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THE LEE-CARTER METHOD FOR FORECASTING
MORTALITY, WITH VARIOUS EXTENSIONS AND

APPLICATIONS
Ronald Lee*

ABSTRACT

In 1992, Lee and Carter published a new method for long-run forecasts of the level and age
pattern of mortality, based on a combination of statistical time series methods and a simple
approach to dealing with the age distribution of mortality. The method describes the log of a
time series of age-specific death rates as the sum of an age-specific component that is inde-
pendent of time and another component that is the product of a time-varying parameter reflect-
ing the general level of mortality, and an age-specific component that represents how rapidly or
slowly mortality at each age varies when the general level of mortality changes. This model is fit
to historical data. The resulting estimate of the time-varying parameter is then modeled and
forecast as a stochastic time series using standard methods. From this forecast of the general level
of mortality, the actual age-specific rates are derived using the estimated age effects. The forecasts
of the various life table functions have probability distributions, so probability intervals can be
calculated for each variable and for summary measures such as life expectancy. The projected
gain in life expectancy from 1989 to 1997 matches the actual gain very closely and is nearly
twice the gain projected by the Social Security Administration’s Office of the Actuary. This paper
describes the basic Lee-Carter method and discusses the forecasts to which it has led. It then
discusses extensions, applications, and methodological improvements that have been made in
recent years; considers shortcomings of the method; and briefly describes how it has been used
as a component of more general stochastic population projections and stochastic forecasts of the
finances of the U.S. Social Security system.

INTRODUCTION
Over the past ten years, a number of approaches have
been developed for forecasting mortality using sto-
chastic models (see Alho 1990, 1992; Alho and Spen-
cer 1985, 1990; McNown and Rogers 1989, 1992; Bell
and Monsell 1991; and Lee and Carter 1992). For a
discussion of these methods, see Lee (1999) and Lee
and Skinner (1996). In this paper, I will describe the
Lee-Carter method; discuss extensions and applica-
tions; consider shortcomings of the method; and
briefly describe how it has been used as a component
of more general stochastic population projections and
stochastic forecasts of the finances of the U.S. Social
Security system.

*Ronald Lee, Ph.D., is Professor in the Departments of Demography
and Economics at the University of California, 2232 Piedmont Ave.,
Berkeley, California 94720, e-mail, rlee@demog.berkeley.edu.

Lee and Carter have developed a new method for
the extrapolation of trends and age patterns in mor-
tality. While it has some advantages over other ex-
trapolative methods, it also shares the fundamental
weaknesses of extrapolation: historical patterns may
not hold for the future, and structural changes may
therefore be missed. No attempt is made to incorpo-
rate current knowledge about actual and prospective
advances in medicine, changing lifestyles, or new dis-
eases such as AIDS (see Manton, Stallard, and Singer
1992 for an alternative approach that explicitly intro-
duces such information). Experimental analysis and
forecasts within the period of data availability show
that the procedure performs quite well over the period
1900–1990: age patterns have been quite stable and
the trend in our fundamental time-varying parameter
has been surprisingly linear. However, if we were to go
back much before 1900, the linearity of change would
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be violated: sustained mortality decline is primarily a
twentieth century phenomenon in the developed
countries.

Some methods forecast life expectancy (e0) directly,
and then explicitly build into their forecasts some de-
gree of deceleration. For example, assuming an upper
limit to attainable life expectancy has this effect.
Given the forecasted level of life expectancy, one can
then use assumptions to distribute mortality by age.
It is true that life expectancy gains have tended to
decelerate in many populations, including that of the
U.S., and this must be a feature of plausible forecasts.
However, the deceleration occurs for mechanical rea-
sons deriving from the nature of life expectancy as a
highly nonlinear summary measure of age-specific
mortality. When mortality declines from a high level,
many of the deaths averted are those of children who
then gain many remaining years of life. When mortal-
ity declines from a low level, as in the U.S. today, most
of the deaths averted are those of old people who then
gain relatively few years of life. Even if each age-
specific death rate declines at a constant exponential
rate, life expectancy will increase at a decelerating
pace.1 The Lee-Carter approach models the rates of
decline of individual death rates, and so deceleration
of e0 occurs naturally, with no imposition of an upper
limit.2

MODEL
The model generates one-parameter families of age
schedules for fertility and mortality, in the sense that
variations in one parameter generate the entire range
of schedules in the family. However, to express a single
schedule requires a number of age-specific coeffi-
cients equal to twice the number of age groups. Dif-
ferent values of these coefficients define different fam-

1Keyfitz (1985:62–64) shows that if mortality at every age declines
by the proportion �, then e0 rises by the proportion H�, where H is
known as the entropy of the life table, and is 0.1 to 0.2 in modern
low-mortality populations. As mortality falls, so does H, so that e0

rises more and more slowly.
2We use the Coale-Guo (1989) method to model and forecast mor-
tality from 85–89 to 105–109, and in that method it is assumed
that nobody survives to 110. This assumption is not essential to our
approach, however, and does not much affect the deceleration of
life expectancy gains.

ilies. Let mx,t be the central death rate for age x at
time t.3 The model used for mortality is:

ln(m ) � a � b k � e .x,t x x t x,t

Here the ax coefficients describe the average shape of
the age profile, and the bx coefficients describe the
pattern of deviations from this age profile when the
parameter k varies. Parts of the Coale-Demeny-
Vaughan (1983) life table system are built on a model
somewhat like this (where k is taken to equal e10), and
preliminary versions of the U.N. model life table sys-
tem also used an approach of this sort. Using explor-
atory data analysis, Gomez de Leon (1990) showed
that a model of this sort gives the most satisfactory
fit to the historical Norwegian data, out of a large
class of simple models. It is our hope, of course, that
the error term, ex,t, is well-behaved and of relatively
small variance. The hope is that most of the variance
over time at any given age will be ‘‘explained’’ by the
k parameter, and that the residual variance will be
white noise. In the U.S. from 1933 to 1987, the model
in fact accounted for over 97% of the temporal vari-
ance in mortality rates through ages 80–84.4

FITTING THE MODEL
This model cannot be fit by simple regression, because
there is no observed variable on the right-hand side.
Nonetheless, a least-squares solution exists and can be
found using the first element of the singular value de-
composition (or SVD; see Lee and Carter 1992 for de-
tails) or principal components (see Bell and Monsell
1991). On inspection, we can see that the solution
cannot possibly be unique, however. To distinguish a
unique solution, impose the further conditions that
the sum of the bx coefficients equals 1.0, and that the
sum of the kt parameters equals zero. Under these as-
sumptions, it can be seen that the ax coefficients must
be simply the average values over time of the ln(mx,t)

3By modeling the logarithm of mx,t we insure that the age-specific
death rates themselves will never be negative, which otherwise oc-
curs promptly in forecasts. Nothing insures that they will not exceed
unity, however. In practice this is not a problem. While the possibility
could be avoided by modeling the logit of the death rates, ln[mx,t /
(1 � mx,t)], in this case a linear trend in k would not imply a constant
geometric rate of decline for each age-specific death rate. We prefer
the alternative of modeling the force of mortality rather than m. The
force of mortality can take on any positive value, and the implied
m’s and q’s would always be between zero and unity. We have not
done this yet, but it appears to be the most natural way to proceed.
4That is, the model accounted for over 97% of the variance in the
ln(mx,t) matrix that remained after subtracting age group means.
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Figure 1
Estimated Values of ax and bx Coefficients

for the U.S. and Chile
Comparison of Estimated ax Coefficients

for the U.S. and Chile

Comparison of Estimated bx Coefficients

for the U.S. and Chile

values for each x. Wilmoth (1993) has developed a
superior method for fitting the model, which will be
discussed later.

The model was fit to U.S. data from 1933 to 1987
(Lee and Carter 1992), to Chilean data from 1952 to
1987 (Lee and Rofman 1994), and to Canadian data
from 1922 to 1995 (Lee and Nault 1993). (For a treat-
ment of male and female mortality differences, see
Carter and Lee 1992. For an analysis of black-white
differences by sex, see Carter 1996b). Figure 1 shows
the estimated values of ax and bx coefficients for the
U.S. The ax coefficients, as noted, are just the average
values of the logs of the death rates. Not surprisingly,
the Chilean coefficients lie above those of the U.S. at
all ages except the highest, reflecting the fact that
mortality was higher, on average, in Chile from 1952
to 1987 than in the U.S. from 1933 to 1987.5 The bx

coefficients describe the relative sensitivity of death
rates to variation in the k parameter. It is also not
surprising that sets of coefficients for the U.S. and
Chile look quite similar. Because of the normalization,
their absolute levels have no particular meaning. With
N age groups, if bx � by � 1/N for all x, y, then all
the rates would move up and down proportionately,
maintaining constant ratios to one another. However,
it can be seen that, in fact, some ages are much more
sensitive than others. Generally speaking, the younger
the age, the greater its sensitivity to variation in the
k parameter. The exponential rate of change of an age
group’s mortality is proportional to the bx value:
dln(mx,t)/dt � (dkt/dt)bx. If k declines linearly with
time, then dkt/dt will be constant and each mx will
decline at its own constant exponential rate.

SECOND STAGE ESTIMATION OF K
At this point, we could proceed directly to the next
step of modeling the k parameter as a time series pro-
cess. Instead, we make a second stage estimate of k
by finding that value of k which, for a given population
age distribution and the previously estimated coeffi-
cients ax and bx, produces exactly the observed num-
ber of total deaths for the year in question. That is,
we search for kt such that:

D � �{exp(a � b k )N }t x x t x,t

where Dt is total deaths in year t, and Nx,t is the pop-
ulation age x in year t.

5The Chilean data treat 65� as the open age group. The Coale-Guo
(1989) method was used to construct age-specific mortality esti-
mates at older ages. In the U.S., 85� is the open age group.
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There are several advantages to making a second
stage estimate of the k parameter in this way. First,
this guarantees that the life tables fitted over the sam-
ple years will fit the total number of deaths and the
population age distributions. Because the first stage
estimation was based on logs of death rates rather
than the death rates themselves, sizable discrepancies
can occur between predicted and actual deaths. Sec-
ond, in this way, the empirical time series of k can be
extended to include years for which age-specific data
on mortality are not available, because the second
stage estimate of k yields an indirect estimate of mor-
tality. For the U.S., this allows the base year of the
forecast to be brought forward by two or three years,
because of the long time lag in publishing age-specific
rates. For Chile, it allows us to fill in several gaps in
the middle of the time series of mortality. For other
developing countries with less complete data (such as
China), it permits many kinds of indirect estimation
of mortality, even when data are restricted to a single
initial population age distribution and annual totals of
births and deaths.

While this two-stage method works quite well, Wil-
moth (1993) has developed superior one-stage meth-
ods. The two stages are collapsed into one by using
weighted SVD to fit the model, with the numbers of
deaths at each age used as weights. In principle, this
method can also provide estimates of the standard er-
rors of the ax and bx coefficients. In the two-stage
method, the standard errors for the bx coefficients can
be estimated using the bootstrap (see Lee and Carter
1992), but this is a cumbersome process. Wilmoth has
also developed a maximum likelihood method.

VITAL RATES AS STOCHASTIC
PROCESSES
The next step is to model k as a stochastic time series
process. This is done using standard Box-Jenkins pro-
cedures. In most applications so far, kt is well-modeled
as a random walk with drift: kt � c � kt�l � ut. In this
case, the forecast of k changes linearly and each fore-
casted death rate changes at a constant exponential
rate. However, sometimes a model of this general
form, but with an added moving average term or au-
toregressive term, is superior. In this case the pattern
of change is somewhat different.

Note that each of the mx values is now itself mod-
eled as a stochastic process driven by the process k.
Note also that, if we ignore the error term ex,t (which
we hope is relatively unimportant), the variations in
the ln(mx) values will be perfectly correlated with one

another, because all are linear functions of the same
time-varying parameter k. This is a very convenient
feature of the model, for it means that we can calcu-
late the probability bounds on all (period) life table
functions directly from the probability bounds on the
forecasts of k, without having to worry about cancel-
lation of errors. For a discussion of errors arising from
ex,t and from the estimation of ax and bx coefficients,
which are ignored here, see the appendix to Lee and
Carter (1992).

FORECASTS
We can now use the fitted time series model for k to
forecast it over the desired time period. Figure 2
shows past values of k for the U.S. from 1900 to 1989
and their forecasts from 1990 to 2065. Note that the
estimated values of k over the base period change in
a linear fashion. In fact, the change in k over the first
half of the period almost exactly equals its change in
the second half. This contrasts with our usual under-
standing that the pace of mortality decline has decel-
erated over time, an understanding based on the
trends in life expectancy at birth, which we will ex-
amine in a moment. The approximate linearity of k in
the base period is a great advantage from the point of
view of forecasting. Long-term extrapolation is always
a hazardous undertaking, but it is less so when sup-
ported in this way by the regularity of change in a
ninety-year empirical series. Also note that, aside from
the influenza epidemic of 1918, the variability of the
series is similar throughout the period. This is also a
desirable feature for forecasting purposes.

Figure 2 shows the point forecasts, which are essen-
tially linear extrapolations of the base period series.
Our analysis of Chilean data showed a similar result,
as did Gomez de Leon’s (1990) analysis of Norwegian
mortality data, which took a slightly different ap-
proach. 95% probability intervals are also shown for
the forecast of k. The figure shows intervals which re-
flect only the error term in the random walk, which
expresses the innovation error. However, these could
be augmented to include uncertainty about the rate
of decline in k, which is itself estimated (see Lee and
Carter 1992). The statistical model included a dummy
variable to remove the influence of the 1918 influenza
epidemic. One might prefer to treat this epidemic as
representative of continuing epidemic risks in the fu-
ture. In more recent forecasts, we have incorporated
a 1 in 97 chance each year of a shock to k of the size
of the shock in 1918, where 97 is the number of years
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Figure 2
Mortality Forecast from 1900–1989 to 2065,

With 95% Probability Interval
Model is (0,1,0) with a dummy for flu.

in the sample period. The influence on the forecasts
is barely discernible.

The next step is to convert the forecasts of k into
forecasts of life table functions, given the previously
estimated age specific coefficients ax and bx, using the
earlier equation for ln(mx,t). Once the implied fore-
casts of mx,t have been recovered in this way, any de-
sired life table function can be calculated. For period
life table functions, the probability intervals can be
found directly from the intervals on k. To find proba-
bility intervals for cohort life table functions, we would
have to take into account the autocovariance struc-
ture of errors in k, which is less straightforward.

Figure 3 displays actual (fitted) base period values
of life expectancy at birth along with the forecasts de-
rived from the forecasts of k in Figure 2. The figure
also shows the high, medium, and low projections by
the U.S. Bureau of the Census (1989) and the Social
Security Administration’s Office of the Actuary (Bell,
Wade, and Goss 1992) which have similar base line
dates. There are several points to note. First, we pre-
dicted an increase in life expectancy of 10.4 years,
from 75.7 to 86.1, between 1989 and 2065 (Lee and
Carter 1992). This is nearly twice as large as the gain
forecast by the Office of the Actuary and the Bureau

of the Census (from 75.08 to 80.61 for the Actuary,
or 5.5 years). The difference translates into substan-
tially higher forecasts of the elderly population. Sec-
ond, although we projected a linear trend in k, the
forecast for life expectancy is for growth at a slowing
pace. The difference is due to the decreasing entropy
of the survival curve, as discussed earlier. Third, the
probability interval is fairly tight, even though the plot
includes uncertainty in the estimated drift term in ad-
dition to the innovation error. We see here that time
series methods need not lead to very wide probability
intervals, with little information after a couple of dec-
ades; indeed, the Lee-Carter intervals have been crit-
icized as being implausibly narrow. Note, however,
that the intervals on the forecasts of k were not par-
ticularly narrow. We believe that the narrowness of the
forecasts of life expectancy arise from the low entropy
of the survival curve when life expectancy reaches high
levels: even sizable variations in k have little effect on
the level of life expectancy, because mortality has be-
come so concentrated at the older ages.

How has this forecast performed compared to actual
life expectancy in the intervening years? First, it is
now clear that an attempt to estimate indirectly the
level of life expectancy for the jump-off year of 1989,
based on methods described earlier in this paper, led
to an error of 0.58 years.6 The actual e0 was 75.08 in
1989 (U.S. NCHS 1998b), while Lee and Carter
(1992) estimated it to be 75.66. Given the random
walk specification, the influence of this baseline error
of 0.6 years persists in the forecast (a procedure for
avoiding this problem is described later in the paper).
If we concentrate on the projected gain in life expec-
tancy rather than on the projected levels, we find that
Lee and Carter projected e0 to rise from 75.7 in 1989
to 77.0 in 1997, a gain of 1.3 years. The actual gain
has been 1.4 years, from 75.1 to 76.5 in 1997 (U.S.
NCHS 1998a). The agreement with the Lee-Carter
gain forecast is very close. By contrast, the Office of
the Actuary (Bell, Wade, and Goss 1992) projected a
gain of 0.725 years over the same period, or about half
the actual; 76.5 is not reached in this projection until
2002 or 2003. Similarly, the Lee-Carter forecasts of
the age pattern of decline over this period are very
close to the actual, although over earlier parts of the
comparison period this was not so. In summary, the
basic Lee-Carter method successfully predicted e0

6At the time of our forecast, we had age-specific mortality data avail-
able through 1987, and we used our model to estimate indirectly
the level of mortality for 1988 and 1989 based on the aggregate
number of deaths and the population age distribution.
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Figure 3
e0 Forecasts with Intervals: Lee-Carter, Census
Bureau, and Social Security Administration for

the U.S., Sexes Combined, 1990–2065

gains over the period since it was published, although
an erroneous jump-off life expectancy level introduced
a persistent error in the level of e0 that Lee-Carter
forecast.

SOME PROBLEMS WITH THE METHOD
The Lee-Carter method is a useful and appropriate way
to extrapolate historical trends in the level and age
distribution of mortality. However, extrapolation may
not always be a sensible procedure to employ. Perhaps
it will be useful to discuss some of the problems and
limitations of the method.
• As mentioned earlier, mortality in the U.S. has not

always declined along the path represented by the
plot of k in Figure 2. If it had, then by retrojection
we would arrive at impossibly high levels of mortality
early in the nineteenth century. So we know that the
time series behavior of k during the period of obser-
vation from 1900 to 1996 is not typical of the whole
historical experience and cannot possibly reflect a
fundamental property of mortality change over time.
Why, then, should we expect this pattern to hold
over the next century? Perhaps the institutionaliza-

tion of biomedical research provides some reason to
believe that twentieth-century trends will continue
in the future.

• The method assumes a certain pattern of change in
the age distribution of mortality, such that the rates
of decline at different ages (given by bx(dkt/dt)) al-
ways maintain the same ratios to one another over
time. But in practice, the relative speed of decline
at different ages may vary. For example, Horiuchi
and Wilmoth (1995) point out that in Sweden, mor-
tality rates at old age used to decline more slowly
than at other ages, but that in recent decades they
have come to decline more rapidly than at other
ages. In the U.S., it appears that there has been a
slowdown in mortality declines for ages 5 to 50 rel-
ative to the older and younger ages. The method
cannot take such shifts in pattern into account. It
is possible to modify the method to accommodate
changes in age pattern, but it is not known whether
it would perform well as a forecasting method when
so modified.

• The method does not readily accommodate extra-
neous information about future trends. Perhaps it is
best viewed as providing a kind of baseline forecast
of what would happen if present trends were to con-
tinue. Then, if there were a compelling reason to
expect long-term future trends to be more or less
rapid than in the past, the baseline forecast could
be suitably modified. In our view, however, such
compelling reasons are seldom available.

• The method most easily incorporates forecast un-
certainty arising from uncertainty in the forecast of
k, the mortality index. It is also possible without
much difficulty to incorporate uncertainty about the
estimated trend in mortality, arising from the un-
certain drift coefficient in the Lee and Carter im-
plementation (1992). However, uncertainty arising
from errors in the estimation of the bx coefficients
is quite difficult to estimate and to incorporate, as
is uncertainty arising from errors in the fit of the
basic model to the actual matrix of age-specific mor-
tality rates over time. Further errors arise from vi-
olation of the assumption that fitting errors are un-
correlated across age. Some, but not all, of these
issues are discussed in the appendix to Lee and Car-
ter (1992).

• Because the probability intervals do not reflect un-
certainty about whether the model specification is
correct, nor uncertainty about whether the future
will look like the past, some people believe that they
are too narrow and that they understate the uncer-
tainty about future levels of life expectancy. While
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Figure 4
Stochastic Forecasts of the Old-Age Dependency Ratio, U.S., 1997–2075

some people expect major breakthroughs in medical
technology that will accelerate mortality decline,
others expect drug-resistant strains of diseases to
proliferate and cause a slowing of decline.

• Implausible sex differentials: In the application to
Canadian data, the sex difference in forecasted mor-
tality grew in an implausible way, whether the sexes
were forecasted independently or with identical k se-
ries. Presumably this reflected divergent trends in
the historical data, for example, the earlier adoption
of smoking by males. Most analysts expect sex dif-
ferences to narrow in the U.S. and Canada.

EXTENSIONS
There are many extensions of this basic method. There
will be space here for only a brief description of each.
• Disaggregation by sex (see Carter and Lee 1992):

There are a number of possible approaches. One ap-
proach, of course, is simply to treat the male and
female forecasts as two separate applications of the
basic approach. It is tempting, however, to try to
take advantage of similarities between the two to
reduce the dimensionality of the model, and to im-
pose some coherence on the two sets of forecasts.
One way to do this is to treat the male and female
rates as if they were just different portions of the
same set of age-specific rates for a single population,
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Figure 5
Stochastic Forecasts of the Total Dependency Ratio, United States, 1997–2075

with 2N age groups, if the actual number of age
groups is N. In this way, one estimates and forecasts
a single time series for k which is used to drive both
male and female mortality. The two can have differ-
ent age-shapes, and can decline at different rates,
because they have different ax and bx coefficients.
Further simplifications of structure can be achieved
by constraining the ax coefficients to be identical
while estimating different bx coefficients, or con-
versely. These constraints on the basic model should
be carefully tested and evaluated.

• Geographic disaggregation (see Lee and Nault
1993): Exactly the same issues and options arise as
for disaggregation by sex when dealing with a set of

regional populations comprising a national total. An
application was made to the 12 provinces in Canada.

• Disaggregation by cause: Similar issues arise in Wil-
moth (1995), who carried out a cause-disaggregated
application to Japanese data (1996). He points out
that a cause-disaggregated forecast will always yield
higher mortality in the future than will an aggregate
forecast, when trend extrapolation is used as the
method. This is because the most slowly declining
cause of death will come to dominate in the long
run (see Wilmoth 1995). Often, some causes of
death will actually have increasing rates, and they
will be forecast to increase indefinitely.

• Lower bounds for death rates: Wilmoth (through
personal communication with the author) has also
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Figure 6
Histogram of Dates of Exhaustion with an Immediate Tax Increase of 2%

suggested that it would be a simple matter to have
each age-specific death rate decline toward a lower
bound greater than zero, by subtracting the bound
before modeling and forecasting the death rates,
and then adding it back in.

• Matching latest death rates: Lee and Carter (1992)
mention that rather than estimating ax coefficients
as the average of the ln(mx,t), it would be possible
to set the ax coefficients equal to the logarithms of
the most recent death rates. This assures that the
first year of the forecast will match up smoothly and
closely with the most recently observed death rates.
William Bell (1997) tests a variety of methods for
forecasting mortality, including both the original
Lee-Carter method and this variation, and concludes
that this variation outperforms all other methods.
Perhaps this is more likely to be true over shorter
horizons, such as in Bell’s analysis. The advantage
of the original method is the possibility of avoiding
peculiarities of any particular year’s mortality rates.
My recommendation is that the model be fitted in
the way described, but that forecasts should take the
most recently observed age-specific death rates as
initial values. Then forecasts would be given by
ln(mx,t�s) � ln(mx,t) � bx(kt�s � kt). This assures that
the baseline values exactly match the observed age-
specific death rates and life expectancy, and that the

forecasts of age-specific rates progress smoothly
from these values.

• Other model specifications: It is possible to compli-
cate the model in various ways, for example by in-
cluding higher order effects (see for example Bell
and Monsell 1991). Gomez de Leon (1990) tests
other possibilities using Norwegian data and con-
cludes that this specification works best. However,
by adding higher-order effects and cohort-specific ef-
fects, it will generally be possible to improve the fit
within the sample. The question is whether such ad-
ditional effects would represent fundamental and
enduring aspects of mortality patterns such that the
forecasts would be improved.

• Variable trends: Carter (1996a) develops a method
in which the drift or trend term in the forecast-
ing equation for k is itself allowed to be a random
variable. This is done using standard state-space
methods for modeling time series. Somewhat sur-
prisingly, the forecast and probability intervals re-
mained virtually unchanged under this approach.

• Leader countries: Wilmoth (1996) has suggested
that lagging countries, with life expectancy below
that of the leading country (now Japan), can achieve
more rapid gains by borrowing more advanced tech-
nology or other health-related practices. However,
once they have caught up with the leader they would
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then be expected to progress more slowly. There-
fore, it might be a mistake to extrapolate a mortality
trend which would take a population past the pro-
jected mortality of the leader population. He applies
this approach to forecasts for Japan and Sweden.

STOCHASTIC FORECASTS OF
POPULATION AND OF SOCIAL SECURITY
SYSTEM FINANCES
One advantage of this approach is that it forecasts the
joint probability distributions of age-specific death
rates, and these can be viewed as components of sto-
chastic Leslie matrices. When combined with stochas-
tic fertility forecasts (see Lee 1993), it is then possible
to produce fully stochastic population forecasts. This
is done for the U.S. in Lee and Tuljapurkar (1994).
Figure 4 plots more recent stochastic forecasts of the
old-age dependency ratio, showing the median fore-
cast along with the 95% probability interval. For com-
parison, the high, medium, and low forecasts by the
Office of the Actuary (Felicitie Bell 1997) and the U.S.
Census Bureau (1996) are also shown. Note that the
median Lee-Tuljapurkar forecast is somewhat higher
than that of the Actuary due to the greater longevity
gains forecast by the Lee-Carter method. Note also
that while the lower 2.5% bracket is close to the Ac-
tuary’s low-cost projection, the upper 2.5% bracket is
far higher. Also note that the Census high-low range
is very narrow. Census combines high fertility and low
mortality in their high-cost scenario, and low fertility
and high mortality in their low-cost scenario, to gen-
erate a wide range for population size and population
growth rates. However, these combinations minimize
the range for old-age dependency, because high fertil-
ity and low mortality work in opposite directions on
the ratio. The Census forecasters realize this, of
course, and provide alternative scenarios to generate
a plausible range of uncertainty for the old-age de-
pendency ratio. The Office of the Actuary, seeking a
plausible range of uncertainty for this ratio, con-
structs its scenarios differently, combining low fertil-
ity and low mortality in their high-cost scenario, and
high fertility and high mortality in their low-cost
scenario.

However, it is not possible to avoid the inherent in-
consistencies in the scenario-based approach to as-
sessing uncertainty, as shown by Figure 5 for the total
dependency ratio. Note first that the Census middle
forecast for the ratio is substantially higher than the
others, because Census assumes the total fertility rate
will rise to 2.245 children per woman, whereas Lee-

Tuljapurkar follow Social Security in assuming a long-
term mean of 1.9 children per woman (see Lee and
Tuljapurkar, 1998c, for a discussion of these assump-
tions). The point to note in the present context, how-
ever, is that the Census high-low interval is fairly wide,
while now the Office of the Actuary’s interval is im-
plausibly narrow. The stochastic forecast automati-
cally provides consistent estimates of uncertainty, re-
gardless of the variable examined. Some readers may
believe the Lee-Tuljapurkar intervals to be too wide.
In assessing their width, it must be kept in mind that
they are designed to contain annual variations, not
just long-term trends. For a discussion of this issue,
see Lee and Tuljapurkar, 1998c.

These stochastic population forecasts can then be
used as the basis of stochastic forecasts of the fi-
nances of the Social Security system, or of other as-
pects of the federal budget. For example, the Con-
gressional Budget Office, in its long-term forecasts
published in 1996, 1997, and 1998 (Congressional
Budget Office 1998), uses the Lee-Tuljapurkar sto-
chastic population projections to prepare stochastic
projections of the federal budget balance out to 2050.
Lee and Tuljapurkar (1998a, b, c) use their stochastic
population projections, together with time series
models of the real interest rate and productivity
growth rates, to generate stochastic forecasts of the
finances of the Social Security system under varying
policy assumptions. As an illustration, Figure 6 dis-
plays the probability distribution of the dates of ex-
haustion of the OASDI Trust Fund, conditional on the
assumption that the payroll tax rate for OASDI is im-
mediately raised by 2 percentage points, from 12.4%
to 14.4%. According to our forecasts, there would still
be a 75% chance of fund exhaustion by 2070. Lee and
Tuljapurkar (1998c) present probability distributions
for outcomes under other assumptions, such as cur-
rent policy, rising retirement ages, and investment of
differing fractions of the trust fund in equities.

SUMMARY AND CONCLUSION
The Lee-Carter method is based on a simple represen-
tation of year-to-year variations in the set of age-
specific death rates in terms of a single time-varying
parameter. The time series of estimated values of this
parameter is then modeled and forecasted using sta-
tistical time series methods. From these forecasts, the
probability distributions for forecasts of age-specific
death rates and related variables such as life expec-
tancy are calculated. The published forecast of a 1.3-
year gain in life expectancy from 1989 to 1997
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matches closely the 1.4 years actually realized, and
over this period the pattern of declines by age is also
very closely matched by the forecasts. Alternative
methods have been developed for estimating the basic
model, and for modeling and forecasting the time se-
ries. There have been a number of extensions of the
method, including the development of coherent fore-
casts by sex and by race, and forecasts for regions
comprising a national system. Problems and short-
comings of the method have been discussed.

The mortality model has been used together with a
similar fertility model and deterministic migration as-
sumptions to generate stochastic forecasts of the pop-
ulation and its components. These stochastic popula-
tion forecasts, in turn, have been used as the key
component of stochastic forecasts of the finances of
the U.S. Social Security system. The stochastic fore-
casts avoid some of the problems inherent to the use
of the classic scenario method for representation of
forecast uncertainty.
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DISCUSSION

JUHA M. ALHO*
The Carter and Lee (1992) paper on forecasting age-
specific mortality has been one of the most influential
in recent times, and for a good reason. It provides a
description of mortality change that is both easy to
understand and empirically accurate. The review by
Lee is a succinct summary of the work and shows how
it can be applied to the stochastic forecasting of the
population, and of the Social Security trust fund, for
example. In the following I will try to put the work
into a broader perspective.

STATISTICAL MODEL
Principal components techniques have been used in
time-series analysis for quite some time. Brillinger’s
(1981, Ch. 9) discussion of the topic is based on lec-
tures held in the late 1960s, for example. Bozik and
Bell (1987) appear to have been the first to use the
approach in the forecasting of age-specific fertility
rates. The method can be described as follows. Let
M � (Mxt) be an N � T matrix of vital rates that have
been observed for N ages during T years. Using the
singular value decomposition we can write M � BKT,
where the columns of B and K are orthogonal. This
representation can be used to approximate M, in the
least squares sense. The best one-dimensional approx-
imation is M � B1K1

T, where B1 and K1 are the col-
umns of B and K that correspond to the largest sin-
gular value. In the method of Carter and Lee, the
decomposition is first applied to the logarithms of the
mortality rates that have been centered. The remark-
able fact is that the one-dimensional approximation
appears to be empirically adequate for mortality in
many industrialized countries. For fertility data sets,
a higher order approximation is often needed.

The second step is to develop a stochastic model for
the components of K1 � (k1, . . . , kT)

T. Again, re-
markably, a simple random walk with a drift appears
to be adequate. In forecasting, B1 is kept fixed. The
optimal forecast for is obtained from a straightkT�t

line that goes through the values k1 and kT. The fore-
cast for the vector of the (transformed) rates is B1.k̂T�t

*Juha M. Alho is a professor in the Department of Statistics at the
University of Joensuu, PO Box 111, 80101 Joensuu, Finland, e-mail,
juha.alho@joensuu.fi.
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In Alho and Spencer (1990) I have pointed out prob-
lems in the U.S. Office of the Actuary’s method of
forecasting cause-specific mortality. The method uses
judgment in a way that is difficult to justify (Alho
1992). Simpler methods such as that of Carter and
Lee (1992) would merit serious consideration. As al-
ways, there are details that might be refined; I will
mention two.

The use of the least squares criterion is reasonable,
but not optimal. Let Dxt be the number of deaths in
age x during year t, and let Vxt be the corresponding
person years. Maximum-likelihood estimates can be ob-
tained under a Poisson model Dxt � Po(�xtVxt), where
the intensity is of the log-bilinear form log(�xt) �
ax � bxkt. This is actually a version of the so-called
association models developed in the 1980s but with a
history that goes back to the 1930s (see Goodman
1991). Special software for their estimation has been
developed, but point estimates can be obtained using,
for example, the well-known package GLIM.

Since the bilinear model makes no assumption
about the shape of the vector B1 � (b1, . . . , bN)T,
there is no guarantee that the forecasted mortality
schedules in adult ages are monotone. In a University
of Joensuu Master’s Thesis (Eklund 1995) it was found
that the one-dimensional approximation to mortal-
ity in Finland, by single years of age 65–99 during
1972–1989, fitted well but produced several non-
monotonicities in the forecasts for ages over 90. The
data may have been irregular because of Poisson var-
iation. Yet, it would be of interest to have a model
that would be constrained to produce monotone
schedules.

APPLICATIONS TO FORECASTING
As pointed out by Lee, the high-low intervals of cur-
rent official population forecasts suffer from serious
logical problems that can be avoided by a probabilistic
reformulation. Apparently, this was first noted by L.
Törnqvist in 1949. Törnqvist was a statistics professor
at the University of Helsinki, better known for his
work in index number theory. In the late 1940s he
helped Statistics Finland to improve their methods of
population forecasting. Unfortunately, in those days
effective means of computation were not available so
he could not pursue a full stochastic analysis of a pop-
ulation forecast.

The extrapolation method of Carter and Lee pro-
vides a good point forecast for mortality. The handling
of fertility in the Lee-Tuljapurkar forecast relies more

on judgment. The analysis of uncertainty is based on
empirical standard errors from both models.

Even when forecasts are not based on formal statis-
tical models, it is possible to provide an approximate
probabilistic assessment of their uncertainty in coun-
tries with sufficiently long data series of mortality and
fertility, such as the U.S. One can simply ask how large
the error would have been in the past had the series
been forecasted using some simple, baseline ap-
proach. In Alho (1998) I have done such a calculation
for Finland. The baseline forecast assumes that age-
specific mortality declines at the same rate that it has
for the past 15 years. If the official forecasts are ac-
tually more accurate than those obtained with this
simple assumption, then our empirical error estimates
would be conservative (that is, too large). A similar
calculation was done for fertility but with a constant
baseline forecast. For migration, a mixture of time-
series modeling and elicitation of expert judgment
was used. The predictive distribution for future pop-
ulation was obtained via simulation, using the pro-
gram PEP (Program for Error Propagation) we have
written.

Lee’s application to the Social Security trust fund
is a beautiful example of how the use of simulation
techniques allows us to take the various sources of
forecast uncertainty seriously and to summarize the
results in a predictive distribution of a complex ‘‘sta-
tistic’’ such as the balance of the fund, or its time of
exhaustion. Similar calculations can be made for many
other statistics. We have considered the system of
state allocation of funds to municipalities in Finland,
for example. These first calculations are based on
many simplifying assumptions. A challenge for future
research is to examine and model the various feedback
mechanisms that may exist between the economic var-
iables and population.
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