r — 0 and is equal to zero when r = n. Moreover we know from Eq. (20) that
the derivative of z in r = n is given by:

dz

— =—(W(&) -k

5| =R,
which is the opposite of the balance in the Golden Rule equilibrium. Thus in
the classical case where W (£) < k in the Golden rule we know that there ex-
ists at least one root of z(r) greater than » and in the “Samuelson’s case”,
when W (&) > k in the Golden rule we know that there exists one root smaller
than n.

D. Proof of Theorem 3

By claiming that a Golden-Rule steady-state is optimal we mean that agents
in such a steady-state have a higher lifetime utility that in any other steady
state. Indeed let us call k,, ¢4(x), y1, the capital per capita, labor income and
consumption profiles of the Golden-Rule steady state and k and c¢(x), yi(x)
the values in another steady-state. To show that U(c(x)) < U(cy(x)) we only
need to prove that Pop(c) < Pop(yi,) since ¢,(x) is by assumption a solution
of the program:

Max E(U(c,(x
Pop(cy) < Pop(yi,) (Uley ()

(in the Golden Rule the function Pop and PV are proportional). But it is well
known that the Golden Rule steady state is the steady state that maximizes
the aggregate consumption. So we have Pop(c) < Pop(c,) < Pop(y1,), which
completes the proof.

E. Proof of Theorem 4

Let us note ¢,(x) and y;, the consumption an labor income of individuals of
age x in the Golden-Rule of rate of population growth (and rate of interest) n
We know that ¢, maximizes the utility function under the constraint PV (c,) =
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PV (y1,). Thus, any consumption pattern such that PV(c) < PV (c,) would
make individuals worse off and any better consumption pattern will have
to satisfy PV(c) > PV (c,). Consequently, as we assumed U(n) to be con-

tinuously differentiable, the sign of d—U(n) will be the same as the sign of

dn
dc
(%)

We know that for every Golden Rule steady state we have PV (c,) =
PV (y;,). Differentiating both sides of this equality and using the fact that

for a positive system of reallocation 4 (PV(g)) = —A,PV(g) + PV<%> we

obtain: dn on

—APV(c) + PV<%> = —A4,PV(i) + PV(%) (21)

0 o\ . . .
bPV (%) or also Pop (%) is the variation of aggregate income at constant
n n

structure by age and is given by:

oy v d / B
bPV(E> —Pop<5> :%(f(k) —nk) = (f'(k) —n)%—k, K
(22)

which corresponds to the classic effect of capital dilution of the growth model
of Solow. Using the result of Lee (1994a), we know that:

W (&) = (Ac — Ay, )Pop(c) (23)
From (21) (22) (23) we get PV(aC> :l(W(é) — k) which completes the
proof. an b

F. Proof of Theorem 5

Let us prove first that a balanced equilibrium program with r > » is efficient,
or in other words that there does not exist any transition that makes nobody
worse off and at least one individual better off. For this we show that the ex-
istence of such a transition would lead to some inconsistency.

Let us call kg, rg, ¢y the values of the capital per capita, rate of interest and
consumption of the steady state, before the transition, and call PV} the func-
tion PV obtained for r = ry. Applying the result of theorem (1) we know that:

M (c.1) = (v — mWoleot) + bPViest) — Pople)
where we call ¥, the notion of wealth defined as in Eq. (2) for r = ry. With
Eq. (7) we get:

d(Wy(c,t) — k)

o = (Wy(c,t) — k)(ro — n) + rok — f(k) + bPVy(c, 1)
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Calling:

= (a0 = ) (rok — f(k) 4+ bPVo(c, 1) — (n — ro)(Wo(co) — ko))
(24)

or also given the fact that o(0) =0, per definition, and that (n—ro)-
(Wo(co) — ko) = roko — f(ko) + bPVoy(co) (since the zero indices correspond
to a steady state program) we obtain:

(1) = j e ok () — 1 (k)

0
— (ro — f (ko)) + bPVy(c,u) — bPV (cp)) du (25)

Now note that a simple study of the variation of the function rok — f(k)
shows that for all k we have rok — f(k) > roko — f (ko) since ro = f”(ko) and
f"(k) <0. Remark also that a transition that makes one person better off and
nobody worse off must pass by a point where PVy(c,t) > PVy(co) and be such
that PVy(c, t) = PVy(co) for every t. Thus, since ry > n, we see from Eq. (25)
that such a transition would lead to:

lim (Wy(c,t) — k)(1) = +o0

t—+0o0

which is physically impossible (it would mean that the expected consumption
of agents, discounted at the rate ro, would tend to infinity).

To prove that a balanced steady-state with < n is not efficient we must
construct a transition that makes nobody worse off and some persons better
off. The idea is very simple. Imagine that starting from this balanced steady-
state we add after some time ¢ = f#; an infinitesimal population balanced in-
tergenerational transfer going from the younger to the elderly. The capital per
capita is not affected by such a transition since we make only a reallocation of
resources between generations. It is easy to check that after the transition is
achieved people will have a higher utility than those who were alive before the
transition since from an individual viewpoint this intergenerational transfer is
like an infinitesimal investment at a rate n > r. For people alive during the
transition the situation is even better since they receive all the benefit of this
kind of “investment’ without having paid all the contributions.
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