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Comment 
JUHA M. ALHO* 

Lee and Carter are to be congratulated for their elegant 
contribution to the methods of demographic forecasting. 
They first study the quality of the age-specific mortality data 
from 1900-1989 and then use essentially the first principal 
component of the logarithmically transformed data to model 
past changes. This reduces the task of forecasting into a 
problem of forecasting a univariate mortality index k,. The 
authors carefully apply standard time series techniques to 
forecast k, and age-specific mortality up to the year 2065. 
Interestingly, their extrapolations lead to similar decreases 
in future mortality as the low mortality variant of the judg- 
mental forecasts of the Social Security Administration's Of- 
fice of the Actuary. This suggests that the high-low prediction 
interval of the Office of the Actuary may not cover all rea- 
sonable contingencies. 

Because Lee and Carter intend their forecasts as direct 
competitors of the official forecasts, I will comment on some 
of the limitations of their extrapolative technique and the 
credibility of the interval forecasts it produces. I will conclude 
with a note on terminology. 

1. EXTRAPOLATION MODEL 

I am less optimistic than the authors about the realism of 
the family of the life tables that is generated by the past 
average mortality and its first principal component. By con- 
struction, such life tables produce reasonable (in this case 
very good) fits to data from which they are estimated, but it 
is not at all clear that life tables corresponding to the values 
of k, that are outside the observed range continue to be "rea- 
sonable." A case in point is Figure 4. The observed lack of 
fit in age group 15-20 is accentuated by the extrapolation 
to produce an implausibly sharp increase in mortality in the 
year 2065. Moreover, I expect that the technique will get 
into trouble if applied to time periods with stagnating mor- 
tality, such as the years 1954-1968 in the U.S., when male 
mortality increased slightly. During such periods mortality 
may increase in some ages and decrease in others. Extrap- 
olation can rapidly magnify such effects out of proportion. 

Of course, such issues will be problems with any purely 
extrapolative technique. Because purely judgmental forecasts 
that rely on expert judgment appear not to be optimal either, 
it might be valuable to try techniques that combine the two 
approaches. From a statistical point of view expert judgment 
can be interpreted as representing such extraneous infor- 
mation that has not been reflected in the past of the time 
series under study. As discussed in Alho (1992), Bayesian 
techniques, mixed forecasting, or the techniques of combin- 
ing forecasts provide tools for such an undertaking. Com- 
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bining the extrapolation forecasts of Lee and Carter with 
those of the Office of the Actuary would produce intermediate 
values depending on the weight given to each. With equal 
weights, a point forecast of the joint life expectancy of males 
and females would be about 83.5 years, for example. 

2. INTERVAL FORECASTS 

A nice feature of Lee and Carter's technique is that the 
only variable that needs to be forecast, k,, happens to have 
behaved fairly linearly during this century. In consequence, 
a random walk model with a drift fits the data well-perhaps 
too well! The forecasts produced by this model are essentially 
straight lines through the first and last observation. Experi- 
mentation with alternative observation periods and a trans- 
parent ruler in Figure 2 suggests that the 95% prediction 
intervals displayed may be too narrow. 

One reason for the narrowness of the intervals is that the 
authors used a dummy for the flu epidemic of 1918. Although 
we would not expect flu to have a similar impact in the 
future, there may well be other dramatic changes in mortality. 
I don't think AIDS will be such a factor, but something 
equally unpredictable, perhaps caused by war or environ- 
mental catastrophe, could dramatically alter mortality 
schedules. Because the authors do not make any allowance 
for possible modeling error in their interval estimates, I think 
the exclusion of the flu epidemic from error estimation is 
hard to defend. The authors note in passing that including 
the epidemic in error estimation would make the prediction 
interval of k, 57% wider in the year 2065. It would have been 
interesting to see the effect in the intermediate years and on 
life expectancy, especially because we see from Appendix B 
that all error terms are not used in calculating the prediction 
intervals for life expectancy. I believe that the wider intervals 
would have been more credible than the ones presented. 

To illustrate, suppose that inflating the error estimate of 
k, would increase the uncertainty of the forecasts of life ex- 
pectancy by one-half. Then a 95% prediction interval around 
the point forecast that combines the Lee-Carter extrapola- 
tions with the judgment of the Office of the Actuary would 
be from approximately 75 to 89.5 years. 

3. TERMINOLOGY 

Although the lack of ideas frequently goes hand in hand 
with an interest in semantics, I will risk the appearances and 
comment on the use of the term "confidence interval" in 
connection with forecasting. I think it might be clearer to 
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reserve this term for interval estimators of parameters. In- 
terval estimators of random variables (which is what we are 
discussing here) might be better called "prediction intervals" 
or "forecast intervals" as, say, in Kendall and Buckland 
(1971). 

ADDITIONAL REFERENCES 

Alho, J. M. ( 1992), "Estimating the Strength of Expert Judgment: The Case 
of U.S. Mortality Rates," Journal of Forecasting, 11, 157-167. 
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Rejoinder 
RONALD D. LEE and LAWRENCE R. CARTER 

We are grateful for the thoughtful comments on our article 
provided by two scholars who have themselves made pi- 
oneering contributions to the problems we discuss. Because 
we disagree with some of McNown's points, we will devote 
the most space to them. 

McNown asserts that our method is "equivalent" to "di- 
rectly projecting each age-specific mortality rate at its own 
historical rate of exponential decline" . . . "despite their 
statements to the contrary." This is an important point, be- 
cause our method is rather complicated, whereas straight 
extrapolation is very simple. We have addressed this point 
in our article and also will respond at some length here: 
First, in our model each death rate declines at its own ex- 
ponential rate only when k declines linearly. This is not an 
assumption of the model, and in other applications k might 
follow some other sort of process. Second, if each age-specific 
rate is forecast separately, then deriving confidence intervals 
for forecasts of period life table functions such as life expec- 
tancy, that depend on many death rates, requires taking into 
account the covariance matrix of errors. 

Third, in response to this comment, we have tried two 
versions of directly extrapolating individual age specific rates. 
We forecasted to 2065 using the endpoint-to-endpoint ex- 
ponential rates of decline from 1933-1987 to extrapolate to 
2065. The resulting rate forecasts were lower than ours for 
ages below 10, higher from 10-45, lower from 45-75, and 
higher thereafter. The percentage differences were often ap- 
preciable, ranging from plus 65 to minus 11. We also fore- 
casted using regressions of the logs of the death rates on a 
constant and time. Such forecasts did indeed often come 
close to ours for 2065, although individual age group differ- 
ences are as large as 25%. For example, for age group 30- 
34 our own forecast is .000180. An endpoint-to-endpoint 
extrapolation yields .00298, and the regression-based ex- 
trapolation yields .000225. Furthermore, comparing the 
regression estimates of rates of decline to our bXs shows that 
they differ by up to 8% after equivalent normalization. Com- 
parison of the 95% probability interval for this age group in 
2065 shows wider discrepancies: Our range is .00009 to 
.00036; the regression interval is .00016-.00031, or about 
half as wide (these figures do not reflect parameter uncer- 
tainty). In sum, the methods we tried for directly forecasting 
the individual rates led to point forecasts which, although 
somewhat similar to ours, differed in both level and age pat- 

tern, contrary to McNown's assertion that they would be 
"identical." They also led to very different confidence inter- 
vals. 

Fourth, our method incorporates procedures for indirect 
estimation of mortality in periods when age-specific mortality 
data are unavailable. In our article we extended the time 
series back from 1933 to 1900 in this way, and forward from 
1987 to 1989. This aspect of the method is helpful in appli- 
cations for populations of developed countries and will be 
absolutely essential in many applications for populations of 
less developed countries such as China, where estimates of 
age-specific mortality may be available for only one or two 
years. 

McNown also suggests that we actually have a 24-param- 
eter model of mortality change, consisting of the 23bps plus 
k. Perhaps our difference on this point is just semantic. The 
b,s are fixed by age and so do not change over time. Only 
k changes over time, and so only a single parameter, k, needs 
to be forecast. In the common language of demography we 
have a one-parameter family of life tables in exactly the same 
sense that the Coale-Demeny model life tables for a given 
region and sex are one-parameter life tables, even though 
the construction of the Coale-Demeny life tables involved 
two regression coefficients at each age, corresponding to our 
a, and b, coefficients. In our case a value of k allows us to 
identify uniquely a corresponding life table from the family. 
Of course one could vary the underlying coefficients (a, and 
by), but then one would be providing a basis for a new family 
of life tables. To forecast from a two-parameter family of life 
tables, such as those of Ledermann or Brass, one would have 
to forecast two parameters. The model used by McNown 
and Rogers can describe a single life table very efficiently, 
using only nine parameters versus the 47 required for our 
model. But in their 1990 forecasting application, even though 
six of these parameters are held constant over the forecast 
range, it still is necessary to forecast three of them. With six 
parameters held constant, this could be identified as a three- 
parameter life table system. 

The two commentators suggest that our out-of-sample 
forecasts of the age pattern of mortality may not be "rea- 
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