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Abstract

We examine the role of declining mortality in explaining the rise of retirement over the course of the
20th century. We construct a model in which individuals make labor/leisure choices over their lifetimes
subject to uncertainty about their dates of death. In an environment with high mortality, an individual
who saves for retirement faces a high risk of dying before he can enjoy his planned leisure. In this case,
the optimal plan is for people to work until they die. As mortality falls, however, it becomes optimal
to plan, and save for, retirement. We analyze our model using two mathematical formulations of the
survival function as well as data on actual changes in the US life table over the last century, and show that
this “uncertainty effect” of declining mortality would have more than outweighed the “horizon effect” by
which rising life expectancy would have led to later retirement.
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1 Introduction

One of the most dramatic economic changes in the last 100 years has been the rise in retirement as an

important stage of life. At the beginning of the twentieth century, retirement was a rarity. Many people

didn’t live into old age, and most of those who did continued to work until shortly before death. By the end

of the century, the vast majority of workers could expect to experience a prolonged period of healthy leisure

after their working years were over.

Needless to say, the economic repercussions of this change in the life cycle pattern of labor supply have

been enormous. Since a significant fraction of consumption during retirement is publicly funded, the growth

in retirement has strained government budgets - a phenomenon which will soon be exacerbated by population

aging (Weil, 2008). Meanwhile, private funding of anticipated retirements has led to the accumulation of

vast pools of capital. Exactly what fraction of current capital accumulation can be attributed to life cycle

savings is an issue of contentious debate. Modigliani’s (1988) estimate is that as much as 80% of wealth

can be attributed to life cycle saving, while Kotlikoff and Summers (1988) estimate that it is only 20%.

According to Lee (2001), the fraction of wealth attributable to life cycle saving in the US doubled between

1900 and 1990.

Explaining the rise in retirement has been a major endeavor for economists in the last several decades.

Three prominent explanations can be discerned. The first is that public pension programs, such as Social

Security in the United States, have been instrumental in pushing workers out of the labor force, particularly

through high implicit rates of taxation on wage income earned at older ages (Gruber and Wise, 1998). The

second explanation is that rising lifetime income has led workers to optimally choose a larger period of leisure

at the end of life (Costa, 1998). The final explanation is that changes in the technology of production have

lowered the productivity of older workers, leading employers to seek to get rid of them (Graebner, 1980;

Sala-i-Martin, 1996). None of these explanations, either taken separately or as a group, has been completely

successful in accounting for the rise in retirement. This paper proposes a new explanation, which we call the

“uncertainty effect,” for the rise in retirement. Our explanation is not meant to be a complete substitute for

the factors discussed above, but rather an addition to the set of usual suspects that must be considered in

explaining the rise of retirement.

In our model, the driving force behind the change in the life-cycle pattern of labor supply is a change in

the pattern of mortality. Individuals make labor/leisure choices over their lifetimes subject to uncertainty

about their dates of death. In an environment in which uncertainty surrounding the date of death is high,

an individual who saved up for retirement would face a high risk of dying before he could enjoy his planned
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leisure. In this case, the optimal plan is for individuals to work until they die. As uncertainty regarding

the date of death falls, individuals will find it optimal to plan, and save for, retirement. As we show below,

a salient feature of changes in mortality that have occurred in developed world over the last century is

that as life expectancy has risen, uncertainty regarding the date of death has fallen. The effect of falling

mortality on labor supply complements several other effects of falling mortality, most notably on human

capital investment and fertility, that have been analyzed in recent literature.1

The rest of our paper is structured as follows. In section two, we briefly examine historical data on

mortality and retirement, and also discuss at greater length some of the other explanations for the rise of

retirement. Section three presents and solves our model of endogenous retirement. The different parts of that

section use three different formulations of the survival function: exponential, for mathematical simplicity;

a realistic formulation based on the work of Boucekkine, de la Croix, and Licandro (2002), which we can

solve analytically; and a numerical analysis based on actual data from US life tables. Our key result is that

in all these cases, increases in life expectancy can lead declines, in some cases discontinuous, in the age of

retirement. Section four looks at the paths of consumption and asset accumulation implied by the retirement

behavior studied in section three. Section five looks at the interaction between our new channel and one of

the existing explanations for the rise in retirement, specifically rising income. Section six concludes.

2 Historical Data

2.1 Mortality

Falling mortality has been one of the most significant aspects of the process of economic growth over the

last several centuries. Male life expectancy at birth in the United States rose from 40.2 in 1850 to 47.8 in

1900 and 75.2 in 2005. The most significant component of mortality decline has been the reduction in infant

and child deaths. Obviously, this aspect of the mortality decline is not related to the issues of retirement

saving that we discuss in this paper. Although the decline in adult mortality has not been quite as dramatic

as that for children, it has nevertheless been a significant part of the story of economic growth over the last

century or more. Figure 1 shows the number of survivors from a cohort of 20-year-olds who would be alive at

different ages, using life tables from the United States for 1850, 1900, 1950, and 2000, along with a forecast

for 2050. In 1850, the probability that a 20-year-old would reach age 65 was roughly 40%. By 2000, it was

roughly 80%. The total number of expected remaining years of life for a 20-year-old male rose from 38 to

1See Meltzer (1992), Ehrlich and Lui (1991), Eckstein et al. (1999), Kalemli-Ozcan (2003), and Hazan (forthcoming).
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55 over this period.2

2.2 Retirement

Paralleling the reduction in male adult mortality has been a massive increase in retirement. In 1930, the

labor force participation rate for men aged 65 and over was 58%. By 1985, the rate had fallen to 16%, and has

since remained roughly constant.3 The trend in retirement prior to the Great Depression has been a subject

of controversy among historians. Ransom and Sutch (1986, 1988) claim that the labor force participation

rate for men over 60 was roughly constant between 1870 and 1930, while Costa (1998) and Moen (1994)

argue that labor force participation for older men had been declining since the late nineteenth century.

Examining the labor force participation of the elderly does not tell the full story, of course, because, as

shown above, a large fraction of the population never lived to this age. Carter and Sutch (1996) estimate

that at the beginning of the twentieth century, a 55-year-old man had only a 21.5% probability of retiring

before he died, excluding “death-bed retirement” associated with illness in the last weeks of life.

Another way to demonstrate the dramatic rise in retirement is to look at how the expected number of

years that an individual would spend retired has changed over time. This measure incorporates changes in

both mortality and labor force behavior. The expected period of retirement rose from 2.65 years (6.1% of

expected adult life) for the cohort born in 1830 to 5.50 years (11.6% of expected adult life) for the cohort

born in 1880 and 13.13 years (23.9% of expected adult life) for the cohort born in 1930 (Lee, 2001) Similarly,

Hazan (forthcoming) calculates that while life expectancy at age five rose from 52.5 years for men born in

1850 to 66.7 years for men born in 1930, expected years in the labor market only rose from 34.9 to 40.9 over

the same period.4

Although we focus our analysis on data from the United States, the rise of retirement has been universal

among developed countries. In the United Kingdom, for example, the labor force participation rate for men

aged 65 and over fell from 73.6% in 1881 to 58.9% in 1921, 18.6% in 1973, and 8.9% in 2003. In Japan, the

2Sources: Haines (1998), Keyfitz and Fleiger (1990). These are period rather than cohort life tables because the former
are available for a much longer period of time. We examine male mortality because the full-time labor force was dominated
by men in the age cohorts over which retirement rose to prominence. Further, prior to the rise of retirement, widows were
generally supported by familial transfers rather than their own saving. For example, in 1940, only 18.4% of widows in the U.S.
lived alone, while 58.7% lived with their adult children (McGarry and Schoeni, 2000). Looking at joint survival probabilities
paints a picture similar to what is seen in male survival. Using the 1850 male and female life tables and assuming independence
in mortality, the probability that a couple consisting of a 20 year old man and a 20 year old woman would have at least one
member survive to age 70 was 0.57; using the 2000 life table, the probability was 0.94.

3Such a change could theoretically be due to a changing age distribution of the population over 65 in the presence of constant
age-specific participation rates. This is not the case, however: age specific participation rates have also fallen dramatically. See
Costa (1998) and Lumsdaine and Wise (1994).

4Hazan also points out that because working hours per year declined over this period, the change in expected total working
hours over the lifetime was negative.
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labor force participation rate for men aged 65-69 fell from 70% in 1960 to 47% in 2002. In France in the

four decades following 1960, male life expectancy rose from 67.6 to 74.2 while the average age of retirement

fell from 64.5 to 59.2.5

2.3 Explaining the Rise in Retirement

While we will argue that the decline in mortality is one explanation for the fall in labor force participation

of the elderly, it would be foolish to argue that it is the only one. Since we cannot incorporate all of these

effects into a single model, our approach will be to ask how large a change in retirement could plausibly be

explained by the mortality effect alone, in a model where the other factors are not present. In the rest of

this section, however, we briefly discuss three other channels.

The most obvious alternative explanation for the decline in labor force participation of the elderly is the

growth of public pension programs such as Social Security in the United States. The evidence regarding

how much of the rise in retirement is explained by public pension programs is mixed, but generally suggests

that such programs are not the dominant cause. Numerous studies find statistically significant effects of

Social Security on the likelihood or retiring at certain specific ages. For example, the hazard of retiring at

the “normal retirement age” of 65 was 20%, and the hazard of retiring at the first eligible age of 62 was

14%, in the United States in the 1990s. However, these studies generally imply a small impact of changes in

Social Security benefits on average age of retirement.6 Duval (2004), examining a panel of OECD countries,

finds that changes in public pension programs as well as other social programs such as unemployment and

disability insurance that are used as de facto early retirement schemes explain 31% of the decline in labor

force participation over the last three decades. Similarly, Johnson (2001), using a panel of data from 13

countries, finds that old age insurance explains only 11% of the drop in labor force participation by men

aged 60-64 over the period 1950-2000. By contrast, Gruber and Wise (1999), examining a cross section

of OECD countries, argue that differences in public pension provisions are the dominant explanation for

cross-country differences in labor force participation of men aged 55-64.

A second explanation for the rise in retirement focuses on the income effect of higher wages. In a taste-

based model of retirement, the association of higher income per capita with longer retirement comes about

because people in richer countries choose to spend a higher fraction of their income on retirement. When the

wage increases, there is an income effect, which leads to the purchase of more of all normal goods, including

leisure, and a substitution effect, which works to reduce leisure by raising its opportunity cost. For higher

5Gruber and Wise (1999), Matthews et al. (1982), Yashiro and Oshio (1999), Pestieau (2003), OECD (2004).
6See Samwick (1998) and Coile and Gruber (2007) for a discussion.
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income to lead to longer retirement, not only must the income effect dominate, but there must also be some

reason why this leisure must be taken at the end of life, rather than spread out evenly. The best argument

for this phenomenon is that there is some kind of non-convexity in the enjoyment of leisure; a simple example

would be that only people with full time leisure can move to Florida.7

A third explanation for the increase in retirement looks toward production technology. This explanation

starts with the notion that older workers are less able to do certain tasks than younger ones. If the nature of

production shifts toward those tasks over time, then the labor force participation of older people should go

down. The argument that the nature of production has changed is presented in Graebner (1980) and Moen

(1988). Moen argues that the decline of agriculture as a source of employment led to an increasing physical

separation of the home and the workplace, making a gradual withdrawal from the labor force no longer

possible.8 Similarly, as factory labor and hourly wages replaced piece rate work, it became harder for an

older employee to work at his own pace. Graebner argues that it is the nature of large scale, technologically

advanced production to demand standardized workers.9 On the other hand, the declining importance of

physical strength in the production process (see Galor and Weil, 1996) should have ceteris paribus raised

the average age of retirement under the assumption that an individual’s physical abilities decay more rapidly

than mental abilities.

As an alternative to changes in productive technology, the cause of the increase in retirement could

theoretically lie in changes to the technology of health and longevity. If the fraction of older people who are

unable to perform relevant tasks increases, labor force participation rates should go down. The evidence,

however, points in exactly the opposite direction: as retirement has increased the health of the elderly has

improved (Fields and Mitchell, 1984). In 1994, 89 percent of those between 65 and 74 reported “no disability

whatsoever.”10 While it is theoretically possible that this this improvement in the health of the elderly

was caused by the same increase in retirement that we are trying to explain, the evidence, once again,

7This is the argument of Costa (1998). Similarly, Fields and Mitchell (1984) argue that in the U.S. setting, retirement is
well modeled as “a choice based on balancing the monetary gains from continued work versus leisure forgone,” rather than
stemming from mandatory retirement regulations or ill health. Mandatory retirement covered only a minority of workers during
the period at which they look, and they estimate that it was binding in the retirement decisions of only two or three percent
of retiring workers. The Age Discrimination in Employment Act of 1978 and subsequent legislation, which have virtually
eliminated mandatory retirement, have had little effect on actual retirement patterns.

8Long (1958) rejects the argument that urbanization was the cause in the decline of labor force participation for men over
65 over the period 1890-1950. The rate of labor force participation was higher in rural areas, but the decline was sharp in both
areas: 5.4% per decade in rural areas, 4.4% per decade in urban areas. The rate of decline for the country as a whole was 5.4%
per decade, indicating that there was some effect of movement from rural to urban areas.

9A different mechanism by which technological change can lead to retirement is by making old workers obsolete, either
because older workers are slower at learning new productive techniques, or because it is not worthwhile for older workers to
learn new techniques, since they will have less time in the labor force in which to employ them. Graebner (1980) documents
the widespread notion that retirement resulted because it was easier to train new workers than to retrain old ones. Both of
these arguments suggest that retirement should be related not to the level of technology, but to its rate of change.

10For more on this point see Costa (1998).
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goes in the other direction. Snyder and Evans (2006) find that an exogenous and unexpected reduction in

Social Security benefits to the so-called notch generation (those born between 1917 and 1921) in the United

States actually lowered mortality. Snyder and Evans attribute this effect to the observed higher labor force

participation rate for those who received lower benefits.

3 Model

The explanation for rising retirement considered here looks to the very reduction in mortality discussed

above. Specifically, we focus on the change in the uncertainty regarding mortality. This point can be seen

most clearly by looking at Figure 2. The figure shows the probability of dying at different ages, conditional

on having reached age 20, using the cross-sectional male life tables for 1900 and 2000. The fact that the

mean age of death goes up (from 61.2 to 73.9) is hardly surprising. What is more interesting is that the

standard deviation of the age of death falls, from 18.1 to 14.2. And of course the coefficient of variation in

the age of death (the standard deviation divided by the mean) falls by even more, from 0.30 to 0.19. By

2050, the mean age of death is expected to rise further, to 76.5, while the standard deviation will also rise,

to 15.4. The coefficient of variation will remain almost exactly constant.

How should declining mortality affect the retirement age? Two different forces are at work. First, and

most intuitively, longer life would be expected to increase the number of years during which an individual

plans to work, simply because longer life means that there will be more years of consumption which need to

be paid for. We call this channel the “horizon effect” of increased life expectancy. But a second effect arises

from the fact that increases in life expectancy may reduce the uncertainty surrounding whether a person will

live into old age. Where mortality is high, individuals are unlikely to live into old age, and so any savings

for a planned retirement would likely be wasted. The optimal program in such circumstances would be to

plan continue working in old age, should such an eventuality arise. In this case, a reduction in mortality,

by making survival into old age more likely, can reduce the planned age of retirement. We call this second

channel the “uncertainty effect.”

Whether the uncertainty effect or the horizon effect of increased life expectancy is more important depends

on the manner in which life expectancy increases, as well as on the nature of the individual’s optimization

problem. We set up the general problem in Section 3.1, and also show that if life expectancy rises in the

context of certainty (or when there is a full set of annuities available), retirement age rises as well. We then

consider three different forms of the survival function, in which we can model increases in life expenditure.
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We begin in Section 3.2 by using an exponential model of survival, which is unrealistic but mathematically

simple. In Section 3.2 we apply a more realistic two-parameter model of survival introduced by Boucekkine,

de la Croix, and Licandro (2002). Finally, in Section 3.3 we use actual data on changes in adult survival in

the United States.

3.1 Setup of the Problem

Consider an individual who receives utility from both consumption and leisure. We assume that there are

only two possible levels of labor supply: a person may either be fully employed or retired. We also assume

that once a person retires, he may not re-enter the labor force.11 Let γ represent the increment to utility

from leisure due to retirement (that is, the difference between utility from leisure before retirement and

after). For convenience, utility from leisure and consumption are taken to be separable. The instantaneous

utility function is12

U = ln(c) if working (1)

= ln(c) + γ if retired.

An important feature of this utility function is that marginal utility of retirement leisure does not decline

with the length of retirement – that is, there are no decreasing returns to retirement.

The assumption that utility from consumption is given by the log function is made so that changes in

wages will not, by themselves, affect the optimal age of retirement. In general, changes in wages (holding

interest rates and mortality constant) will have both income and substitution effects on the demand for end-

of-life leisure. With log utility these just balance each other, and so the derivative of the optimal retirement

age with respect to the wage is zero. If utility is more curved than the log function, then the income effect

will dominate, and increases in wages will lead to a reduction in the optimal retirement age. We explore this

effect further in Section 5.

Future utility is discounted at rate θ. Thus we can write lifetime utility as,

11The question of why retirement usually takes the form of a sudden and complete withdrawal from the labor force is a
difficult one, and we do not address it here.

12To be clear, we are starting with more general utility function of the form U = ln(c) + f(n), where f(n), the subutility
from leisure, has the standard properties including a positive first derivative and negative second derivative. Our assumption
is that n can take only two values, nw for people who are working and nr for people who are retired. Thus γ = f(nr)− f(nw).
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U =

∫ T

0

e−θx[ln(c(x))]dx+

∫ T

R

e−θx[γ]dx, (2)

where R is the age or retirement, T is the age of death, and R ≤ T. We take age zero to be the beginning

of adulthood. We abstract from fertility and child-rearing costs.

In the case where the date of death is uncertain, expected lifetime utility is given by

E(U) =

∫ ∞

0

e−θxP (x)[ln(c(x))]dx+

∫ ∞

R

e−θxP (x)[γ]dx, (3)

where P (x) is the probability of being alive at age x. Note that in this case, R is the planned age of

retirement, but an individual who dies before age R will not experience any retirement at all. Since the only

uncertainty that we admit to the model is about the date of death, and since this uncertainty is not resolved

until it is too late to do anything about it, individuals will form time-consistent plans for consumption and

retirement at the beginning of their lives.

Individuals who are working receive a wage of w. The real interest rate is r. We impose the condition

that assets must be non-negative at all times. Although the exact justification for such a debt constraint is

not relevant for our purposes, a reasonable assumption is that it results from capital market imperfections

that prevent individuals from borrowing against their future labor income. Carroll (2001, figure 2) shows

that non-collateralized debt is indeed very small relative to lifetime income. Solving our problem under the

assumption that there is a small but non-zero limit on debt yields nearly identical results.

3.1.1 Optimal Retirement with No Uncertainty

We begin by considering the case where the date of death, T, is known with certainty. The individual’s

lifetime budget constraint is

∫ R

0

e−rx[w]dx =

∫ T

0

e−rx[c(x)]dx. (4)

The individual will maximize his utility subject to his budget constraint by choosing a path of life-

time consumption, c(x), and an endogenous retirement age, R. The first order condition with respect to

consumption implies,

ċ(x) = [r − θ]c(x) (5)
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The equation above together with the budget constraint will give us the initial consumption, c0,

c0 =
wθ

r

(1− e−rR)

(1− e−θT )
. (6)

The first order condition with respect to the endogenous retirement age and equation (??) give us an

implicit equation for the optimal retirement age, R,

γ =
r(1− e−θT )

θe(r−θ)R(1− e−rR)
(7)

The above equation will obviously only hold true if R ≤ T. The alternative is that the individual is at a

corner solution, where R = T.

The derivative of R with respect to T is

dR

dT
=

r

γeθ(T−R)[θ + (r − θ)erR]
. (8)

It can be shown that this derivative is positive if optimum R < T . Thus in the case where there is no

uncertainty, increases in life expectancy will lead to increases in the retirement age.13 Figure 3 shows how

retirement age rises with increases in life expectancy for different values of the utility of retirement, γ. The

other parameters are r = 0.06 and θ = 0.03.

3.1.2 Optimal Retirement in the Presence of Annuities

We begin by considering uncertain survival in the case of full annuities. Following Yaari (1965), we assume

that the individual has access to “actuarial notes,” savings or borrowings which stay on the books until the

consumer dies, in which case they are automatically canceled. Saving in the form of actuarial notes takes

the form of conventional annuities. Borrowing in the form of actuarial notes is equivalent to conventional

borrowing combined with term life insurance. The budget constraint for the individual is

∫ R

0

e−rxP (x)[w]dx =

∫ T

0

e−rxP (x)[c(x)]dx. (9)

Because mortality raises the discount that individuals apply to the future and the annuity interest rate

by the same amount, the growth rate of consumption is the same as in the case of no uncertainty, and so

13The derivative in equation (??) is positive since the necessary condition for the second order condition to maximization to
hold is that θ > (r − θ)erR.
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consumption at time zero is given by

c0 =
w
∫ R

0
e−rxP (x)dx∫∞

0
e−θxP (x)dx

. (10)

Along with the first order condition with respect to the endogenous retirement age, this expression gives

us an implicit equation for the optimal retirement age, R

γ =

∫∞
0

e−θxP (x)dx

e(r−θ)R
∫ R

0
e−rxP (x)dx

(11)

According to this equation, a change in P (x) will affect the optimal age of retirement only if it affects

the ratio of the two integral terms. If the change in mortality raises the integral term in the numerator more

than the integral term in the denominator (holding R constant), then the optimal retirement age will have to

rise. For example, an increase in P (x) that affected survival after the planned date of retirement would raise

the term in the numerator but not affect the term in the denominator, thus raising the retirement age.14 An

increase in survival concentrated in the pre-retirement years would lower the optimal retirement age.

3.2 Optimal Retirement with Exponential Survival

We now turn to the case where the date of death is uncertain. Improvements in mortality take the form

of changes in age-specific death probabilities. We begin by considering the case where individuals face a

constant probability of death, so that the survival function is exponential. Although not realistic, this case

allows for presentation of some of our basic results in a simplified setting. We then turn to consider a more

realistic formulation of the survival function.

Let individuals have constant probability ρ of dying. The probability of being alive at age x is P (x) =

e−ρx. Thus expected utility at the beginning of life is,15

V =

∫ ∞

0

e−(θ+ρ)x[ln(c(x))]dx+

∫ ∞

R

e−(θ+ρ)x[γ]dx.

3.2.1 Exponential Survival with Annuities

As shown above, in the presence of annuities, the effect of change in life expectancy on optimal retirement

depends on the particular change in the P (x) function. For the case of exponential survival, the first order

14Note that the case of no uncertainty considered above is simply a special case of this result where P (x) = 1 for ages up to
T and zero thereafter. If planned retirement is at some age before T, then an increase in lifespan will raise the integral term in
the numerator and thus retirement age.

15Throughout this paper, we are concerned only with how mortality affects retirement and saving decisions, so we think of
“birth” as being the beginning of working life. When we consider actual life tables, we begin our analysis assuming that the
individual has already survived to age 20.
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condition (??) becomes

γ =
r + ρ

(θ + ρ)e(r−θ)R(1− e−(r+ρ)R)
(12)

The assumption that r > θ is sufficient to guarantee that dR
dρ < 0. Thus with exponential survival in the

presence of annuities, increases in life expectancy raise the retirement age, just as they do under certainty.

Figure 4 shows the implied retirement age for different values of γ along with the same values of r and θ

used in Figure 3. Retirement ages are slightly lower in the model with uncertainty and annuities than under

certainty about the date of death, but the effect of reductions in mortality is quite similar. For example,

for the parameters γ = 1, r = .06, and θ = .03, retirement age is 23.8 when lifespan is 50 and 28.2 when

lifespan is 100 under certainty, vs. 22.0 when life expectancy is 50 and 25.0 when life expectancy is 100 in a

model with annuities (all ages are measured from the beginning of adulthood). Thus both qualitatively and

quantitatively, the model with uncertain mortality and full annuitization is quite similar to the model with

no uncertainty, at least for this form of the mortality function.

3.2.2 Exponential Survival with no Annuities and no Liquidity Constraints

As mentioned above, we assume that assets must always be non-negative. This in turn means that individuals

may die holding positive wealth (although not necessarily, since an individual may choose to work until he

dies and hold no assets). Thus accidental bequests may be generated. We ignore these bequests, assuming

in effect that they are thrown away. If individuals place positive value on bequests, but still value them less

then their own consumption, then our main qualitative results will continue to hold.

Optimization problems with liquidity constraints are often difficult to solve using standard analytic

techniques. In this section we make the model tractable by assuming that r > ρ + θ. This condition

guarantees that individuals will have rising consumption paths over the course of their lifetimes, and thus

will hold positive assets at all times. In other words, we choose parameters such that the liquidity constraint

never binds. In the next section, where liquidity constraints are considered explicitly, we can relax this

constraint on parameters.

We can write the individual’s lifetime budget constraint as,

∫ R

0

e−rx[w]dx =

∫ ∞

0

e−rx[c(x)]dx. (13)

The individual will maximize his expected utility subject to his budget constraint by choosing a path of
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lifetime consumption, c(x), and an endogenous retirement age, R. The first order condition with respect to

consumption implies,

ċ(x) = [r − θ − ρ]c(x) (14)

The equation above together with the budget constraint will give us the initial consumption, c0,

c0 =
w(θ + ρ)

r

[
1− e−rR

]
. (15)

We can now re-write the individual’s expected lifetime utility as a function of planned retirement age,

R. Ignoring terms that do not contain R,

V (R) =
1

θ + ρ
ln(1− e−rR) + γ

e−(θ+ρ)R

θ + ρ
(16)

Figure 5 shows how the V(R) function changes with life expectancy (the other parameters are as above).

For high values of ρ, that is, when life expectancy is low, the V(R) function is upward sloping. In this case,

the optimum is a corner solution of R = ∞; in other words, the individual plans never to retire. For low

values of ρ, in other words when life expectancy is high, there is a single interior solution.16

Figure 6 show the relationship between retirement and life expectancy (which is just 1/ρ) for the same

parameters used in Figures 3 and 4. Notice that R is the planned age of retirement, but that many people

will not live long enough to reach it. Thus there is no inconsistency in having the retirement age be greater

than life expectancy. Figure 6 shows the key result: as life expectancy rises, the planned age of retirement

falls.

Figures 3, 4, and 6 allow for an explicit analysis of the role of uncertainty in affecting retirement.

Comparing either Figure 3 or Figure 4, on the one hand, to Figure 6, on the other, shows the effect of

uncertainty on optimal retirement age. (The fact that Figures 3 and 4 are so similar shows that annuities

16This can be shown formally, as follows. From ??, the first order condition for optimal retirement age is

r

γ(θ + ρ)
= e(r−θ−ρ)R

[
(1− e−rR)

]
.

The effect of mortality on the optimal retirement age is given by the equation.

dR

dρ
= −

−Re(r−ρ−θ)R +Re−(ρ+θ)R + r/(γθ + ρ)2

(r − ρ− θ)e(r−ρ−θ)R + (ρ+ θ)e−(ρ+θ)R
.

It can be shown that this derivative is positive for large values of R. Thus, the initial effect of reductions in mortality (starting
from a high level of ρ) will be to reduce the age of retirement. However, once retirement age has fallen, it is possible that
further improvements in mortality can raise the age of retirement. Specifically, retirement falls with life expectancy as long as
R > 1

θ+ρ
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and insurance can eliminate most of the effect of uncertainty on retirement age.) The rise in retirement

age with life expectancy in either Figure 3 or Figure 4 is what we call the “horizon effect.” The fact that

optimal retirement falls with life expectancy in Figure 6 shows that the decline in retirement age due to

falling uncertainty more than compensates for the rise due to longer horizons.

3.2.3 Exponential Survival with Liquidity Constraints

Above we established one of our basic results under the assumption that r > ρ + θ. If this condition does

not hold, then the first order condition implies that individuals who hold positive assets will have falling

consumption. It is thus possible that the liquidity constraint that assets be non-negative will be binding.

Seemingly optimal paths that satisfy the infinite horizon budget constraint are not feasible because they

involve negative assets at some point in time.

In this case, there are two possible types of optima. First, it may be optimal never to retire, in which

case consumption is equal to the wage in all periods and assets are always zero. Second, it may be optimal

to plan for a retirement, hold positive assets, and follow a declining path of consumption in accord with the

first order condition. Life time utility in the first case is

U∗∗ =

∫ ∞

0

e−(θ+ρ)x lnwdx =
lnw

θ + ρ
(17)

In the second case, we can solve for c0 from the budget constraint, taking into account the liquidity

constraint by specifying c0 ≤ w. This yields

c0 =
θ + ρ

r
w(1− e−rR) (18)

R ≤ ln(θ + ρ)− ln(θ + ρ− r)

r
(19)

We denote the value of retirement age for which the second constraint holds with equality R∗∗. For R > R∗∗,

initial consumption c0 would be greater than w and the consumption path therefore infeasible.

Life time utility is given by

V (R) =

∫ ∞

0

e−(θ+ρ)x ln c(x)dx+

∫ ∞

R

e−(θ+ρ)xγdx (20)

=
ln( θ+ρ

r (1− e−rR)w)

θ + ρ
+

r − θ − ρ

(θ + ρ)2
+

γe−(θ+ρ)R

θ + ρ
(21)
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To determine the optimal retirement R∗ satisfying (??), we examine the derivative of V (R):

dV (R)

dR
=

re−rR

(θ + ρ)(1− e−rR)
− γe−(θ+ρ)R (22)

ForR → 0, dV (R)
dR > 0, while for R → ∞, dV (R)

dR → 0 from above. However, depending on parameter values,

dV (R)
dR may become negative for intermediary values of R. Thus V (R) is either monotonically increasing or

has an interior maximum followed by an interior minimum.

Figure 7 shows two different possible configurations of U∗∗ (utility from never retiring), the V (R) function,

and the constrained level of retirement, R∗∗. In panel A of the figure, retirement at the interior optimum of

the V (R) function is feasible and utility from this plan is higher than the utility of never retiring. In panel

B, the interior optimum of V (R) is infeasible and utility at the constrained optimum V (R∗∗) is lower than

the utility of never retiring, U∗∗.17

Figure 8 shows the effect of changing life expectancy 1/ρ for different values of the utility from retirement,

γ (the other parameters are r = .05 and θ = .04. These differ from the parameters used above in order to

make the liquidity constraint bind.). As in the case where the liquidity constraint was not binding, when life

expectancy is low enough, the optimal plan is never to retire. Increasing life expectancy from such a low level

will lead to a reduction in the planned age of retirement followed, as life expectancy continues to increase,

by a rise in retirement age. In contrast to the case without liquidity constraints, however, the response of

retirement age to changes in life expectancy is highly nonlinear. For example when γ = 1.5 the optimum

moves from never planning to retire for life expectancy up to 44, to planning to retire at age 32 when life

expectancy is just above 44 (all ages are from the beginning of adulthood). The reason for this behavior is

found in the interplay of non-monotonicity of the V (R) function and liquidity constraint, as represented by

the maximum non-constrained retirement age R∗∗. As will be seen below, this same phenomenon is present

in even more extreme fashion when we examine realistic survival rates.

3.3 Realistic Survival

The analysis in the last section shows that for a simple specification of mortality, increases in life expectancy

can actually cause a decline in the age of retirement. In other words, it is theoretically possible that the

uncertainty effect will dominate the horizon effect. A natural question to ask is whether such an outcome

17Panel B also can represent the case in which V (R) is monotonically increasing. We have not been able to rule out a final
case, in which the interior optimum of V (R) is infeasible, but utility at the constrained optimum V (R∗∗) exceeds the utility of
never retiring. However, we have not been able to find any parameters that yield this case.

15



is consistent with actual changes in mortality that have been experienced historically. We proceed in two

stages. First, we consider a tractable but realistic model of survival in which we can derive results analytically.

Following this, we look at actual data on survival in the United States and calculate optimal retirement ages

numerically.

To approach this question analytically, we use a realistic survival function introduced by Boucekkine, de

la Croix, and Licandro (2002). The survival function (that is, the probability of being alive at age x is)

is P (x) = e−βx−α
1−α where β < 0 and α > 1. This implies a life expectancy of 1

β + α lnα
(1−α)β and a maximum

possible age of (P (xmax) = 0) of − lnα
β . Figure 9 shows the survival function for β = −.015 and different

values of α. As in previous figures, we take age zero to be the beginning of adulthood.

As in the previous section, we consider the possibilities that the individual plan to retire at some age R∗

or alternatively plan to work until death. Unlike the previous section, however, it turns out that there are

no parameters under which an individual who chooses to work until death will always hold positive assets.18

We thus proceed in two steps. First, we solve the model under the assumption that the liquidity constraint

is not binding. We then consider the cases where the constraint is binding, and show how this alters the

solution we derive.

3.3.1 Unconstrained Solution

The optimal consumption path that maximizes E(U) for a given R is

c(x) = c0
e−βx − α

1− α
e(r−θ)x (23)

Plugging this equation into the budget constraint we can solve for initial consumption

c0 =
(1− α)w

rC
(1− e−rR) (24)

where C := 1−α
θ+β
β

θ+β + α(α
θ
β −1)
θ .

Substituting the optimal consumption path into the expected utility gives a function for life time utility

18The reason is because under the realistic survival function the hazard of death rises toward infinity as age approaches the
maximum possible life span.
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in terms of R (leaving out terms without R):

V (R) = ln(1− e−rR)

∫ T

0

e−βx − α

1− α
e−θxdx+ γ

∫ T

R

e−βx − α

1− α
e−θxdx (25)

=
ln(1− e−rR)

1− α
C +

γ

1− α
(
e−(β+θ)R − α

θ+β
β

θ + β
+

α(α
θ
β − e−θR)

θ
) (26)

Figure 10 plots V (R) for different values of α (in each case, the function is plotted only up to R = xmax.

The other parameters are set as above: β = −.015, r = .06, θ = .03, γ = 1. For α ≥ 2.22 (life expectancy

= 30 years, xmax = 50 years), V (R) has a local maximum followed by a local minimum, after which the

function increases monotonically. Label the local maximum R∗. If V (R∗) ≥ U∗∗ it is optimal to retire at

age R∗, otherwise it is optimal to never retire. Graphically, one can see that never retiring is optimal for

values of α below a certain threshold (α̂ ≈ 2.45, implying life expectancy ≈ 35 years, xmax ≈ 61 years).

3.3.2 Constrained Solution

As mentioned above, under realistic survival it is always the case that an individual who chooses to work

until death will hold zero assets at some age – in other words, the liquidity constraint is always binding at

some point in time. In particular, if one looks at the paths of assets implied by the unconstrained V (R)

function in the previous section, in the case where an individual never retires, assets are negative in the

period immediately before the maximum possible age. We thus define Ṽ (R) as the utility resulting from

retirement at age R taking into account the liquidity constraint. Ṽ (R) will be equal to V (R) up to some

critical retirement age R∗∗, and then will lie below it.

We were not able to derive an analytic expression for Ṽ (R). Instead, we solve for the function by brute

force. For each possible retirement age, we first check whether the path of assets implied by the unconstrained

solution is ever negative. If this is not the case, then ˜V (R) = V (R). If it is the case, we solve for utility along

a constrained path which involves holding positive assets and working up until some age x∗, then setting

income equal to consumption between ages x∗ and x∗∗, then building up assets again between age x∗∗ and

retirement.19. Figure 11 shows an example of the how the Ṽ (R) and V (R) functions compare for a particular

set of parameters (α = 2.45 and all other parameters as above). The case is chosen in particular to show

how it is possible for V (xmax)) > V (R∗) but Ṽ (xmax) < Ṽ (R∗). In other words, using the unconstrained

V (R) function, never retiring is optimal, while recognizing the liquidity constraint, retiring at an interior

optimum R∗ is optimal.

19The Matlab code is available on request
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Despite this example, the general properties of the Ṽ (R) are quite similar to those of the V (R) function

(and the set of parameters for which optimal retirement implied by the two differ is quite small). Specifically,

there is an interior optimum and a corner solution of R = xmax. Small changes in the parameters, such as

the shape of the survival function or the utility from retirement, can lead to a shift in the utility maximizing

age of retirement from a corner solution to an interior optimum. Figure 12 shows how the optimal age of

retirement changes with life expectancy (as the parameter α varies) for different values of the utility from

retirement, γ.

The important implication of figure 12 is that because of the structure of the V (R) function, small changes

in the parameters will lead to large changes in expected retirement age. The pattern of the V(R) function

in which the two possible global optima are an interior optimum and a corner solution results from the

dichotomy between the two strategies for optimal consumption mentioned above: to plan for a retirement,

with the risk that one might die early and thus have wasted all of the money saved up; or to plan to pay

for consumption in the event that one lives into old age by working. There is no way within the model to

“convexify” between these two strategies.

Taken literally, this result would imply that there should be a sudden shift in behavior from never retiring

to planning for a large retirement. Obviously this is not what is observed in the data, where the growth of

retirement has been rapid (in historical terms) but hardly instantaneous. We do not think of this as a major

failing of the model. In the real world, heterogeneity, institutions, learning, and a host of other factors would

tend to cause retirement ages to adjust slowly, rather than jumping all at once, in response to a change in

mortality.

3.4 Optimal Retirement with Actual Survival Rates

Although the realistic survival function shown in Figure 9 are obviously a great improvement on the ex-

ponential model of survival considered in Section 3.2, it still is not a precise match to the actual survival

schedules show in Figure 1. Thus as a final exercise we examine the effect of actually observed mortality

changes.

We use a discrete time version of our model to calculate optimal retirement ages for actual mortality

data. Our procedure for finding the optimal retirement age is straightforward. We loop through possible

retirement ages, and calculate optimal consumption and asset paths for each one subject to the constraint

that assets are never negative.20 We then calculate expected utility associated with each possible retirement

20Let Pt be the probability that an individual will be alive in period t, and let At be assets at the beginning of the period.
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age.

Figure 13 shows an example of our calculation of expected lifetime utility as a function of planned

retirement age, in other words the V (R) function, using mortality data from 1900 through 2000.21 We use

the values of r = 0.06, θ = 0.03, as above. The value of γ is set such that, using 1980 mortality, the value

of planning never to retire (the corner solution) is exactly equal to the utility from planning to retire at an

interior optimum.

The figure shows the same phenomenon that was seen in the case of the realistic survival function

analyzed in Section 3.3: for high mortality, the V (R) function is monotonically increasing, and the optimum

plan is never to retire. As mortality falls (shown here as advancing calendar time), there emerges an interior

optimum in the V (R) function, and for low enough mortality this becomes the global maximum in the

function. For mortality in 1980, where by construction the two strategies produce equal utility, the interior

optimum is at age 57 (for this calculation we actual age, not years since entering adulthood that we used

previously.)

4 Paths of Consumption and Assets

In the previous section we showed that small changes in pattern of mortality can lead to large changes in

the pattern of lifetime labor supply. This was true both examining the realistic formulation of the survival

function in Section 3.3, and also when we examined actual changes in US mortality in Section 3.4. As those

sections showed, for a range of mortality regimes, the difference in utility from choosing one strategy as

opposed to the other are not great.

It is interesting to note, however, that these two strategies of lifetime labor supply do involve very

different paths for lifetime consumption and asset accumulation. We illustrate this using the example of

actual mortality rates for the United States, as shown in the previous section. We use these paths to illustrate

The first-order conditions for consumption are

ct+1 = ct
(1 + r)

(1 + θ)

Pt+1

Pt
if At+1 > 0,

ct = wt if At+1 = 0.

If assets are being carried into period t+1, then the usual first order condition for marginal utilities (adjusted by interest rate,
time discount, and mortality probabilities) must hold. The only case in which the condition will not hold is if the individual
would like to shift more consumption into period t, but is unable to do so because of the liquidity constraint. In this case he
will consume all of his wages.

In the case of the problem being addressed here, we can take advantage of a special feature of mortality rates that always
holds true in the data for ages beyond young adulthood: mortality rates are an increasing function of age. This delivers the
result that, as long as assets are positive, the growth rate of consumption must be declining over time. The only time when
consumption growth will not be declining is when assets are zero, in which case consumption is constant and equal to the wages.
See Carroll (1997) for a similar dynamic programming algorithm.

21As in Figure 1, we use period rather than cohort life tables because the former are available for a longer time period.
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the qualitative change in the lifetime pattern of asset holdings that takes place when retirement behavior

changes. We do not think that the actual profiles in our simple model can be matched to data. Figures

14 and 15 show the paths of consumption and assets assuming 1980 mortality and a planned retirement

age of 57. Figures 16 and 17 show the same paths when the individual plans never to retire. Recall from

the previous section that we have chosen the value of retirement leisure, γ so that utility under these two

strategies is equal.

The optimal consumption and asset paths when the expected retirement age is 57 have the standard

life-cycle shape. The growth rate of consumption is highest at the beginning of life (age 20, in our problem),

because the probability of death, which functions like the discount rate, is lowest.22 Consumption growth

falls over time, reaching zero at age 65, then becoming negative. Assets grow from the beginning of life until

retirement at age 57, and fall monotonically thereafter.

In the case where the individual plans never to retire, the path for consumption (Figure 16) has the

same shape (although a higher level) as when the retirement age is 57, until the age of 83. After age 83,

consumption becomes equal to the wage since the liquidity constraint is binding. The path of assets (Figure

17) is different from the previous case in two ways: First, in the case where there is no retirement, assets

reach zero late in life, while in the case of retirement, assets in old age are always positive. The second

difference between the asset paths when the retirement age varies is in their size: When retirement is at age

57, total assets peak at roughly 20 times annual income; when the individual plans never to retire, assets

peak at 9 times annual income. (In the case where there is no retirement, the accumulation of assets is due to

the difference between the interest rate and the time discount rate.) Obviously, if this model of labor supply

and savings were embedded in a general equilibrium model with capital accumulation and production, the

change in retirement behavior would have significant implications for the wages and the interest rate.

5 Income vs Uncertainty Effects on Retirement

In the model as set up in Section 3, we suppressed any income effects on retirement by using the log utility

function. One natural extension of the model is to allow for income effects, and to see how these interact

with uncertainty. Technically, this is simply a matter of replacing the log utility function with a Constant

Relative Risk Aversion utility function. As long as the coefficient of relative risk aversion is greater than

one, increases in income will ceteris paribus lower the retirement age.

22See Hurd (1990).
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The utility function is

U =
c(x)1−σ

1− σ
if working (27)

=
c(x)1−σ

1− σ
+ γ if retired.

where σ ̸= 1.

Using the realistic survival function, the optimal consumption path that maximizes E[U ] for a given R is

c(x) = c0(
e−βx − α

1− α
)

1
σ e

r−θ
σ x (28)

Plugging c(x) into the budget constraint we can solve for initial consumption:

c0 =
w(1− e−rR)

r

∫ T

0

(e((1−σ)r−θ)x e
βx − α

1− α
)

1
σ dx (29)

Expected utility as a function of the retirement age is given by:

V (R) = (
w(1− e−rR)

r
)1−σ

( ∫ T

0

(
e−βx − α

1− α

e((1−σ)r−θ)x

1− σ
)

1
σ dx

)σ
(30)

+
γ

1− α
(
e−(β+θ)R − α

θ+β
β

θ + β
+

α(α
θ
β − e−θR)

θ
)

The V (R) function has the same general properties as in the case of realistic survival and log utility

analyzed above: depending on parameters it can either be monotonically increasing or can have an interior

maximum, which may be a global maximum.23

The three panels of Figure 18 show optimal retirement as a function of life expectancy under realistic

survival.24 The general pattern of life expectancy’s effect on retirement is the same as under logarithmic

utility: for low life expectancy, the optimum is the corner solution of never retiring (or, as shown in the

figure, retiring at the maximum possible age). As life expectancy rises, there is a discrete jump to the interior

optimum of retiring well before the maximum possible age. After that, retirement age is relatively insensitive

to life expectancy.

Within each panel, we show the optimal retirement age for three different levels of the the wage, w = 1,

23As in the case with logarithmic utility, the maximum of the V (R) function may violate the liquidity constraint. However,
having found in Section 3.3 that the difference between the Ṽ (R) function that incorporates the liquidity constraint and the
V (R) function that does not is very minor, we continue to work with the latter for mathematical simplicity.

24The values of the parameters are r = .06, θ = .03, β = −.015, and γ = 0.7.
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w = 1.2, and w = 1.4. The figure shows that, when the coefficient of relative risk aversion is greater than

one, increases in the wage lower the age at which there is discrete jump to retirement and also lower the

retirement age which constitutes the interior optimum. Further, the effects of wage and survival on the level

of life expectancy at which the jump to retirement occurs are complementary: the higher the wage, the lower

the level of life expectancy at which the jump occurs.

Comparing the panels with different values of σ shows that as risk aversion rises, the income effect

increasingly comes to dominate the uncertainty effect as the major cause of retirement. However, using

higher values of the coefficient of relative risk aversion also leads to a somewhat troubling conclusion: the

model using these values of the risk aversion parameter generates dramatically falling age at retirement as

income rises further. That is, unlike the uncertainty effect (which predicts a one-time rise in retirement,

followed by rough constancy of the fraction of life spent retired), the income effect predicts that retirement

will come to represent an ever larger fraction of life as income rises.

6 Conclusion

Our paper has shown how a reduction in mortality can lead to a shift in the life-cycle pattern of labor

supply. High mortality leads to uncertainty about the age of death, and in this environment individuals

will find it optimal to work until they die. As mortality falls, it becomes optimal to plan for a period of

leisure at the end of life − that is, for retirement. We show, using both a realistic mathematical formulation

of the survival function as well as actual life table data for the United States over the last century, that

this “uncertainty effect” can more than compensate for the more intuitive effect of higher life expectancy in

raising the retirement age.

As we stressed in the introduction, we do not think that the uncertainty effect is the only explanation for

the rise in retirement over the last century. Changes in government policy and productive technology, as well

as the effect of higher income in raising the demand for leisure, have all played a role. Further, interactions

among several of these channels are likely to be important. For example, we have shown that the uncertainty

effect interacts with the income effect to produce a larger reduction in labor force participation than either

channel separately. A project for future work in this area will be to apportion causality for the increase in

retirement between the different channels we have discussed.

A second dimension along which the model can be extended is to examine how changes in labor supply

feed back, via increased life cycle savings, into higher levels of income. That is, one could marry our
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model of endogenous retirement and savings with a growth model. In contrast to the standard Overlapping

Generations model, in which the fraction of life spent working is fixed, our model suggests that the emergence

of retirement, and thus of life cycle saving, may be one of the key steps in the process of modern economic

growth.
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Figure 1: Male Survival Probability in the US
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Figure 2: Probability of Death Conditional on Reaching 20
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Figure 3: Optimal Retirement under Certainty 
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Figure 4: Optimal Retirement with Exponential Survival 
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Figure 5: V(R) with Exponential Mortality and non-Binding Liquidity 
Constraint 
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Figure 6: Optimal Retirement with Exponential Mortality and non-Binding 
Liquidity Constraint 
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Figure 7: V(R) with Exponential Mortality and Binding Liquidity Constraint 
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Panel B: Optimum at Infinity 
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Figure 8: Optimal Retirement with Exponential Mortality and Binding 
Liquidity Constraint 
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Figure 9: Realistic Survival Function 
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Figure 10: V(R) with Realistic Survival 
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Figure 11: V(R) and V~(R) 
 

 



Figure 12: Optimal Retirement with Realistic Survival 
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Figure 13: Expected Utility as a Function of Retirement Age
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Figure 14: Optimal Consumption Path
R*=57, Life Table=1980
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Figure 14: Optimal Consumption Path
R*=57, Life Table=1980
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Figure 15: Optimal Asset Path
R*=57, Life Table=1980
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Figure 15: Optimal Asset Path
R*=57, Life Table=1980
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Figure 16: Optimal Consumption Path
R*=∞, Life Table=1980

0

0.5

1

1.5

2

20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 10
1

10
4

10
7

11
0

11
3

11
6

11
9

Co
ns
um

pt
io
n

Age

Figure 16: Optimal Consumption Path
R*=∞, Life Table=1980



4

6

8

A
as
se
ts

Figure 17: Optimal Asset Path
R=∞, Life Table=1980

0

2

4

6

8

20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 10
1

10
4

10
7

11
0

11
3

11
6

11
9

A
as
se
ts

Age

Figure 17: Optimal Asset Path
R=∞, Life Table=1980



Figure 18: Optimal Retirement with Realistic Survival, CRRA Utility 
 
Panel A: σ = 2 
 

 



Panel B: σ = 3 
 

 



Panel C: σ = 4 
 

 




