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reserve this term for interval estimators of parameters. In- 
terval estimators of random variables (which is what we are 
discussing here) might be better called "prediction intervals" 
or "forecast intervals" as, say, in Kendall and Buckland 
(1971). 
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Rejoinder 
RONALD D. LEE and LAWRENCE R. CARTER 

We are grateful for the thoughtful comments on our article 
provided by two scholars who have themselves made pi- 
oneering contributions to the problems we discuss. Because 
we disagree with some of McNown's points, we will devote 
the most space to them. 

McNown asserts that our method is "equivalent" to "di- 
rectly projecting each age-specific mortality rate at its own 
historical rate of exponential decline" . . . "despite their 
statements to the contrary." This is an important point, be- 
cause our method is rather complicated, whereas straight 
extrapolation is very simple. We have addressed this point 
in our article and also will respond at some length here: 
First, in our model each death rate declines at its own ex- 
ponential rate only when k declines linearly. This is not an 
assumption of the model, and in other applications k might 
follow some other sort of process. Second, if each age-specific 
rate is forecast separately, then deriving confidence intervals 
for forecasts of period life table functions such as life expec- 
tancy, that depend on many death rates, requires taking into 
account the covariance matrix of errors. 

Third, in response to this comment, we have tried two 
versions of directly extrapolating individual age specific rates. 
We forecasted to 2065 using the endpoint-to-endpoint ex- 
ponential rates of decline from 1933-1987 to extrapolate to 
2065. The resulting rate forecasts were lower than ours for 
ages below 10, higher from 10-45, lower from 45-75, and 
higher thereafter. The percentage differences were often ap- 
preciable, ranging from plus 65 to minus 11. We also fore- 
casted using regressions of the logs of the death rates on a 
constant and time. Such forecasts did indeed often come 
close to ours for 2065, although individual age group differ- 
ences are as large as 25%. For example, for age group 30- 
34 our own forecast is .000180. An endpoint-to-endpoint 
extrapolation yields .00298, and the regression-based ex- 
trapolation yields .000225. Furthermore, comparing the 
regression estimates of rates of decline to our bXs shows that 
they differ by up to 8% after equivalent normalization. Com- 
parison of the 95% probability interval for this age group in 
2065 shows wider discrepancies: Our range is .00009 to 
.00036; the regression interval is .00016-.00031, or about 
half as wide (these figures do not reflect parameter uncer- 
tainty). In sum, the methods we tried for directly forecasting 
the individual rates led to point forecasts which, although 
somewhat similar to ours, differed in both level and age pat- 

tern, contrary to McNown's assertion that they would be 
"identical." They also led to very different confidence inter- 
vals. 

Fourth, our method incorporates procedures for indirect 
estimation of mortality in periods when age-specific mortality 
data are unavailable. In our article we extended the time 
series back from 1933 to 1900 in this way, and forward from 
1987 to 1989. This aspect of the method is helpful in appli- 
cations for populations of developed countries and will be 
absolutely essential in many applications for populations of 
less developed countries such as China, where estimates of 
age-specific mortality may be available for only one or two 
years. 

McNown also suggests that we actually have a 24-param- 
eter model of mortality change, consisting of the 23bps plus 
k. Perhaps our difference on this point is just semantic. The 
b,s are fixed by age and so do not change over time. Only 
k changes over time, and so only a single parameter, k, needs 
to be forecast. In the common language of demography we 
have a one-parameter family of life tables in exactly the same 
sense that the Coale-Demeny model life tables for a given 
region and sex are one-parameter life tables, even though 
the construction of the Coale-Demeny life tables involved 
two regression coefficients at each age, corresponding to our 
a, and b, coefficients. In our case a value of k allows us to 
identify uniquely a corresponding life table from the family. 
Of course one could vary the underlying coefficients (a, and 
by), but then one would be providing a basis for a new family 
of life tables. To forecast from a two-parameter family of life 
tables, such as those of Ledermann or Brass, one would have 
to forecast two parameters. The model used by McNown 
and Rogers can describe a single life table very efficiently, 
using only nine parameters versus the 47 required for our 
model. But in their 1990 forecasting application, even though 
six of these parameters are held constant over the forecast 
range, it still is necessary to forecast three of them. With six 
parameters held constant, this could be identified as a three- 
parameter life table system. 

The two commentators suggest that our out-of-sample 
forecasts of the age pattern of mortality may not be "rea- 
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sonable" (Alho) and "may depart from plausible, historically 
observed patterns" (McNown). This certainly is a real con- 
cern. But because we are forecasting outside the historically 
observed range, historically observed patterns can be com- 
pared to our forecasts only in a very general sense. We agree 
that the pattern of forecasted rates for the teen years and 
early twenties looks somewhat implausible, as we have noted 
in the article. However, we see nothing implausible in our 
forecasted pace of increase in mortality from ages 50-70. It 
might be useful to compare our forecasted age patterns to 
those in some contemporary populations that have both high 
quality data and substantially superior life expectancies, such 
as Sweden or some regions of Japan. Data from such pop- 
ulations could be included in the matrix of death rates from 
which a, and b, are computed, or the information could be 
incorporated in some other way. In any event, we fail to see 
why using a highly nonlinear nine-parameter system to fit 

within-sample age patterns of mortality, as McNown and 
Rogers ( 1990) did, would lead to age patterns that "adhere 
to standard age profiles" when some subset of these param- 
eters has been forecast over a 75-year horizon. 

Alho makes the interesting suggestion that extrapolative 
forecasts such as ours be combined with forecasts based on 
opinions of medical experts, such as those of the Social Se- 
curity Administration's Office of the Actuary. Such combi- 
nations could be useful for anticipating progress against spe- 
cific causes of death, but we doubt they would help produce 
forecasts with plausible age patterns. Alho also suggests that 
the forecast intervals would be more credible had we not 
used a dummy for the influenza epidemic. We believe that 
there are good arguments on both sides of this issue. Perhaps 
we should add the disclaimer that our intervals do not reflect 
the possibilities of nuclear war or global environmental ca- 
tastrophe, for indeed they do not. 
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